I HIGH MASS ACCURACY COUPLED to SPATIALLY-DIRECTED

Total Page:16

File Type:pdf, Size:1020Kb

I HIGH MASS ACCURACY COUPLED to SPATIALLY-DIRECTED HIGH MASS ACCURACY COUPLED TO SPATIALLY-DIRECTED PROTEOMICS FOR IMPROVED PROTEIN IDENTIFICATIONS IN IMAGING MASS SPECTROMETRY EXPERIMENTS By David Geoffrey Rizzo Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry August, 2016 Nashville, Tennessee Approved: Richard M. Caprioli, Ph.D. Kevin L. Schey, Ph.D. John A. McLean, Ph.D. Michael P. Stone, Ph.D. i Copyright © 2016 by David Geoffrey Rizzo All Rights Reserved ii This work is dedicated to my family and friends, who have shown nothing but support for me in all of life’s endeavors. iii ACKNOWLEDGEMENTS “As we express our gratitude, we must never forget that the highest appreciation is not to utter words, but to live by them.” - John F. Kennedy – There are many people I must thank for showing kindness, encouragement, and support for me during my tenure as a graduate student. First and foremost, I would like to thank my research advisor, Richard Caprioli, for providing both ample resources and guidance that allowed me to grow as a scientist. Our discussions about my research and science in general have helped me become a much more focused and discerning analytical chemist. I must also thank my Ph.D. committee members, Drs. Kevin Schey, John McLean, and Michael Stone, who have brought valuable insight into my research and provided direction along the way. My undergraduate advisor, Dr. Facundo Fernández, encouraged me to begin research in his lab and introduced me to the world of mass spectrometry. It was his motivation that drove me to pursue my Ph.D. Every member of the Mass Spectrometry Research Center, both past and present, has guided me in some form or fashion. I would not be where I am today without the support of my “lab family”, both on a personal and scientific level. Maureen Casey was always there to brighten up the lab with humor and support. I will certainly miss going to see “Mama Maureen” and have her fix any problem almost immediately. Dr. Peggi Angel advised me as a rotation student when I first came to Vanderbilt and I strived to emulate her passion for science. Amanda Hachey, Salisha Hill, and Dr. Kristie Rose in the Proteomics Core could not have been more accommodating as I plunged into the vast field of proteomics. They were always there to share their wisdom, helping me learn new techniques that will be invaluable in my career. Drs. Megan iv Gessel, Joshua Nicklay, Glenn Harris, Jeffrey Spraggins, and Boone Prentice have all been vital to my development as a scientist, acting as soundboards for ideas and encouraging me to enjoy successes and learn from failures. Whenever I needed to vent about science or life, they were there to listen. The fellow graduate students in lab who have seen me through this journey have left a lasting impression on me as well. They have always been there to lend a hand and I will truly miss seeing them in lab every day. None of this would be possible without support from my family and friends. My mother, Robin, and father, Joe, encouraged me to pursue my love of science from an early age, even if that meant driving to enrichment programs early Saturday mornings. They taught me how to be a hard worker and independent person, but to never forget that no man is an island. Success and humility should never be mutually exclusive. My brother, Joey, and my sister, Meghan, continue to encourage me every day in everything that I do. Meghan has listened to the recap of my current state of life at day’s end, and for that, I am eternally grateful. I cannot forget Rebecca Rosenberg, who has been a part of our family since the first grade. We have grown up together and will always be there to ground each other, no matter how far apart we are. My dogs, Marco and Polo, are the first things I see when I wake up and the last things I see when I go to bed. They’ve made the roughest days better, always showing excitement and affection when I get home (no matter how late that may be). Lastly, I would like to thank my entire extended family, including all of my aunts, uncles, and cousins. Though my grandparents could not be here to see this achievement, I know they would all be proud of such an accomplishment. I must also acknowledge the funding support of grants from the NIH/NIGMS (5P41 GM103391-05 and 5R01 GM058008), the NIH Shared Instrumentation Grant Program (1S10OD012359-01), and a fellowship from Aegis Sciences Corporation. v TABLE OF CONTENTS Page DEDICATION ............................................................................................................................... iii ACKNOWLEDGEMENTS ........................................................................................................... iv TECHNICAL ABBREVIATIONS ................................................................................................ ix LIST OF TABLES ......................................................................................................................... xi LIST OF FIGURES ..................................................................................................................... xiii Chapter I. INTRODUCTION & RESEARCH OBJECTIVES ...................................................................1 Matrix-Assisted Laser/Desorption Ionization Mass Spectrometry ..........................................1 Imaging Mass Spectrometry .....................................................................................................3 Fourier Transform Ion Cyclotron Resonance Mass Spectrometry ...........................................5 Spatially-Directed Tissue Collection Methods .........................................................................9 Traditional Approaches to Protein Identification in IMS Experiments ..................................11 Summary and Research Objectives ........................................................................................14 II. MALDI FTICR IMS OF INTACT PROTEINS: USING MASS ACCURACY TO LINK PROTEIN IMAGES WITH PROTEOMICS DATA..............................................16 Introduction ............................................................................................................................16 Methodologies for MALDI FTICR IMS and Identification of Intact Proteins ......................17 Tissue Preparation ..............................................................................................................17 Matrix Application .............................................................................................................17 MALDI FTICR IMS ..........................................................................................................18 Histology ............................................................................................................................18 Protein Purification for Identifications ..............................................................................19 LC-Coupled Tandem Mass Spectrometry (ETD) ..............................................................19 Data Analysis .....................................................................................................................20 MALDI FTICR IMS of Rat Brain as a Model System for Protein Imaging ..........................21 Observed Protein Expression in clear cell Renal Cell Carcinoma (ccRCC) ..........................36 Conclusions ............................................................................................................................39 III. SPATIALLY-TARGETED EXTRACTIONS TO IMPROVE PEPTIDE IDENTIFICATIONS FROM MALDI FTICR IMS EXPERIMENTS ....................................40 Introduction ............................................................................................................................40 vi Methodologies for Trypsin Application, in situ Digestion, Incubation and MALDI IMS for Peptides .......................................................................................................41 Tissue Preparation ..............................................................................................................41 Trypsin Digestion...............................................................................................................42 Matrix Application .............................................................................................................42 MALDI FTICR IMS .........................................................................................................43 Peptide Extraction from Tissue ..........................................................................................43 LC-Coupled Tandem Mass Spectrometry (HCD) .............................................................43 Data Analysis .....................................................................................................................44 Optimizing Incubation Conditions to Maximize Digestion and Minimize Delocalization .........................................................................................................................44 MALDI FTICR IMS and Localized Peptide Analysis of Biological Samples ......................48 Conclusions ............................................................................................................................57 IV. ADVANCED HYDROGEL TECHNOLOGIES FOR ENHANCED ON-TISSUE PROTEIN DIGESTION AND IMPROVED SPATIAL LOCALIZATION ...........................58 Introduction ............................................................................................................................58
Recommended publications
  • METACYC ID Description A0AR23 GO:0004842 (Ubiquitin-Protein Ligase
    Electronic Supplementary Material (ESI) for Integrative Biology This journal is © The Royal Society of Chemistry 2012 Heat Stress Responsive Zostera marina Genes, Southern Population (α=0.
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • Negative Regulation of Diacylglycerol Kinase &Theta
    Cell Death and Differentiation (2010) 17, 1059–1068 & 2010 Macmillan Publishers Limited All rights reserved 1350-9047/10 $32.00 www.nature.com/cdd Negative regulation of diacylglycerol kinase h mediates adenosine-dependent hepatocyte preconditioning G Baldanzi1,5, E Alchera2,5, C Imarisio2, M Gaggianesi1, C Dal Ponte2, M Nitti3, C Domenicotti3, WJ van Blitterswijk4, E Albano2, A Graziani1,5 and R Carini*,2,5 In liver ischemic preconditioning (IP), stimulation of adenosine A2a receptors (A2aR) prevents ischemia/reperfusion injury by promoting diacylglycerol-mediated activation of protein kinase C (PKC). By concerting diacylglycerol to phosphatidic acid, diacylglycerol kinases (DGKs) act as terminator of diacylglycerol signalling. This study investigates the role of DGK in the development of hepatocyte IP. DGK activity and cell viability were evaluated in isolated rat hepatocytes preconditioned by 10 min hypoxia followed by 10 min re-oxygenation or by the treatment with the A2aR agonist, CGS21680, and subsequently exposed to prolonged hypoxia. We observed that after IP or A2aR activation, a decrease in DGK activity was associated with the onset of hepatocyte tolerance to hypoxia. CGS21680-induced stimulation of A2aR specifically inhibited DGK isoform h by activating RhoA–GTPase. Consistently, both siRNA-mediated downregulation of DGK h and hepatocyte pretreatment with the DGK inhibitor R59949 induced cell tolerance to hypoxia. The pharmacological inhibition of DGK was associated with the diacylglycerol- dependent activation of PKC d and e and of their downstream target p38 MAPK. In conclusion, we unveil a novel signalling pathway contributing to the onset of hepatocyte preconditioning, which through RhoA–GTPase, couples A2aR to the downregulation of DGK.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • Developing Next Generation Technologies for Spatially Targeted
    Developing Next Generation Technologies for Spatially Targeted Proteomics By Daniel Joseph Ryan Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry June 30th, 2019 Nashville, Tennessee Approved: Richard M. Caprioli, Ph.D. Jeffrey M. Spraggins, Ph.D. John A. McLean, Ph.D. Lars Plate, Ph.D. Kevin L. Schey, Ph.D. Copyright © 2019 by Daniel Joseph Ryan All Rights Reserved ii ACKNOWLEDGEMENTS It is with the help of many people that I am afforded the unique privilege of being able to sit here and write out an acknowledgements section for my dissertation. First and foremost, I would like to thank both of advisors, Dr. Richard Caprioli and Dr. Jeff Spraggins. Richard, you have pushed me both scientifically and personally. You have led by example and I am very grateful to have had the opportunity to spend my graduate career in your laboratory, it is not something I take for granted. Jeff, you helped me gain traction upon entering the lab, gave me direction, and have been an integral part of my journey while at Vanderbilt. You went above and beyond what is expected of any advisor to help mold me into the scientist I am today, and I am grateful to call you a mentor and more importantly, a friend. To my entire committee, Kevin Schey, John McLean, and Lars Plate; I am forever thankful for the time you have taken to help push me towards excellence throughout this journey. I want to thank my lab mates, who are also my closest friends, for their support and friendship throughout this period of my life.
    [Show full text]
  • Domains, Amino Acid Residues, and New Isoforms of Caenorhabditis Elegans Diacylglycerol Kinase 1 (DGK-1) Important for Terminating Diacylglycerol Signaling in Vivo*□S
    Supplemental Material can be found at: http://www.jbc.org/content/suppl/2004/12/06/M409460200.DC1.html THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 280, No. 4, Issue of January 28, pp. 2730–2736, 2005 © 2005 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A. Domains, Amino Acid Residues, and New Isoforms of Caenorhabditis elegans Diacylglycerol Kinase 1 (DGK-1) Important for Terminating Diacylglycerol Signaling in Vivo*□S Received for publication, August 17, 2004, and in revised form, November 22, 2004 Published, JBC Papers in Press, November 24, 2004, DOI 10.1074/jbc.M409460200 Antony M. Jose‡ and Michael R. Koelle§¶ From the ‡Departments of Molecular, Cellular, and Developmental Biology and §Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520 Diacylglycerol kinases (DGKs) inhibit diacylglycerol numerous cellular processes mediated by neurotransmitters, (DAG) signaling by phosphorylating DAG. DGK-1, the growth factors, and hormones (3). DAG also activates the syn- Caenorhabditis elegans ortholog of human neuronal aptic vesicle priming protein UNC-13 (4, 5) to control neuro- DGK␪, inhibits neurotransmission to control behavior. transmission and certain transient receptor potential cation Downloaded from DGK-1, like DGK␪, has three cysteine-rich domains channels (6). In humans, nine DGK isozymes have been iden- (CRDs), a pleckstrin homology domain, and a kinase tified (DGK␣, ␤, ␥, ␦, ␩, ⑀, ␨, ␫, and ␪), but their physiological domain. To identify DGK domains and amino acid resi- functions remain largely unknown (1, 2). dues critical for terminating DAG signaling in vivo,we C. elegans DGK-1 provides a genetically tractable model for analyzed 20 dgk-1 mutants defective in DGK-1-con- elucidating the physiological functions of diacylglycerol ki- trolled behaviors.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Thesis Template
    An In Vivo Screen for Genes Involved in Central Nervous System Control of Obesity Identifies Diacylglycerol Kinase as a Regulator of Insulin Secretion by Irene Trinh A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Molecular Genetics University of Toronto © Copyright by Irene Trinh, 2017. An In Vivo Screen for Genes Involved in Central Nervous System Control of Obesity Identifies Diacylglycerol Kinase as a Regulator of Insulin Secretion Irene Trinh Doctor of Philosophy Department of Molecular Genetics University of Toronto 2017 Abstract The increasing prevalence of obesity as well as its association with many chronic diseases has turned obesity into a major health concern worldwide. Obesity has many underlying environmental and genetic factors that disturb the balance between energy intake and energy expenditure, which is controlled by the central nervous system. The goal of my project is to help further our understanding of these CNS mechanisms by using the powerful tools available in Drosophila melanogaster to identify neuronal genes involved in energy homeostasis. Using the neuronal fru-Gal4 driver we performed an RNAi screen with 1748 genes and assayed for obese or lean phenotypes defined as increases or decreases in triacylglycerol (TAG) levels. After 3 rounds of screening I identified 25 hits that were reproducible and confirmed these phenotypes with independent RNAi lines. ii One of these hits was Diacylglycerol kinase (Dgk) whose mammalian homologues have been implicated in genome-wide association studies for metabolic defects. Manipulation of neuronal Dgk levels affects TAG and carbohydrate levels but these effects don’t seem to be mediated through Dgk’s regulation of DAG, PA levels or PKC activity.
    [Show full text]
  • Molecular Fingerprints the Search for Individualized Medicine
    WINTER03 p.8 The Power of Proteins p.22 One protein’s story p.16 Discovery science p.26 The future of proteomics LensA New Way of Looking at Science Molecular fingerprints The search for individualized medicine. A PUBLICATION OF VANDERBILT UNIVERSITY MEDICAL CENTER Lens – A New Way of Looking at Science WINTER 2003 VOLUME 1, NUMBER 1 Lens is published by Vanderbilt University Medical Center in cooperation with the VUMC Office of News and Public Affairs and the Office of Research. © Vanderbilt University EDITOR Bill Snyder DIRECTOR OF PUBLICATIONS MEDICAL CENTER NEWS AND PUBLIC AFFAIRS Wayne Wood CONTRIBUTING WRITERS Mary Beth Gardiner Leigh MacMillan Bill Snyder PHOTOGRAPHY/ILLUSTRATION Dean Dixon Dominic Doyle The voyage of Dana Johnson Anne Rayner Pollo Brian Smale discovery consists DESIGN Diana Duren/Corporate Design, Nashville not in seeking new COVER ILLUSTRATION Dean Dixon landscapes, but in EDITORIAL OFFICE Office of News and Public Affairs having new eyes. CCC-3312 Medical Center North Vanderbilt University Nashville, Tennessee 37232-2390 615-322-4747 – MARCEL PROUST About the cover: Need help deciphering the fingerprint 'code?' Please turn to the back inside cover. Lens TABLE OF contents WINTER03 2 PUBLICATION OVERVIEW 3 EDITOR’S LETTER 4 MOLECULAR FINGERPRINTS The search for patterns of proteins in blood and tissue one day may help doctors diagnose diseases like cancer earlier and more accurately than ever before. These “molecular fingerprints” also may lead to new, more effective medicines and the ability to tailor treatments to individual patients. The ultimate aim: a more thor- ough understanding of disease and how to prevent it.
    [Show full text]
  • Phénotype Des Écotypes De Touladi Du Lac Supérieur
    Génomique des populations et association génotype- phénotype des écotypes de touladi du lac Supérieur Mémoire Alysse Perreault-Payette Maîtrise en biologie Maître ès sciences (M. Sc.) Québec, Canada © Alysse Perreault-Payette, 2016 Génomique des populations et association génotype- phénotype des écotypes de touladi du lac Supérieur Mémoire Alysse Perreault-Payette Sous la direction de : Louis Bernatchez, directeur de recherche Pascal Sirois, codirecteur de recherche Résumé L’apparition et le maintien d’écotypes adaptés à différentes niches écologiques, en situation de sympatrie, est régit par une multitude de facteurs. Ceux-ci sont essentiels pour la compréhension des processus évolutifs impliqués mais aussi pour la gestion et la conservation des populations en question. Le touladi (Salvelinus namaycush) est un salmonidé reconnu pour la présence d’écotypes liée à l’utilisation des ressources et de l’habitat à travers l’Amérique du Nord. Un total de quatre écotypes a été décrit vivant dans le lac Supérieur, se différenciant par l’habitat utilisé, l’alimentation, la morphologie ainsi que l’ostéologie. L’objectif principal de la présente étude était de quantifier l’étendue de la différentiation génétique entre les différents sites d’échantillonnage ainsi qu’entre les différents écotypes. Un second objectif était d’identifier des marqueurs potentiellement sous sélection entre les différents écotypes reflétant de possibles adaptations locales. Pour ce faire, un total de 486 individus, représentant les quatre écotypes pour chacun des quatre sites d’échantillonnages, a été génotypé à 6822 SNPs (polymorphisme de nucléotide simple). De plus, des analyses morphométriques ont été effectuées afin de caractériser l’ampleur de la divergence morphologique entre les écotypes à chacun des sites.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Supplementary Information.Pdf
    Supplementary Information Whole transcriptome profiling reveals major cell types in the cellular immune response against acute and chronic active Epstein‐Barr virus infection Huaqing Zhong1, Xinran Hu2, Andrew B. Janowski2, Gregory A. Storch2, Liyun Su1, Lingfeng Cao1, Jinsheng Yu3, and Jin Xu1 Department of Clinical Laboratory1, Children's Hospital of Fudan University, Minhang District, Shanghai 201102, China; Departments of Pediatrics2 and Genetics3, Washington University School of Medicine, Saint Louis, Missouri 63110, United States. Supplementary information includes the following: 1. Supplementary Figure S1: Fold‐change and correlation data for hyperactive and hypoactive genes. 2. Supplementary Table S1: Clinical data and EBV lab results for 110 study subjects. 3. Supplementary Table S2: Differentially expressed genes between AIM vs. Healthy controls. 4. Supplementary Table S3: Differentially expressed genes between CAEBV vs. Healthy controls. 5. Supplementary Table S4: Fold‐change data for 303 immune mediators. 6. Supplementary Table S5: Primers used in qPCR assays. Supplementary Figure S1. Fold‐change (a) and Pearson correlation data (b) for 10 cell markers and 61 hypoactive and hyperactive genes identified in subjects with acute EBV infection (AIM) in the primary cohort. Note: 23 up‐regulated hyperactive genes were highly correlated positively with cytotoxic T cell (Tc) marker CD8A and NK cell marker CD94 (KLRD1), and 38 down‐regulated hypoactive genes were highly correlated positively with B cell, conventional dendritic cell
    [Show full text]