(Amphibia, Anura): Morfología Y Desarrollo Del Sistema Esquelético

Total Page:16

File Type:pdf, Size:1020Kb

(Amphibia, Anura): Morfología Y Desarrollo Del Sistema Esquelético UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS BIOLÓGICAS Departamento de Biología Animal I (Zoología) TESIS DOCTORAL Evolución de Pelobatidos y Peloditidos (Amphibia, Anura): morfología y desarrollo del sistema esquelético MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR María del Rosario Rodríguez Talavera Director Francisco de Borja Sanchiz y Gil de Avalle Madrid Ed. electrónica 2019 © María del Rosario Rodríguez Talavera, 1989 /L °'`^`^^ Departamento de Biología Animal I Facultad de Ciencias Biológicas Universidad Complutense de Madrid ireeemema HVOLIICIOB DH PHLOBATIDOS Y PHLODITIDOS (A1^[PHIBIA, AHURA): XORFOLOGIA Y DHSARROLLO DHL SISTHxA HSQIIñLHTICO Memoria presentada para optar al grado de doctor en Ciencias Biológicas por l[aría del xosarío Rodríguez Talavera v^ B^ del director de la tesis ^^%^ ^a ^-...^r ^ Dr. D. Francisco de Borja Sanchíz y Gil de Avalle Invest:igador del CSIC en el Museo Nacional de Ciencias Iiaturales Madrid, octubre de 1989 AGRADfiCII[ IfiHTOS En primer lugar deseo expresar mi agradecimiento al Dr. Sanchíz, director de esta tesis, por sugerirme el tema de investigación y por su valiosa colaboración, tolerancia y acertadas críticas durante el desarrollo del trabajo. E1 Dr. Castanet CLaboratoire d'Anatomie Comparée, IJniversité Paris VII) revisó amablemente los resultados esqueletocronológicos. Aumerosas personas me acompañaron en los viajes de recolección de material. Especialmente agradezco la colaboración de Begoña Arano y Asunción Rodríguez Espeso en Portugal; Juan Carlos Arrechea y Jesús Dorda en 14arruecos, y Marisa Esteban en el sur de Espa4ia. Las siguientes personas colectaron material adicional para este estudio: Begoña E►rano, Ignacio Doadrio, Jesús Dorda, Carmen Díaz-Paniagua, Marisa Esteban, Mario García-Paris, Paloma Garzón, Rafael Márquez y Carolina Martín- Albaladejo. Rosa María Gómez-Prieto colaboró pacientemente en el trabajo de laboratorio, y mecanografió las tablas. Luis García-Hidalgo, Jose Enrique Gonzalez y Miguel Tejedo me ayudaron a abordar l.a estadística. Antonio Madrigal, Manolo Merino y Rafael Merino, pasaron a tinta las figuras. Angel Sanz, con su dominio de las técnicas fotagráficas, mejoró la resolució:n de las preparaciones histológicas. Pilar Herrero, Carmen Díaz-Paniagua, Rosa María Gómez, Mercedes Hervás y Teresa Aparicio me animaron constantemente en el curso de la investigación. Juan Carlos Arrechea me acompañó en innumerables y tediosos muestreos semanales por la provincia de Madrid todos estos años. Realizó los últimos retoques en las figuras y me ayudó a comprobar las referencias internas del texto. E1 personal del Museo Nacional de Ciencias Naturales de Madrid facilitó mi estancia en el Centro y el desarrollo del trabajo. Esi;e trabajo ha sido parcialmente financiado con una beca predoctoral del CSIC en el Museo Nacional de Ciencias Naturales de Madrid y una beca de intercambio entre el CSIC y el CNRS en el Laboratoire d'Anatomie Comparée de la Université de Paris VII. La investigación se incluye en el proyecto CSIC- CAICYT 2].1 (1985-1988). IHD ICE 1. IHTRODUCCIOH 1 2. li[ATERIALES, TECHICAS AHALITICAS Y I^[ETODOLOGIA 12 2 .1. l[ATERIALES 13 2 .2 . TECH ICAS DE ^[iJESTRBO 15 2.3. TBCHICAS HISTOLOGICAS 17 2.3.1. Tínciones de cartílago y hueso 1? 2.3.2. Preparación de esqueletos desarticulados 20 2.3.3. Técnicas de esqueletocronología 21 2.4 . PROTOCOLO DB L05 S%PER Il[fiHT05 DB CREC Il[ IBHTO Y DESARROLLO LARYARIO 25 2.4.1. Bsperinento para determinar la temperatura óptiaa de crecíaiento 25 2.4.2. Bsperimento para deter^inar la edad a que se alcan?-A cada estadio de desarrollo 25 2.5. DBFIHICIOB Dfi LA BIOXfiTRIA fi%TERBA 26 2.5.1. Hedidas esternas de renacuajos 26 2.5.2. l[edidas egternas de adultos 27 2.6. AHALISIS CIIAHTITATIVOS 30 3. RESULTADOS Y DISCUSIOH 31 3.1. TRABAJOS PRELIxIHARBS 32 3.1.1. Pelobates cultri^. TEIIPEBATURA OPTIli[A DB CREC Il[ IfiHTO LARVAB IO 32 3.12. Pelobates cultri,^,ç. BDAD A QIIE SE ALCAHZA CADA BSTADIO DE DBSARROLLO DBL PERIODO LARVARIO A TEPIPERATURA OPTU[A 36 3.1.3. TALLA fiH CADA BSTADIO DE DESARROLLO DE Pelobates cultri^ Y Pel^iy^^unctatus 40 3.1.4. BS"TRUCTURA POR SB%OS Y BDADES DE LAS POBLACIOHES POSTIi[fiTAI[ORFICAS DBL GBHERO Pelobates AHALIZADAS 46 .1. Pelobates cultri^ 46 .2. Pelobates varaldii 56 .3. Pelobates fuscus y P. s9riacus 60 3.1.5. TAl[AfFO DB LOS EJBI[PLARES !lDULTOS 62 .1. Dimorfismo ^^^1 en Pelobates cultr^^ y P. varaldii 62 .2. Diferencias morfométricas intraespecíficas en P_elobates cultri^ 66 .3. Tamaño medio de los adultos de las especies estudiadas 70 3.1.6. RBLACIOH fiFTRfi fiDAD Y TAl[A4í0 BH Pelobates cultriTnes y P. varaldii 72 3.2. DESARROLLO DE LOS SISTExAS ESQ►ELETICOS DE Pelobates cult_^ Y Pel^ es punctatus 77 3.2.1. CRA^fEO 7? .1. Descripción del cráneo adulto de Pelobates cultripes ?? .2. Secuencia de asificación del cráneo de P. cultrip^, 77 .3. Comparación con Pelgjytes nunctatus y otras especies de Anuros 95 3.2.2. COLUl^[IfA VERTEBRAL 118 .1. Descripción de la columna adulta de Pelobates cultri^ 118 .2. Desarrollo de la columna vertebral de Pelobates cultr1p^ç 118 .3. Secuencia de asificación de la columna vertebral de P. cultri,^ 120 .4. ^[alformaciones de la columna vertebral de P. cultri^ 129 .5. Comparación con Pelody}es ^^nctatus y las restantes especies de Anuros 136 3.2.3. XIEXBRO AHTERIOR Y CIBTiiRA ESCAPIILAR 150 .1. Descripción del miembro anterior y de la cintura escapular adulta de Pelo ^tes cultr ^ 150 .2. Secuencia de osificación del miembro anterior y cintura escapular de P. cultrines 150 .3. Comparación con Pel^^,punctatus y otras especies de Anuros 170 3.2.4. XIfiIIBRO POSTBRIOR Y CIHTURA PfiLVIAHA 195 .1. Descripción del miembro posterior y de la cintura pelviana de Pelobates sstl^fg^ 195 .2. Secuencia de osificación del aieabro posterior y cintura pelviana de P. cultrip^ 195 .3. Comparación con PB_l^y.#^_^unctatus y otras especies de Anuros 214 4. COHCLUSIOHES GBHfiRALfiS 246 5. B IBL IOGRAF IA 254 6. APfiIfDICB 2^g 1. IBTRODIICCIOIf - 2 - 1. IHTRODIICCIOH Los caracteres osteológicos juegan un papel fundamental en la macrosistemáticá de los anuros. Lynch <1973) utilizó^ 38 caracteres en su análisis evolutivo del orden; vefntitrés de ellos, casi las dos terceras partes, eran osteológicos. A1 mismo tiempo, el esqueleto es casi el único sistema orgánico disponible para estudios paleontológicos y evolutivos del pasado. Por otra parte, podemos afíadir la utilidad del sistema esquelético para estudios de biología evolutiva; existen tendencias recientes en esta disciplina que hipotetizan alteraciones en la duración relativa de los acontecimientos del desarrollo Cheterocronías) como una de las causas fundamentales del cambio morfológico (Alberch et al., 1979). Este trabajo revisa y actualiza los conocimientos existentes sobre la osificación del esqueleto de los anuros. Paralelamente examina el proceso de condrificación de los miembros anteriores y posteriores, especialmente en lo referente al carpo y al tarso, y de sus respectivas cinturas. Su aportación más original reside en el estudio del proceso de osificación con una visión muy amplia del desarrollo, pues considera parte importante del mismo no sólo todos los estadios larvarios, sino también todas las clases de edad de las etapas juvenil y adulta. A1 mismo tiempo, determina la variabilidad de caracteres osteológicos de importancia sistemática, y establece homologías atendiendo al origen embriológico de los elementos. De hecho, el método de trabajo permite utilizar ejemplares preservados en alcohol o formol largo tiempo y, específicamente, integrar datos procedentes de series ontogénicas fósiles. Los estudios de este tipo son necesarios, pues los parámetros básicos para dilucidar la participación de procesos heterocrónicos en los cambios morfológicos todavía no se han cuantificado en el esqueleto completo de ningún anuro. Tales parámetros son: momentos de inicio y finalización de la osificación, tamaño de las piezas al comienzo de la misma, y tasa de crecimiento de los elementos esqueléticos. Por lo cual, es evidente la necesidad de conocer con detalle la cronología de la diferenciación de todos los elementos esqueléticos de algunas especies clave, medir en ellas el mayor ^número de parámetros del desarrollo y precisar su variabilidad - 3 - intraespecífica. Esto nos proporcionaría un marco de referencia para determina.r qué parámetros y procesos del desarrollo del esqueleto tienen utilidad taxonómica y filogenética, así como identificar caracteres que resulten convergentes en la etapa adulta. Hasta el momento se ha investigado el proceso de osificación del cráneo de dieciacho especies de anuros, de las 3.438 existentes <Duellman & Trueb, 1986). Estas especies pertenecen a ocho de las veintidós famílias reconocidas (Duellman & Trueb, 1986). Para nuestros propósitos tres de estos trabajos son importantes, ya que se realizaron con un número suficiente de ejemplares y se estudió toda la etapa larvaria: - Kemp & Hoyt <1969> sobre Rana ^piens. Estos autores además de realizar una descripción completa y detallada de la cronología de la osificación de todos los huesos de cráneo, describen dos alteraciones de la secuencia de osificación normal en renacuajos tratados con tiroxina en estadios tempranos del desarrollo. Entre los inconvenientes a la hora de utilizar sus datos en nuestros estudios camparativos, podemos segalar que utilizaron una tabla de desarrollo específica de Rana pipiens, la de Taylor & Kollros (1946>; además, la descripción del progreso de la osificación se interrumpe al fin de la metamorfosis, y por último, los animales fueron criados en cautividad. Gaudin C1978) sobre Bufo boreas. En este trabajo se comparan las secuencias de osificación de renacuajos de campo de dos localidades distintas con renacuajos de laboratorio. Se pone de manifiesto que la osificación en los animales de laboratorio se retrasa respecto a los del campo. Se reseñan todos los huesos y se describe el avance de la osif.icación en la. etapa postmetamórfica, dividiendo los ejemplares en clases de tamaño. Se utiliza la tabla de desarrollo de Limbaud 8^ Volpe (19:i7), muy parecida a la de Gosner C1960>.
Recommended publications
  • Chapter 10. Amphibians of the Palaearctic Realm
    CHAPTER 10. AMPHIBIANS OF THE PALAEARCTIC REALM Figure 1. Summary of Red List categories Brandon Anthony, J.W. Arntzen, Sherif Baha El Din, Wolfgang Böhme, Dan Palaearctic Realm contains 6% of all globally threatened amphibians. The Palaearctic accounts for amphibians in the Palaearctic Realm. CogĄlniceanu, Jelka Crnobrnja-Isailovic, Pierre-André Crochet, Claudia Corti, for only 3% of CR species and 5% of the EN species, but 9% of the VU species. Hence, on the The percentage of species in each category Richard Griffiths, Yoshio Kaneko, Sergei Kuzmin, Michael Wai Neng Lau, basis of current knowledge, threatened Palaearctic amphibians are more likely to be in a lower is also given. Pipeng Li, Petros Lymberakis, Rafael Marquez, Theodore Papenfuss, Juan category of threat, when compared with the global distribution of threatened species amongst Manuel Pleguezuelos, Nasrullah Rastegar, Benedikt Schmidt, Tahar Slimani, categories. The percentage of DD species, 13% (62 species), is also much less than the global Max Sparreboom, ùsmail Uøurtaû, Yehudah Werner and Feng Xie average of 23%, which is not surprising given that parts of the region have been well surveyed. Red List Category Number of species Nevertheless, the percentage of DD species is much higher than in the Nearctic. Extinct (EX) 2 Two of the world’s 34 documented amphibian extinctions have occurred in this region: the Extinct in the Wild (EW) 0 THE GEOGRAPHIC AND HUMAN CONTEXT Hula Painted Frog Discoglossus nigriventer from Israel and the Yunnan Lake Newt Cynops Critically Endangered (CR) 13 wolterstorffi from around Kunming Lake in Yunnan Province, China. In addition, one Critically Endangered (EN) 40 The Palaearctic Realm includes northern Africa, all of Europe, and much of Asia, excluding Endangered species in the Palaearctic Realm is considered possibly extinct, Scutiger macu- Vulnerable (VU) 58 the southern extremities of the Arabian Peninsula, the Indian Subcontinent (south of the latus from central China.
    [Show full text]
  • Complete Nucleotide Sequence and Gene Rearrangement of the Mitochondrial Genome of the Bell-Ring Frog, Buergeria Buergeri (Family Rhacophoridae)
    Genes Genet. Syst. (2004) 79, p. 151–163 Complete nucleotide sequence and gene rearrangement of the mitochondrial genome of the bell-ring frog, Buergeria buergeri (family Rhacophoridae) Naomi Sano1, Atsushi Kurabayashi1, Tamotsu Fujii2, Hiromichi Yonekawa3, and Masayuki Sumida1* 1Institute for Amphibian Biology, Hiroshima University, Higashihiroshima, Hiroshima 739-8526, Japan 2Department of Health Science, Hiroshima Prefectural Women’s University, Hiroshima 734-8558, Japan 3Department of Laboratory Animal Science, The Tokyo Metropolitan Institute of Medical Science, Tokyo 113-8613, Japan (Received 22 March 2004, accepted 26 May 2004) In this study we determined the complete nucleotide sequence (19,959 bp) of the mitochondrial DNA of the rhacophorid frog Buergeria buergeri. The gene content, nucleotide composition, and codon usage of B. buergeri conformed to those of typ- ical vertebrate patterns. However, due to an accumulation of lengthy repetitive sequences in the D-loop region, this species possesses the largest mitochondrial genome among all the vertebrates examined so far. Comparison of the gene organ- izations among amphibian species (Rana, Xenopus, salamanders and caecilians) revealed that the positioning of four tRNA genes and the ND5 gene in the mtDNA of B. buergeri diverged from the common vertebrate gene arrangement shared by Xenopus, salamanders and caecilians. The unique positions of the tRNA genes in B. buergeri are shared by ranid frogs, indicating that the rearrangements of the tRNA genes occurred in a common ancestral lineage of ranids and rhacophorids. On the other hand, the novel position of the ND5 gene seems to have arisen in a lineage leading to rhacophorids (and other closely related taxa) after ranid divergence.
    [Show full text]
  • 1704632114.Full.Pdf
    Phylogenomics reveals rapid, simultaneous PNAS PLUS diversification of three major clades of Gondwanan frogs at the Cretaceous–Paleogene boundary Yan-Jie Fenga, David C. Blackburnb, Dan Lianga, David M. Hillisc, David B. Waked,1, David C. Cannatellac,1, and Peng Zhanga,1 aState Key Laboratory of Biocontrol, College of Ecology and Evolution, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China; bDepartment of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611; cDepartment of Integrative Biology and Biodiversity Collections, University of Texas, Austin, TX 78712; and dMuseum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720 Contributed by David B. Wake, June 2, 2017 (sent for review March 22, 2017; reviewed by S. Blair Hedges and Jonathan B. Losos) Frogs (Anura) are one of the most diverse groups of vertebrates The poor resolution for many nodes in anuran phylogeny is and comprise nearly 90% of living amphibian species. Their world- likely a result of the small number of molecular markers tra- wide distribution and diverse biology make them well-suited for ditionally used for these analyses. Previous large-scale studies assessing fundamental questions in evolution, ecology, and conser- used 6 genes (∼4,700 nt) (4), 5 genes (∼3,800 nt) (5), 12 genes vation. However, despite their scientific importance, the evolutionary (6) with ∼12,000 nt of GenBank data (but with ∼80% missing history and tempo of frog diversification remain poorly understood. data), and whole mitochondrial genomes (∼11,000 nt) (7). In By using a molecular dataset of unprecedented size, including 88-kb the larger datasets (e.g., ref.
    [Show full text]
  • ©Zoologische Staatssammlung München;Download
    ©Zoologische Staatssammlung München;download: http://www.biodiversitylibrary.org/; www.biologiezentrum.at SPIXIANA ©Zoologische Staatssammlung München;download: http://www.biodiversitylibrary.org/; www.biologiezentrum.at symplesiomorphies with some African genera formerly considered as basal representatives of the Ranidae (and today seen as own families, Arthroleptidae and Astylosternidae; see Dubois 1992), rhacophorines shared synapomorphies with more derived representatives of the extremely diverse and speciose family Ranidae. Actually, rhacophorids are only distinguished from other ranids by the presence of an intercalary element between ultimate and penultimate phalanges of fingers and toes, and by generally (but not consistently) more arboreal habits. Based on the synapomorphies identified (e.g., presence of a bony sternal style), Laurent (1986), Dubois (1992) and Blommers-Schlösser (1993) proposed to include the Rhacophoridae as subfamily Rhacophorinae in the family Ranidae. However, the proposal of Blommers-Schlösser (1993) (i. e. the definition of the family Ranidae as group contain- ing almost all ranoid taxa with an ossified sternal style) is all but generally accepted by herpetologists. Most authors continue considering the Rhacophoridae as separate family (e.g., Frost 1985), a view also shared by internet databases (as the Amphibian Species of the World database, Amphibiaweb, Tree of life, Genbank; as of 10 November 2000). Furthermore, new names such as "fanged ifrogs" (Emerson & Ward 1998, Emerson et al. 2000a) and "boophids" (Richards et al. 2000) have been used to address ranoid subclades, without a nomenclatural formalization of these groups. In the last few years, numerous new results on Old World treefrog phylogeny have been published, several of them referring to the taxa endemic to Madagascar.
    [Show full text]
  • Diversity of Diversity of Anura
    Diversity of Anura WFS 433/533 1/24/2013 Lecture goal To familiarize students with the different families of the order anura. To familiarize students with aspects of natural history and world distribution of anurans Required readings: Wells: pp. 15-41 http://amphibiaweb.org/aw/index.html Lecture roadmap Characteristics of Anurans Anuran Diversity Anuran families, natural history and world distribution 1 What are amphibians? These foul and loathsome animals are abhorrent because of their cold body, pale color, cartilaginous skeleton, filthy skin, fierce aspect, calculating eye, offensive smell, harsh voice, squalid habitation, and terrible venom; and so their Creator has not exerted his powers to make many of them. Carl von Linne (Linnaeus) Systema Naturae (1758) What are frogs? A thousand splendid suns, a million moons, a billion twinkle stars are nothing compared to the eyes of a frog in the swamp —Miss Piggy about Kermit, in Larry king live, 1993 Diversity of anurans Global Distribution 30 Families 4963 spec ies Groups: •Archaeobatrachia (4 families) •Mesobatrachia (5 families) 30 Families •Neobatrachia (all other families) 2 No. of Known Species in Number of Species Number of Species in Family World in the United States? Tennessee? Allophrynidae 10 0 Arthroleptidae 78 0 0 Ascaphidae 22 0 Bombinatoridae 11 0 0 Brachycephalidae 60 0 Bufonidae 457 23 2 Centrolenidae 139 0 0 Dendrobatidae 219 1* 0 Discoglossidae 11 0 0 Heleophrynidae 60 0 Hemisotidae 90 0 Hylidae 851 29* 10 Hyperoliidae 253 0 0 Leiopelmatidae 40 0 30 families Leptodactylidae
    [Show full text]
  • Early Eocene Frogs from Vastan Lignite Mine, Gujarat, India
    Early Eocene frogs from Vastan Lignite Mine, Gujarat, India ANNELISE FOLIE, RAJENDRA S. RANA, KENNETH D. ROSE, ASHOK SAHNI, KISHOR KUMAR, LACHHAM SINGH, and THIERRY SMITH Folie, A., Rana, R.S., Rose, K.D., Sahni, A., Kumar, K., Singh, L., and Smith, T. 2013. Early Eocene frogs from Vastan Lignite Mine, Gujarat, India. Acta Palaeontologica Polonica 58 (3): 511–524. The Ypresian Cambay Shale Formation of Vastan Lignite Mine in Gujarat, western India, has yielded a rich vertebrate fauna, including the earliest modern mammals of the Indian subcontinent. Here we describe its assemblage of four frogs, including two new genera and species, based on numerous, diverse and well−preserved ilia and vertebrae. An abundant frog, Eobarbourula delfinoi gen. and sp. nov., with a particular vertebral articulation similar to a zygosphene−zygantrum complex, represents the oldest record of the Bombinatoridae and might have been capable of displaying the Unken reflex. The large non−fossorial pelobatid Eopelobates, known from complete skeletons from the Eocene and Oligocene of Europe, is also identified at Vastan based on a single nearly complete ilium. An abundant “ranid” and a possible rhacophorid Indorana prasadi gen. and sp. nov. represent the earliest records of both families. The Vastan pelobatids and ranids confirm an early worldwide distribution of these families, and the bombinatorids and rhacophorids show possible origins of those clades on the Indian subcontinent. Key words: Amphibia, Bombinatoridae, Ranidae, Pelobatidae, Rhacophoridae, Eocene, Vastan, India. Annelise Folie [[email protected]] and Thierry Smith [[email protected]], Royal Bel− gian Institute of Natural Sciences, Department of Paleontology, Rue Vautier 29, B−1000 Brussels, Belgium; Rajendra S.
    [Show full text]
  • Phylogenetic Relationships of Pelobatoidea Re-Examined Using Mtdna
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 28 (2003) 12–23 www.elsevier.com/locate/ympev Phylogenetic relationships of Pelobatoidea re-examined using mtDNA Mario Garcııa-Parııs,a,* Daniel R. Buchholz,b and Gabriela Parra-Oleac a Museo Nacional de Ciencias Naturales, CSIC, Jose Gutierrez Abascal, 2. 28006 Madrid, Spain b Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, CA 94720-3160, USA c Instituto de Biologııa, UNAM. AP 70-153, Mexico DF 04510, Mexico Received 1 April 2002; revised 15 January 2003 Abstract Pelobatoidea is a clade of ancient anurans with obscure relationships to the remaining clades of frogs. We used partial sequences of two mitochondrial genes (cytochrome b and 16S RNA) from all Pelobatoidea subclades, including all species of Pelobatidae and Pelodytidae and four outgroup taxa (Xenopus, Ascaphus, Discoglossus, and Rana), to propose a phylogenetic hypothesis for rela- tionships within Pelobatoidea. Maximum likelihood and Bayesian analyses support the monophyly of Pelobatoidea, but our hy- pothesis of internal relationships differs substantially from all previous hypotheses. Megophryidae is sister to Pelobates, and this clade is sister to Pelodytes. The most basal clade within Pelobatoidea is formed by Scaphiopus and Spea. The family Pelobatidae, as previously defined is not monophyletic, and it is split into Eurasian spadefoot toads Pelobates which retain the name Pelobatidae and North American spadefoot toads Scaphiopus and Spea which comprise the revived taxon Scaphiopodidae. Our analysis un- covers the existence of morphologically cryptic taxa within previously recognized species of the genus Spea and reveals marked genetic differentiation within Iberian Pelodytes. We discuss biogeographic implications and the evolution of fossoriality in the light of the new phylogenetic hypothesis.
    [Show full text]
  • The Origin of Modern Frogs (Neobatrachia) Was Accompanied By
    Irisarri et al. BMC Genomics 2012, 13:626 http://www.biomedcentral.com/1471-2164/13/626 RESEARCH ARTICLE Open Access The origin of modern frogs (Neobatrachia) was accompanied by acceleration in mitochondrial and nuclear substitution rates Iker Irisarri1, Diego San Mauro2, Federico Abascal1,3, Annemarie Ohler4, Miguel Vences5 and Rafael Zardoya1* Abstract Background: Understanding the causes underlying heterogeneity of molecular evolutionary rates among lineages is a long-standing and central question in evolutionary biology. Although several earlier studies showed that modern frogs (Neobatrachia) experienced an acceleration of mitochondrial gene substitution rates compared to non-neobatrachian relatives, no further characterization of this phenomenon was attempted. To gain new insights on this topic, we sequenced the complete mitochondrial genomes and nine nuclear loci of one pelobatoid (Pelodytes punctatus) and five neobatrachians, Heleophryne regis (Heleophrynidae), Lechriodus melanopyga (Limnodynastidae), Calyptocephalella gayi (Calyptocephalellidae), Telmatobius bolivianus (Ceratophryidae), and Sooglossus thomasseti (Sooglossidae). These represent major clades not included in previous mitogenomic analyses, and most of them are remarkably species-poor compared to other neobatrachians. Results: We reconstructed a fully resolved and robust phylogeny of extant frogs based on the new mitochondrial and nuclear sequence data, and dated major cladogenetic events. The reconstructed tree recovered Heleophryne as sister group to all other neobatrachians,
    [Show full text]
  • Native Frog (Leiopelma Spp.) Recovery Plan
    Native Frog (Leiopelma spp.) Recovery Plan Threatened Species Recovery Plan No. 18 Department of Conservation Threatened Species Unit PO Box 10-420 Wellington New Zealand Prepared by: Donald G. Newman Science & Research Division Department of Conservation for the Threatened Species Unit © March 1996, Department of Conservation ISSN 1170-3806 ISBN 0-478-01805-3 Cover photo: I. G. Crook, Department of Conservation CONTENTS page 1.0 Introduction 1 2.0 Past Distribution 3 2.1 Leiopelma hamiltoni 3 2.2 Leiopelma hochstetteri 3 2.3 Leiopelma waitomoensis (extinct) 3 2.4 Leiopelma markhami (extinct) 4 2.5 Leiopelma auroraensis (extinct) 4 3.0 Present Distribution 5 3.1 Hamilton's frog 5 3.2 Maud Island frog 5 3.3 Archey's frog 5 3.4 Hochstetter's frog 5 3.5 Captive stocks 6 4.0 Threats to Native Frogs 7 4.1 Hamilton's frog 7 4.2 Maud Island frog 7 4.3 Archey's frog 7 4.4 Hochstetter's frog 8 4.5 Global declines of amphibian populations 8 5.0 Ability to Recover 9 6.0 Options for Recovery 11 6.1 Hamilton's frog 11 6.2 Maud Island frog 11 6.3 Archey's frog 12 6.4 Hochstetter's frog 13 7.0 Recovery Strategy: Goal and Objectives 15 8.0 Recovery Strategy: Work Plan 17 9.0 Research Priorities 25 References 27 Acknowledgements 29 Appendix 1: Estimate of Funding Required Appendix 2: Monitoring Techniques for Native Frogs Appendix 3:Advocacy Pamphlet Appendix 4: Published Recovery Plans Figure 1: Former distribution of Leiopelma taxa identified from subfossils (Bell 1994, after Worthy 1986, 1987b) 4 Figure 2: Known distribution of extant Leiopelma species (Bell 1994) 6 1.0 Introduction The native frogs of New Zealand, Leiopelma spp., are regarded as amongst the most primitive living in the world today.
    [Show full text]
  • Cardioactive Toxins in True Toads (Anura: Bufonidae) Positive
    Downloaded from rsbl.royalsocietypublishing.org on 5 August 2009 Positive Darwinian selection results in resistance to cardioactive toxins in true toads (Anura: Bufonidae) David J. Moore, Damien C. T. Halliday, David M. Rowell, Anthony J. Robinson and J. Scott Keogh Biol. Lett. 2009 5, 513-516 first published online 22 May 2009 doi: 10.1098/rsbl.2009.0281 References This article cites 13 articles, 6 of which can be accessed free http://rsbl.royalsocietypublishing.org/content/5/4/513.full.html#ref-list-1 Receive free email alerts when new articles cite this article - sign up in the box at the top Email alerting service right-hand corner of the article or click here To subscribe to Biol. Lett. go to: http://rsbl.royalsocietypublishing.org/subscriptions This journal is © 2009 The Royal Society Downloaded from rsbl.royalsocietypublishing.org on 5 August 2009 Biol. Lett. (2009) 5, 513–516 Melanophryniscus and Dendrophryniscus, cardiotonic doi:10.1098/rsbl.2009.0281 steroids produced are bufadienolides (Flier et al. Published online 22 May 2009 1980; Mebs et al. 2007). Most other anurans are not Evolutionary biology tolerant to cardioactive steroids, but the hylid Scinax ruber and leptodactylid Leptodactylus macrosternum (Leptodactylus ocellatus species group) are natural pre- Positive Darwinian dators of bufonids in South America (Chen & Chen 1933; Crossland & Azevedo-Ramos 1999). selection results in Amino acid sites that determine tolerance to cardio- active steroids have been identified in the sodium resistance to cardioactive pump polymer. The initial extracellular loop of the toxins in true toads a1 subunit of the sodium pump is a primary binding site for cardiotonic steroids.
    [Show full text]
  • CHAPTER 10B.Indd 1 5/2/08 04:39:56 CHAPTER 10
    CHAPTER 10b.indd 1 5/2/08 04:39:56 CHAPTER 10. AMPHIBIANS OF THE PALAEARCTIC REALM Figure 1. Summary of Red List categories Brandon Anthony, J.W. Arntzen, Sherif Baha El Din, Wolfgang Böhme, Dan Palaearctic Realm contains 6% of all globally threatened amphibians. The Palaearctic accounts for amphibians in the Palaearctic Realm. Cog lniceanu, Jelka Crnobrnja-Isailovic, Pierre-André Crochet, Claudia Corti, for only 3% of CR species and 5% of the EN species, but 9% of the VU species. Hence, on the The percentage of species in each category Richard Griffi ths, Yoshio Kaneko, Sergei Kuzmin, Michael Wai Neng Lau, basis of current knowledge, threatened Palaearctic amphibians are more likely to be in a lower is also given. Pipeng Li, Petros Lymberakis, Rafael Marquez, Theodore Papenfuss, Juan category of threat, when compared with the global distribution of threatened species amongst Manuel Pleguezuelos, Nasrullah Rastegar, Benedikt Schmidt, Tahar Slimani, categories. The percentage of DD species, 13% (62 species), is also much less than the global Max Sparreboom, Ismail Ugurtas, Yehudah Werner, and Feng Xie average of 23%, which is not surprising given that parts of the region have been well surveyed. Red List Category Number of species Nevertheless, the percentage of DD species is much higher than in the Nearctic. Extinct (EX) 2 Two of the world’s 34 documented amphibian extinctions have occurred in this region: the Extinct in the Wild (EX) 0 THE GEOGRAPHIC AND HUMAN CONTEXT Hula Painted Frog Discoglossus nigriventer from Israel and the Yunnan Lake Newt Cynops Critically Endangered (CR) 13 wolterstorffi from around Kunming Lake in Yunnan Province, China.
    [Show full text]
  • Ultrastructure of the Spermatozoon of Leiopelma Hochstetteri (Amphibia, Anura, Leiopelmatidae)
    Ultrastructure of the spermatozoon of Leiopelma hochstetteri (Amphibia, Anura, Leiopelmatidae) David M. SCHELTINGA Barrie G. M. JAMIESON Department of Zoology and Entomology, University of Queensland, Brisbane, Qld, 4072 (Australia) [email protected] Karen E. EGGERS Ecology, Institute of Natural Resources (INR), Massey University, Private Bag 11222, Palmerston North (New Zealand) David M. GREEN Redpath Museum, McGill University, 859 Sherbrooke St. West, Montreal, Quebec H3A 2K6 (Canada) Scheltinga D. M., Jamieson B. G. M., Eggers K. E. & Green D. M. 2001. — Ultrastructure of the spermatozoon of Leiopelma hochstetteri (Amphibia, Anura, Leiopelmatidae). Zoosys- tema 23 (1) : 157-171. ABSTRACT The spermatozoon of the basal frog Leiopelma hochstetteri Fitzinger, 1861 is ex- amined and compared with previously investigated lissamphibian spermatozoa. L. hochstetteri spermatozoa share with those of urodeles and Ascaphus the ple- siomorphic (primitive) features of an elongate conical acrosome, and an elongate nucleus, with distinct nuclear shoulders, which tapers to a point (as the nuclear rostrum) in the subacrosomal space. The spermatozoon of L. hochstetteri, alone among the Anura, resembles those of urodeles in having a juxta-axonemal fibre at doublet 8. L. hochstetteri shares with Ascaphus truei (homoplastically) the reduction of the undulating membrane to a short, thick paraxonemal rod. L. hochstetteri spermatozoa have the plesiomorphic condition, also seen in dip- noans, of a cytoplasmic collar, containing mitochondria, around the axoneme. Although the sperm of L. hochstetteri lacks the endonuclear perforatorium seen in Ascaphus, Bombinidae, urodeles and caecilians, it has what may be remnants of an endonuclear perforatorium within the nuclear rostrum. No synapomor- phic spermatozoal characters are present to support the placement of Leiopelma KEY WORDS Amphibia, and Ascaphus in the same family.
    [Show full text]