J. Peters & C. Büchel Overlapping and distinct neural systems code for subjective value during intertemporal and risky decision making.

Supplemental Material

Supplemental Methods Experiment 2 Subjects Healthy young subjects (n = 18, mean age = 25.8, 11 male) took part in Experiment 2. Subjects provided informed written consent, and the study procedure was approved by the local Ethics committee. Behavioral pre-tests As in Experiment 1, subjects completed two behavioral pretests (DD of 20€ and PD of 20€) to estimate discount rates. Task Subjects made choices between 20€ available with a given delay and 20€ available with a given probability. Delay-probability combinations were computed based on the most recent discount functions from behavioural pre-tests. The construction of trials involved the following steps: 1) Calculation of the minimum subjective value available for trial generation using the following equation min( sv ) = max (min [sv _ delays ], min [sv _ probabilit ies ]) (3). 2) The interval [min_sv 1] was then divided by the number of trials (132). For each of these values, the corresponding delay and probability were calculated based on the hyperbolic discount functions obtained in the last behavioural session, i.e. the total subjective value range was identical for the delayed and probabilistic options, but differed between participants, depending on their discounting behaviour. 3) Delay-probability combinations were then constructed by combining the highest subjective value delay with the lowest subjective value probability, the second-highest subjective value delay with the second-lowest subjective value probability, and so on for the entire subjective value range. Therefore, in 50% of trials, the probabilistic option had the greater subjective value, whereas in the remaining trials, the delayed option had the greater subjective value. As in Experiment 1, participants were told that one of their choices would be randomly selected following the testing session, and that they would receive 20€ with the state delay/probability as an Amazon.de email gift certificate. Subjects performed two sessions of 66 trials each. Each trial started with the presentation of a green dot signalling the start of the trial. Then, the delayed and the probabilistic options were presented (duration 2s each) in randomized order. A random inter-trial interval was included (2-6 s sampled from a uniform distribution) and, following the second option, subjects were prompted to select their preferred option (“A or B”).

Data analysis We analyzed participants’ choice behaviour as a function of the subjective value difference between the delayed and the probabilistic option. The subjective value range of presented options depended on participants’ choice behavior during behavioural pretests (see above). To account for these differences, we computed the difference between option values (subjective value [delayed option] – subjective value [probabilistic option]) and scaled this measure according to the individual subjective value range of each participant. The resulting difference measure thus reflects the difference between option values in terms of proportion of the individual value range of subjects (see Fig. 7). This difference measure was then split into 10 bins (ranging from -0.5 to +0.5) and the proportion of delayed choices was calculated 1 for each bin (see Fig. 7b). We next fit a logistic function of the form f (x) = ()1 + be −cx (4) to these data points for each individual subject. Based on this function, we then estimated the value difference at which participants were indifferent between the delayed and probabilistic option. The group mean of this measure was compared to zero using a one-sample t-test.

Supplemental Results Experiment 1

Supplemental Table 1 Delays and probabilities used for behavioral and fMRI testing.

Delay Immediate 6 hours 1 day 7 days 30 days 90 days 180 days Reward

Probability 100% 99% 96% 84% 54% 28% 17%

Supplemental Table 2 Subjective value correlation for delay discounting (p < 0.001, uncorrected, k > 10 voxels) in the primary GLM

Region MNI coordinates z-value

L lateral parietal cortex -58 -46 36 5.72 -54 -56 46 4.06 -50 -54 36 3.88 L ventral striatum -8 4 -8 5.29 -18 -6 -12 3.86 R lateral parietal cortex 54 -42 26 4.98 R inferior/middle frontal 54 40 -4 4.84 48 36 -12 3.77 R 70 -36 2 4.49 66 -30 -2 4.29 58 -40 -2 3.31 R medial / anterior 12 46 6 4.44 R central 28 16 -18 4.41 Posterior cingulate -2 -46 32 4.33 R 50 -22 -20 4.17 L / frontal pole -8 52 16 4.05 -2 58 24 3.80 L -34 32 12 4.02 -44 14 12 3.78 -52 14 8 3.70 R inferior frontal gyrus 36 30 -16 3.83 L caudate -18 16 12 3.81 L middle temporal gyrus -66 -30 -6 3.69 -64 -32 2 3.20 R middle frontal gyrus 54 6 42 3.53

Supplemental Table 3 Subjective value correlation delay discounting > probability discounting (p < 0.001, uncorrected, k > 10 voxels) in the primary GLM

Region MNI coordinates z-value

L lateral parietal cortex -58 -50 34 5.11 1 R medial prefrontal / anterior 12 42 4 3.86 cingulate R lateral parietal cortex 64 -42 28 3.81 54 -40 26 3.67 L medial frontal gyrus / frontal -10 54 16 3.74 2 pole L middle temporal gyrus -62 -14 -10 3.68 Posterior cingulate -4 -48 32 3.48 3 L inferior frontal gyrus 52 38 -6 3.48

1 sub-peak [-56, -56, 28, z-value = 3.34] significant at p = 0.031, FWE-corrected across 8 mm sphere based on peak coordinates [-56, -60, 22] reported by Kable & Glimcher

(2007)

2 sub-peak [-2 54 26, z-value = 3.18] signifincant at p = 0.048, FWE-corrected across 8 mm sphere based on peak coordinates [4, 58, 26] reported by Addis et al. (2007)

3 p = 0.056, FWE-corrected across 12 mm sphere based on peak coordinates [-1, -40,

35] reported by Kable & Glimcher (2007)

Supplemental Table 4 Subjective value correlation for probability discounting (p < 0.001, uncorrected, k > 10 voxels) in the primary GLM

Region MNI coordinates z-value

42 -38 44 5.26 R/L superior/ 40 -46 42 4.95 -36 -52 46 4.88 L ventral striatum / thalamus -8 4 -8 5.13 -6 -20 10 4.60 6 -12 6 4.41 L middle occipital gyrus -48 -62 -10 5.10 -58 -48 -10 3.33 -52 -44 -14 3.21 / posterior cingulate 0 -34 42 4.98 -4 -34 26 4.07 6 -20 32 4.06 R insula / inferior / middle frontal 44 8 26 4.87 gyrus 36 4 30 4.74 52 10 18 4.43 L -12 -96 -6 4.76 -16 -92 0 4.63 -24 -72 -8 4.40 L precentral / inferior / middle -42 -2 30 4.73 frontal gyrus -48 6 28 4.37 -50 6 42 4.15 R inferior frontal gyrus 46 36 10 4.50 42 30 20 3.47 R middle temporal gyrus 56 -54 -10 4.43 48 -56 -10 4.27 46 -56 -20 3.47 L insula / inferior frontal gyrus -26 18 0 4.41 L medial frontal gyrus -18 60 4 4.15 -24 56 0 3.63 L anterior cingulate / medial -4 38 -8 4.13 frontal gyrus 4 40 -2 4.07 R cerebellum 22 -50 -24 4.01 L inferior / middle frontal gyrus -44 42 8 3.99 -40 36 14 3.83 -38 24 20 3.62 L cerebellum -12 -76 -24 3.94 R inferior / middle frontal gyrus 26 34 -14 3.93 30 18 -6 3.67 24 24 -10 3.62 L inferior / middle frontal gyrus -22 34 -18 3.80 -14 40 -16 3.68 -20 26 -18 3.60 L midbrain -6 -30 -8 3.77 R cerebellum 10 -80 -26 3.76 L -14 -38 -2 3.69 R Thalamus 18 -18 14 3.67 R visual cortex 12 -80 6 3.64 6 -80 18 3.40 0 -76 8 3.36 R central orbitofrontal cortex 26 18 -16 3.62 R inferior / middle occipital 38 -82 -4 3.62 gyrus R inferior / middle frontal gyrus 54 30 18 3.59 R midbrain 4 -28 -16 3.54 R middle frontal gyrus 28 18 44 3.50 R middle frontal gyrus / anterior 6 28 -10 3.46 cingulate R temporal pole 48 20 -18 3.43 L anterior cingulate -10 28 30 3.41 L insula -26 10 -18 3.30 Mid-cingulum 2 2 38 3.29

Supplemental Table 5 Subjective value correlation probability discounting > delay discounting (p < 0.001, uncorrected, k > 10 voxels) in the primary GLM

Region MNI coordinates z-value

L visual cortex -16 -92 0 5.01 -4 -86 -6 4.01 R inferior/ 42 -38 44 5.00 32 -48 44 4.67 32 -60 54 4.03 Right / inferior frontal gyrus 38 2 30 4.62 44 6 26 4.25 L middle occipital gyrus -48 -64 -10 4.14 L -14 -38 -2 4.02 R lingual / precunes / post. cingulate 22 -56 -2 3.98 12 -70 10 3.49 16 -60 6 3.42 R Middle temporal gyrus 56 -54 -10 3.92 48 -56 -10 3.71 L inferior frontal gyrus/insula -26 18 0 3.86 L precuneus -22 -72 50 3.81 L -32 -76 34 3.76 -28 -84 32 3.25 R cerebellum 24 -50 -26 3.75 L posterior cingulate -18 -56 12 3.75 -14 -54 4 3.35 R Precuneus 8 -72 46 3.73 R visual cortex 16 -96 8 3.73 14 -94 18 3.31 L precentral gyrus -42 -2 30 3.73 L thalamus -20 -26 -2 3.71 Post. Cingulate 2 -34 42 3.70 R inferior frontal gyrus 44 36 8 3.66 48 42 14 3.29 L lingual gyrus -22 -68 -2 3.65 R middle temporal gyrus 44 -78 16 3.61 40 -72 20 3.57 48 -68 20 3.18 Mid-cingulum -8 28 32 3.61 L thalamus (MD) -4 -30 10 3.48 -12 -18 12 3.43 R 40 -64 -12 3.37 L cuneus -2 -78 6 3.36 L central orbitofrontal cortex -24 34 -18 3.35 L precuneus -4 -74 44 3.33 L inferior parietal lobule -42 -50 48 3.33 -32 -54 48 3.17 L -14 -64 22 3.33 L cuneus -18 -80 16 3.30 L superior parietal lobule -12 -64 54 3.30

Supplemental Table 6 Regions in which the subjective value correlation was significant (p <

0.001, uncorrected, k > 10 voxels) for both delay and probability discounting (conjunction analysis) in the primary GLM

Region MNI coordinates z-value

L ventral striatum -8 4 -8 5.13 1 R central orbitofronal cortex 26 18 -16 3.62 2 L lateral parietal cortex -50 -52 44 3.52

1 p = 0.026, FWE-corrected for whole-brain volume

2 p = 0.039, FWE-corrected across 12mm sphere centered on peak coordinate [30, 27, -

21] in right orbitofrontal cortex from Hare et al. 2008

Supplemental Table 7 Correlation with inverse delay-to-reward, orthogonalized with respect to subjective value in the primary GLM (p < 0.001, uncorrected, k > 10 voxels)

Region MNI coordinates z-value

L anterior cingulate -20 38 0 3.60 L inferior frontal gyrus -48 28 -8 3.44

Supplemental Table 8 Correlation with reward probability, orthogonalized with respect to subjective value in the primary GLM (p < 0.001, uncorrected, k > 10 voxels)

Region MNI coordinates z-value

44 32 40 4.82 R middle frontal gyrus R fusiform/inferior temporal gyrus 52 -60 -14 4.63 54 -48 -16 3.65 L medial frontal gyrus -6 30 34 4.55 -4 20 54 3.69 R medial frontal/cingulate gyrus 6 22 48 3.69 R middle frontal gyrus 44 42 22 4.47 52 34 26 3.58 R inferior parietal lobule 44 -52 42 4.31 42 -42 50 4.18 54 -34 48 3.85 L medial frontal gyrus -6 -28 60 4.21 L -12 -34 76 4.17 R precuneus 26 -64 42 3.98 34 -58 52 3.55 22 -56 40 3.52 R inferior/middle temporal gyrus 56 -32 -18 3.82 L superior frontal gyrus -16 30 60 3.78 R postcentral gyrus 30 -34 52 3.78 28 -34 60 3.39 R inferior frontal gyrus 60 12 28 3.77 R fusiform gyrus 38 -12 -30 3.66 R cingulate gyrus 8 22 34 3.63 L cerebellum -22 -66 -34 3.63 -28 -60 -34 3.24 L inferior parietal lobule -46 -38 40 3.58 -42 -44 44 3.39 R precentral gyrus 48 -16 58 3.58 L inferior frontal gyrus -38 44 2 3.50 R precentral gyrus 62 -20 42 3.44 R superior frontal gyrus 20 28 56 3.39 R superior frontal gyrus 32 16 56 3.30

Supplemental Table 9 Correlation with magnitude of the delayed reward, orthogonalized with respect to subjective value and inverse delay to reward (p < 0.001, uncorrected, k > 10 voxels) in the primary GLM

Region MNI coordinates z-value

No voxels survive threshold

Supplemental Table 10 Correlation with magnitude of the probabilistic reward, orthogonalized with respect to subjective value and reward probability (p < 0.001, uncorrected, k > 10 voxels) in the primary GLM

Region MNI coordinates z-value

No voxels survive threshold

Supplemental Table 11 Subjective value correlation delay discounting, orthogonalized with respect to inverse delay to reward and reward magnitude (p < 0.001, uncorrected, k > 10 voxels) in the secondary GLM

Region MNI coordinates z-value

20 -16 44 4.70 R mid-cingulate gyrus L middle temporal gyrus -46 10 -34 4.19 L lateral parietal cortex -64 -36 40 4.18 -58 -42 40 3.48 L lateral parietal cortex -60 -54 34 4.08 R lateral parietal cortex 60 -40 42 4.06 L middle temporal gyrus -62 -54 0 4.05 R inferior frontal gyrus 52 30 -4 4.03 50 38 -16 3.61 R inferior parietal lobule 46 -44 30 3.89 52 -56 24 3.62 56 -44 26 3.55 R middle temporal gyrus 56 -36 -10 3.88 58 -28 -14 3.26 R inferior temporal gyrus 46 -6 -36 3.65 R middle temporal gyrus 54 -12 -8 3.58 L middle temporal/lateral parietal -60 -62 6 3.50 R inferior temporal gyrus 64 -22 -24 3.44 L middle frontal gyrus -34 16 28 3.27

Supplemental Table 12 Subjective value correlation probability discounting, orthogonalized with respect to probability and reward magnitude (p < 0.001, uncorrected, k > 10 voxels) in the secondary GLM

Region MNI coordinates z-value

No voxels survive threshold

Supplemental Table 13 Correlation with inverse delay-to-reward in the secondary GLM including only this parametric regressor (p < 0.001, uncorrected, k > 10 voxels)

Region MNI coordinates z-value

24 -8 16 4.67 R putamen L putamen -18 -4 12 4.54 L inferior frontal gyrus -48 26 -10 4.41 -50 38 -6 3.93 L middle frontal gyrus -46 4 46 4.40 L putamen -30 -18 8 4.14 L anterior cingulate -20 38 0 3.89 L middle temporal gyrus -58 -62 2 3.72 R 34 -50 18 3.68 L middle/superior temporal gyrus -64 -30 -4 3.57 -64 -20 0 3.30 L putamen -20 16 10 3.52 L inferior frontal gyrus -54 20 18 3.30

Supplemental Table 14 Correlation with reward probability in the secondary GLM including only this parametric regressor (p < 0.001, uncorrected, k > 10 voxels)

Region MNI coordinates z-value R inferior/superior parietal lobule/ 44 -50 60 5.23 middle occipital gyrus 34 -60 58 4.88 36 -86 0 4.81 L middle occipital gyrus -48 -62 -8 4.82 -40 -56 -12 3.91 -32 -58 -8 3.87 L inferior parietal lobule -44 -46 50 4.80 -36 -52 50 4.60 -40 -44 42 4.50 R middle temporal gyrus 56 -56 -12 4.65 44 -56 -8 4.51 38 -40 -20 3.69 R inferior frontal gyrus 46 6 28 4.50 46 14 30 3.90 36 4 30 3.74 R middle frontal gyrus 44 42 22 4.43 48 46 16 3.78 52 34 26 3.66 L cerebellum -40 -42 -38 4.25 L inferior/middle frontal gyrus -54 8 34 4.21 -46 4 46 3.61 -42 -2 32 3.56 L inferior frontal gyrus -40 44 4 4.18 -44 48 -14 3.52 R middle frontal gyrus 24 36 -14 4.17 L inferior frontal gyrus -18 36 -20 4.10 L lingual gyrus -22 -74 -4 4.09 L thalamus/parahippocampal -10 -34 0 4.08 gyrus/brainstem -8 -20 -12 3.68 -6 -30 -8 3.64 L medial frontal/cingulate gyrus -6 30 34 4.08 L cerebellum -8 -78 -24 3.91 R middle frontal gyrus 42 32 42 3.83 R middle/superior frontal / 22 2 50 3.70 cingulate gyrus 28 20 44 3.63 32 12 56 3.39 R thalamus 10 -10 10 3.67 L superior frontal gyrus -30 56 -4 3.66 L middle frontal gyrus -26 6 60 3.65 R medial frontal gyrus 6 22 48 3.62 R inferior frontal gyrus 52 24 14 3.60 L anterior cingulate -2 6 26 3.60 -6 12 22 3.37 L thalamus -10 -14 2 3.58 L middle frontal gyrus -42 34 18 3.58 R caudate 14 12 2 3.57 R cuneus 22 -94 -2 3.57 R posterior cingulate/precuneus 8 -40 44 3.50 R insula 32 16 -2 3.49 R superior temporal gyrus 48 20 -14 3.47 L cerebellum -38 -72 -26 3.39 -42 -72 -34 3.38 L cingulate 0 -32 28 3.37 L middle frontal gyrus -50 28 26 3.20

Supplemental Table 15 Correlation with reward magnitude (delay discounting) in the secondary GLM including only this parametric regressor (p < 0.001, uncorrected, k > 10 voxels)

Region MNI coordinates z-value L globus pallidus -16 -6 -8 4.49 -8 0 -10 4.43 R ventral striatum 8 8 -6 4.14 R hippocampus 30 -28 -12 3.95 R inferior frontal gyrus 30 18 -14 3.93 R anterior cingulate 8 46 8 3.89 R middle frontal gyrus 52 44 -4 3.72 56 36 2 3.20 R midbrain 10 -26 -20 3.63 L cuneus/lingual gyrus -14 -92 2 3.61 -10 -100 4 3.47 -24 -78 -12 3.49 -30 -68 -14 3.19 R precuneus 28 -58 38 3.35 L lateral parietal cortex -54 -56 32 3.33

Supplemental Table 16 Correlation with reward magnitude (probability discounting) in the secondary GLM including only this parametric regressor (p < 0.001, uncorrected, k > 10 voxels)

Region MNI coordinates z-value

-14 -94 -2 4.65 L lingual gyrus/cuneus -16 -98 8 3.34 R posterior cingulate 4 -50 6 4.42 L/R precuneus -14 -70 24 3.85 8 -76 22 3.75 0 -78 26 3.55 L superior parietal lobule -8 -74 54 3.79 L/R cuneus 0 -94 14 3.74 -2 -86 20 3.24 R ventral striatum 8 4 -4 3.74 R thalamus 2 -22 12 3.66 4 -18 4 3.53 L ventral striatum -6 4 4 3.57 R precuneus 6 -78 48 3.52 14 -76 52 3.34 L cuneus -14 -86 18 3.49 R cingulate gyrus 8 -18 30 3.47 L insula -28 22 2 3.45 -20 22 6 3.41

Supplemental Figure 1

Supplemental Figure 1 Regions in the lateral parietal cortex correlated with subjective value during DD, while more superior parietal regions correlated with subjective value during PD (p < 0.001, uncorrected). The clusters showed only minimal overlap.