Spectral Analysis and Quantitation in Maldi-Ms Imaging

Total Page:16

File Type:pdf, Size:1020Kb

Spectral Analysis and Quantitation in Maldi-Ms Imaging SPECTRAL ANALYSIS AND QUANTITATION IN MALDI-MS IMAGING A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN THE FACULTY OF BIOLOGY, MEDICINE AND HEALTH 2019 SOMRUDEE DEEPAISARN SCHOOL OF HEALTH SCIENCES DIVISION OF INFORMATICS, IMAGING AND DATA SCIENCES ‘Blank page’ 2 Contents Abstract ............................................................................................................. 22 Declaration ........................................................................................................ 23 Copyright Statement .......................................................................................... 24 Acknowledgement ............................................................................................. 25 Chapter 1 Introduction ..................................................................................... 26 1.1 Important Concepts ........................................................................................ 26 1.2 Aims and Objectives ....................................................................................... 31 1.3 Thesis Overview .............................................................................................. 32 1.4 List of Outputs ................................................................................................ 35 Chapter 2 Background I: Mass Spectrometry Instrumentation and Applications 37 2.1 Fundamentals of Mass Spectrometry ............................................................ 38 2.1.1 General Background ................................................................................. 39 2.1.2 Ionisation Techniques .............................................................................. 40 2.1.2.1 Electron Ionisation ............................................................................ 41 2.1.2.2 Chemical Ionisation ........................................................................... 41 2.1.2.3 Fast Atom Bombardment .................................................................. 42 2.1.2.4 Electrospray Ionisation ...................................................................... 43 2.1.3 Types of Mass Analysers .......................................................................... 44 2.1.3.1 Electric/Magnetic Sectors ................................................................. 44 2.1.3.2 Transmission Quadrupole ................................................................. 45 2.1.3.3 Orbitrap ............................................................................................. 46 2.1.3.4 Fourier Transform Ion Cyclotron Resonance .................................... 46 2.2 MALDI Mass Spectrometry ............................................................................. 47 2.2.1 Invention .................................................................................................. 47 2.2.2 MALDI Ionisation ...................................................................................... 50 3 2.2.3 Ion Acceleration ....................................................................................... 52 2.2.4 The Time-of-flight Mass Analyser ............................................................ 54 2.2.4.1 Linear Time-of-flight Mass Spectrometer ......................................... 54 2.2.4.2 Reflectron Time-of-flight Mass Spectrometer .................................. 56 2.2.4.3 Curved Field Reflectron Mass Spectrometer .................................... 57 2.2.5 Ion Detection ........................................................................................... 57 2.2.6 Mass Resolution ....................................................................................... 58 2.2.7 MALDI Matrices ....................................................................................... 59 2.2.8 Sample Preparation (Sample-matrix Depositions) .................................. 60 2.2.9 Tandem Mass Spectrometry .................................................................... 62 2.3 Lipidomics and the Application of MALDI-MS in Lipidomics .......................... 64 2.3.1 Lipid Types and Functions ........................................................................ 64 2.3.2 Cellular Lipids ........................................................................................... 65 2.3.3 Lipid Extraction Techniques ..................................................................... 67 2.3.4 Spectral Analysis (in Lipid Classification) ................................................. 68 2.3.5 Limitations and Challenges ...................................................................... 71 2.3.6 Lipids in the Brain .................................................................................... 72 2.4 Mass Spectrometry Imaging for Lipid Analysis .............................................. 74 2.4.1 General MS Imaging Instrumentation ..................................................... 74 2.4.2 Understanding the Mass Spectrometry Imaging Data Formats .............. 74 2.4.3 MALDI-MS Imaging of Lipids .................................................................... 76 2.4.4 Other Mass Spectrometry Imaging Techniques ...................................... 79 Chapter 3 Background II: Quantitative Mass Spectrometry ............................... 81 3.1 The Scope of Quantitative Mass Spectrometry ............................................. 82 3.1.1 Problems in MALDI-MS Quantitation ...................................................... 83 3.1.2 Uses of Standards .................................................................................... 85 3.1.2.1 Internal Standards ............................................................................. 85 3.1.2.2 External Standards ............................................................................ 87 3.1.3 Conventional Peak Analysis ..................................................................... 87 3.1.4 Supporting Software for Mass Spectrometry Data Analysis ................... 89 3.2 Computational Analysis Methods for MALDI-MS Data .................................. 90 4 3.2.1 Data Mining .............................................................................................. 91 3.2.2 Computational Approaches ..................................................................... 92 3.2.2.1 Support Vector Machine ................................................................... 92 3.2.2.2 Nearest Neighbours .......................................................................... 93 3.2.2.3 Random Forest .................................................................................. 93 3.2.2.4 Neural Networks ............................................................................... 94 3.2.2.5 Discussion and Comparison of Some Approaches to MALDI-MS Data Analysis ............................................................................................................ 96 3.2.3 Understanding Signal and Noise and the Associated Analysis Requirements.................................................................................................... 101 3.3 Pre-processing of Mass Spectra for LP-ICA................................................... 104 3.3.1 Windowing and Resolution Reduction .................................................. 105 3.3.2 Alignment ............................................................................................... 106 3.3.3 Baseline Correction ................................................................................ 106 3.3.4 Peak Detection and Integration ............................................................. 107 3.4 Linear Poisson Independent Component Analysis ....................................... 109 3.4.1 Correlation of Numerical Data ............................................................... 109 3.4.2 Standard PCA and ICA ............................................................................ 110 3.4.2.1 Principal Component Analysis (PCA) ............................................... 110 3.4.2.2 Independent Component Analysis (ICA) ......................................... 111 3.4.3 Distribution of Data: Gaussian vs. Poisson ............................................ 112 3.4.4 MALDI-MS Data Characteristics ............................................................. 115 3.4.5 Linear Poisson Independent Component Analysis (LP-ICA) Modelling . 116 3.4.6 Maximisation Separation (MAX SEP) ..................................................... 119 Chapter 4 Optimisation of Experimental Parameters ...................................... 122 4.1 Introduction .................................................................................................. 122 4.2 Instrumentation ............................................................................................ 124 4.2.1 The AXIMA.............................................................................................. 124 4.2.2 The 7090................................................................................................. 124 4.2.3 Standard Apparatus Settings ................................................................. 125 4.3 Sample Preparation ...................................................................................... 125 5 4.3.1 Materials ................................................................................................ 125 4.3.2 Preparation of Milk Samples ................................................................. 127 4.3.3
Recommended publications
  • I HIGH MASS ACCURACY COUPLED to SPATIALLY-DIRECTED
    HIGH MASS ACCURACY COUPLED TO SPATIALLY-DIRECTED PROTEOMICS FOR IMPROVED PROTEIN IDENTIFICATIONS IN IMAGING MASS SPECTROMETRY EXPERIMENTS By David Geoffrey Rizzo Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry August, 2016 Nashville, Tennessee Approved: Richard M. Caprioli, Ph.D. Kevin L. Schey, Ph.D. John A. McLean, Ph.D. Michael P. Stone, Ph.D. i Copyright © 2016 by David Geoffrey Rizzo All Rights Reserved ii This work is dedicated to my family and friends, who have shown nothing but support for me in all of life’s endeavors. iii ACKNOWLEDGEMENTS “As we express our gratitude, we must never forget that the highest appreciation is not to utter words, but to live by them.” - John F. Kennedy – There are many people I must thank for showing kindness, encouragement, and support for me during my tenure as a graduate student. First and foremost, I would like to thank my research advisor, Richard Caprioli, for providing both ample resources and guidance that allowed me to grow as a scientist. Our discussions about my research and science in general have helped me become a much more focused and discerning analytical chemist. I must also thank my Ph.D. committee members, Drs. Kevin Schey, John McLean, and Michael Stone, who have brought valuable insight into my research and provided direction along the way. My undergraduate advisor, Dr. Facundo Fernández, encouraged me to begin research in his lab and introduced me to the world of mass spectrometry.
    [Show full text]
  • Recent Progress in Laser Analytics
    KOLUMNE 417 CHIMIA 44 (1990) Nr.I~ (Ikzem""r) Chimia 44 (/990) 417 424 <&') Schll'ei=. Chemiker- Verhand; ISSN 0009 4293 Recent Progress in Laser Analytics Analytical methods are on their way to mass spectrometry (MS). In 1946, William penetrate the biological sciences. In this E. Stephens (University of Pennsylvania in trend, laser technology plays an important Philadelphia) described a mass spectrome- role, especially in the form of laser-desorp- ter with time dispersion, followed by the tion mass spectrometry (LD-MS). ion velocitron of A.E. Cameron and D.£. The remarkable progress made in this Eggers. These devices represented early field is nicely demonstrated by a statement forms of the time-of-flight mass spectrom- made in 1986 by Frank H. Field, a specialist eter (TOF-MS) first described by the Swiss in the mass spectrometric investigation of R. Keller in 1949. biomolecules and Professor at Rockefeller The first commercially successful TOF- University in New York. Citing Professor MS was introduced by Bendix Corpora- In dieser Kalwnne schreibl Field: 'The mass region of real interest for tion, and it was based on the design re- Prof Dr. H. M. Widmer proteins lies between 40000 and 100000 ported in 1955 by William C. Wile)' and Forse/lUng Analylik Da, and one can only speculate as to l. H. McLaren (Bendix Aviation Corpom- Ciha-Geigy AG. FO 3.2 CH 4{)()2 Basel whether such monster gaseos ions could be tion). In these early days of TOF-MS, the regelmiissig eigene Meinungsarlike/ oder liidl Giiste produced. My personal feeling is that to do ions were generated by electron impact ein.
    [Show full text]
  • Developing Next Generation Technologies for Spatially Targeted
    Developing Next Generation Technologies for Spatially Targeted Proteomics By Daniel Joseph Ryan Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry June 30th, 2019 Nashville, Tennessee Approved: Richard M. Caprioli, Ph.D. Jeffrey M. Spraggins, Ph.D. John A. McLean, Ph.D. Lars Plate, Ph.D. Kevin L. Schey, Ph.D. Copyright © 2019 by Daniel Joseph Ryan All Rights Reserved ii ACKNOWLEDGEMENTS It is with the help of many people that I am afforded the unique privilege of being able to sit here and write out an acknowledgements section for my dissertation. First and foremost, I would like to thank both of advisors, Dr. Richard Caprioli and Dr. Jeff Spraggins. Richard, you have pushed me both scientifically and personally. You have led by example and I am very grateful to have had the opportunity to spend my graduate career in your laboratory, it is not something I take for granted. Jeff, you helped me gain traction upon entering the lab, gave me direction, and have been an integral part of my journey while at Vanderbilt. You went above and beyond what is expected of any advisor to help mold me into the scientist I am today, and I am grateful to call you a mentor and more importantly, a friend. To my entire committee, Kevin Schey, John McLean, and Lars Plate; I am forever thankful for the time you have taken to help push me towards excellence throughout this journey. I want to thank my lab mates, who are also my closest friends, for their support and friendship throughout this period of my life.
    [Show full text]
  • Molecular Fingerprints the Search for Individualized Medicine
    WINTER03 p.8 The Power of Proteins p.22 One protein’s story p.16 Discovery science p.26 The future of proteomics LensA New Way of Looking at Science Molecular fingerprints The search for individualized medicine. A PUBLICATION OF VANDERBILT UNIVERSITY MEDICAL CENTER Lens – A New Way of Looking at Science WINTER 2003 VOLUME 1, NUMBER 1 Lens is published by Vanderbilt University Medical Center in cooperation with the VUMC Office of News and Public Affairs and the Office of Research. © Vanderbilt University EDITOR Bill Snyder DIRECTOR OF PUBLICATIONS MEDICAL CENTER NEWS AND PUBLIC AFFAIRS Wayne Wood CONTRIBUTING WRITERS Mary Beth Gardiner Leigh MacMillan Bill Snyder PHOTOGRAPHY/ILLUSTRATION Dean Dixon Dominic Doyle The voyage of Dana Johnson Anne Rayner Pollo Brian Smale discovery consists DESIGN Diana Duren/Corporate Design, Nashville not in seeking new COVER ILLUSTRATION Dean Dixon landscapes, but in EDITORIAL OFFICE Office of News and Public Affairs having new eyes. CCC-3312 Medical Center North Vanderbilt University Nashville, Tennessee 37232-2390 615-322-4747 – MARCEL PROUST About the cover: Need help deciphering the fingerprint 'code?' Please turn to the back inside cover. Lens TABLE OF contents WINTER03 2 PUBLICATION OVERVIEW 3 EDITOR’S LETTER 4 MOLECULAR FINGERPRINTS The search for patterns of proteins in blood and tissue one day may help doctors diagnose diseases like cancer earlier and more accurately than ever before. These “molecular fingerprints” also may lead to new, more effective medicines and the ability to tailor treatments to individual patients. The ultimate aim: a more thor- ough understanding of disease and how to prevent it.
    [Show full text]
  • Using Mass Spectrometry for Proteins by Martha M
    Chemical Education Today Report: Nobel Prize in Chemistry, 2002 Using Mass Spectrometry for Proteins by Martha M. Vestling The 2002 Chemistry Nobel Prize has mass spectrom- etrists everywhere celebrating. It recognizes work that put large proteins—10,000 Da and larger—into mass spectrom- eters. In order to obtain a mass spectrum of a protein, the protein must go through an ion source and an analyzer to reach the detector (see Figure 1). Half of the 2002 Nobel Prize was shared by Koichi Tanaka and John B. Fenn for ob- taining mass spectra of large biomolecules. To do this, they used two different innovations in ion source design that were developed in the 1980s. For their award winning experiments, Tanaka used laser desorption ionization while Fenn used electrospray ionization. These two techniques became com- mercially available in the early 1990s and have revolutionized the way mass spectrometry is done. Both laser desorption ionization and electrospray ioniza- tion can be used with all sorts and sizes of molecules, most of which could not be analyzed by mass spectrometry fifteen years Figure 2. Common ion types for mass spectrometry. ago. For example, small peptides char when heated and need derivatization for analysis with gas chromatography/mass spec- diameter) in glycerol, ethanol, and acetone and deposited on trometry (GCMS). Both laser desorption and electrospray eas- the sample holder. After vacuum drying, the holder was in- ily produce protonated peptide ions. Sugars like sucrose serted into a time-of-flight mass spectrometer where a nitro- caramelize when heated and without derivatization are not gen laser (337 nm) was fired at the sample spot.
    [Show full text]
  • Microarray-Based Mass Spectrometry for Mammalian Cell Culture Monitoring in Biotechnological Production Processes
    Research Collection Doctoral Thesis Microarray-based mass spectrometry for mammalian cell culture monitoring in biotechnological production processes Author(s): Steinhoff, Robert F. Publication Date: 2016 Permanent Link: https://doi.org/10.3929/ethz-a-010750104 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH NO. 23665 Microarray-based mass spectrometry for mammalian cell culture monitoring in biotechnological production processes A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by Robert Friedrich Steinhoff M.Sc. in Chemistry, Technical University Munich (TUM) born on 06.05.1985 citizen of Lindau (Bodensee), Germany accepted on the recommendation of Prof. Dr. Renato Zenobi, examiner Prof. Dr. Massimo Morbidelli, co-examiner 2016 ii Acknowledgements Dear reader, The present work on microarray MALDI mass spectrometry has been accomplished in the years 2012 to 2016 at ETH Zurich in the lab of Prof. Zenobi. The excellent infrastructure within ETH Zurich has been the fruitful foundation for this thesis. I am thankful to Prof. Renato Zenobi, who accepted me to work in his lab, firstly as a master student and later as PhD- student within the European Marie Curie initial training network ISOLATE. I am deeply grateful to my parents, my brother, my grandmas, my aunts – hereof especially aunt Gabriela Konietzko who always encouraged and supported me - my uncles, my cousins and their families for their endless understanding and support throughout my education.
    [Show full text]
  • Chemistry Nobel Prize 2002 Goes to Analytical Chemistry
    CHEMISTRY NOBEL PRIZE WINNERS 2002 73 CHIMIA 2003, 57, No. 1/2 Chimia 57 (2003) 73–73 © Schweizerische Chemische Gesellschaft ISSN 0009–4293 Chemistry Nobel Prize 2002 Goes to Analytical Chemistry K. Wüthrich J.B. Fenn K. Tanaka October 2002 was a great month for complexes, the ribosome, or even intact 2nd Japan–China Joint Symposium on Swiss science with Kurt Wüthrich of the viruses by using ESI. Fenn did his original Mass Spectrometry, and published them in ETH Zürich winning the Chemistry Nobel work on ESI while a professor at Yale Uni- 1988 (Rapid Commun. Mass Spectrom. prize 2002. The other half of the 2002 versity in the early 1980s. Coming from the 1988, 2, 151–153). In his original work, Chemistry Nobel prize went jointly to field of molecular beams, he was following Tanaka and his coworkers used a sample John B. Fenn of the Virginia Common- up on earlier (but unsuccessful) work by preparation where the analyte is mixed with wealth University (Richmond, USA) and to Malcolm Dole to produce gas-phase ions ultrafine cobalt powder and glycerol as a Koichi Tanaka of Shimadzu Corp. (Kyoto, from very large molecules. Fenn’s experi- vacuum-stable binding medium. When ir- Japan), who independently developed tech- ence with molecular beam methods helped radiated with a pulse from a low energy ni- niques to ionize large molecules for study him to succeed where the earlier research in trogen laser, the metal particles heat up rap- by mass spectrometry. This recognition for this direction had failed. Because electro- idly, releasing glycerol and intact analyte the development of analytical methods for spray ionization produces multiply charged molecules into the gas phase.
    [Show full text]
  • MASS SPECTROMETRY by Michal Kliman Dissertation Submi
    ADVANCED STRUCTURAL AND SPATIAL ANALYSIS OF LIPIDS USING ION MOBILITY – MASS SPECTROMETRY By Michal Kliman Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry August, 2011 Nashville, Tennessee Approved: Professor John A. McLean Professor Terry P. Lybrand Professor H. Alex Brown Professor Christopher J. Janetopoulos Dedicated to Viera, my loving wife, my companion and best friend, our loves Peter, Agatha and Esther, Dad Cyril, Mom Marianna, Sister Mariana, and the Brothers and Sisters in Faith. ii ACKNOWLEDGEMENTS I would like to first thank my advisor, Dr. John A. McLean, for unwavering encouragement, superb advice and for exemplifying and leading in the art of telling a good story. I was fortunate to join Dr. McLean’s laboratory when it first formed, and helped to set up and christen by work the first instruments and optics with and alongside great coworkers Larissa Fenn, Whitney Ridenour, Randi Gant-Branum, Sophie Zhao, Josh Kerr, Sevugarajan Sundarapandian, Ablatt Mahsut, Jeff Enders, Cody Goodwin, Jody May, Jay Forsythe, Seth Byers, Kelly Hines, and Alyssa Granger. I have since witnessed the growth and success of this group, and savored every fruitful conversation and collaboration within and without the laboratory. My academic journey was greatly enriched through training with Eric Dawson, Jarrod Smith, and Jonathan Sheehan, through collaborative work with Niranjana Vijayakrishnan, Dr. Kendal Broadie, Gus Wright, Libin Xu, Keri Tallman, Dr. Ned Porter, Dr. David Hercules, Dr. Zeljka Korade, and Dr. Brian Bachmann. Colleagues from outside of Vanderbilt campus, including Misha Ugarov, Tom Egan, Dr.
    [Show full text]
  • Nature Milestones Mass Spectrometry October 2015
    October 2015 www.nature.com/milestones/mass-spec MILESTONES Mass Spectrometry Produced with support from: Produced by: Nature Methods, Nature, Nature Biotechnology, Nature Chemical Biology and Nature Protocols MILESTONES Mass Spectrometry MILESTONES COLLECTION 4 Timeline 5 Discovering the power of mass-to-charge (1910 ) NATURE METHODS: COMMENTARY 23 Mass spectrometry in high-throughput 6 Development of ionization methods (1929) proteomics: ready for the big time 7 Isotopes and ancient environments (1939) Tommy Nilsson, Matthias Mann, Ruedi Aebersold, John R Yates III, Amos Bairoch & John J M Bergeron 8 When a velocitron meets a reflectron (1946) 8 Spinning ion trajectories (1949) NATURE: REVIEW Fly out of the traps (1953) 9 28 The biological impact of mass-spectrometry- 10 Breaking down problems (1956) based proteomics 10 Amicable separations (1959) Benjamin F. Cravatt, Gabriel M. Simon & John R. Yates III 11 Solving the primary structure of peptides (1959) 12 A technique to carry a torch for (1961) NATURE: REVIEW 12 The pixelation of mass spectrometry (1962) 38 Metabolic phenotyping in clinical and surgical 13 Conquering carbohydrate complexity (1963) environments Jeremy K. Nicholson, Elaine Holmes, 14 Forming fragments (1966) James M. Kinross, Ara W. Darzi, Zoltan Takats & 14 Seeing the full picture of metabolism (1966) John C. Lindon 15 Electrospray makes molecular elephants fly (1968) 16 Signatures of disease (1975) 16 Reduce complexity by choosing your reactions (1978) 17 Enter the matrix (1985) 18 Dynamic protein structures (1991) 19 Protein discovery goes global (1993) 20 In pursuit of PTMs (1995) 21 Putting the pieces together (1999) CITING THE MILESTONES CONTRIBUTING JOURNALS UK/Europe/ROW (excluding Japan): The Nature Milestones: Mass Spectroscopy supplement has been published as Nature Methods, Nature, Nature Biotechnology, Nature Publishing Group, Subscriptions, a joint project between Nature Methods, Nature, Nature Biotechnology, Nature Chemical Biology and Nature Protocols.
    [Show full text]
  • STATUS and FUTURE TRENDS of the MINIATURIZATION of MASS SPECTROMETRY Richard R.A
    STATUS AND FUTURE TRENDS OF THE MINIATURIZATION OF MASS SPECTROMETRY Richard R.A. Syms*1 1EEE Dept., Imperial College London, London, UK ABSTRACT structures: the quadrupole filter and the quadrupole ion An overview of mass spectrometers incorporating trap. RF quadrupoles are workhorse instruments, with miniaturization technology is presented. A brief history of applications ranging from residual gas analysis to space conventional mass spectrometry is given, followed by a exploration. Related components such as RF ion guides summary of the status of miniaturized systems. are used for ion transport, while collision cells are used Applications for miniature/portable systems are reviewed, for ion cooling and fragmentation. In 1978, Richard Yost and opportunities and challenges are discussed. and Chris Enke introduced the triple quadrupole, in which the first quadrupole is used for initial mass analysis, a INTRODUCTION second for collision-induced dissociation, and the third for The development of microelectromechanical systems analysis of the resulting fragments, enabling so-called over the last 30 years has been dramatic, and MEMS now tandem mass spectrometry. The quadrupole ion trap was impact on most industrial sectors. Specific materials, developed commercially for Finnegan by Raymond device configurations and packaging have been developed March in 1983, and the linear quadrupole trap (which has for each application domain, and MEMS are available as an increased trapping volume) by Jae Schwartz in 2002. commodity items such as accelerometers or laboratory Other milestones include the development of the Fourier instruments such as atomic force microscopes. Until transform ion cyclotron resonance mass spectrometer by recently, one area that stubbornly resisted miniaturization Alan Marshal and Melvin Comisarow in 1976, and the was mass spectrometry.
    [Show full text]
  • Application of MALDI Mass Spectrometry in Natural Products Analysis
    Reviews 671 Application of MALDI Mass Spectrometry in Natural Products Analysis Authors Ricardo Silva 1, Norberto Peporine Lopes1, Denise Brentan Silva 1, 2 Affiliations 1 Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil 2 Laboratório de Produtos Naturais e Espectrometria de Massas (LAPNEM), Centro de Ciências Biológicas e da Saúde (CCBS), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil Key words Abstract DHAP: 2,5-dihydroxyacetophenone l" MALDI ! DHB: 2,5-dihydroxybenzoic acid l" dereplication This article presents the utility of mass spectrom- DIT: dithranol l" natural products etry with a MALDI ionization source in natural EI: electron ionization l" fragmentation products analysis. The advantages and drawbacks FAB: fast atom bombardment l" data processing of this technique for natural products analyses FT: Fourier transform will be presented and discussed. In addition, the IAA: trans-3-indoleacrylic acid structural determination of secondary metabo- ICR: ion cyclotron resonance lites using MALDI‑MS/MS will be explored, which IMS: imaging mass spectrometry received May 3, 2015 can guide MALDI experimental methods and IT: ion trap revised March 1, 2016 stimulate new research in this area. Finally, sev- LDI: laser desorption/ionization accepted March 2, 2016 eral important approaches for MALDI data pro- LiDHB: lithium 2,4-dihydroxybenzoate Bibliography cessing will be discussed. HABA: 2-(4-hydroxyphenylazo)benzoic
    [Show full text]
  • Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of ZP1609 and Amyloid Beta
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 9-11-2018 2:00 PM Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of ZP1609 and Amyloid Beta Jasmine S. H. Wang The University of Western Ontario Supervisor Yeung, Ken K.-C. The University of Western Ontario Co-Supervisor Whitehead, Shawn N. The University of Western Ontario Graduate Program in Chemistry A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Jasmine S. H. Wang 2018 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Analytical Chemistry Commons Recommended Citation Wang, Jasmine S. H., "Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging of ZP1609 and Amyloid Beta" (2018). Electronic Thesis and Dissertation Repository. 5744. https://ir.lib.uwo.ca/etd/5744 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract The revolutionary development of soft ionization techniques like matrix-assisted laser desorption/ionization (MALDI) has opened up the possibilities for mass spectrometry (MS) in protein detection, identification, and sequencing. The ability of MALDI MS to acquire images of intact tissue sections offer an additional dimension of analysis where location information can be attained. Visualization of biological systems help to unravel the complexities of cells, drug pathways, and disease pathology. However, the capabilities of MALDI MS imaging are often being questioned, as signals are typically biased towards the most abundant component within a complex sample.
    [Show full text]