An Overview of Glaciers, Glacier Retreat, and Subsequent Impacts in Nepal, India and China

Total Page:16

File Type:pdf, Size:1020Kb

An Overview of Glaciers, Glacier Retreat, and Subsequent Impacts in Nepal, India and China An Overview of Glaciers, Glacier Retreat, and Subsequent Impacts in Nepal, India and China WWF Nepal Program March, 2005 CORRECTION On page 29 of the following report WWF included the following statement: "In 1999, a report by the Working Group on Himalayan Glaciology (WGHG) of the International Commission for Snow and Ice (ICSI) stated: `glaciers in the Himalayas are receding faster than in any other part of the world and, if the present rate continues, the livelihood[sic] of them disappearing by the year 2035 is very high.'" This statement was used in good faith but it is now clear that this was erroneous and should be disregarded. The essence of this quote is also used on page 3 in the Executive summary where it states: The New Scientist magazine carried the article "Flooded Out - Retreating glaciers spell disaster for valley communities" in their 5 June 1999 issue. It quoted Professor Syed Hasnain, then Chairman of the International Commission for Snow and Ice's (ICSI) Working Group on Himalayan Glaciology, who said most of the glaciers in the Himalayan region "will vanish within 40 years as a result of global warming". This statement should also be disregarded as being unsound. WWF regret any confusion this may have caused. Coordinated by: Sandeep Chamling Rai Climate Change Officer WWF Nepal Program. Editorial support: Trishna Gurung Communications Officer AREAS and Tiger Programmes WWF International This overview report is the product of a regional level project “Himalayan Glaciers and River Project” initiated by WWF Nepal Program, WWF India and WWF China Program. This report was compiled by Joe Thomas K and Sandeep Chamling Rai based on the following country reports: Nepal ‘Nepalese Glaciers, Glacier Retreat and its Impact to the Broader Perspective of Nepal’ Dr. Arun. B. Shrestha, Hydrologist-Engineers, Snow and Glaciers Hydrology Unit, Department of Hydrology and Meteorology (DHM)/Ministry of Science and Technology, Kathmandu Nepal. India ‘Status review of possible Impacts of Climate Change on Himalayan Glaciers, Glaciers retreat and its subsequent impacts on fresh water regime’ Dr. Rajesh Kumar, HIGHICE-India Glacier Research group, SES, JNU, New Delhi China ‘An Overview of Glaciers, Retreating Glaciers, and Their Impact in the Tibetan Plateau’ Yongping Shen, Cold and Arid Regions Environmental and Engineering Research Institute (CAREERI), Chinese Academy of Sciences (CAS), Lanzhou 730000, China © WWF Nepal Program, 2005 ii FOREWORD Climate change is real and happening now. The planet is already experiencing its impacts on biodiversity, freshwater resources and local livelihoods. Using current climate change trends, by 2100, the average global temperature may rise by 1.4 – 5.80C according to the Third Assessment Report from the Intergovernmental Panel on Climate Change (IPCC, 2001). This is certain disaster for fragile ecosystems like glaciers. Seventy percent of the worlds freshwater is frozen in glaciers. Glacier melt buffers other ecosystems against climate variability. Very often it provides the only source of water for humans and biodiversity during dry seasons. Freshwater is already a limited resource for much of the planet, and in the next three decades, the population growth is likely to far exceed any potential increase in available water. The Himalayas have the largest concentration of glaciers outside the polar caps. With glacier coverage of 33,000 km2, the region is aptly called the “Water Tower of Asia” as it provides around 8.6 X 106 m3 of water annually (Dyurgerov and Maier, 1997). These Himalayan glaciers feed seven of Asia’s great rivers: the Ganga, Indus, Brahmaputra, Salween, Mekong, Yangtze and Huang Ho. It ensures a year round water supply to millions of people. Climate change has impacted the glacial ecosystem tremendously. Sixty-seven percent of glaciers are retreating at a startling rate in the Himalayas and the major causal factor has been identified as climate change (Ageta and Kadota, 1992; Yamada et al., 1996; Fushinmi, 2000). Glacial melt will affect freshwater flows with dramatic adverse effects on biodiversity, and people and livelihoods, with a possible long-term implication on regional food security. WWF sees the impacts of climate change on glaciers and its subsequent impact on freshwater as a major issue, not just in the national context but also at a regional, transboundary level. The WWF offices in Nepal, India and China are taking the initiative to develop a regional collaboration to tackle climate change impacts in the glacial ecosystem and address adaptation measures. This report is the outcome of a regional collaboration of the three countries, providing an overview of climate impacts on glaciers with a focus on key areas that needs future intervention. We hope this will highlight the issue of climate change and galvanize policy makers to take action to ensure a living planet for future generations. Dr Chandra Prasad Gurung Ravi Singh Jim Harkness Country Representative Secretary General and CEO Country Representative WWF Nepal Program WWF India WWF China Program iii ACKNOWLEDGEMENTS This overview report is the product of a regional level project “Himalayan Glaciers and River Project” initiated by WWF Nepal Program, WWF India and WWF China Program to develop a regional collaboration and to formulate a coordination strategy to tackle the climate change impacts on glaciers and to address the mitigation and adaptation options. This report would not been possible without the contributions from many people. I would like to specially thank Dr. Arun Shrestha, Hydrologist-Engineer, Department of Hydrology and Meteorology (DHM)/Ministry of Science and Technology, His Majesty Government of Nepal (HMG/N), Dr. Rajesh Kumar, HIGHICE-India Glacier Research Group, Jawaharlal Nehru University (JNU), New Delhi, India and Mr. Yonping Shen, Chinese Academy of Sciences (CAS) China for their valuable contribution in writing the individual country status report. I am indebted to Ms. Jennifer Morgan, Director WWF Climate Change Programme, Dr. Lara Hansen, Chief Scientist, Climate Change Programme, Mr. Liam Salter, Co-ordinator, WWF Asia Pacific Climate and Energy Programme, Mr. Michael Case, Research Scientist Climate Change Programme, and Dr. Michael Prentice, Institute for the Study of Earth, Ocean and Space, University of New Hampshire, Durham, USA, for their technical support toward finalization of this report. I express my gratitude to Dr. Chandra Prasad Gurung, Country Representative and Mr. Anil Manandhar, Conservation Programme Director of WWF Nepal Programme for their entire support towards making this report. I would like to take this opportunity to thank Dr. Prakash Rao, Coordinator, and Mr. Samrat Sengupta, Sr Policy Officer from the Climate Change and Energy Programme at WWF India and Dr. Lin Gan, officer and Ms. Qiao Liming Programme associates from Energy and Climate Programme at WWF China Program for their coordination and support during the preparation of this report. My special thanks goes to Mr. Martin Hiller, Communication Manager, WWF International, Ms. Trishna Gurung, Communication Officer, AREAS and Tiger Program, WWF International, Ms Sangita Singh Shrestha, Communication Officer, WWF Nepal Program and Ms. Aarati Gurung from WWF Nepal Program for their valuable contribution in making this a successful report. I am extremely grateful to Mr. Pieter Stemerding, Manager International Projects, WWF Netherlands for providing us the financial support to carry out these meetings and for production of this report. Sandeep Chamling Rai Coordinator Himalayan Glacier and River Project WWF Nepal Program. iv LIST OF FIGURES Figure 1: Cross-section of Nepal’s topography 6 Figure 2: Precipitation in Nepal 8 Figure 3: Major drainage basins of Nepal 9 Figure 4: Spatial distribution of annual average maximum temperature trends in Nepal (1977-1994) 12 Figure 5: Comparison between trends in Kathmandu temperature 13 Figure 6: Time series of precipitation in Nepal 13 Figure 7: Changes in temperature and precipitation for SERES scenario B2 15 Figure 8: Map showing locations of different areas of glacier study. 16 Figure 9: Retreat of AX010 glacier 17 Figure 10: Longitudinal profile of Khumbu Glacier 18 Figure 11: a: Fluctuation of nine different points on the terminus of Yala Glacier b: Terminus retreat and surface lowering of Yala Glacier during different periods Figure12: Lirung Glacier in a. 1985 and b. 2002 20 Figure 13: Annual mean temperature trend in Kyangjing, Langtang station (3,900m) 20 Figure 14: Terminus position changes of Rika Samba Glacier 21 Figure 15: Discharge data of selected rivers (1996) 23 Figure 16: Dig Tsho GLOF 25 Figure 17: Imja Tsho in 2004 26 Figure 18: Tsho Rolpa 1950-1997 27 Figure 19: Glacier distribution along the Himalayan arc 29 Figure 20: Retreat of the Gangotri Glacier (Garhwal Himalayas) snout 33 Figure 21: The drainage map of Dokriani basin 34 Figure 22: Synoptic view of the Dokriani glacier 35 Figure 23: Drainage map of river bagirathi, Garhwal Himalayas 37 Figure 24: Distribution of glaciers in the Tibetan Plateau 40 Figure 25: Pamirs Knot 41 Figure 26: Glaciers and four peaks higher than 8,000 m in the Karakorum 42 Figure 27: Midui Glacier in southeast Tibet 45 Figure 28: The Puruogangri Ice Field in the Northern Tibetan Plateau 49 Figure 29: Boundaries of glaciers change in the A’nyêmaqên Mountains 54 v LIST OF TABLES Table 1: Discharge date of major rivers of Nepal 10 Table 2: Regional annual average maximum temperature trends (1977-1994) 12 Table 3: GCM estimates for temperature and precipitation changes in Nepal 15 Table 4: Lists of GLOF events recorded in Nepal 25 Table 5: A status of the glacier inventory of Indus Basin 31 Table 6: A status of the glacier inventory of Ganga-Brahmaputra basins 31 Table 7: Retreats of important glaciers in the Himalayas 32 Table 8: Glacier Resources in the Himalayas (after Dahe Qin et al. 1999) 44 Table 9: Recent variations in the Qilian Mountains (after Liu Chaohai et al. 1999) 47 Table 10: Glacier variations in the western Qilian Mountains (1956-1990) (Liu Shiyin et al.
Recommended publications
  • GLACIERS of NEPAL—Glacier Distribution in the Nepal Himalaya with Comparisons to the Karakoram Range
    Glaciers of Asia— GLACIERS OF NEPAL—Glacier Distribution in the Nepal Himalaya with Comparisons to the Karakoram Range By Keiji Higuchi, Okitsugu Watanabe, Hiroji Fushimi, Shuhei Takenaka, and Akio Nagoshi SATELLITE IMAGE ATLAS OF GLACIERS OF THE WORLD Edited by RICHARD S. WILLIAMS, JR., and JANE G. FERRIGNO U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1386–F–6 CONTENTS Glaciers of Nepal — Glacier Distribution in the Nepal Himalaya with Comparisons to the Karakoram Range, by Keiji Higuchi, Okitsugu Watanabe, Hiroji Fushimi, Shuhei Takenaka, and Akio Nagoshi ----------------------------------------------------------293 Introduction -------------------------------------------------------------------------------293 Use of Landsat Images in Glacier Studies ----------------------------------293 Figure 1. Map showing location of the Nepal Himalaya and Karokoram Range in Southern Asia--------------------------------------------------------- 294 Figure 2. Map showing glacier distribution of the Nepal Himalaya and its surrounding regions --------------------------------------------------------- 295 Figure 3. Map showing glacier distribution of the Karakoram Range ------------- 296 A Brief History of Glacier Investigations -----------------------------------297 Procedures for Mapping Glacier Distribution from Landsat Images ---------298 Figure 4. Index map of the glaciers of Nepal showing coverage by Landsat 1, 2, and 3 MSS images ---------------------------------------------- 299 Figure 5. Index map of the glaciers of the Karakoram Range showing coverage
    [Show full text]
  • Calving Processes and the Dynamics of Calving Glaciers ⁎ Douglas I
    Earth-Science Reviews 82 (2007) 143–179 www.elsevier.com/locate/earscirev Calving processes and the dynamics of calving glaciers ⁎ Douglas I. Benn a,b, , Charles R. Warren a, Ruth H. Mottram a a School of Geography and Geosciences, University of St Andrews, KY16 9AL, UK b The University Centre in Svalbard, PO Box 156, N-9171 Longyearbyen, Norway Received 26 October 2006; accepted 13 February 2007 Available online 27 February 2007 Abstract Calving of icebergs is an important component of mass loss from the polar ice sheets and glaciers in many parts of the world. Calving rates can increase dramatically in response to increases in velocity and/or retreat of the glacier margin, with important implications for sea level change. Despite their importance, calving and related dynamic processes are poorly represented in the current generation of ice sheet models. This is largely because understanding the ‘calving problem’ involves several other long-standing problems in glaciology, combined with the difficulties and dangers of field data collection. In this paper, we systematically review different aspects of the calving problem, and outline a new framework for representing calving processes in ice sheet models. We define a hierarchy of calving processes, to distinguish those that exert a fundamental control on the position of the ice margin from more localised processes responsible for individual calving events. The first-order control on calving is the strain rate arising from spatial variations in velocity (particularly sliding speed), which determines the location and depth of surface crevasses. Superimposed on this first-order process are second-order processes that can further erode the ice margin.
    [Show full text]
  • Debris-Covered Glacier Energy Balance Model for Imja–Lhotse Shar Glacier in the Everest Region of Nepal
    The Cryosphere, 9, 2295–2310, 2015 www.the-cryosphere.net/9/2295/2015/ doi:10.5194/tc-9-2295-2015 © Author(s) 2015. CC Attribution 3.0 License. Debris-covered glacier energy balance model for Imja–Lhotse Shar Glacier in the Everest region of Nepal D. R. Rounce1, D. J. Quincey2, and D. C. McKinney1 1Center for Research in Water Resources, University of Texas at Austin, Austin, Texas, USA 2School of Geography, University of Leeds, Leeds, LS2 9JT, UK Correspondence to: D. R. Rounce ([email protected]) Received: 2 June 2015 – Published in The Cryosphere Discuss.: 30 June 2015 Revised: 28 October 2015 – Accepted: 12 November 2015 – Published: 7 December 2015 Abstract. Debris thickness plays an important role in reg- used to estimate rough ablation rates when no other data are ulating ablation rates on debris-covered glaciers as well as available. controlling the likely size and location of supraglacial lakes. Despite its importance, lack of knowledge about debris prop- erties and associated energy fluxes prevents the robust inclu- sion of the effects of a debris layer into most glacier sur- 1 Introduction face energy balance models. This study combines fieldwork with a debris-covered glacier energy balance model to esti- Debris-covered glaciers are commonly found in the Everest mate debris temperatures and ablation rates on Imja–Lhotse region of Nepal and have important implications with regard Shar Glacier located in the Everest region of Nepal. The de- to glacier melt and the development of glacial lakes. It is bris properties that significantly influence the energy bal- well understood that a thick layer of debris (i.e., > several ance model are the thermal conductivity, albedo, and sur- centimeters) insulates the underlying ice, while a thin layer face roughness.
    [Show full text]
  • Even the Himalayas Have Stopped Smiling
    Even the Himalayas Have Stopped Smiling CLIMATE CHANGE, POVERTY AND ADAPTATION IN NEPAL 'Even the Himalayas Have Stopped Smiling' Climate Change, Poverty and Adaptation in Nepal Disclaimer All rights reserved. This publication is copyright, but may be reproduced by any method without fee for advocacy, campaigning and teaching purposes, but not for resale. The copyright holder requests that all such use be registered with them for impact assessment purposes. For copying in any other circumstances, or for re-use in other publications, or for translation or adaptation, prior written permission must be obtained from the copyright holder, and a fee may be payable. This is an Oxfam International report. The affiliates who have contributed to it are Oxfam GB and Oxfam Hong Kong. First Published by Oxfam International in August 2009 © Oxfam International 2009 Oxfam International is a confederation of thirteen organizations working together in more than 100 countries to find lasting solutions to poverty and injustice: Oxfam America, Oxfam Australia, Oxfam-in-Belgium, Oxfam Canada, Oxfam France - Agir ici, Oxfam Germany, Oxfam GB, Oxfam Hong Kong, Intermon Oxfam, Oxfam Ireland, Oxfam New Zealand, Oxfam Novib and Oxfam Quebec. Copies of this report and more information are available at www.oxfam.org and at Country Programme Office, Nepal Jawalakhel-20, Lalitpur GPO Box 2500, Kathmandu Tel: +977-1-5530574/ 5542881 Fax: +977-1-5523197 E-mail: [email protected] Acknowledgements This report was a collaborative effort which draws on multiple sources,
    [Show full text]
  • A Globally Complete Inventory of Glaciers
    Journal of Glaciology, Vol. 60, No. 221, 2014 doi: 10.3189/2014JoG13J176 537 The Randolph Glacier Inventory: a globally complete inventory of glaciers W. Tad PFEFFER,1 Anthony A. ARENDT,2 Andrew BLISS,2 Tobias BOLCH,3,4 J. Graham COGLEY,5 Alex S. GARDNER,6 Jon-Ove HAGEN,7 Regine HOCK,2,8 Georg KASER,9 Christian KIENHOLZ,2 Evan S. MILES,10 Geir MOHOLDT,11 Nico MOÈ LG,3 Frank PAUL,3 Valentina RADICÂ ,12 Philipp RASTNER,3 Bruce H. RAUP,13 Justin RICH,2 Martin J. SHARP,14 THE RANDOLPH CONSORTIUM15 1Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA 2Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA 3Department of Geography, University of ZuÈrich, ZuÈrich, Switzerland 4Institute for Cartography, Technische UniversitaÈt Dresden, Dresden, Germany 5Department of Geography, Trent University, Peterborough, Ontario, Canada E-mail: [email protected] 6Graduate School of Geography, Clark University, Worcester, MA, USA 7Department of Geosciences, University of Oslo, Oslo, Norway 8Department of Earth Sciences, Uppsala University, Uppsala, Sweden 9Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria 10Scott Polar Research Institute, University of Cambridge, Cambridge, UK 11Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, USA 12Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, British Columbia, Canada 13National Snow and Ice Data Center, University of Colorado, Boulder, CO, USA 14Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada 15A complete list of Consortium authors is in the Appendix ABSTRACT. The Randolph Glacier Inventory (RGI) is a globally complete collection of digital outlines of glaciers, excluding the ice sheets, developed to meet the needs of the Fifth Assessment of the Intergovernmental Panel on Climate Change for estimates of past and future mass balance.
    [Show full text]
  • Glaciers and Their Significance for the Earth Nature - Vladimir M
    HYDROLOGICAL CYCLE – Vol. IV - Glaciers and Their Significance for the Earth Nature - Vladimir M. Kotlyakov GLACIERS AND THEIR SIGNIFICANCE FOR THE EARTH NATURE Vladimir M. Kotlyakov Institute of Geography, Russian Academy of Sciences, Moscow, Russia Keywords: Chionosphere, cryosphere, glacial epochs, glacier, glacier-derived runoff, glacier oscillations, glacio-climatic indices, glaciology, glaciosphere, ice, ice formation zones, snow line, theory of glaciation Contents 1. Introduction 2. Development of glaciology 3. Ice as a natural substance 4. Snow and ice in the Nature system of the Earth 5. Snow line and glaciers 6. Regime of surface processes 7. Regime of internal processes 8. Runoff from glaciers 9. Potentialities for the glacier resource use 10. Interaction between glaciation and climate 11. Glacier oscillations 12. Past glaciation of the Earth Glossary Bibliography Biographical Sketch Summary Past, present and future of glaciation are a major focus of interest for glaciology, i.e. the science of the natural systems, whose properties and dynamics are determined by glacial ice. Glaciology is the science at the interfaces between geography, hydrology, geology, and geophysics. Not only glaciers and ice sheets are its subjects, but also are atmospheric ice, snow cover, ice of water basins and streams, underground ice and aufeises (naleds). Ice is a mono-mineral rock. Ten crystal ice variants and one amorphous variety of the ice are known.UNESCO Only the ice-1 variant has been – reve EOLSSaled in the Nature. A cryosphere is formed in the region of interaction between the atmosphere, hydrosphere and lithosphere, and it is characterized bySAMPLE negative or zero temperature. CHAPTERS Glaciology itself studies the glaciosphere that is a totality of snow-ice formations on the Earth's surface.
    [Show full text]
  • Edges of Ice-Sheet Glaciology
    Important Things Ice Sheets Do, but Ice Sheet Models Don’t Dr. Robert Bindschadler Chief Scientist Hydrospheric and Biospheric Sciences Laboratory NASA Goddard Space Flight Center [email protected] I’ll talk about • Why we need models – from a non-modeler • Why we need good models – recent observations have destroyed confidence in present models • Recent ice-sheet surprises • Responsible physical processes “…understanding of (possible future rapid dynamical changes in ice flow) is too limited to assess their likelihood or provide a best estimate or an upper bound for sea level rise.” IPCC Fourth Assessment Report, Summary for Policy Makers (2007) Future Sea Level is likely underestimated A1B IPCC AR4 (2007) Ice Sheets matter Globally Source: CReSIS and NASA Land area lost by 1-meter rise in sea level Impact of 1-meter sea level rise: Source: Anthoff et al., 2006 Maldives 20th Century Greenland Ice Sheet Sea level Change (mm/a) -1 0 +1 accumulation 450 Gt/a melting 225 Gt/a ice flow 225 Gt/a Approximately in “mass balance” 21st Century Greenland Ice Sheet Sea level Change (mm/a) -1 0 +1 accumulation melting ice flow Things could get a little better or a lot worse Increased ice flow will dominate the future rate of change A History Lesson • Less ice in HIGH SEA LEVEL Less warmer ice climates • Ice sheets More shrink faster LOW ice than they TEMPERATURE WARM grow • Sea level change is not COLD THEN NOW smooth Time Decreasing Mass Balance (Source: Luthcke et al., unpub.) Greenland Ice Sheet Mass Balance GREENLAND (Source: IPCC FAR) Antarctic Ice Sheet Mass Balance ANTARCTICA (Source: IPCC FAR) Pace of ice sheet changes have astonished experts is the common agent behind these changes Ice sheets HATE water! Fastest Flow at the Edges Interior: 1000’s meters thick and slow Perimeter: 100’s meters thick and fast Source: Rignot and Thomas Response time and speed of perturbation propagation are tied directly to ice flow speed 1.
    [Show full text]
  • Project ICEFLOW
    ICEFLOW: short-term movements in the Cryosphere Bas Altena Department of Geosciences, University of Oslo. now at: Institute for Marine and Atmospheric research, Utrecht University. Bas Altena, project Iceflow geometric properties from optical remote sensing Bas Altena, project Iceflow Sentinel-2 Fast flow through icefall [published] Ensemble matching of repeat satellite images applied to measure fast-changing ice flow, verified with mountain climber trajectories on Khumbu icefall, Mount Everest. Journal of Glaciology. [outreach] see also ESA Sentinel Online: Copernicus Sentinel-2 monitors glacier icefall, helping climbers ascend Mount Everest Bas Altena, project Iceflow Sentinel-2 Fast flow through icefall 0 1 2 km glacier surface speed [meter/day] Khumbu Glacier 0.2 0.4 0.6 0.8 1.0 1.2 Mt. Everest 300 1800 1200 600 0 2/4 right 0 5/4 4/4 left 4/4 2/4 R 3/4 L -300 terrain slope [deg] Nuptse surface velocity contours Western Chm interval per 1/4 [meter/day] 10◦ 20◦ 30◦ 40◦ [outreach] see also Adventure Mountain: Mount Everest: The way the Khumbu Icefall flows Bas Altena, project Iceflow Sentinel-2 Fast flow through icefall ∆H Ut=2000 U t=2020 H internal velocity profile icefall α 2A @H 3 U = − 3+2 H tan αρgH @x MSc thesis research at Wageningen University Bas Altena, project Iceflow Quantifying precision in velocity products 557 200 557 600 7 666 200 NCC 7 666 000 score 1 7 665 800 Θ 0.5 0 7 665 600 557 460 557 480 557 500 557 520 7 665 800 search space zoom in template/chip correlation surface 7 666 200 7 666 200 7 666 000 7 666 000 7 665 800 7 665 800 7 665 600 7 665 600 557 200 557 600 557 200 557 600 [submitted] Dispersion estimation of remotely sensed glacier displacements for better error propagation.
    [Show full text]
  • China Shaping Tibet for Strategic Leverage
    MANEKSHAW PAPER No. 70, 2018 China Shaping Tibet for Strategic Leverage Praggya Surana D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V KNOWLEDGE WORLD Centre for Land Warfare Studies KW Publishers Pvt Ltd New Delhi New Delhi Editorial Team Editor-in-Chief : Lt Gen Balraj Nagal ISSN 23939729 D W LAN ARFA OR RE F S E T R U T D N IE E S C CLAWS VI CT N OR ISIO Y THROUGH V Centre for Land Warfare Studies RPSO Complex, Parade Road, Delhi Cantt, New Delhi 110010 Phone: +91.11.25691308 Fax: +91.11.25692347 email: [email protected] website: www.claws.in CLAWS Army No. 33098 The Centre for Land Warfare Studies (CLAWS), New Delhi, is an autonomous think-tank dealing with national security and conceptual aspects of land warfare, including conventional and sub-conventional conflicts and terrorism. CLAWS conducts research that is futuristic in outlook and policy-oriented in approach. © 2018, Centre for Land Warfare Studies (CLAWS), New Delhi Disclaimer: The contents of this paper are based on the analysis of materials accessed from open sources and are the personal views of the author. The contents, therefore, may not be quoted or cited as representing the views or policy of the Government of India, or Integrated Headquarters of the Ministry of Defence (MoD) (Army), or the Centre for Land Warfare Studies. KNOWLEDGE WORLD www.kwpub.com Published in India by Kalpana Shukla KW Publishers Pvt Ltd 4676/21, First Floor, Ansari Road, Daryaganj, New Delhi 110002 Phone: +91 11 23263498 / 43528107 email: [email protected] l www.kwpub.com Contents Introduction 1 1.
    [Show full text]
  • PICMG 1.3 Brings a Quantum Leap the Next Standard in the Industrial Computing Contents
    MyAdvantech The Magazine for Global Advantechers and Partners Autumn 2007 No.1 Advantech’s TDCS Enables the Passage Across “The Roof of the World" Mobile Technology Lends a Human Touch to Healthcare Digital Signage Jazzes up Your Life PICMG 1.3 Brings a Quantum Leap The Next Standard in the Industrial Computing Contents Published by Viewpoint Advantech Co., Ltd. 05 Advantech’s Globally Integrated Publisher Enterprise Transformation K.C. Liu Address No.1, Alley 20, Lane 26, Rueiguang Road, Joyful eLifestyle Neihu District, Taipei, Taiwan 114 06 Mobile Technology Lends a Tel +886-2-2792-7818 Human Touch to Healthcare Website www.advantech.com 10 Information - Its Omnipresence Editorial Supervisor Corporate Marketing 12 Mobility First, Security Foremost Editorial Committee Sharon Chuu Charlene Tang Technology Forum Meg Chen Lynette Andersen 15 Programmable Automation Controllers Chuck Harrell Find Their Niche…Everywhere! Edna Garcia Rosanne Lee 18 Exploring Video Surveillance Trends Wolfgang Heinz-Fischer Monika Paitl 20 PICMG 1.3 Brings a Quantum Leap Martin Marshall 3 James Kiley MyAdvantech Andy Taylor Special Report David Antoniuk Jean Chu 24 Extraordinary Wonders on the Tibetan Plateau Jessie Lin Mandy Chen 26 Qingzang Railway Soars Skyward Monica Sun Art Director Inside Advantech Charlene Tang 30 Building a Hothouse for the Next Great Invention Editorial CONDÉ NAST INTERCULTURE GROUP – 32 Advantechers around the Globe Interculture Custom Media Director Sophia Liao Address 15F, No.51, Sec.2, Jilung Road, Taipei, Taiwan 110 Tel +886-2-2732-8899 Editor-in-Chief Nora Huang Managing Editor Peggy Lai Art Editor Jane Yang Initial Issue 2007.09.30 MyAdvantech is published for ADVANTECH Co., Ltd.
    [Show full text]
  • Sichuan/Gansu/Qinghai/Tibet (14 Days) We Love Road Journeys
    Tibetan Highlands: Sichuan/Gansu/Qinghai/Tibet (14 Days) We love road journeys. They are by far our favourite way of traveling. We think the world of western China and the countries that border on this region – think Vietnam, Lao, Thailand, Myanmar, for example. On the Road Experiences is all about sharing with like-minded travelers just how beautiful a road journey in these varied lands can be. Now turn the page to find out what we’ve come to love so much… p2 p3 Itinerary Map …where you will travel… p. 006 Yes, it is possible… p. 008 Journey of Discovery… p. 010 Day-by-day… p. 056 In closing... Any car you like, so long as it is an SUV… p. 077 Adventures and discoveries in local cuisines p. 078 What’s included/Best Months to Go... p. 080 Photo credits p. 083 p5 Itinerary Map Day1 Day8 Arrival in Chengdu – Dulan to Golmud – Apply for your temporary driving Across the Qaidam Basin to Golmud license and visit Chengdu’s beautiful Panda Reserve Day9 Golmud to Tuotuohe – Day2 Up, up, up - Onto the Plateau and Chengdu to Maerkang – into the highlands of Qinghai Through the valleys to the Gyarong Tibetan region Day10 Tuotuohe to Naqu – Day3 Cross the famous Tanggula Pass on Maerkang to Ruoergai – your way to Tibet itself Towards the very north of Sichuan on the way to Gansu Day11 Naqu to Damxung – Day4 Visit one of Tibet’s holiest lakes, Ruoergai to Xiahe – Lake Nam-tso Your first and only stop in Gansu province Day12 Damxung to Lhasa – Day5 Complete your journey with Xiahe to Qinghai’s capital, Xining – a beautiful drive to your final On your way to Qinghai destination Day6 Day13 Xining – In and around Lhasa – Spend a day in and around Xining for Visit Potala Palace and explore the a bit of rest and visit the spectacular old city of Lhasa Ta’er Monastery Day14 Day7 Depart from Lhasa – Xining to Dulan – Lift must go on...Farewell Lhasa On the way to Golmud..
    [Show full text]
  • Making Borders Irrelevant in Kashmir Will Be Swift and That India-Pakistan Relations Will Rapidly Improve Could Lead to Frustrations
    UNiteD StateS iNStitUte of peaCe www.usip.org SpeCial REPORT 1200 17th Street NW • Washington, DC 20036 • 202.457.1700 • fax 202.429.6063 ABOUT THE REPO R T P. R. Chari and Hasan Askari Rizvi This report analyzes the possibilities and practicalities of managing the Kashmir conflict by “making borders irrelevant”—softening the Line of Control to allow the easy movement of people, goods, and services across it. The report draws on the results of a survey of stakeholders and Making Borders public opinion on both sides of the Line of Control. The results of that survey, together with an initial draft of this report, were shown to a group of opinion makers in both countries (former bureaucrats and diplomats, members of the irrelevant in Kashmir armed forces, academics, and members of the media), whose comments were valuable in refining the report’s conclusions. P. R. Chari is a research professor at the Institute Summary for Peace and Conflict Studies in New Delhi and a former member of the Indian Administrative Service. Hasan Askari • Neither India nor Pakistan has been able to impose its preferred solution on the Rizvi is an independent political and defense consultant long-standing Kashmir conflict, and both sides have gradually shown more flexibility in Pakistan and is currently a visiting professor with the in their traditional positions on Kashmir, without officially abandoning them. This South Asia Program of the School of Advanced International development has encouraged the consideration of new, creative approaches to the Studies, Johns Hopkins University. management of the conflict. This report was commissioned by the Center • The approach holding the most promise is a pragmatic one that would “make for Conflict Mediation and Resolution at the United States borders irrelevant”—softening borders to allow movement of people, goods, and Institute of Peace.
    [Show full text]