CHEMICAL HERITAGE FOUNDATION FRANZ HILLENKAMP Transcript Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
I HIGH MASS ACCURACY COUPLED to SPATIALLY-DIRECTED
HIGH MASS ACCURACY COUPLED TO SPATIALLY-DIRECTED PROTEOMICS FOR IMPROVED PROTEIN IDENTIFICATIONS IN IMAGING MASS SPECTROMETRY EXPERIMENTS By David Geoffrey Rizzo Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry August, 2016 Nashville, Tennessee Approved: Richard M. Caprioli, Ph.D. Kevin L. Schey, Ph.D. John A. McLean, Ph.D. Michael P. Stone, Ph.D. i Copyright © 2016 by David Geoffrey Rizzo All Rights Reserved ii This work is dedicated to my family and friends, who have shown nothing but support for me in all of life’s endeavors. iii ACKNOWLEDGEMENTS “As we express our gratitude, we must never forget that the highest appreciation is not to utter words, but to live by them.” - John F. Kennedy – There are many people I must thank for showing kindness, encouragement, and support for me during my tenure as a graduate student. First and foremost, I would like to thank my research advisor, Richard Caprioli, for providing both ample resources and guidance that allowed me to grow as a scientist. Our discussions about my research and science in general have helped me become a much more focused and discerning analytical chemist. I must also thank my Ph.D. committee members, Drs. Kevin Schey, John McLean, and Michael Stone, who have brought valuable insight into my research and provided direction along the way. My undergraduate advisor, Dr. Facundo Fernández, encouraged me to begin research in his lab and introduced me to the world of mass spectrometry. -
Section 2 Contribution of Science and Technology to Global Issues
Chapter 1 Progress in Science and Technology and Socioeconomic Changes Section 2 Contribution of Science and Technology to Global Issues From the end of the 19th century to the 20th century, science and technology has rapidly advanced. Chemical industry, electrical industry and heavy industry and so on emerged and we have advanced forward to ages of mass production and mass consumption, when goods could be transported in bulk to distant locations for a short period, as physical distribution, including railways, cars and airplanes, developed. This accompanied the mass disposal of goods and mass consumption of energy, highlighting the Chapter 1 risk of depletion of limited resources, global warming, the destruction of ecosystems and the crisis in the global environment. Science and technology that changed our lives were explained in Section 1 of this chapter, but as well as changing our lives in terms of key daily lifestyle elements, science and technology are also crucial to solve global issues such as climate change, natural resource depletion and energy. There are significant expectations as to how science and technology can contribute to solve global issues. This section addresses the social contribution of science and technology in Japan domestically and internationally. 1 Contribution to Global Warming Countermeasures ○ Global warming state Climate changes caused by global warming are Average global surface temperature (land + sea) anomaly one of the most urgent problems which the world faces. The Intergovernmental Panel on Climate Change (IPCC)1, awarded the Nobel Peace Prize Year in 2007, published the Synthesis Report of Fifth Changes in average global sea level Assessment Report in 2014. -
Greetings from Director of RIEM Greetings from Director of RIPM
Greetings from director of RIEM The Research Institute for Engineering Measurement (RIEM) has a lot of researchers and experts from mechanical engineering, applied physics, measurement and control, and information technology (number of staff: about 70). We have three important missions. The first mission is to contribute to international activities related to legal metrology and to steadily conduct legal metrology services such as type approval test of specified measuring instruments and inspection of verification standards used in local verification offices, in cooperation with the Ministry of Economy, Trade and Industry. The second is to develop, maintain, and smoothly disseminate national measurement standards for length, mass, and their related derived quantities. Dr. OTA Akihiro The third is to promote the advancement of high-precision measurement technology and data science technology on the basis of our measurement standards, and to connect their research outcomes to companies for future national and international businesses. We hope to promote research activities to solve social problems such as energy and environmental constraints and COVID-19 infection, and to create innovations that will contribute to industrial competitiveness. Greetings from director of RIPM According to the 5-year midterm plan of AIST which started in April 2020, the Research Institute for Physical Measurement (RIPM), which consists of twelve research groups with over 80 researchers, started new challenges to develop and disseminate the national measurement standards in the fields of electricity, time and frequency, temperature, and optical radiation – all of which underpin the industrial competitiveness, product reliability, and safety in our daily lives. In particular, the RIPM will contribute to cutting- edge research and development for measurement standards such as optical lattice clocks towards the redefinition of the second, and quantum current standards using single-electron pump devices for quantum metrology triangle experiments. -
2017 WEEKLY BULLETIN DEPARTMENT of CHEMISTRY, NORTHWESTERN UNIVERSITY EVANSTON, ILLINOIS April 24, 2017
2017 WEEKLY BULLETIN DEPARTMENT OF CHEMISTRY, NORTHWESTERN UNIVERSITY EVANSTON, ILLINOIS April 24, 2017 For full schedule, including Center events, please see the Department Calendar: http://www.chemistry.northwestern.edu/events/calendar.html Tuesday April 25th: Faculty Lunch Seminar: Neil Kelleher Tech K140 12:00 – 1:00pm Friday April 28th: Chemistry Department Colloquium: Stacey F. Bent, Stanford University Tech LR3 4:00-5:00pm BIP BIP meets every Friday 10-11:00am in Tech K140 Arrivals We did not have any new arrivals Announcements 10th Annual ANSER Solar Energy Symposium April 27-28, 2017: The Argonne-Northwestern Solar Energy Research Center (ANSER) and the Institute for Sustainability and Energy at Northwestern (ISEN) are delighted to host the 10th annual ANSER Solar Energy Symposium – “Solar Electricity.” As our understanding of the impact of climate change continues to grow, so too does the global trend towards a clean-energy economy. The last two years have seen organic photovoltaics reach efficiencies of 11.5 percent, quantum dot solar cells reach efficiencies of 11.3 percent and perovskite solar cells continue their meteoric rise to efficiencies of 22.1 percent, paving the way for continually decreasing photovoltaic costs. This encouraging march toward a cleaner power sector cannot be ignored, and is built on the foundation of innovative research being carried out at collaborative scientific hubs such as the ANSER Center. The thematic focus of this year’s Symposium is “Solar Electricity,” and we are honored to host a star-studded lineup of speakers. These photovoltaic leaders will present life-cycle analyses, report the current state-of- the-art, outline challenges ahead, and propose new ideas to pursue in this rapidly growing field of solar photovoltaic research. -
HOPE Meetings Are Held for Excellent Graduate Students and Young Researchers Specially Selected from Countries Around the 9Th Asia-Pacific and Africa Region
For Overseas Cooperating Institutions Objective HOPE Meetings are held for excellent graduate students and young researchers specially selected from countries around the 9th Asia-Pacific and Africa region. These meetings give an opportunity for the participants to engage in interdisciplinary discussions with Nobel laureates and other distinguished HOPE MEETING scientists pioneering the frontiers of knowledge. They also give the participants, who lodge together over the course of the event, a chance to make friends and form collegial networks with Nobel Laureates with peers from the regions. The title “HOPE Meeting” signifies the promise held for the future roles of young researchers and optimism for creating a bright S&T future within the global community. Date F ebruary 26- ■ Saturday, February 25: Orientation & Registration M arch 2, 2017 ■ Sunday, February 26: Nobel Prize Dialogue Tokyo 2017 Organizer Venue Tokyo , JAPAN Office of the HOPE Meetings, JSPS E-mail [email protected] Tel: +81-3-3263-2414 Fax:+81-3-3234-3700 HOPE MEETINGS with Nobel Laureates Organizing Committee of the HOPE Meetings ■ Chair Makoto Kobayashi <Nobel Laureate in Physics 2008> Honorary Professor Emeritus, High Energy Accelerator Research Organization (KEK) ■ Members Noriko Osumi Mitsuhiko Shionoya Tohoku University The University of Tokyo Takaaki Kajita <Nobel Laureate in Physics 2015> Yousuke Takahama The University of Tokyo Tokushima University Kazuhiro Kosuge Fumio Hanaoka Tohoku University Tsukuba University Program of the HOPE Meeting The program -
25 Years of the Swiss Chemical Society's Division of Analytical
Columns CHIMIA 2017, 71, No. 12 861 doi:10.2533/chimia.2017.861 Chimia 71 (2017) 861 © Swiss Chemical Society Division of Analytical Sciences A Division of the Swiss Chemical Society 1992–2017: 25 Years of the Swiss Chemical Society’s the fact that its scope is not limited to chemistry but also includes Division of Analytical Sciences – Past, Present and physical techniques and biological methods. Future Activities Walter Giger*, Fritz Erni, and Ernst Halder Membership – Organisation – Communication *Correspondence: Prof. W. Giger, CH-8049 Zurich, E-mail: [email protected] In 1996, almost 300 members of the Swiss Chemical Society were also members of the DAC. By 2017, membership had Keywords: Analytical Sciences · Division of Analytical Sciences increased to 585 (22% of Swiss Chemical Society members). Most of the DAC’s activities were managed and organised by Launch in the 1990s – Scope and Goals – Name therelativelylargeDAC Board,comprisingabout9to17members, several of whom were active for many years. Every other year, In the early 1990s, the chemists’ professional societies in the DAC Board held a retreat, where current endeavours were Switzerland were reorganised. The major event was the merger evaluated and future projects thoroughly discussed and planned. of the Swiss Chemical Society and the Association of Swiss In 1999, the importance of the internet for gaining visibility Chemists in spring 1992. Around the same time, the analytical and meeting members’ needs became evident. Ernst Halder chemists informally organised in the Comité Suisse de Chimie and Käthi Halder initiated and maintained a divisional website Analytique (see CHIMIA 1990, 44(9), 298–299) became the at www.sach.ch, including, most importantly, information on Analytical Chemistry Section (SACh) of the New Swiss Chemical the training programme. -
Recent Progress in Laser Analytics
KOLUMNE 417 CHIMIA 44 (1990) Nr.I~ (Ikzem""r) Chimia 44 (/990) 417 424 <&') Schll'ei=. Chemiker- Verhand; ISSN 0009 4293 Recent Progress in Laser Analytics Analytical methods are on their way to mass spectrometry (MS). In 1946, William penetrate the biological sciences. In this E. Stephens (University of Pennsylvania in trend, laser technology plays an important Philadelphia) described a mass spectrome- role, especially in the form of laser-desorp- ter with time dispersion, followed by the tion mass spectrometry (LD-MS). ion velocitron of A.E. Cameron and D.£. The remarkable progress made in this Eggers. These devices represented early field is nicely demonstrated by a statement forms of the time-of-flight mass spectrom- made in 1986 by Frank H. Field, a specialist eter (TOF-MS) first described by the Swiss in the mass spectrometric investigation of R. Keller in 1949. biomolecules and Professor at Rockefeller The first commercially successful TOF- University in New York. Citing Professor MS was introduced by Bendix Corpora- In dieser Kalwnne schreibl Field: 'The mass region of real interest for tion, and it was based on the design re- Prof Dr. H. M. Widmer proteins lies between 40000 and 100000 ported in 1955 by William C. Wile)' and Forse/lUng Analylik Da, and one can only speculate as to l. H. McLaren (Bendix Aviation Corpom- Ciha-Geigy AG. FO 3.2 CH 4{)()2 Basel whether such monster gaseos ions could be tion). In these early days of TOF-MS, the regelmiissig eigene Meinungsarlike/ oder liidl Giiste produced. My personal feeling is that to do ions were generated by electron impact ein. -
Developing Next Generation Technologies for Spatially Targeted
Developing Next Generation Technologies for Spatially Targeted Proteomics By Daniel Joseph Ryan Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry June 30th, 2019 Nashville, Tennessee Approved: Richard M. Caprioli, Ph.D. Jeffrey M. Spraggins, Ph.D. John A. McLean, Ph.D. Lars Plate, Ph.D. Kevin L. Schey, Ph.D. Copyright © 2019 by Daniel Joseph Ryan All Rights Reserved ii ACKNOWLEDGEMENTS It is with the help of many people that I am afforded the unique privilege of being able to sit here and write out an acknowledgements section for my dissertation. First and foremost, I would like to thank both of advisors, Dr. Richard Caprioli and Dr. Jeff Spraggins. Richard, you have pushed me both scientifically and personally. You have led by example and I am very grateful to have had the opportunity to spend my graduate career in your laboratory, it is not something I take for granted. Jeff, you helped me gain traction upon entering the lab, gave me direction, and have been an integral part of my journey while at Vanderbilt. You went above and beyond what is expected of any advisor to help mold me into the scientist I am today, and I am grateful to call you a mentor and more importantly, a friend. To my entire committee, Kevin Schey, John McLean, and Lars Plate; I am forever thankful for the time you have taken to help push me towards excellence throughout this journey. I want to thank my lab mates, who are also my closest friends, for their support and friendship throughout this period of my life. -
2017 WEEKLY BULLETIN DEPARTMENT of CHEMISTRY, NORTHWESTERN UNIVERSITY EVANSTON, ILLINOIS May 15, 2017
2017 WEEKLY BULLETIN DEPARTMENT OF CHEMISTRY, NORTHWESTERN UNIVERSITY EVANSTON, ILLINOIS May 15, 2017 For full schedule, including Center events, please see the Department Calendar: http://www.chemistry.northwestern.edu/events/calendar.html Tuesday May 16th: Faculty Lunch Seminar: Eric Weitz Tech K140 12:00 – 1:00pm Wednesday May 17th: Chemistry Department Special Seminar: Yogi Surendranath, MIT Tech L211 4:00-5:00pm BIP BIP meets every Friday 10-11:00am in Tech K140 Arrivals We did not have any new arrivals Opportunities Ecolab is the world’s leader in water, hygiene and energy technologies and services that protect people and vital resources. With 2015 sales of $13.5 billion and 47,000 associate, Ecolab’s products and services touch people every day in nearly every corner of the world. We are dedicated to helping our customers achieve their goals by working together to tackle the world’s most pressing and complex challenges – clean water, safe food, abundant energy and healthy environments. Innovation is a cornerstone of Ecolab’s growth. As part of our global Research, Development & Engineering team, you will be inspired by our purpose, to the make the world cleaner, safer and healthier. Join our team of over 1,600 innovators dedicated to helping our customers meet their goals through innovative and effective science, technology, service and insights. Together, we deploy unlimited resourcefulness to help businesses thrive and ensure the availability of the world’s most precious natural resources for future generations. You will work in a collaborative, customer-focused environment where your voice matters, your contributions are rewarded and you can make an impact. -
Mass Spectrometer, Mr
Messages from Modern Inventors to the Next Generations 5. Mass Spectrometer, Mr. Koichi Tanaka, Shimadzu Corporation “Mass spectrometry” means “to determine the weight of an object.” It is crucially important to be able to determine the weight (mass) and structures of the proteins that make up living matter when diagnosing diseases and developing new drugs. Nevertheless, determining the mass of proteins, which are very small and consist of molecules, requires a variety of techniques. Mr. Tanaka created the first invention in the world to make possible the “ionization of proteins without decomposition,” which is necessary to determine the mass of proteins. For this accomplishment, he was awarded the Nobel Prize and recognized as the twelfth Japanese Nobel Laureate. What inspired you to become an inventor/researcher? When I was a child, I preferred to think and act for myself, rather than to do just what I was told to do, which is still the way I am now. Thanks in part to the instructional approaches used by my teachers, it was truly a pleasure to participate in a science class and especially experiments, in which I was pleased to discover what had been unknown or what I had not known, rather than to find out textbook results. I was fond of science and experiments and grew up in a place rich in nature, all of which made me think of studying science in the future. Especially, in my childhood, new electric appliances and cars were being developed one after another, dramatically improving our daily lives, so it was no wonder that individuals attracted to science and experiments like me aspired to become engineers. -
Molecular Fingerprints the Search for Individualized Medicine
WINTER03 p.8 The Power of Proteins p.22 One protein’s story p.16 Discovery science p.26 The future of proteomics LensA New Way of Looking at Science Molecular fingerprints The search for individualized medicine. A PUBLICATION OF VANDERBILT UNIVERSITY MEDICAL CENTER Lens – A New Way of Looking at Science WINTER 2003 VOLUME 1, NUMBER 1 Lens is published by Vanderbilt University Medical Center in cooperation with the VUMC Office of News and Public Affairs and the Office of Research. © Vanderbilt University EDITOR Bill Snyder DIRECTOR OF PUBLICATIONS MEDICAL CENTER NEWS AND PUBLIC AFFAIRS Wayne Wood CONTRIBUTING WRITERS Mary Beth Gardiner Leigh MacMillan Bill Snyder PHOTOGRAPHY/ILLUSTRATION Dean Dixon Dominic Doyle The voyage of Dana Johnson Anne Rayner Pollo Brian Smale discovery consists DESIGN Diana Duren/Corporate Design, Nashville not in seeking new COVER ILLUSTRATION Dean Dixon landscapes, but in EDITORIAL OFFICE Office of News and Public Affairs having new eyes. CCC-3312 Medical Center North Vanderbilt University Nashville, Tennessee 37232-2390 615-322-4747 – MARCEL PROUST About the cover: Need help deciphering the fingerprint 'code?' Please turn to the back inside cover. Lens TABLE OF contents WINTER03 2 PUBLICATION OVERVIEW 3 EDITOR’S LETTER 4 MOLECULAR FINGERPRINTS The search for patterns of proteins in blood and tissue one day may help doctors diagnose diseases like cancer earlier and more accurately than ever before. These “molecular fingerprints” also may lead to new, more effective medicines and the ability to tailor treatments to individual patients. The ultimate aim: a more thor- ough understanding of disease and how to prevent it. -
Using Mass Spectrometry for Proteins by Martha M
Chemical Education Today Report: Nobel Prize in Chemistry, 2002 Using Mass Spectrometry for Proteins by Martha M. Vestling The 2002 Chemistry Nobel Prize has mass spectrom- etrists everywhere celebrating. It recognizes work that put large proteins—10,000 Da and larger—into mass spectrom- eters. In order to obtain a mass spectrum of a protein, the protein must go through an ion source and an analyzer to reach the detector (see Figure 1). Half of the 2002 Nobel Prize was shared by Koichi Tanaka and John B. Fenn for ob- taining mass spectra of large biomolecules. To do this, they used two different innovations in ion source design that were developed in the 1980s. For their award winning experiments, Tanaka used laser desorption ionization while Fenn used electrospray ionization. These two techniques became com- mercially available in the early 1990s and have revolutionized the way mass spectrometry is done. Both laser desorption ionization and electrospray ioniza- tion can be used with all sorts and sizes of molecules, most of which could not be analyzed by mass spectrometry fifteen years Figure 2. Common ion types for mass spectrometry. ago. For example, small peptides char when heated and need derivatization for analysis with gas chromatography/mass spec- diameter) in glycerol, ethanol, and acetone and deposited on trometry (GCMS). Both laser desorption and electrospray eas- the sample holder. After vacuum drying, the holder was in- ily produce protonated peptide ions. Sugars like sucrose serted into a time-of-flight mass spectrometer where a nitro- caramelize when heated and without derivatization are not gen laser (337 nm) was fired at the sample spot.