FPGA Devices ECE 448 Lecture 5

Total Page:16

File Type:pdf, Size:1020Kb

FPGA Devices ECE 448 Lecture 5 ECE 448 Lecture 5 FPGA Devices ECE 448 – FPGA and ASIC Design with VHDL George Mason University Required reading • 7 Series FPGAs Configurable Logic Block: User Guide § Overview § Functional Details 2 What is an FPGA? Configurable Logic Blocks Block RAMs Block RAMs Block I/O Blocks Block RAMs ECE 448 – FPGA and ASIC Design with VHDL 3 Modern FPGA RAMRAM bblockslocks Multipliers/DSPMultipliers units LogicLog resourcesic blocks (#Logic resources, #Multipliers/DSP units, #RAM_blocks) Graphics based on The Design Warrior’s Guide to FPGAs Devices, Tools, and Flows. ISBN 0750676043 Copyright © 2004 Mentor Graphics Corp. (www.mentor.com) 4 Major FPGA Vendors SRAM-based FPGAs • Xilinx, Inc. ~ 51% of the market ~ 85% • Intel ~ 34% of the market (until 2015, Altera Corp.) • Lattice Semiconductor • Atmel (since 2016, subsidiary of Microchip Technology) • Achronix Semiconductor • Tabula (went out oF business in 2015) Flash & antifuse FPGAs • Microsemi SoC Products Group (until 2010 Actel) • Quick Logic Corp. ECE 448 – FPGA and ASIC Design with VHDL 5 Xilinx u Primary products: FPGAs and the associated CAD software Programmable CAD Software Logic Devices u Main headquarters in San Jose, CA u Fabless* Semiconductor and Software Company u TSMC (Taiwan) u UMC (Taiwan) {*Xilinx acquired an equity stake in UMC in 1996} u Seiko Epson (Japan) u Samsung (Korea) ECE 448 – FPGA and ASIC Design with VHDL 6 Xilinx FPGA Families Technology Low-cost Mid-range High-performance 220 nm Virtex 180 nm Spartan-II, Spartan-IIE 120/150 nm Virtex-II, Virtex-II Pro 90 nm Spartan-3 Virtex-4 65 nm Virtex-5 45 nm Spartan-6 40 nm Virtex-6 28 nm Artix-7 Kintex-7 Virtex-7 20 nm Kintex Virtex UltraSCALE UltraSCALE 16 nm Kintex Virtex UltraSCALE+ UltraSCALE+ FPGA Family 8 Artix-7 FPGA Family ECE 448 – FPGA and ASIC Design with VHDL 9 CLB Structure ECE 448 – FPGA and ASIC Design with VHDL George Mason University General structure of an FPGA Programmable interconnect Programmable logic blocks The Design Warriors Guide to FPGAs Devices, Tools, and Flows. ISBN 0750676043 Copyright © 2004 Mentor Graphics Corp. (www.Mentor.coM) ECE 448 – FPGA and ASIC Design with VHDL 11 Xilinx Artix-7 CLB ECE 448 – FPGA and ASIC Design with VHDL 12 Row & Column Relationship Between CLBs & Slices ECE 448 – FPGA and ASIC Design with VHDL 13 Chapter 2: Functional Details X-Ref Target - Figure 2-4 SRHI D COUT SRLO INIT1 Q Reset Type CE INIT0 CK SR Sync/Async FF/LAT DX DMUX D6:1 A6:A1 D O6 D O5 FF/LAT DX INIT1 Q DQ D INIT0 SRHI SRHI CE SRLO D SRLO CK Basic SR INIT1 Q CE INIT0 CK SR CX Components CMUX C6:1 A6:A1 C C O6 O5 FF/LAT CX INIT1 Q CQ of the Slice D INIT0 SRHI CE SRHI D SRLO SRLO CK INIT1 Q SR CE INIT0 CK SR BX BMUX LUTs B6:1 A6:A1 B B O6 FF/LAT O5 BX INIT1 Q BQ D INIT0 CE SRHI SRLO SRHI CK D SRLO SR INIT1 Q CE INIT0 CK SR AX AMUX Storage A6:1 A6:A1 A A O6 FF/LAT O5 AX INIT1 Q AQ Elements D INIT0 CE SRHI SRLO CK SR 0/1 SR CE CLK 14 CIN UG474_c2_03_101210 Figure 2-4: Diagram of SLICEL 20 www.xilinx.com 7Series FPGAs CLB User Guide UG474 (v1.7) November 17, 2014 Example of a 4-input LUT (Look-Up Table) (used in earlier families of FPGAs) • Look-Up tables x1 x 2 y x x x x y x3 LUT x x x x y are primary 1 2 3 4 x 1 2 3 4 0 0 0 0 1 4 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 elements for 0 0 1 0 1 0 0 1 0 0 0 0 1 1 1 0 0 1 1 0 logic 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1 1 0 1 0 1 1 0 0 implementation 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 1 0 0 0 0 • Each LUT can 1 0 0 1 1 1 0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 0 implement any 1 1 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 1 1 x x x x function of 1 1 1 0 0 1 2 3 4 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 4 inputs x1 x2 y y ECE 448 – FPGA and ASIC Design with VHDL 15 LUT of Artix-7 ECE 448 – FPGA and ASIC Design with VHDL 16 Chapter 2: Functional Details There are four additional storage elements that can only be configured as edge-triggered D-type flip-flops. The D input can be driven by the O5 output of the LUT or the BYPASS slice inputs via AX, BX, CX, or DX input. When the original four storage elements are configured as latches, these four additional storage elements cannot be used. Figure 2-5 shows both the register only and the register/latch configuration in a slice. X-Ref Target - Figure 2-5 DFF DFF/LATCH LUT D O5 Output LUT D Output FF INIT1 LATCH Q DQ INIT1 Q DQ D INIT0 D SRHIGH INIT0 DX CE SRLOW DX CE SRHIGH CK CK SRLOW SR SR CFF CFF/LATCH LUT C O5 Output LUT C Output FF INIT1 LATCH Q CQ INIT1 Q CQ D INIT0 D SRHIGH INIT0 CX CE SRLOW CX CE SRHIGH CK CK SRLOW SR SR Reset Type Reset Type SR SR Sync Sync LUT B O5 Output LUT B Output Async Async BFF BFF/LATCH FF INIT1 LATCH Q BQ Q BQ BX INIT0 BX INIT1 D SRHIGH D INIT0 CE CE SRLOW CE CE SRHIGH CK CK SRLOW CLK SR CLK SR AFF AFF/LATCH LUT A O5 Output LUT A Output FF INIT1 LATCH INIT0 Q AQ INIT1 Q AQ D SRHIGH D INIT0 AX CE SRLOW AX CE SRHIGH CK CK SRLOW SR SR 17 UG474_c2_04_101210 Figure 2-5: Two Versions of Configuration in a Slice: 4 Registers Only and 4 Register/Latch Control Signals The control signals clock (CLK), clock enable (CE), and set/reset (SR) are common to all storage elements in one slice. When one flip-flop in a slice has SR or CE enabled, the other flip-flops used in the slice also have SR or CE enabled by the common signal. Only the CLK signal has programmable polarity. Any inverter placed on the clock signal is automatically absorbed. The CE and SR signals are active-High. These initialization options are available for storage elements: •SRLOW: Synchronous or asynchronous Reset when CLB SR signal is asserted •SRHIGH: Synchronous or asynchronous Set when CLB SR signal is asserted 22 www.xilinx.com 7Series FPGAs CLB User Guide UG474 (v1.7) November 17, 2014 Reset and Set Configurations • No set or reset • Synchronous set • Synchronous reset • Asynchronous set (preset) • Asynchronous reset (clear) ECE 448 – FPGA and ASIC Design with VHDL 18 Two Different Types of Slices in Artix-7 ECE 448 – FPGA and ASIC Design with VHDL 19 Chapter 2: Functional Details X-Ref Target - Figure 2-4 SRHI D COUT SRLO INIT1 Q Reset Type CE INIT0 CK SR Sync/Async SLICEL FF/LAT DX DMUX D6:1 A6:A1 D O6 D O5 FF/LAT DX INIT1 Q DQ D INIT0 SRHI SRHI CE SRLO D SRLO CK INIT1 Q SR CE INIT0 CK SR CX CMUX C6:1 A6:A1 C C O6 O5 FF/LAT CX INIT1 Q CQ D INIT0 SRHI CE SRHI D SRLO SRLO CK INIT1 Q SR CE INIT0 CK SR BX BMUX B6:1 A6:A1 B B O6 FF/LAT O5 BX INIT1 Q BQ D INIT0 CE SRHI SRLO SRHI CK D SRLO SR INIT1 Q CE INIT0 CK SR AX AMUX A6:1 A6:A1 A A O6 FF/LAT O5 AX INIT1 Q AQ D INIT0 CE SRHI SRLO CK SR 0/1 SR CE CLK 20 CIN UG474_c2_03_101210 Figure 2-4: Diagram of SLICEL 20 www.xilinx.com 7Series FPGAs CLB User Guide UG474 (v1.7) November 17, 2014 Fast Carry Logic u Each SliceL and SliceM contains separate logic and routing for the fast generation MSB of sum & carry signals • Increases efficiency and performance of adders, subtractors, accumulators, comparators, and counters Routing Carry Logic Carry u Carry logic is independent of LSB normal logic and routing resources 21 Accessing Carry Logic u All major synthesis tools can infer carry logic for arithmetic functions • Addition (SUM <= A + B) • SuBtraction (DIFF <= A - B) • Comparators (if A < B then…) • Counters (count <= count +1) 22 Carry Logic Carry Logic In addition to function generators, dedicated fast lookahead carry logic is provided to perform fast arithmetic addition and subtraction in a slice. A 7 series FPGA CLB has two separate carry chains, as shown in Figure 1-1. The carry chains are cascadable to form wider add/subtract logic, as shown in Figure 2-2. The carry chain runs upward and has a height of four bits per slice. For each bit, there is a carry multiplexer (MUXCY) and a dedicated XOR gate for adding/subtracting the operands with a selected carry bits. The dedicated carry path and carry multiplexer (MUXCY) can also be used to cascade function generators for implementing wide logic functions.
Recommended publications
  • Field Programmable Gate Arrays with Hardwired Networks on Chip
    Field Programmable Gate Arrays with Hardwired Networks on Chip PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben, voorzitter van het College voor Promoties, in het openbaar te verdedigen op dinsdag 6 november 2012 om 15:00 uur door MUHAMMAD AQEEL WAHLAH Master of Science in Information Technology Pakistan Institute of Engineering and Applied Sciences (PIEAS) geboren te Lahore, Pakistan. Dit proefschrift is goedgekeurd door de promotor: Prof. dr. K.G.W. Goossens Copromotor: Dr. ir. J.S.S.M. Wong Samenstelling promotiecommissie: Rector Magnificus voorzitter Prof. dr. K.G.W. Goossens Technische Universiteit Eindhoven, promotor Dr. ir. J.S.S.M. Wong Technische Universiteit Delft, copromotor Prof. dr. S. Pillement Technical University of Nantes, France Prof. dr.-Ing. M. Hubner Ruhr-Universitat-Bochum, Germany Prof. dr. D. Stroobandt University of Gent, Belgium Prof. dr. K.L.M. Bertels Technische Universiteit Delft Prof. dr.ir. A.J. van der Veen Technische Universiteit Delft, reservelid ISBN: 978-94-6186-066-8 Keywords: Field Programmable Gate Arrays, Hardwired, Networks on Chip Copyright ⃝c 2012 Muhammad Aqeel Wahlah All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without permission of the author. Printed in The Netherlands Acknowledgments oday when I look back, I find it a very interesting journey filled with different emotions, i.e., joy and frustration, hope and despair, and T laughter and sadness.
    [Show full text]
  • NASDAQ Stock Market
    Nasdaq Stock Market Friday, December 28, 2018 Name Symbol Close 1st Constitution Bancorp FCCY 19.75 1st Source SRCE 40.25 2U TWOU 48.31 21st Century Fox Cl A FOXA 47.97 21st Century Fox Cl B FOX 47.62 21Vianet Group ADR VNET 8.63 51job ADR JOBS 61.7 111 ADR YI 6.05 360 Finance ADR QFIN 15.74 1347 Property Insurance Holdings PIH 4.05 1-800-FLOWERS.COM Cl A FLWS 11.92 AAON AAON 34.85 Abiomed ABMD 318.17 Acacia Communications ACIA 37.69 Acacia Research - Acacia ACTG 3 Technologies Acadia Healthcare ACHC 25.56 ACADIA Pharmaceuticals ACAD 15.65 Acceleron Pharma XLRN 44.13 Access National ANCX 21.31 Accuray ARAY 3.45 AcelRx Pharmaceuticals ACRX 2.34 Aceto ACET 0.82 Achaogen AKAO 1.31 Achillion Pharmaceuticals ACHN 1.48 AC Immune ACIU 9.78 ACI Worldwide ACIW 27.25 Aclaris Therapeutics ACRS 7.31 ACM Research Cl A ACMR 10.47 Acorda Therapeutics ACOR 14.98 Activision Blizzard ATVI 46.8 Adamas Pharmaceuticals ADMS 8.45 Adaptimmune Therapeutics ADR ADAP 5.15 Addus HomeCare ADUS 67.27 ADDvantage Technologies Group AEY 1.43 Adobe ADBE 223.13 Adtran ADTN 10.82 Aduro Biotech ADRO 2.65 Advanced Emissions Solutions ADES 10.07 Advanced Energy Industries AEIS 42.71 Advanced Micro Devices AMD 17.82 Advaxis ADXS 0.19 Adverum Biotechnologies ADVM 3.2 Aegion AEGN 16.24 Aeglea BioTherapeutics AGLE 7.67 Aemetis AMTX 0.57 Aerie Pharmaceuticals AERI 35.52 AeroVironment AVAV 67.57 Aevi Genomic Medicine GNMX 0.67 Affimed AFMD 3.11 Agile Therapeutics AGRX 0.61 Agilysys AGYS 14.59 Agios Pharmaceuticals AGIO 45.3 AGNC Investment AGNC 17.73 AgroFresh Solutions AGFS 3.85
    [Show full text]
  • IBIS Open Forum Minutes
    IBIS Open Forum Minutes Meeting Date: March 12, 2010 Meeting Location: Teleconference VOTING MEMBERS AND 2010 PARTICIPANTS Actel (Prabhu Mohan) Agilent Radek Biernacki, Ming Yan, Fangyi Rao AMD Nam Nguyen Ansoft Corporation (Steve Pytel) Apple Computer (Matt Herndon) Applied Simulation Technology (Fred Balistreri) ARM (Nirav Patel) Cadence Design Systems Terry Jernberg*, Wenliang Dai, Ambrish Varma Cisco Systems Syed Huq*, Mike LaBonte*, Tony Penaloza, Huyen Pham, Bill Chen, Ravindra Gali, Zhiping Yang Ericsson Anders Ekholm*, Pete Tomaszewski Freescale Jon Burnett, Om Mandhana Green Streak Programs Lynne Green Hitachi ULSI Systems (Kazuyoshi Shoji) Huawei Technologies (Jinjun Li) IBM Adge Hawes* Infineon Technologies AG (Christian Sporrer) Intel Corporation (Michael Mirmak), Myoung (Joon) Choi, Vishram Pandit, Richard Mellitz IO Methodology Lance Wang* LSI Brian Burdick* Mentor Graphics Arpad Muranyi*, Neil Fernandes, Zhen Mu Micron Technology Randy Wolff* Nokia Siemens Networks GmbH Eckhard Lenski* Samtec (Corey Kimble) Signal Integrity Software Walter Katz*, Mike Steinberger, Todd Westerhoff, Barry Katz Sigrity Brad Brim, Kumar Keshavan Synopsys Ted Mido Teraspeed Consulting Group Bob Ross*, Tom Dagostino Toshiba (Yasumasa Kondo) Xilinx Mike Jenkins ZTE (Huang Min) Zuken Michael Schaeder OTHER PARTICIPANTS IN 2010 AET, Inc. Mikio Kiyono Altera John Oh, Hui Fu Avago Razi Kaw Broadcom Mohammad Ali Curtiss-Wright John Phillips ECL, Inc. Tom Iddings eSilicon Hanza Rahmai Exar Corp. Helen Nguyen Mindspeed Bobby Altaf National Semiconductor Hsinho Wu* NetLogic Microsystems Eric Hsu, Edward Wu Renesas Technology Takuji Komeda Simberian Yuriy Shlepnev Span Systems Corporation Vidya (Viddy) Amirapu Summit Computer Systems Bob Davis Tabula David Banas* TechAmerica (Chris Denham) Texas Instruments Bonnie Baker Independent AbdulRahman (Abbey) Rafiq, Robert Badal In the list above, attendees at the meeting are indicated by *.
    [Show full text]
  • Software-Defined Hardware Provides the Key to High-Performance Data
    Software-Defined Hardware Provides the Key to High-Performance Data Acceleration (WP019) Software-Defined Hardware Provides the Key to High- Performance Data Acceleration (WP019) November 13, 2019 White Paper Executive Summary Across a wide range of industries, data acceleration is the key to building efficient, smart systems. Traditional general-purpose processors are falling short in their ability to support the performance and latency constraints that users have. A number of accelerator technologies have appeared to fill the gap that are based on custom silicon, graphics processors or dynamically reconfigurable hardware, but the key to their success is their ability to integrate into an environment where high throughput, low latency and ease of development are paramount requirements. A board-level platform developed jointly by Achronix and BittWare has been optimized for these applications, providing developers with a rapid path to deployment for high-throughput data acceleration. A Growing Demand for Distributed Acceleration There is a massive thirst for performance to power a diverse range of applications in both cloud and edge computing. To satisfy this demand, operators of data centers, network hubs and edge-computing sites are turning to the technology of customized accelerators. Accelerators are a practical response to the challenges faced by users with a need for high-performance computing platforms who can no longer count on traditional general-purpose CPUs, such as those in the Intel Xeon family, to support the growth in demand for data throughput. The core of the problem with the general- purpose CPU is that Moore's Law continues to double the number of available transistors per square millimeter approximately every two years but no longer allows for growth in clock speeds.
    [Show full text]
  • Efpgas : Architectural Explorations, System Integration & a Visionary Industrial Survey of Programmable Technologies Syed Zahid Ahmed
    eFPGAs : Architectural Explorations, System Integration & a Visionary Industrial Survey of Programmable Technologies Syed Zahid Ahmed To cite this version: Syed Zahid Ahmed. eFPGAs : Architectural Explorations, System Integration & a Visionary Indus- trial Survey of Programmable Technologies. Micro and nanotechnologies/Microelectronics. Université Montpellier II - Sciences et Techniques du Languedoc, 2011. English. tel-00624418 HAL Id: tel-00624418 https://tel.archives-ouvertes.fr/tel-00624418 Submitted on 16 Sep 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Montpellier 2 (UM2) École Doctorale I2S LIRMM (Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier) Domain: Microelectronics PhD thesis report for partial fulfillment of requirements of Doctorate degree of UM2 Thesis conducted in French Industrial PhD (CIFRE) framework between: Menta & LIRMM lab (Dec.2007 – Feb. 2011) in Montpellier, FRANCE “eFPGAs: Architectural Explorations, System Integration & a Visionary Industrial Survey of Programmable Technologies” eFPGAs: Explorations architecturales, integration système, et une enquête visionnaire industriel des technologies programmable by Syed Zahid AHMED Presented and defended publically on: 22 June 2011 Jury: Mr. Guy GOGNIAT Prof. at STICC/UBS (Lorient, FRANCE) President Mr. Habib MEHREZ Prof. at LIP6/UPMC (Paris, FRANCE) Reviewer Mr.
    [Show full text]
  • Opencapi, Gen-Z, CCIX: Technology Overview, Trends, and Alignments
    OpenCAPI, Gen-Z, CCIX: Technology Overview, Trends, and Alignments BRAD BENTON| AUGUST 8, 2017 Agenda 2 | OpenSHMEM Workshop | August 8, 2017 AGENDA Overview and motivation for new system interconnects Technical overview of the new, proposed technologies Emerging trends Paths to convergence? 3 | OpenSHMEM Workshop | August 8, 2017 Overview and Motivation 4 | OpenSHMEM Workshop | August 8, 2017 NEWLY EMERGING BUS/INTERCONNECT STANDARDS Three new bus/interconnect standards announced in 2016 CCIX: Cache Coherent Interconnect for Accelerators ‒ Formed May, 2016 ‒ Founding members include: AMD, ARM, Huawei, IBM, Mellanox, Xilinx ‒ ccixconsortium.com Gen-Z ‒ Formed August, 2016 ‒ Founding members include: AMD, ARM, Cray, Dell EMC, HPE, IBM, Mellanox, Micron, Xilinx ‒ genzconsortium.org OpenCAPI: Open Coherent Accelerator Processor Interface ‒ Formed September, 2016 ‒ Founding members include: AMD, Google, IBM, Mellanox, Micron ‒ opencapi.org 5 5 | OpenSHMEM Workshop | August 8, 2017 NEWLY EMERGING BUS/INTERCONNECT STANDARDS Motivations for these new standards Tighter coupling between processors and accelerators (GPUs, FPGAs, etc.) ‒ unified, virtual memory address space ‒ reduce data movement and avoid data copies to/from accelerators ‒ enables sharing of pointer-based data structures w/o the need for deep copies Open, non-proprietary standards-based solutions Higher bandwidth solutions ‒ 25Gbs and above vs. 16Gbs forPCIe-Gen4 Better exploitation of new and emerging memory/storage technologies ‒ NVMe ‒ Storage class memory (SCM),
    [Show full text]
  • Program & Exhibits Guide
    FROM CHIPS TO SYSTEMS – LEARN TODAY, CREATE TOMORROW CONFERENCE PROGRAM & EXHIBITS GUIDE JUNE 24-28, 2018 | SAN FRANCISCO, CA | MOSCONE CENTER WEST Mark You Calendar! DAC IS IN LAS VEGAS IN 2019! MACHINE IP LEARNING ESS & AUTO DESIGN SECURITY EDA IoT FROM CHIPS TO SYSTEMS – LEARN TODAY, CREATE TOMORROW JUNE 2-6, 2019 LAS VEGAS CONVENTION CENTER LAS VEGAS, NV DAC.COM DAC.COM #55DAC GET THE DAC APP! Fusion Technology Transforms DOWNLOAD FOR FREE! the RTL-to-GDSII Flow GET THE LATEST INFORMATION • Fusion of Best-in-Class Optimization and Industry-golden Signoff Tools RIGHT WHEN YOU NEED IT. • Unique Fusion Data Model for Both Logical and Physical Representation DAC.COM • Best Full-flow Quality-of-Results and Fastest Time-to-Results MONDAY SPECIAL EVENT: RTL-to-GDSII Fusion Technology • Search the Lunch at the Marriott Technical Program • Find Exhibitors www.synopsys.com/fusion • Create Your Personalized Schedule Visit DAC.com for more details and to download the FREE app! GENERAL CHAIR’S WELCOME Dear Colleagues, be able to visit over 175 exhibitors and our popular DAC Welcome to the 55th Design Automation Pavilion. #55DAC’s exhibition halls bring attendees several Conference! new areas/activities: It is great to have you join us in San • Design Infrastructure Alley is for professionals Francisco, one of the most beautiful who manage the HW and SW products and services cities in the world and now an information required by design teams. It houses a dedicated technology capital (it’s also the city that Design-on-Cloud Pavilion featuring presentations my son is named after).
    [Show full text]
  • Architecture Exploration of FPGA Based Accelerators for Bioinformatics Applications Springer Series in Advanced Microelectronics
    Springer Series in Advanced Microelectronics 55 B. Sharat Chandra Varma Kolin Paul M. Balakrishnan Architecture Exploration of FPGA Based Accelerators for BioInformatics Applications Springer Series in Advanced Microelectronics Volume 55 Series editors Kukjin Chun, Seoul, Korea, Republic of (South Korea) Kiyoo Itoh, Tokyo, Japan Thomas H. Lee, Stanford, CA, USA Rino Micheloni, Vimercate (MB), Italy Takayasu Sakurai, Tokyo, Japan Willy M.C. Sansen, Leuven, Belgium Doris Schmitt-Landsiedel, München, Germany The Springer Series in Advanced Microelectronics provides systematic information on all the topics relevant for the design, processing, and manufacturing of microelectronic devices. The books, each prepared by leading researchers or engineers in their fields, cover the basic and advanced aspects of topics such as wafer processing, materials, device design, device technologies, circuit design, VLSI implementation, and subsystem technology. The series forms a bridge between physics and engineering and the volumes will appeal to practicing engineers as well as research scientists. More information about this series at http://www.springer.com/series/4076 B. Sharat Chandra Varma Kolin Paul • M. Balakrishnan Architecture Exploration of FPGA Based Accelerators for BioInformatics Applications 123 B. Sharat Chandra Varma M. Balakrishnan Department of Electrical and Electronic Department of Computer Science Engineering and Engineering The University of Hong Kong Indian Institute of Technology Delhi Hong Kong New Delhi, Delhi Hong Kong India Kolin Paul Department of Computer Science and Engineering Indian Institute of Technology Delhi New Delhi, Delhi India ISSN 1437-0387 ISSN 2197-6643 (electronic) Springer Series in Advanced Microelectronics ISBN 978-981-10-0589-3 ISBN 978-981-10-0591-6 (eBook) DOI 10.1007/978-981-10-0591-6 Library of Congress Control Number: 2016931344 © Springer Science+Business Media Singapore 2016 This work is subject to copyright.
    [Show full text]
  • Migrating to Achronix FPGA Technology (AN023) Migrating to Achronix FPGA Technology (AN023)
    Migrating to Achronix FPGA Technology (AN023) Migrating to Achronix FPGA Technology (AN023) November 19, 2020 Application Note Introduction Many users transitioning to Achronix FPGA technology will be familiar with existing FPGA solutions from other vendors. Although Achronix technology and tools are very similar to existing FPGA technology and tools, there are some differences. Understanding these differences are needed to achieve the very best performance and quality of results (QoR). This application note discusses any differences in the Achronix tool flow, highlighting key files and methodologies that users may not be familiar with. Further this application note details the primitive components present in the Achronix fabric, and how they may differ from, or in many cases are similar to, other vendors. Finally this application note reviews the unique features, particularly focused on AI and ML workloads that are present in the Achronix FPGA devices. Related Documents This application note is intended to give an overview of any changes that a user may encounter when migrating to Achronix technology. For full details of any of the items described below, the user is directed to the appropriate user guide or application note. Instead of duplicating information, this application note highlights the changes, and refers the user to the appropriate user guide where they can obtain the full information. A number of user guides are commonly referred to throughout this document Speedster7t IP Component Library User Guide (UG086) .This user guide describes all the silicon elements on the Speedster7t family. It includes descriptions, and instantiation templates, of the memories, DSP, MLP, NAP and logic primitives.
    [Show full text]
  • Run-Time Dynamically-Adaptable FPGA-Based Architecture for High-Performance Autonomous Distributed Systems
    Departamento de Automática, Ingeniería Eléctrica y Electrónica e Informática Industrial Escuela Técnica Superior de Ingenieros Industriales Run-Time Dynamically-Adaptable FPGA-Based Architecture for High-Performance Autonomous Distributed Systems Autor: Juan Valverde Alcalá Ingeniero Industrial por la Universidad Politécnica de Madrid Directores: Jorge Portilla Berrueco Doctor por la Universidad Politécnica de Madrid en Ingeniería Electrónica Eduardo de la Torre Arnanz Doctor Ingeniero Industrial por la Universidad Politécnica de Madrid 2015 Tribunal Tribunal nombrado por el Excmo. y Magfco. Sr. Rector de la Universidad Politécnica de Madrid, el día 6 de Noviembre de 2015. Presidente: Carlos López Barrio, Universidad Politécnica de Madrid Vocales: Roberto Sarmiento Rodríguez, Universidad de Las Palmas de Gran Canaria Christian De Schryver, Universidad Kaiserslautern Secretario: Teresa Riesgo Alcaide, Universidad Politécnica de Madrid Suplentes: Marta Portela García, Universidad Carlos III de Madrid Ángel de Castro Martín, Universidad Autónoma de Madrid Realizado el acto de lectura y defensa de la Tesis Doctoral el día 16 de Diciembre de 2015 en la Escuela Técnica Superior de Ingenieros Industriales de la Universidad Politécnica de Madrid. Calificación: EL PRESIDENTE LOS VOCALES EL SECRETARIO Посвета Ова докторска теза је посвећена мом животном партнеру. Зато што само са њом уживам у сваком тренутку свог живота. Зато што ме она учи како да будем снажан без обзира шта се деси. Зато што, кад сам са њом, знам да је све савршено и да сам спокојан. Зато што смо победили време и раздаљину и сада можемо да радимо шта год пожелимо. Agradecimientos A mis padres, mi hermana y Estefa, por traerme hasta aquí día tras día viéndome sufrir y trabajar, y diciéndome, “venga, otro pasito más”.
    [Show full text]
  • IBIS Open Forum Minutes
    IBIS Open Forum Minutes Meeting Date: September 10, 2010 Meeting Location: Teleconference VOTING MEMBERS AND 2010 PARTICIPANTS Agilent Radek Biernacki, Ming Yan, Fangyi Rao, Gilbert Berger, Amolak Badeasa, Jose Pino, Junaid Khan AMD Nam Nguyen* Ansys (Ansoft Corporation) Danil Kirsanov Apple Computer (Matt Herndon) Applied Simulation Technology (Fred Balistreri) ARM (Nirav Patel) Cadence Design Systems Terry Jernberg*, Wenliang Dai, Ambrish Varma Cisco Systems Syed Huq, Mike LaBonte*, Tony Penaloza, Huyen Pham, Bill Chen, Ravindra Gali, Zhiping Yang Ericsson Anders Ekholm*, Pete Tomaszewski Freescale Jon Burnett, Om Mandhana Green Streak Programs Lynne Green Hitachi ULSI Systems Yutaka Uematsu Huawei Technologies (Jinjun Li) IBM Adge Hawes, Greg Edlund* Infineon Technologies AG Christian Sporrer Intel Corporation Michael Mirmak*, Myoung (Joon) Choi, Vishram Pandit, Richard Mellitz IO Methodology Lance Wang* LSI Brian Burdick* Mentor Graphics Arpad Muranyi*, Neil Fernandes, Zhen Mu Micron Technology Randy Wolff* Nokia Siemens Networks GmbH Eckhard Lenski* Samtec (Corey Kimble) Signal Integrity Software Walter Katz*, Mike Steinberger, Todd Westerhoff, Barry Katz Sigrity Brad Brim, Kumar Keshavan, Srdjan Djordjevic, Ben Franklin Synopsys Ted Mido, Paul Lo, Geoffrey Ying, Frank Lee Teraspeed Consulting Group Bob Ross*, Tom Dagostino Texas Instruments Bonnie Baker* Toshiba Yoshihiro Hamaji Xilinx Mike Jenkins ZTE (Huang Min) Zuken Michael Schaeder, Ralf Bruening OTHER PARTICIPANTS IN 2010 Actel (Prabhu Mohan) AET, Inc. Mikio Kiyono Altera
    [Show full text]
  • Transistor-Level Programmable Fabric
    TRANSISTOR-LEVEL PROGRAMMABLE FABRIC by Jingxiang Tian APPROVED BY SUPERVISORY COMMITTEE: ___________________________________________ Carl Sechen, Chair ___________________________________________ Yiorgos Makris, Co-Chair ___________________________________________ Benjamin Carrion Schaefer ___________________________________________ William Swartz Copyright 2019 Jingxiang Tian All Rights Reserve TRANSISTOR-LEVEL PROGRAMMABLE FABRIC by JINGXIANG TIAN, BS DISSERTATION Presented to the Faculty of The University of Texas at Dallas in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY IN ELECTRICAL ENGINEERING THE UNIVERSITY OF TEXAS AT DALLAS December 2019 ACKNOWLEDGMENTS I would like to express my deep sense of gratitude to the consistent and dedicated support of my advisor, Dr. Carl Sechen, throughout my entire PhD study. You have been a great mentor, and your help in my research and career is beyond measure. I sincerely thank my co-advisor, Dr. Yiorgos Makris, who brings ideas and funds for this project. I am grateful that they made it possible for me to work on this amazing research topic that is of great interest to me. I would also like to thank my committee members, Dr. Benjamin Schaefer and Dr. William Swartz for serving as my committee members and giving lots of advice on my research. I would like to give my special thanks to the tech support staff, Steve Martindell, who patiently helped me a thousand times if not more. With the help of so many people, I have become who I am. My parents and my parents-in-law give me tremendous support. My husband, Tianshi Xie, always stands by my side when I am facing challenges. Ada, my precious little gift, is the motivation and faith for me to keep moving on.
    [Show full text]