Cardioactive Toxins in True Toads (Anura: Bufonidae) Positive

Total Page:16

File Type:pdf, Size:1020Kb

Cardioactive Toxins in True Toads (Anura: Bufonidae) Positive Downloaded from rsbl.royalsocietypublishing.org on 5 August 2009 Positive Darwinian selection results in resistance to cardioactive toxins in true toads (Anura: Bufonidae) David J. Moore, Damien C. T. Halliday, David M. Rowell, Anthony J. Robinson and J. Scott Keogh Biol. Lett. 2009 5, 513-516 first published online 22 May 2009 doi: 10.1098/rsbl.2009.0281 References This article cites 13 articles, 6 of which can be accessed free http://rsbl.royalsocietypublishing.org/content/5/4/513.full.html#ref-list-1 Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Biol. Lett. go to: http://rsbl.royalsocietypublishing.org/subscriptions This journal is © 2009 The Royal Society Downloaded from rsbl.royalsocietypublishing.org on 5 August 2009 Biol. Lett. (2009) 5, 513–516 Melanophryniscus and Dendrophryniscus, cardiotonic doi:10.1098/rsbl.2009.0281 steroids produced are bufadienolides (Flier et al. Published online 22 May 2009 1980; Mebs et al. 2007). Most other anurans are not Evolutionary biology tolerant to cardioactive steroids, but the hylid Scinax ruber and leptodactylid Leptodactylus macrosternum (Leptodactylus ocellatus species group) are natural pre- Positive Darwinian dators of bufonids in South America (Chen & Chen 1933; Crossland & Azevedo-Ramos 1999). selection results in Amino acid sites that determine tolerance to cardio- active steroids have been identified in the sodium resistance to cardioactive pump polymer. The initial extracellular loop of the toxins in true toads a1 subunit of the sodium pump is a primary binding site for cardiotonic steroids. Changes within and (Anura: Bufonidae) around this region have been identified as facilitating resistance in bufonids as well as in some insects and David J. Moore1,2, Damien C. T. Halliday2, rodents (Jaisser et al. 1992; Croyle et al. 1997). David M. Rowell1, Anthony J. Robinson2 This study sequenced the initial extracellular loop, and J. Scott Keogh1,* and part of the surrounding transmembrane regions 1School of Botany and Zoology, The Australian National University, of the sodium pump, from representative anurans in Canberra, ACT 0200, Australia order to determine whether resistance, conferred by 2CSIRO Entomology, Black Mountain Laboratories, Clunies Ross Street, changes in this region, is restricted to and conserved Acton, Canberra, ACT 2601, Australia *Author for correspondence ([email protected]). within Bufonidae. Specifically, we tested the hypoth- esis that positive selection has driven change in the Members of the Family Bufonidae, true toads, binding region of the sodium pump along lineages are famous for their endogenously synthesized ancestral to, or within, Bufonidae. cardioactive steroids that serve as defensive toxins. Evolution of resistance to these toxins is not understood. We sequenced a key region of 1 1 2. MATERIAL AND METHODS the toxin’s binding site in the Na /K ATPase DNA was extracted from ethanol-preserved tissue using Puregene for relevant taxa representing Hyloidea (includ- DNA Purification Kit (Gentra). Amplification of the initial ing bufonids), Ranoidea and Archaeobatrachia extracellular loop including parts of the M1 and M2 transmembrane and tested for positive selection in a phylogenetic regions was performed using the primers ATP1_178Fwd (WGARATCCTGGCACGAGATG), or ATP1_222Fwd2a (ATGG- context. Bufonidae were distinct from other GATACGGGGCCGGA), with ATP1_178Rvs (GAGGMACCAT- Hyloidea at 4–6 of 12 sites and, with one excep- GTTCTTGAAGG), with an annealing temperature of 568C for tion, had a homologous amino acid sequence. 30 cycles. PCR products were cleaned using ExoSapIT or Qiaquick Melanophryniscus stelzneri had a distinct PCR purification kit (Qiagen) after gel electrophoresis. sequence, consistent with other independent Products were sequenced using ATP1_178_Fwd and ATP1_ evidence for a differentiated toxin. Tests within 178_Rvs with BigDye Terminator v. 3.1, with an annealing temperature of 538C for 25 cycles, or subcloned using Invitrogen Topo protocol Bufonidae detected positive selection within the with PCR@4 vectors and Top10 chemically competent cells, puri- binding region, providing, to our knowledge, fied using Purelink Quick Plasmid Miniprep kit (Invitrogen) and the first evidence of this type for positive selection sequenced with M13 forward and M13 reverse primers. Reactions within Amphibia. There was no evidence for were cleaned using sodium acetate/EDTA/ethanol and sequenced positive selection on Bufonidae or M. stelzneri with an ABI Prism 3100 Sequencer. Sequence traces were aligned lineages. Sequence change in Leptodactylus and edited using SEQUENCER 3.1. The phylogeny published by Frost et al. (2006) was used for ocellatus, a leptodactylid predator of Bufonidae, analysis. Tests for positive selection were performed on three lineages provides a molecular basis for predator resistance (figure 1) using the improved branch-sites model A implemented possibly associated with gene duplication. in PAML (Yang 1997; Zhang et al. 2005). Significance was calculated by log likelihood comparison and Bayes empirical Bayes probabilities. Keywords: Bufonidae; positive selection; Amino acid naming is consistent with Croyle et al. (1997).The cardioactive steroids; Naþ/Kþ ATPase binding region spans amino acids 111–122. 3. RESULTS 1. INTRODUCTION One hundred and eighty-six base pairs of exon sequence Finding robust evidence for adaptive evolution of func- were generated for 27 hyloid samples, 19 Bufonidae, one tional traits is among the foremost challenges of Centrolenidae, one Strabomantidae, two Hylidae, two modern genetics. A promising approach is to use Leptodactylidae, one Limnodynastidae and one Myo- molecular and functional data to develop robust batrachidae, and two ranoid outgroups, one Microhylidae hypotheses of positive selection testable in a phyloge- and one Pyxicephalidae (GenBank accession numbers netic context ( Jost et al. 2008). We apply this FJ976618–FJ976647). Rhinella marinus (Z11798.2), approach to test for positive selection for the resistance Xenopus laevis (NM_001090595.1) and Xenopus of true toads (Anura: Bufonidae) to defensive toxins. tropicalis (NM_204076.1) were obtained from GenBank. Endogenous cardioactive steroids that inhibit Most non-bufonid hyloid frogs had a typical non- activity of the Naþ/Kþ ATPase (sodium pump) are resistant amino acid sequence at the binding site, synthesized by all bufonids. Skin secretions of bufonid homologous to sheep (Ovis aries; figure 1). Exceptions frogs contain levels of endogenous cardioactive steroids were Hyalinobatrachium fleischmanni (Centrolenidae), 25–40 000-fold higher than other anurans (Flier et al. with an M at site 119, and L. ocellatus (Leptodactyli- 1980), providing an effective defence against most dae). Direct sequencing of L. ocellatus found predators. With the exception of the genera an unusual density of ‘heterozygotic sites’ in the Received 5 April 2009 Accepted 1 May 2009 513 This journal is q 2009 The Royal Society Downloaded from rsbl.royalsocietypublishing.org on 5 August 2009 514 D. J. Moore et al. Evolution of resistance 111 122 Ovis aries (sheep) BovidaeQ A A T E E E P Q N D N Rattus norvegicus (rat) Muridae R S P D Xenopus tropicalis Pipidae T T Xenopus laevis Pipidae M Phynomantis bifasciatus Microhylidae D Tomopterna cryptotis Pyxicephalidae G D Limnodynastes tasmaniensis Limnodynastidae Mixophyes fasciolatus Myobatrachidae Pristimantis orestes Strabomantidae Hyloidea Scinax ruber Hylidae Litoria raniformis Hylidae Hyalinobatrachium fleischmannii Centrolenidae M Lo1 Leptodactylus ocellatus Leptodactylidae Lo2 R T D D Leptodactylus lineatus Leptodactylidae C Melanophryniscus stelzneri Bufonidae L V D N A Atelopus spumarius Bufonidae R K S D L D B Rhinella marinus Bufonidae R K S D L D Figure 1. Phylogeny and sequences of the binding site. Sequences of sheep and rat are included for comparison. Lineages tested for positive selection are A: Bufonidae, B: Bufonidae excluding Melanophryniscus and C: Melanophryniscus. Sites detected are highlighted in grey. M1–M2 extracellular loop. Cloning subsequently Bufonidae from other hyloid anurans; the molecular showed that there were two distinct conformations of basis for cardioactive steroid resistance of M. stelzneri the binding site. The nucleotide sequence outside the is distinct from that of other bufonids studied and posi- binding site was identical between the two sequences, tive selection on at least four sites in the M1–M2 however, within the binding site, one had a typical extracellularloophascontributedtotheevolutionofcar- non-resistant sequence and the other had four non- dioactive steroid resistance. Evidence that resistance in a synonymous changes: Q111R, A112T, E116D and member of Leptodactylidae has evolved independently N122D (figure 1). With the exception of Melanophry- of resistance in Bufonidae is also presented. niscus stelzneri, the amino acid sequence of the binding Resistance is not ancestral in hyloid frogs. Bufoni- site of all bufonids studied was homologous to dae were highly differentiated from other hyloid frogs R. marinus. Melanophryniscus stelzneri was differen- at 4–6 of 12 amino acids in the binding site. Binding tiated both from other Bufonidae and non-resistant site amino acid sequence of non-bufonid hyloid frogs hyloid frogs (figure 1). Both ranoid outgroups had a studied, except H. fleischmanni (Centrolenidae) and Datsite117,andTomopterna cryptotis had
Recommended publications
  • Phylogenetic Analyses Reveal Unexpected Patterns in the Evolution of Reproductive Modes in Frogs
    ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2012.01715.x PHYLOGENETIC ANALYSES REVEAL UNEXPECTED PATTERNS IN THE EVOLUTION OF REPRODUCTIVE MODES IN FROGS Ivan Gomez-Mestre,1,2 Robert Alexander Pyron,3 and John J. Wiens4 1Estacion´ Biologica´ de Donana,˜ Consejo Superior de Investigaciones Cientıficas,´ Avda. Americo Vespucio s/n, Sevilla 41092, Spain 2E-mail: [email protected] 3Department of Biological Sciences, The George Washington University, Washington DC 20052 4Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794–5245 Received November 2, 2011 Accepted June 2, 2012 Understanding phenotypic diversity requires not only identification of selective factors that favor origins of derived states, but also factors that favor retention of primitive states. Anurans (frogs and toads) exhibit a remarkable diversity of reproductive modes that is unique among terrestrial vertebrates. Here, we analyze the evolution of these modes, using comparative methods on a phylogeny and matched life-history database of 720 species, including most families and modes. As expected, modes with terrestrial eggs and aquatic larvae often precede direct development (terrestrial egg, no tadpole stage), but surprisingly, direct development evolves directly from aquatic breeding nearly as often. Modes with primitive exotrophic larvae (feeding outside the egg) frequently give rise to direct developers, whereas those with nonfeeding larvae (endotrophic) do not. Similarly, modes with eggs and larvae placed in locations protected from aquatic predators evolve frequently but rarely give rise to direct developers. Thus, frogs frequently bypass many seemingly intermediate stages in the evolution of direct development. We also find significant associations between terrestrial reproduction and reduced clutch size, larger egg size, reduced adult size, parental care, and occurrence in wetter and warmer regions.
    [Show full text]
  • Rampant Tooth Loss Across 200 Million Years of Frog Evolution
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429809; this version posted February 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Rampant tooth loss across 200 million years of frog evolution 2 3 4 Daniel J. Paluh1,2, Karina Riddell1, Catherine M. Early1,3, Maggie M. Hantak1, Gregory F.M. 5 Jongsma1,2, Rachel M. Keeffe1,2, Fernanda Magalhães Silva1,4, Stuart V. Nielsen1, María Camila 6 Vallejo-Pareja1,2, Edward L. Stanley1, David C. Blackburn1 7 8 1Department of Natural History, Florida Museum of Natural History, University of Florida, 9 Gainesville, Florida USA 32611 10 2Department of Biology, University of Florida, Gainesville, Florida USA 32611 11 3Biology Department, Science Museum of Minnesota, Saint Paul, Minnesota USA 55102 12 4Programa de Pós Graduação em Zoologia, Universidade Federal do Pará/Museu Paraense 13 Emilio Goeldi, Belém, Pará Brazil 14 15 *Corresponding author: Daniel J. Paluh, [email protected], +1 814-602-3764 16 17 Key words: Anura; teeth; edentulism; toothlessness; trait lability; comparative methods 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.04.429809; this version posted February 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • Chapter 10. Amphibians of the Palaearctic Realm
    CHAPTER 10. AMPHIBIANS OF THE PALAEARCTIC REALM Figure 1. Summary of Red List categories Brandon Anthony, J.W. Arntzen, Sherif Baha El Din, Wolfgang Böhme, Dan Palaearctic Realm contains 6% of all globally threatened amphibians. The Palaearctic accounts for amphibians in the Palaearctic Realm. CogĄlniceanu, Jelka Crnobrnja-Isailovic, Pierre-André Crochet, Claudia Corti, for only 3% of CR species and 5% of the EN species, but 9% of the VU species. Hence, on the The percentage of species in each category Richard Griffiths, Yoshio Kaneko, Sergei Kuzmin, Michael Wai Neng Lau, basis of current knowledge, threatened Palaearctic amphibians are more likely to be in a lower is also given. Pipeng Li, Petros Lymberakis, Rafael Marquez, Theodore Papenfuss, Juan category of threat, when compared with the global distribution of threatened species amongst Manuel Pleguezuelos, Nasrullah Rastegar, Benedikt Schmidt, Tahar Slimani, categories. The percentage of DD species, 13% (62 species), is also much less than the global Max Sparreboom, ùsmail Uøurtaû, Yehudah Werner and Feng Xie average of 23%, which is not surprising given that parts of the region have been well surveyed. Red List Category Number of species Nevertheless, the percentage of DD species is much higher than in the Nearctic. Extinct (EX) 2 Two of the world’s 34 documented amphibian extinctions have occurred in this region: the Extinct in the Wild (EW) 0 THE GEOGRAPHIC AND HUMAN CONTEXT Hula Painted Frog Discoglossus nigriventer from Israel and the Yunnan Lake Newt Cynops Critically Endangered (CR) 13 wolterstorffi from around Kunming Lake in Yunnan Province, China. In addition, one Critically Endangered (EN) 40 The Palaearctic Realm includes northern Africa, all of Europe, and much of Asia, excluding Endangered species in the Palaearctic Realm is considered possibly extinct, Scutiger macu- Vulnerable (VU) 58 the southern extremities of the Arabian Peninsula, the Indian Subcontinent (south of the latus from central China.
    [Show full text]
  • 3Systematics and Diversity of Extant Amphibians
    Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water.
    [Show full text]
  • Complete Nucleotide Sequence and Gene Rearrangement of the Mitochondrial Genome of the Bell-Ring Frog, Buergeria Buergeri (Family Rhacophoridae)
    Genes Genet. Syst. (2004) 79, p. 151–163 Complete nucleotide sequence and gene rearrangement of the mitochondrial genome of the bell-ring frog, Buergeria buergeri (family Rhacophoridae) Naomi Sano1, Atsushi Kurabayashi1, Tamotsu Fujii2, Hiromichi Yonekawa3, and Masayuki Sumida1* 1Institute for Amphibian Biology, Hiroshima University, Higashihiroshima, Hiroshima 739-8526, Japan 2Department of Health Science, Hiroshima Prefectural Women’s University, Hiroshima 734-8558, Japan 3Department of Laboratory Animal Science, The Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan (Received 22 March 2004, accepted 26 May 2004) In this study we determined the complete nucleotide sequence (19,959 bp) of the mitochondrial DNA of the rhacophorid frog Buergeria buergeri. The gene content, nucleotide composition, and codon usage of B. buergeri conformed to those of typ- ical vertebrate patterns. However, due to an accumulation of lengthy repetitive sequences in the D-loop region, this species possesses the largest mitochondrial genome among all the vertebrates examined so far. Comparison of the gene organ- izations among amphibian species (Rana, Xenopus, salamanders and caecilians) revealed that the positioning of four tRNA genes and the ND5 gene in the mtDNA of B. buergeri diverged from the common vertebrate gene arrangement shared by Xenopus, salamanders and caecilians. The unique positions of the tRNA genes in B. buergeri are shared by ranid frogs, indicating that the rearrangements of the tRNA genes occurred in a common ancestral lineage of ranids and rhacophorids. On the other hand, the novel position of the ND5 gene seems to have arisen in a lineage leading to rhacophorids (and other closely related taxa) after ranid divergence.
    [Show full text]
  • BOA5.1-2 Frog Biology, Taxonomy and Biodiversity
    The Biology of Amphibians Agnes Scott College Mark Mandica Executive Director The Amphibian Foundation [email protected] 678 379 TOAD (8623) Phyllomedusidae: Agalychnis annae 5.1-2: Frog Biology, Taxonomy & Biodiversity Part 2, Neobatrachia Hylidae: Dendropsophus ebraccatus CLassification of Order: Anura † Triadobatrachus Ascaphidae Leiopelmatidae Bombinatoridae Alytidae (Discoglossidae) Pipidae Rhynophrynidae Scaphiopopidae Pelodytidae Megophryidae Pelobatidae Heleophrynidae Nasikabatrachidae Sooglossidae Calyptocephalellidae Myobatrachidae Alsodidae Batrachylidae Bufonidae Ceratophryidae Cycloramphidae Hemiphractidae Hylodidae Leptodactylidae Odontophrynidae Rhinodermatidae Telmatobiidae Allophrynidae Centrolenidae Hylidae Dendrobatidae Brachycephalidae Ceuthomantidae Craugastoridae Eleutherodactylidae Strabomantidae Arthroleptidae Hyperoliidae Breviceptidae Hemisotidae Microhylidae Ceratobatrachidae Conrauidae Micrixalidae Nyctibatrachidae Petropedetidae Phrynobatrachidae Ptychadenidae Ranidae Ranixalidae Dicroglossidae Pyxicephalidae Rhacophoridae Mantellidae A B † 3 † † † Actinopterygian Coelacanth, Tetrapodomorpha †Amniota *Gerobatrachus (Ray-fin Fishes) Lungfish (stem-tetrapods) (Reptiles, Mammals)Lepospondyls † (’frogomander’) Eocaecilia GymnophionaKaraurus Caudata Triadobatrachus 2 Anura Sub Orders Super Families (including Apoda Urodela Prosalirus †) 1 Archaeobatrachia A Hyloidea 2 Mesobatrachia B Ranoidea 1 Anura Salientia 3 Neobatrachia Batrachia Lissamphibia *Gerobatrachus may be the sister taxon Salientia Temnospondyls
    [Show full text]
  • 1704632114.Full.Pdf
    Phylogenomics reveals rapid, simultaneous PNAS PLUS diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary Yan-Jie Fenga, David C. Blackburnb, Dan Lianga, David M. Hillisc, David B. Waked,1, David C. Cannatellac,1, and Peng Zhanga,1 aState Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; bDepartment of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611; cDepartment of Integrative Biology and Biodiversity Collections, University of Texas, Austin, TX 78712; and dMuseum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720 Contributed by David B. Wake, June 2, 2017 (sent for review March 22, 2017; reviewed by S. Blair Hedges and Jonathan B. Losos) Frogs (Anura) are one of the most diverse groups of vertebrates The poor resolution for many nodes in anuran phylogeny is and comprise nearly 90% of living amphibian species. Their world- likely a result of the small number of molecular markers tra- wide distribution and diverse biology make them well-suited for ditionally used for these analyses. Previous large-scale studies assessing fundamental questions in evolution, ecology, and conser- used 6 genes (∼4,700 nt) (4), 5 genes (∼3,800 nt) (5), 12 genes vation. However, despite their scientific importance, the evolutionary (6) with ∼12,000 nt of GenBank data (but with ∼80% missing history and tempo of frog diversification remain poorly understood. data), and whole mitochondrial genomes (∼11,000 nt) (7). In By using a molecular dataset of unprecedented size, including 88-kb the larger datasets (e.g., ref.
    [Show full text]
  • Frog Eat Frog: Exploring Variables Influencing Anurophagy
    Frog eat frog: exploring variables influencing anurophagy G. John Measey1, Giovanni Vimercati1, F. Andre´ de Villiers1, Mohlamatsane M. Mokhatla1, Sarah J. Davies1, Shelley Edwards1 and Res Altwegg2,3 1 Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa 2 Statistics in Ecology, Environment and Conservation, Department of Statistical Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa 3 African Climate and Development Initiative, University of Cape Town, South Africa ABSTRACT Background. Frogs are generalist predators of a wide range of typically small prey items. But descriptions of dietary items regularly include other anurans, such that frogs are considered to be among the most important of anuran predators. However, the only existing hypothesis for the inclusion of anurans in the diet of post-metamorphic frogs postulates that it happens more often in bigger frogs. Moreover, this hypothesis has yet to be tested. Methods. We reviewed the literature on frog diet in order to test the size hypothesis and determine whether there are other putative explanations for anurans in the diet of post-metamorphic frogs. In addition to size, we recorded the habitat, the number of other sympatric anuran species, and whether or not the population was invasive. We controlled for taxonomic bias by including the superfamily in our analysis. Results. Around one fifth of the 355 records included anurans as dietary items of populations studied, suggesting that frogs eating anurans is not unusual. Our data showed a clear taxonomic bias with ranids and pipids having a higher proportion of anuran prey than other superfamilies. Accounting for this taxonomic bias, we found that size in addition to being invasive, local anuran diversity, and habitat produced a model that best fitted our data.
    [Show full text]
  • Molecular Phylogeny and Morphometric Analyses Reveal Deep
    Molecular Phylogenetics and Evolution 62 (2012) 826–838 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Molecular phylogeny and morphometric analyses reveal deep divergence between Amazonia and Atlantic Forest species of Dendrophryniscus ⇑ Antoine Fouquet a, , Renato Recoder a, Mauro Teixeira Jr. a, José Cassimiro a, Renata Cecília Amaro a, Agustín Camacho a, Roberta Damasceno b, Ana Carolina Carnaval c, Craig Moritz b, Miguel Trefaut Rodrigues a a Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, Caixa Postal 11.461, CEP 05508–090, São Paulo, SP, Brazil b University of California, Berkeley, Museum of Vertebrate Zoology, 3101 Valley Life Sciences Building, Berkeley, CA 94720–3140, USA c The City University of New York, Department of Biology, 526 Marshak Science Building, City College of New York, 160 Convent Avenue, New York, NY 10031, USA article info abstract Article history: Dendrophryniscus is an early diverging clade of bufonids represented by few small-bodied species distrib- Received 25 March 2011 uted in Amazonia and the Atlantic Forest. We used mitochondrial (414 bp of 12S, 575 bp of 16S genes) Revised 8 November 2011 and nuclear DNA (785 bp of RAG-1) to investigate phylogenetic relationships and the timing of diversifi- Accepted 24 November 2011 cation within the genus. These molecular data were gathered from 23 specimens from 19 populations, Available online 8 December 2011 including eight out of the 10 nominal species of the genus as well as Rhinella boulengeri. Analyses also included sequences of representatives of 18 other bufonid genera that were publically available.
    [Show full text]
  • (Amphibia, Anura): Morfología Y Desarrollo Del Sistema Esquelético
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS BIOLÓGICAS Departamento de Biología Animal I (Zoología) TESIS DOCTORAL Evolución de Pelobatidos y Peloditidos (Amphibia, Anura): morfología y desarrollo del sistema esquelético MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR María del Rosario Rodríguez Talavera Director Francisco de Borja Sanchiz y Gil de Avalle Madrid Ed. electrónica 2019 © María del Rosario Rodríguez Talavera, 1989 /L °'`^`^^ Departamento de Biología Animal I Facultad de Ciencias Biológicas Universidad Complutense de Madrid ireeemema HVOLIICIOB DH PHLOBATIDOS Y PHLODITIDOS (A1^[PHIBIA, AHURA): XORFOLOGIA Y DHSARROLLO DHL SISTHxA HSQIIñLHTICO Memoria presentada para optar al grado de doctor en Ciencias Biológicas por l[aría del xosarío Rodríguez Talavera v^ B^ del director de la tesis ^^%^ ^a ^-...^r ^ Dr. D. Francisco de Borja Sanchíz y Gil de Avalle Invest:igador del CSIC en el Museo Nacional de Ciencias Iiaturales Madrid, octubre de 1989 AGRADfiCII[ IfiHTOS En primer lugar deseo expresar mi agradecimiento al Dr. Sanchíz, director de esta tesis, por sugerirme el tema de investigación y por su valiosa colaboración, tolerancia y acertadas críticas durante el desarrollo del trabajo. E1 Dr. Castanet CLaboratoire d'Anatomie Comparée, IJniversité Paris VII) revisó amablemente los resultados esqueletocronológicos. Aumerosas personas me acompañaron en los viajes de recolección de material. Especialmente agradezco la colaboración de Begoña Arano y Asunción Rodríguez Espeso en Portugal; Juan Carlos Arrechea y Jesús Dorda en 14arruecos, y Marisa Esteban en el sur de Espa4ia. Las siguientes personas colectaron material adicional para este estudio: Begoña E►rano, Ignacio Doadrio, Jesús Dorda, Carmen Díaz-Paniagua, Marisa Esteban, Mario García-Paris, Paloma Garzón, Rafael Márquez y Carolina Martín- Albaladejo.
    [Show full text]
  • ©Zoologische Staatssammlung München;Download
    ©Zoologische Staatssammlung München;download: http://www.biodiversitylibrary.org/; www.biologiezentrum.at SPIXIANA ©Zoologische Staatssammlung München;download: http://www.biodiversitylibrary.org/; www.biologiezentrum.at symplesiomorphies with some African genera formerly considered as basal representatives of the Ranidae (and today seen as own families, Arthroleptidae and Astylosternidae; see Dubois 1992), rhacophorines shared synapomorphies with more derived representatives of the extremely diverse and speciose family Ranidae. Actually, rhacophorids are only distinguished from other ranids by the presence of an intercalary element between ultimate and penultimate phalanges of fingers and toes, and by generally (but not consistently) more arboreal habits. Based on the synapomorphies identified (e.g., presence of a bony sternal style), Laurent (1986), Dubois (1992) and Blommers-Schlösser (1993) proposed to include the Rhacophoridae as subfamily Rhacophorinae in the family Ranidae. However, the proposal of Blommers-Schlösser (1993) (i. e. the definition of the family Ranidae as group contain- ing almost all ranoid taxa with an ossified sternal style) is all but generally accepted by herpetologists. Most authors continue considering the Rhacophoridae as separate family (e.g., Frost 1985), a view also shared by internet databases (as the Amphibian Species of the World database, Amphibiaweb, Tree of life, Genbank; as of 10 November 2000). Furthermore, new names such as "fanged ifrogs" (Emerson & Ward 1998, Emerson et al. 2000a) and "boophids" (Richards et al. 2000) have been used to address ranoid subclades, without a nomenclatural formalization of these groups. In the last few years, numerous new results on Old World treefrog phylogeny have been published, several of them referring to the taxa endemic to Madagascar.
    [Show full text]
  • Diversity of Diversity of Anura
    Diversity of Anura WFS 433/533 1/24/2013 Lecture goal To familiarize students with the different families of the order anura. To familiarize students with aspects of natural history and world distribution of anurans Required readings: Wells: pp. 15-41 http://amphibiaweb.org/aw/index.html Lecture roadmap Characteristics of Anurans Anuran Diversity Anuran families, natural history and world distribution 1 What are amphibians? These foul and loathsome animals are abhorrent because of their cold body, pale color, cartilaginous skeleton, filthy skin, fierce aspect, calculating eye, offensive smell, harsh voice, squalid habitation, and terrible venom; and so their Creator has not exerted his powers to make many of them. Carl von Linne (Linnaeus) Systema Naturae (1758) What are frogs? A thousand splendid suns, a million moons, a billion twinkle stars are nothing compared to the eyes of a frog in the swamp —Miss Piggy about Kermit, in Larry king live, 1993 Diversity of anurans Global Distribution 30 Families 4963 spec ies Groups: •Archaeobatrachia (4 families) •Mesobatrachia (5 families) 30 Families •Neobatrachia (all other families) 2 No. of Known Species in Number of Species Number of Species in Family World in the United States? Tennessee? Allophrynidae 10 0 Arthroleptidae 78 0 0 Ascaphidae 22 0 Bombinatoridae 11 0 0 Brachycephalidae 60 0 Bufonidae 457 23 2 Centrolenidae 139 0 0 Dendrobatidae 219 1* 0 Discoglossidae 11 0 0 Heleophrynidae 60 0 Hemisotidae 90 0 Hylidae 851 29* 10 Hyperoliidae 253 0 0 Leiopelmatidae 40 0 30 families Leptodactylidae
    [Show full text]