A Phylogenetic and Spatial Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Critically Endangered - Wikipedia
Critically endangered - Wikipedia Not logged in Talk Contributions Create account Log in Article Talk Read Edit View history Critically endangered From Wikipedia, the free encyclopedia Main page Contents This article is about the conservation designation itself. For lists of critically endangered species, see Lists of IUCN Red List Critically Endangered Featured content species. Current events A critically endangered (CR) species is one which has been categorized by the International Union for Random article Conservation status Conservation of Nature (IUCN) as facing an extremely high risk of extinction in the wild.[1] Donate to Wikipedia by IUCN Red List category Wikipedia store As of 2014, there are 2464 animal and 2104 plant species with this assessment, compared with 1998 levels of 854 and 909, respectively.[2] Interaction Help As the IUCN Red List does not consider a species extinct until extensive, targeted surveys have been About Wikipedia conducted, species which are possibly extinct are still listed as critically endangered. IUCN maintains a list[3] Community portal of "possibly extinct" CR(PE) and "possibly extinct in the wild" CR(PEW) species, modelled on categories used Recent changes by BirdLife International to categorize these taxa. Contact page Contents Tools Extinct 1 International Union for Conservation of Nature definition What links here Extinct (EX) (list) 2 See also Related changes Extinct in the Wild (EW) (list) 3 Notes Upload file Threatened Special pages 4 References Critically Endangered (CR) (list) Permanent -
CAT Vertebradosgt CDC CECON USAC 2019
Catálogo de Autoridades Taxonómicas de vertebrados de Guatemala CDC-CECON-USAC 2019 Centro de Datos para la Conservación (CDC) Centro de Estudios Conservacionistas (Cecon) Facultad de Ciencias Químicas y Farmacia Universidad de San Carlos de Guatemala Este documento fue elaborado por el Centro de Datos para la Conservación (CDC) del Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala. Guatemala, 2019 Textos y edición: Manolo J. García. Zoólogo CDC Primera edición, 2019 Centro de Estudios Conservacionistas (Cecon) de la Facultad de Ciencias Químicas y Farmacia de la Universidad de San Carlos de Guatemala ISBN: 978-9929-570-19-1 Cita sugerida: Centro de Estudios Conservacionistas [Cecon]. (2019). Catálogo de autoridades taxonómicas de vertebrados de Guatemala (Documento técnico). Guatemala: Centro de Datos para la Conservación [CDC], Centro de Estudios Conservacionistas [Cecon], Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala [Usac]. Índice 1. Presentación ............................................................................................ 4 2. Directrices generales para uso del CAT .............................................. 5 2.1 El grupo objetivo ..................................................................... 5 2.2 Categorías taxonómicas ......................................................... 5 2.3 Nombre de autoridades .......................................................... 5 2.4 Estatus taxonómico -
Species Concepts Should Not Conflict with Evolutionary History, but Often Do
ARTICLE IN PRESS Stud. Hist. Phil. Biol. & Biomed. Sci. xxx (2008) xxx–xxx Contents lists available at ScienceDirect Stud. Hist. Phil. Biol. & Biomed. Sci. journal homepage: www.elsevier.com/locate/shpsc Species concepts should not conflict with evolutionary history, but often do Joel D. Velasco Department of Philosophy, University of Wisconsin-Madison, 5185 White Hall, 600 North Park St., Madison, WI 53719, USA Department of Philosophy, Building 90, Stanford University, Stanford, CA 94305, USA article info abstract Keywords: Many phylogenetic systematists have criticized the Biological Species Concept (BSC) because it distorts Biological Species Concept evolutionary history. While defences against this particular criticism have been attempted, I argue that Phylogenetic Species Concept these responses are unsuccessful. In addition, I argue that the source of this problem leads to previously Phylogenetic Trees unappreciated, and deeper, fatal objections. These objections to the BSC also straightforwardly apply to Taxonomy other species concepts that are not defined by genealogical history. What is missing from many previous discussions is the fact that the Tree of Life, which represents phylogenetic history, is independent of our choice of species concept. Some species concepts are consistent with species having unique positions on the Tree while others, including the BSC, are not. Since representing history is of primary importance in evolutionary biology, these problems lead to the conclusion that the BSC, along with many other species concepts, are unacceptable. If species are to be taxa used in phylogenetic inferences, we need a history- based species concept. Ó 2008 Elsevier Ltd. All rights reserved. When citing this paper, please use the full journal title Studies in History and Philosophy of Biological and Biomedical Sciences 1. -
Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca
Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca John F. Lamoreux, Meghan W. McKnight, and Rodolfo Cabrera Hernandez Occasional Paper of the IUCN Species Survival Commission No. 53 The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or other participating organizations. Published by: IUCN, Gland, Switzerland Copyright: © 2015 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Lamoreux, J. F., McKnight, M. W., and R. Cabrera Hernandez (2015). Amphibian Alliance for Zero Extinction Sites in Chiapas and Oaxaca. Gland, Switzerland: IUCN. xxiv + 320pp. ISBN: 978-2-8317-1717-3 DOI: 10.2305/IUCN.CH.2015.SSC-OP.53.en Cover photographs: Totontepec landscape; new Plectrohyla species, Ixalotriton niger, Concepción Pápalo, Thorius minutissimus, Craugastor pozo (panels, left to right) Back cover photograph: Collecting in Chamula, Chiapas Photo credits: The cover photographs were taken by the authors under grant agreements with the two main project funders: NGS and CEPF. -
Larger Brain Size Indirectly Increases Vulnerability to Extinction in Mammals
Larger brain size indirectly increases vulnerability to extinction in mammals Article Accepted Version Gonzalez-Voyer, A., Gonzalez-Suarez, M., Vilá, C. and Revilla, E. (2016) Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution. ISSN 0014- 3820 doi: https://doi.org/10.1111/evo.12943 Available at http://centaur.reading.ac.uk/65634/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1111/evo.12943 Publisher: Wiley All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Larger brain size indirectly increases vulnerability to extinction in mammals. Alejandro Gonzalez-Voyer1,2,3†, Manuela González-Suárez4,5†, Carles Vilà1 and Eloy Revilla4. Affiliations: 1Conservation and Evolutionary Genetics Group, Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), c/Américo Vespucio s/n, 41092, Sevilla, Spain. 2Department of Zoology / Ethology, Stockholm University, Svante Arrheniusväg 18 B, SE-10691, Stockholm, Sweden. 3Laboratorio de Conducta Animal, Instituto de Ecología, Circuito Exterior S/N, Universidad Nacional Autónoma de México, México, D. F., 04510, México. 4Department -
Anura: Hemiphractidae: Gastrotheca)
Accepted Manuscript Short communication Brazilian marsupial frogs are diphyletic (Anura: Hemiphractidae: Gastrotheca) David C. Blackburn, William E. Duellman PII: S1055-7903(13)00179-6 DOI: http://dx.doi.org/10.1016/j.ympev.2013.04.021 Reference: YMPEV 4580 To appear in: Molecular Phylogenetics and Evolution Received Date: 7 January 2013 Revised Date: 2 April 2013 Accepted Date: 22 April 2013 Please cite this article as: Blackburn, D.C., Duellman, W.E., Brazilian marsupial frogs are diphyletic (Anura: Hemiphractidae: Gastrotheca), Molecular Phylogenetics and Evolution (2013), doi: http://dx.doi.org/10.1016/ j.ympev.2013.04.021 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Short Communication 2 3 Brazilian marsupial frogs are diphyletic (Anura: Hemiphractidae: Gastrotheca) 4 5 David C. Blackburna,*, William E. Duellmanb 6 a Department of Vertebrate Zoology & Anthropology, California Academy of Sciences, 55 7 Music Concourse Drive, San Francisco, CA 94118, USA 8 b Biodiversity Institute, University of Kansas, 1345 Jayhawk Boulevard, Lawrence, KS 9 66045, USA 10 * Corresponding author. E-mail address: [email protected] (D.C. Blackburn) 11 12 Abstract 13 Molecular phylogenetic analyses based on expanded taxonomic and geographic sampling 14 support the monophyly of the marsupial frog genera (family Hemiphractidae), resolve six 15 geographically circumscribed lineages within Gastrotheca, and, for the first time, reveal 16 that two divergent lineages of Gastrotheca inhabit the Atlantic Coastal Forests of Brazil. -
Extinction Patterns, Δ18 O Trends, and Magnetostratigraphy from a Southern High-Latitude Cretaceous–Paleogene Section: Links with Deccan Volcanism
Palaeogeography, Palaeoclimatology, Palaeoecology 350–352 (2012) 180–188 Contents lists available at SciVerse ScienceDirect Palaeogeography, Palaeoclimatology, Palaeoecology journal homepage: www.elsevier.com/locate/palaeo Extinction patterns, δ18 O trends, and magnetostratigraphy from a southern high-latitude Cretaceous–Paleogene section: Links with Deccan volcanism Thomas S. Tobin a,⁎, Peter D. Ward a, Eric J. Steig a, Eduardo B. Olivero b, Isaac A. Hilburn c, Ross N. Mitchell d, Matthew R. Diamond c, Timothy D. Raub e, Joseph L. Kirschvink c a University of Washington, Earth and Space Sciences, Box 351310, Seattle WA 98195, United States b CADIC-CONICET, Bernardo Houssay, V9410CAB, Ushuaia, Tierra del Fuego, Argentina c California Institute of Technology, Geological and Planetary Sciences, 1200 E. California Blvd. Pasadena CA 91125, United States d Yale University, Geology & Geophysics, 230 Whitney Ave. New Haven, CT 06511, United States e University of St. Andrews, Department of Earth Sciences, St. Andrews KY16 9AL, UK article info abstract Article history: Although abundant evidence now exists for a massive bolide impact coincident with the Cretaceous–Paleogene Received 19 April 2012 (K–Pg) mass extinction event (~65.5 Ma), the relative importance of this impact as an extinction mechanism is Received in revised form 27 May 2012 still the subject of debate. On Seymour Island, Antarctic Peninsula, the López de Bertodano Formation yields one Accepted 8 June 2012 of the most expanded K–Pg boundary sections known. Using a new chronology from magnetostratigraphy, and Available online 10 July 2012 isotopic data from carbonate-secreting macrofauna, we present a high-resolution, high-latitude paleotemperature record spanning this time interval. -
Ecology and Conservation of Bat Species in the Western Ghats of India
Ecology and conservation of bat species in the Western Ghats of India Claire Felicity Rose Wordley Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Biology September 2014 i The candidate confirms that the work submitted is her own, except where work which has formed part of jointly authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. Chapter Two is based on work from “Wordley, C., Foui, E., Mudappa, D., Sankaran, M., Altringham, J. 2014 Acoustic identification of bats in the southern Western Ghats, India. Acta Chiropterologica 16 (1) 2014 (In press)’. For this publication I collected over 90% of the data, analysed all the data and prepared the manuscript. John Altringham and Mahesh Sankaran edited the manuscript. Eleni Foui collected the remainder of the data and prepared figures 2.1 and 2.3. Divya Mudappa assisted with data collection and manuscript editing. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. © 2014 The University of Leeds and Claire Felicity Rose Wordley The right of Claire Felicity Rose Wordley to be identified as Author of this work has been asserted by her in accordance with the Copyright, Designs and Patents Act 1988. ii The lesser dog faced fruit bat Cynopterus brachyotis eating a banana. -
Phylogenetic Analyses Reveal Unexpected Patterns in the Evolution of Reproductive Modes in Frogs
ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2012.01715.x PHYLOGENETIC ANALYSES REVEAL UNEXPECTED PATTERNS IN THE EVOLUTION OF REPRODUCTIVE MODES IN FROGS Ivan Gomez-Mestre,1,2 Robert Alexander Pyron,3 and John J. Wiens4 1Estacion´ Biologica´ de Donana,˜ Consejo Superior de Investigaciones Cientıficas,´ Avda. Americo Vespucio s/n, Sevilla 41092, Spain 2E-mail: [email protected] 3Department of Biological Sciences, The George Washington University, Washington DC 20052 4Department of Ecology and Evolution, Stony Brook University, Stony Brook, New York 11794–5245 Received November 2, 2011 Accepted June 2, 2012 Understanding phenotypic diversity requires not only identification of selective factors that favor origins of derived states, but also factors that favor retention of primitive states. Anurans (frogs and toads) exhibit a remarkable diversity of reproductive modes that is unique among terrestrial vertebrates. Here, we analyze the evolution of these modes, using comparative methods on a phylogeny and matched life-history database of 720 species, including most families and modes. As expected, modes with terrestrial eggs and aquatic larvae often precede direct development (terrestrial egg, no tadpole stage), but surprisingly, direct development evolves directly from aquatic breeding nearly as often. Modes with primitive exotrophic larvae (feeding outside the egg) frequently give rise to direct developers, whereas those with nonfeeding larvae (endotrophic) do not. Similarly, modes with eggs and larvae placed in locations protected from aquatic predators evolve frequently but rarely give rise to direct developers. Thus, frogs frequently bypass many seemingly intermediate stages in the evolution of direct development. We also find significant associations between terrestrial reproduction and reduced clutch size, larger egg size, reduced adult size, parental care, and occurrence in wetter and warmer regions. -
The IUCN Amphibians Initiative: a Record of the 2001-2008 Amphibian Assessment Efforts for the IUCN Red List
The IUCN Amphibians Initiative: A record of the 2001-2008 amphibian assessment efforts for the IUCN Red List Contents Introduction ..................................................................................................................................... 4 Amphibians on the IUCN Red List - Home Page ................................................................................ 5 Assessment process ......................................................................................................................... 6 Partners ................................................................................................................................................................. 6 The Central Coordinating Team ............................................................................................................................ 6 The IUCN/SSC – CI/CABS Biodiversity Assessment Unit........................................................................................ 6 An Introduction to Amphibians ................................................................................................................................. 7 Assessment methods ................................................................................................................................................ 7 1. Data Collection .................................................................................................................................................. 8 2. Data Review ................................................................................................................................................... -
Evaluating Methods for Phylogenomic Analyses, and a New Phylogeny for a Major Frog Clade
Molecular Phylogenetics and Evolution 119 (2018) 128–143 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Evaluating methods for phylogenomic analyses, and a new phylogeny for a MARK major frog clade (Hyloidea) based on 2214 loci ⁎ Jeffrey W. Streichera,b, , Elizabeth C. Millera, Pablo C. Guerreroc,d, Claudio Corread, Juan C. Ortizd, Andrew J. Crawforde, Marcio R. Pief, John J. Wiensa a Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA b Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK c Institute of Ecology and Biodiversity, Faculty of Sciences, University of Chile, 780-0024 Santiago, Chile d Facultad de Ciencias Naturales & Oceanográficas, Universidad de Concepción, Concepción, Chile e Department of Biological Sciences, Universidad de los Andes, A.A. 4976 Bogotá, Colombia f Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil ARTICLE INFO ABSTRACT Keywords: Phylogenomic approaches offer a wealth of data, but a bewildering diversity of methodological choices. These Amphibia choices can strongly affect the resulting topologies. Here, we explore two controversial approaches (binning Anura genes into “supergenes” and inclusion of only rapidly evolving sites), using new data from hyloid frogs. Hyloid Biogeography frogs encompass ∼53% of frog species, including true toads (Bufonidae), glassfrogs (Centrolenidae), poison Naive binning frogs (Dendrobatidae), and treefrogs (Hylidae). Many hyloid families are well-established, but relationships Phylogenomics among these families have remained difficult to resolve. We generated a dataset of ultraconserved elements Statistical binning (UCEs) for 50 ingroup species, including 18 of 19 hyloid families and up to 2214 loci spanning > 800,000 aligned base pairs. -
Minelli-Et-Al(Eds)
ZOOTAXA 1950 Updating the Linnaean Heritage: Names as Tools for Thinking about Animals and Plants ALESSANDRO MINELLI, LUCIO BONATO & GIUSEPPE FUSCO (EDS) Magnolia Press Auckland, New Zealand ALESSANDRO MINELLI, LUCIO BONATO & GIUSEPPE FUSCO (EDS) Updating the Linnaean Heritage: Names as Tools for Thinking about Animals and Plants (Zootaxa 1950) 163 pp.; 30 cm. 5 Dec. 2008 ISBN 978-1-86977-297-0 (paperback) ISBN 978-1-86977-298-7 (Online edition) FIRST PUBLISHED IN 2008 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2008 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) Zootaxa 1950: 3–4 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Updating the Linnaean Heritage: Names as Tools for Thinking about Animals and Plants ALESSANDRO MINELLI FLS, LUCIO BONATO & GIUSEPPE FUSCO (EDS) Department of Biology, University of Padova, Via Ugo Bassi 58B, I 35131 Padova, Italy Email: [email protected], [email protected], [email protected] Table of contents 4 Preface ALESSANDRO MINELLI FLS, LUCIO BONATO, GIUSEPPE FUSCO (ITALY) 5 Actual usage of biological nomenclature and its implications for data integrators; a national, regional and global perspective CHARLES HUSSEY (UK), YDE DE JONG (THE NETHERLANDS), DAVID REMSEN (DENMARK) 9 The Linnean foundations of zoological and botanical nomenclature OTTO KRAUS (GERMANY) 21 Zoological vs.