Gene Family Encoding the Major Toxins of Lethal Amanita Mushrooms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thesis Is Presented for the Degree of Doctor of Philosophy of Curtin University of Technology
School of Biomedical Sciences Analysis of Candidate Genes within the 3p14-p22 Region of the Human Genome for Association with Bone Mineral Density Phenotypes Benjamin H Mullin This thesis is presented for the Degree of Doctor of Philosophy of Curtin University of Technology February 2011 To the best of my knowledge and belief this thesis contains no material previously published by any other person except where due acknowledgment has been made. This thesis contains no material which has been accepted for the award of any other degree or diploma in any university. Preface The experimental work contained within this thesis was performed in the Department of Endocrinology & Diabetes at Sir Charles Gairdner Hospital under the supervision of Doctor Cyril Mamotte, Associate Professor Scott Wilson, and Professor Richard Prince. All experimental work in this thesis was performed by myself unless otherwise stated. Benjamin H. Mullin, B.Sc. Publications arising from this thesis Mullin, B. H., Prince, R. L., Dick, I. M., Hart, D. J., Spector, T. D., Dudbridge, F. & Wilson, S. G. 2008. Identification of a role for the ARHGEF3 gene in postmenopausal osteoporosis. American Journal of Human Genetics , 82 , 1262-9. Mullin, B. H., Prince, R. L., Mamotte, C., Spector, T. D., Hart, D. J., Dudbridge, F. & Wilson, S. G. 2009. Further genetic evidence suggesting a role for the RhoGTPase-RhoGEF pathway in osteoporosis. Bone , 45 , 387-91. Research grants received during completion of this thesis Wilson, S. G., Prince, R. L., Mamotte C., Mullin B. H. 2008. Influence of the ARHGEF3 gene on bone phenotypes. Arthritis Australia Project Grant ($14,500). -
MMA MASTERLIST - Sorted Alphabetically
MMA MASTERLIST - Sorted Alphabetically Sunday, December 10, 20Taxa Count: 2115 Page 1 of 26 Agaricus abruptibulbus Amanita amerimuscaria Agaricus arvensis Amanita amerirubescens nom. prov. Agaricus campestris Amanita atkinsoniana Agaricus haemorrhoidarius Amanita aureosolea nom. prov. Agaricus micromegethus Amanita battarrae Agaricus pattersonae Amanita bisporigera Agaricus placomyces Amanita brunnescens Agaricus semotus Amanita ceciliae Agaricus silvaticus Amanita cinereoconia Agaricus silvicola Amanita citrina Agaricus sp. Amanita citrina f. lavendula Agaricus subrutilescens Amanita cokeri Agaricus xanthrodermus Amanita cothurnata Agrocybe acericola Amanita crenulata Agrocybe aegerita Amanita crocea Agrocybe dura Amanita elongata Agrocybe erebia Amanita excelsa var. spissa Agrocybe firma Amanita farinosa Agrocybe pediades Amanita flavoconia Agrocybe praecox Amanita flavorubens Agrocybe sp. Amanita flavorubescens Agrocybe tabacina Amanita frostiana Albatrellus caeruleoporus Amanita fulva var. alba Albatrellus confluens Amanita fulva var. crassivolvata Albatrellus ovinus Amanita gemmata Albatrellus sp. Amanita jacksonii Alboleptonia sericella Amanita longipes Albugo candida Amanita murrilliana Aleuria aurantia Amanita onusta Aleuria rhenana Amanita pantherina, cf. Aleurodiscus amorphus Amanita phalloides Aleurodiscus oakesii Amanita porphyria Amanita abrupta Amanita praecox nom. prov. Amanita aestivalis Amanita pseudovolvata nom. prov. Amanita albocreata Amanita RET T01 Amanita amerifulva nom. prov. Amanita ristichii Amanita rubescens -
Peptide Chemistry up to Its Present State
Appendix In this Appendix biographical sketches are compiled of many scientists who have made notable contributions to the development of peptide chemistry up to its present state. We have tried to consider names mainly connected with important events during the earlier periods of peptide history, but could not include all authors mentioned in the text of this book. This is particularly true for the more recent decades when the number of peptide chemists and biologists increased to such an extent that their enumeration would have gone beyond the scope of this Appendix. 250 Appendix Plate 8. Emil Abderhalden (1877-1950), Photo Plate 9. S. Akabori Leopoldina, Halle J Plate 10. Ernst Bayer Plate 11. Karel Blaha (1926-1988) Appendix 251 Plate 12. Max Brenner Plate 13. Hans Brockmann (1903-1988) Plate 14. Victor Bruckner (1900- 1980) Plate 15. Pehr V. Edman (1916- 1977) 252 Appendix Plate 16. Lyman C. Craig (1906-1974) Plate 17. Vittorio Erspamer Plate 18. Joseph S. Fruton, Biochemist and Historian Appendix 253 Plate 19. Rolf Geiger (1923-1988) Plate 20. Wolfgang Konig Plate 21. Dorothy Hodgkins Plate. 22. Franz Hofmeister (1850-1922), (Fischer, biograph. Lexikon) 254 Appendix Plate 23. The picture shows the late Professor 1.E. Jorpes (r.j and Professor V. Mutt during their favorite pastime in the archipelago on the Baltic near Stockholm Plate 24. Ephraim Katchalski (Katzir) Plate 25. Abraham Patchornik Appendix 255 Plate 26. P.G. Katsoyannis Plate 27. George W. Kenner (1922-1978) Plate 28. Edger Lederer (1908- 1988) Plate 29. Hennann Leuchs (1879-1945) 256 Appendix Plate 30. Choh Hao Li (1913-1987) Plate 31. -
Toxic Fungi of Western North America
Toxic Fungi of Western North America by Thomas J. Duffy, MD Published by MykoWeb (www.mykoweb.com) March, 2008 (Web) August, 2008 (PDF) 2 Toxic Fungi of Western North America Copyright © 2008 by Thomas J. Duffy & Michael G. Wood Toxic Fungi of Western North America 3 Contents Introductory Material ........................................................................................... 7 Dedication ............................................................................................................... 7 Preface .................................................................................................................... 7 Acknowledgements ................................................................................................. 7 An Introduction to Mushrooms & Mushroom Poisoning .............................. 9 Introduction and collection of specimens .............................................................. 9 General overview of mushroom poisonings ......................................................... 10 Ecology and general anatomy of fungi ................................................................ 11 Description and habitat of Amanita phalloides and Amanita ocreata .............. 14 History of Amanita ocreata and Amanita phalloides in the West ..................... 18 The classical history of Amanita phalloides and related species ....................... 20 Mushroom poisoning case registry ...................................................................... 21 “Look-Alike” mushrooms ..................................................................................... -
|H|||||||||| USOO5278143A United States Patent 19 11 Patent Number: 5,278,143 Shepro Et Al
|H|||||||||| USOO5278143A United States Patent 19 11 Patent Number: 5,278,143 Shepro et al. (45) Date of Patent: Jan. 11, 1994 (54) PROPHYLACTIC AND THERAPEUTIC OTHER PUBLICATIONS METHODS FOR TREATING NTER LEUKIN-MEDIATED EDEMAS Rudinger, Peptide Hormones, Parsons (Ed.) U. Park t Press, Baltimore, pp. 1-7 (1976). (75) Inventors: David Shepro, Boston, Mass.; J. Doukas et al., Blood, vol. 69, No. 6 pp. 1563-1569 (Jun. Steven Alexander, Nashville, Tenn. 1987). Frimmer, Chem. Abstracts, vol. 71, No. 99937m (1969). 73) Assignee: Trustees of Boston University, Wieland et al., Crit. Rev. Biochem. vol. 5, pp. 185-260 Boston, Mass. (1978). (21) Appl. No.: 807,668 Welbournet al., J. Appl. Physiol 70: 1364-1368 (1991). 22 illed: Dec. 16, 1991 Primary Examiner-Y. Christina Chan 22 Filed ec. 10, Attorney, Agent, or Firm-David Prashker Related U.S. Application Data 57 ABSTRACT m 63 continuation of ser. No. 416,905, Oct. 4, 1989, aban- Unique methods for treating interleukin-mediated ede doned, which is a continuation-in-part of Ser. No. mas in living subjects are provided comprising adminis 47,121, Oct. 4, 1989, abandoned, and a continuation- tering an effective amount of a composition selected in-part of Ser. No. 185,650, Apr. 25, 1988, abandoned. from the group consisting of phallotoxins, phallotoxin analogues, antamanide, or an antananide analogue to 51 Int. Cl. ........................ A61K 37/02; CK /6 the subject. The methods offer prophylactic and thera 52 576.5/35567; 17,353 peutic modes of treatment for both localized and sys s s 8 temic interleukin-mediated edemas. The compositions 58) Field of Search ................... -
Thirty Plus Years of Mushroom Poisoning
Summary of the Poisoning Reports in the NAMA Case Registry for 2006 through 2017 By Michael W. Beug, Chair NAMA Toxicology Committee In the early years of NAMA, toxicology was one of the concerns of the Mycophagy Committee. The existence of toxicology committees in the Puget Sound and Colorado clubs stimulated the NAMA officers to separate the good and bad aspects of ingesting mushrooms. In 1973 they established a standing Toxicology Committee initially chaired by Dr. Duane H. (Sam) Mitchel, a Denver, Colorado MD who founded the Colorado Mycological Society. In the early 1970s, Sam worked with Dr. Barry Rumack, then director of the Rocky Mountain Poison Center (RMPC) to establish a protocol for handling information on mushroom poisonings resulting in the center becoming nationally recognized for handling mushroom poisonings. Encouraged by Dr Orson Miller and acting on a motion by Kit Scates, the NAMA trustees then created the Mushroom Poisoning Case Registry in 1982. Dr. Kenneth Cochran laid the groundwork for maintaining the Registry at the University of Michigan. Individuals can report mushroom poisonings using the NAMA website (www.namyco.org). The reporting is a volunteer effort and at the end of each year members of the NAMA toxicology committee assemble all of the reports for the previous year as well as any other earlier cases that can still be documented. Individuals are encouraged to submit reports directly through the NAMA website. In addition, members of the toxicology committee work with Poison Centers to gather mushroom poisoning reports. The toxicology committee has 160 toxicology identifiers living in 36 states and 3 Canadian Provinces. -
Phalloidin, Amanita Phalloides
Phalloidin, Amanita phalloides sc-202763 Material Safety Data Sheet Hazard Alert Code EXTREME HIGH MODERATE LOW Key: Section 1 - CHEMICAL PRODUCT AND COMPANY IDENTIFICATION PRODUCT NAME Phalloidin, Amanita phalloides STATEMENT OF HAZARDOUS NATURE CONSIDERED A HAZARDOUS SUBSTANCE ACCORDING TO OSHA 29 CFR 1910.1200. NFPA FLAMMABILITY1 HEALTH4 HAZARD INSTABILITY0 SUPPLIER Company: Santa Cruz Biotechnology, Inc. Address: 2145 Delaware Ave Santa Cruz, CA 95060 Telephone: 800.457.3801 or 831.457.3800 Emergency Tel: CHEMWATCH: From within the US and Canada: 877-715-9305 Emergency Tel: From outside the US and Canada: +800 2436 2255 (1-800-CHEMCALL) or call +613 9573 3112 PRODUCT USE Toxic bicyclic heptapeptide (a member of the family of phallotoxins) isolated from the green mushroom, Amanitra phalloides Agaricaceae (the green death cap or deadly agaric). Binds to polymeric actin, stabilising it and interfering with the function of endoplasmic reticulum and other actin-rich structures. NOTE: Advice physician prior to working with phallotoxins. Prepare Emergency procedures. SYNONYMS C35-H48-N8-O11-S, phalloidine, "Amanita phalloides Group I toxin", "Amanita phalloides Group I toxin", "mushroom (green death cap/ deadly agaric) phallotoxin/ peptide", "cyclopeptide/ bicyclic bioactive heptapeptide" Section 2 - HAZARDS IDENTIFICATION CANADIAN WHMIS SYMBOLS EMERGENCY OVERVIEW RISK Very toxic by inhalation, in contact with skin and if swallowed. POTENTIAL HEALTH EFFECTS ACUTE HEALTH EFFECTS SWALLOWED ■ Severely toxic effects may result from the accidental ingestion of the material; animal experiments indicate that ingestion of less than 5 gram may be fatal or may produce serious damage to the health of the individual. ■ At sufficiently high doses the material may be hepatotoxic(i.e. -
Expansion and Diversification of the MSDIN Family of Cyclic Peptide Genes in the Poisonous Agarics Amanita Phalloides and A
Pulman et al. BMC Genomics (2016) 17:1038 DOI 10.1186/s12864-016-3378-7 RESEARCHARTICLE Open Access Expansion and diversification of the MSDIN family of cyclic peptide genes in the poisonous agarics Amanita phalloides and A. bisporigera Jane A. Pulman1,2, Kevin L. Childs1,2, R. Michael Sgambelluri3,4 and Jonathan D. Walton1,4* Abstract Background: The cyclic peptide toxins of Amanita mushrooms, such as α-amanitin and phalloidin, are encoded by the “MSDIN” gene family and ribosomally biosynthesized. Based on partial genome sequence and PCR analysis, some members of the MSDIN family were previously identified in Amanita bisporigera, and several other members are known from other species of Amanita. However, the complete complement in any one species, and hence the genetic capacity for these fungi to make cyclic peptides, remains unknown. Results: Draft genome sequences of two cyclic peptide-producing mushrooms, the “Death Cap” A. phalloides and the “Destroying Angel” A. bisporigera, were obtained. Each species has ~30 MSDIN genes, most of which are predicted to encode unknown cyclic peptides. Some MSDIN genes were duplicated in one or the other species, but only three were common to both species. A gene encoding cycloamanide B, a previously described nontoxic cyclic heptapeptide, was also present in A. phalloides, but genes for antamanide and cycloamanides A, C, and D were not. In A. bisporigera, RNA expression was observed for 20 of the MSDIN family members. Based on their predicted sequences, novel cyclic peptides were searched for by LC/MS/MS in extracts of A. phalloides. The presence of two cyclic peptides, named cycloamanides E and F with structures cyclo(SFFFPVP) and cyclo(IVGILGLP), was thereby demonstrated. -
NEMF MASTERLIST - Sorted by Taxonomy
NEMF MASTERLIST - Sorted by Taxonomy Sunday, April 24, 2011 Page 1 of 80 Kingdom Phylum Class Order Family Genus and Species Amoebozoa Mycetomycota Protosteliomycetes Protosteliales Ceratiomyxaceae Ceratiomyxa fruticulosa var. fruticulosa Ceratiomyxa fruticulosa var. globosa Ceratiomyxa fruticulosa var. poroides Mycetozoa Myxogastrea Incertae Sedis in Myxogastrea Stemonitidaceae Brefeldia maxima Comatricha dictyospora Comatricha nigra Comatricha sp. Comatricha typhoides Lamproderma sp. Stemonitis axifera Stemonitis axifera, cf. Stemonitis fusca Stemonitis herbatica Stemonitis nigrescens Stemonitis smithii Stemonitis sp. Stemonitis splendens Fungus Ascomycota Ascomycetes Boliniales Boliniaceae Camarops petersii Capnodiales Capnodiaceae Capnodium tiliae Diaporthales Valsaceae Cryphonectria parasitica Valsaria peckii Elaphomycetales Elaphomycetaceae Elaphomyces granulatus Elaphomyces muricatus Elaphomyces sp. Erysiphales Erysiphaceae Erysiphe polygoni Microsphaera alni Microsphaera alphitoides Microsphaera penicillata Uncinula sp. Halosphaeriales Halosphaeriaceae Cerioporiopsis pannocintus Hysteriales Hysteriaceae Glonium stellatum Hysterium angustatum Micothyriales Microthyriaceae Microthyrium sp. Mycocaliciales Mycocaliciaceae Phaeocalicium polyporaeum Ostropales Graphidaceae Graphis scripta Stictidaceae Cryptodiscus sp. 1 Peltigerales Collemataceae Leptogium cyanescens Peltigeraceae Peltigera canina Peltigera evansiana Peltigera horizontalis Peltigera membranacea Peltigera praetextala Pertusariales Icmadophilaceae Dibaeis baeomyces Pezizales -
Rapid, Sensitive, and Accurate Point-Of-Care Detection of Lethal Amatoxins in Urine
toxins Article Rapid, Sensitive, and Accurate Point-of-Care Detection of Lethal Amatoxins in Urine Candace S. Bever 1 , Kenneth D. Swanson 2, Elizabeth I. Hamelin 2 , Michael Filigenzi 3 , Robert H. Poppenga 3, Jennifer Kaae 4, Luisa W. Cheng 1,* and Larry H. Stanker 1 1 Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, 800 Buchanan Street, Albany, CA 94710, USA; [email protected] (C.S.B.); [email protected] (L.H.S.) 2 Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA; [email protected] (K.D.S.); [email protected] (E.I.H.) 3 California Animal Health and Food Safety Laboratory System, University of California, 620 West Health Sciences Drive, Davis, CA 95616, USA; msfi[email protected] (M.F.); [email protected] (R.H.P.) 4 Pet Emergency and Specialty Center of Marin, 901 E. Francisco Blvd, San Rafael, CA 94901, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-510-559-6337 Received: 30 January 2020; Accepted: 12 February 2020; Published: 15 February 2020 Abstract: Globally, mushroom poisonings cause about 100 human deaths each year, with thousands of people requiring medical assistance. Dogs are also susceptible to mushroom poisonings and require medical assistance. Cyclopeptides, and more specifically amanitins (or amatoxins, here), are the mushroom poison that causes the majority of these deaths. Current methods (predominantly chromatographic, as well as antibody-based) of detecting amatoxins are time-consuming and require expensive equipment. In this work, we demonstrate the utility of the lateral flow immunoassay (LFIA) for the rapid detection of amatoxins in urine samples. -
Key to Amanita Section Amanita for Northeastern North America
Key to Amanita section Amanita for Northeastern North America Rodham E. Tulloss P. O. Box 57, Roosevelt New Jersey 08555-0057, USA Last altered August 1, 2006 12:39 pm 1. Universal veil material powdery to pulverulent/floccose and often left in part as a pulverulent “smear” on upper surface of bulb. 2. Pileus margin long striate or tuberculate-striate; pileus white to very pale gray to tan to gray-brown; fruiting body rather small and delicate. Possibly a single species? 3. Pileus white to very pale gray; spores: [not known] ......................................................................... Amanita sp. N23. 3. Pileus gray to gray brown to tan. 4. Pileus gray to gray brown; bulb subabrupt or longitudinally compressed; spores [160/8/8] (6.0-) 6.5 - 8.8 (-10.5) × (5.2-) 5.5 - 7.0 (-9.0) µm, (L = (6.8-) 7.1 - 8.0 µm; L’ =7.4µm;W =5.8-6.4 (-6.5) µm; W’ = 6.1 µm; Q = (1.03-) 1.08 - 1.38 (-1.47); Q = 1.15 - 1.27 (-1.31); Q’ = 1.22)........... Amanita farinosa. 4. Pileus tan; bulb subglobose; spores [not known]. ......................................................................... Amanita sp. O3. 2. Pileus margin striate, but neither long striate nor tuberculate-striate; pileus a shade of yellow or tan or salmon; fruiting body not small and delicate. 5. Pileus a shade of yellow or tan, universal veil a pale dingy tan; most spores subglobose to broadly ellipsoid; spores [1558/78/68] (5.9-) 7.3 - 10.2 (-14.2) × (4.8-) 6.2 - 8.8 (-14.2) µm, (L =(7.5-)7.9- 9.6 (-10.4) µm; L’ =8.7µm;W = (6.3-) 6.8 - 8.0 (-8.8) µm; W’ = 7.5 µm; Q = (1.0-) 1.05 - 1.34 (-1.71); Q = (1.08-) 1.10 - 1.25 (-1.36); Q’ = 1.17). -
Poisonous Mushrooms; a Review of the Most Common Intoxications A
Nutr Hosp. 2012;27(2):402-408 ISSN 0212-1611 • CODEN NUHOEQ S.V.R. 318 Revisión Poisonous mushrooms; a review of the most common intoxications A. D. L. Lima1, R. Costa Fortes2, M. R.C. Garbi Novaes3 and S. Percário4 1Laboratory of Experimental Surgery. University of Brasilia-DF. Brazil/Paulista University-DF. Brazil. 2Science and Education School Sena Aires-GO/University of Brasilia-DF/Paulista University-DF. Brazil. 3School of Medicine. Institute of Health Science (ESCS/FEPECS/SESDF)/University of Brasilia-DF. Brazil. 4Institute of Biological Sciences. Federal University of Pará. Brazil. Abstract HONGOS VENENOSOS; UNA REVISIÓN DE LAS INTOXICACIONES MÁS COMUNES Mushrooms have been used as components of human diet and many ancient documents written in oriental coun- Resumen tries have already described the medicinal properties of fungal species. Some mushrooms are known because of Las setas se han utilizado como componentes de la their nutritional and therapeutical properties and all over dieta humana y muchos documentos antiguos escritos en the world some species are known because of their toxicity los países orientales se han descrito ya las propiedades that causes fatal accidents every year mainly due to medicinales de las especies de hongos. Algunos hongos misidentification. Many different substances belonging to son conocidos por sus propiedades nutricionales y tera- poisonous mushrooms were already identified and are péuticas y de todo el mundo, algunas especies son conoci- related with different symptoms and signs. Carcino- das debido a su toxicidad que causa accidentes mortales genicity, alterations in respiratory and cardiac rates, cada año, principalmente debido a errores de identifica- renal failure, rhabidomyolisis and other effects were ción.