A Genome-Wide Rnai Screen Identifies Multiple Synthetic Lethal

Total Page:16

File Type:pdf, Size:1020Kb

A Genome-Wide Rnai Screen Identifies Multiple Synthetic Lethal A Genome-wide RNAi Screen Identifies Multiple Synthetic Lethal Interactions with the Ras Oncogene Ji Luo,1 Michael J. Emanuele,1 Danan Li,2 Chad J. Creighton,3 Michael R. Schlabach,1 Thomas F. Westbrook,4 Kwok-Kin Wong,2 and Stephen J. Elledge1,* 1Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Division of Genetics, Brigham and Women’s Hospital 2Department of Medicine, Harvard Medical School and Department of Medical Oncology, Dana Farber Cancer Center, Ludwig Center at Dana-Farber/Harvard Cancer Center Boston, MA 02115, USA 3Dan L. Duncan Cancer Center Division of Biostatistics 4Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Human Genetics, Dan L. Duncan Cancer Center Baylor College of Medicine, Houston, TX 77030, USA *Correspondence: [email protected] DOI 10.1016/j.cell.2009.05.006 SUMMARY (Ngo et al., 2006; Schlabach et al., 2008; Silva et al., 2008). We have developed barcoded, retroviral/lentiviral-based short Oncogenic mutations in the small GTPase Ras are hairpin RNA (shRNA) libraries targeting the entire human genome highly prevalent in cancer, but an understanding of to enable genome-wide loss-of-function analysis through stable the vulnerabilities of these cancers is lacking. We gene knockdown (Silva et al., 2005). Our design also allowed undertook a genome-wide RNAi screen to identify us to use microarray deconvolution to develop a multiplex synthetic lethal interactions with the KRAS onco- screening platform that enables the highly parallel screening gene. We discovered a diverse set of proteins whose of >10,000 shRNAs in a pool-based format (Schlabach et al., 2008; Silva et al., 2008). These technological breakthroughs depletion selectively impaired the viability of Ras have made it possible to rapidly interrogate the genome for func- mutant cells. Among these we observed a strong tional vulnerability of cancer cells and here we apply these to the enrichment for genes with mitotic functions. We Ras oncogene. describe a pathway involving the mitotic kinase The Ras family of small GTPases are frequently mutated in PLK1, the anaphase-promoting complex/cyclosome, human cancers (reviewed in Karnoub and Weinberg, 2008). Ras and the proteasome that, when inhibited, results in is a membrane-bound signaling molecule that cycles between prometaphase accumulation and the subsequent the inactive, GDP-bound state and the active, GTP-bound state. death of Ras mutant cells. Gene expression analysis Growth factor receptor signaling promotes GTP loading and indicates that reduced expression of genes in this activation of Ras, which in turn activates an array of downstream pathway correlates with increased survival of pathways to promote cell proliferation and survival. Among patients bearing tumors with a Ras transcriptional the major Ras effector pathways is the MAP kinase pathway, the PI3-kinase (PI3K) pathway, RalGDS proteins, phospholi- signature. Our results suggest a previously underap- pase-C3, and Rac. Each of these has been implicated in media- preciated role for Ras in mitotic progression and tion of Ras oncogenesis. Ras GAPs (GTPase-activating proteins) demonstrate a pharmacologically tractable pathway inactivate Ras by stimulating GTP hydrolysis. Oncogenic muta- for the potential treatment of cancers harboring Ras tions in Ras are invariably point mutations that either interfere mutations. with Ras GAP binding or directly disrupt Ras GTPase activity, locking Ras in a constitutively active, GTP-bound state. Onco- INTRODUCTION genic mutations have been found in all three members of the Ras gene family with KRAS being the most frequently mutated. A major challenge in cancer therapeutics is the identification of KRAS mutations are found at high frequencies in pancreatic, cellular drug targets whose inhibition leads to the selective killing thyroid, colon, lung, and liver cancers and in myelodyspastic of cancer cells while sparing normal cells. Recent advances in syndrome and are correlated with poor prognosis (Karnoub and mammalian RNA interference (RNAi) technologies have made it Weinberg, 2008). possible to systematically interrogate the human genome for Despite its prominent status as a cancer drug target, thera- genes whose loss of function constitutes synthetic lethality either peutics aimed at disrupting the Ras pathway have proven chal- with the oncogenic state or with particular oncogenic mutations lenging thus far. Inhibitors of farnesyl transferase, the enzyme Cell 137, 835–848, May 29, 2009 ª2009 Elsevier Inc. 835 that prenylates Ras for its membrane localization, have met with We screened the parental KRAS WT/G13D (Ras Mut) DLD-1 cells only limited success (Karnoub and Weinberg, 2008). Chemical and the isogenic KRAS WT/À (Ras WT) DLD-1 control cells with screens in isogenic Ras mutant and wild-type cell lines have our library of 74,905 retroviral shRNAs targeting 32,293 unique identified compounds that exhibit preferential toxicity toward human transcripts (including 19,542 RefSeq transcripts). The Ras mutant cells (Torrance et al., 2001; Dolma et al., 2003). library was screened in 6 pools of 13,000 shRNAs per pool However, the translation of these chemical screens into clinical using a protocol described previously (Figure 1A) (Schlabach practice has been impeded by the challenge in identifying the et al., 2008). We analyzed the change in relative abundance of protein targets of these chemical entities and subsequent drug each shRNA over time by microarray hybridization to identify development. Inhibitors targeting various Ras effecter pathways those that are antiproliferative and are thus depleted from the could also prove efficacious in treating tumors with Ras muta- population. We compared the lethality signature of the Ras tions, as it was recently shown that a combined application of Mut and WT cells to identify those shRNAs showing selective MEK and PI3K/mTOR inhibitors can reduce tumor burden in depletion in the Ras Mut but not Ras WT cells. Such shRNAs a mouse model of Ras-driven lung cancer (Engelman et al., are potential Ras synthetic lethal (RSL) candidates. Relaxed 2008). However, the prevalence of de novo and acquired drug statistical criteria identified 1741 RSL shRNAs targeting 1613 resistance to other targeted therapies suggests that combina- genes, whereas a more stringent cutoff identified a subset 379 tions of multiple therapeutic agents will be required to effectively RSL shRNAs targeting 368 genes (Tables S1 and S2 available inhibit malignant progression. online). In principle, tumors can be attacked either by reversing the We devised a multicolor competition assay (MCA) to test the effects of oncoproteins through inhibition (i.e., exploiting onco- reproducibility of candidate RSL shRNAs from the primary gene addiction) or by attacking tumor-specific vulnerabilities screen (Smogorzewska et al., 2007). Individual shRNAs were caused by the oncogenic state, often by inhibiting proteins that packaged into retroviruses and infected into a 50:50 mixture of are not oncoproteins themselves (i.e., exploiting nononcogene GFP+ DLD-1 Ras Mut cells and GFPÀ (colorless) DLD-1 Ras addiction) (Solimini et al., 2007; Luo et al., 2009). The inappro- WT cells. The relative ratio of Ras Mut versus WT cells at priate rewiring of cellular signaling through oncogene activation 7 days post-shRNA infection was analyzed by FACS and should result in vulnerabilities that could be exploited for cancer compared to that of the same cells infected with a negative therapies in theory. Since these vulnerabilities are not obvious control shRNA targeting luciferase (Figure 1E). Using this assay and cannot be predicted, the most direct approach to their we tested 320 candidate RSL shRNAs from the primary screen discovery is through genetic exploration. The systematic identi- and found 83 shRNA (26%) targeting 77 genes to preferentially fication of genes and pathways necessary for the Ras-driven decrease the fitness of Ras Mut cells compared to Ras WT cells oncogenic state would provide additional drug targets for thera- (Table S3). To rule out cell-line-specific effects, we performed peutic exploration, shed new light on Ras’ mechanisms of MCAs in a second isogenic pair of colorectal cancer cell lines: action, and potentially provide new biomarkers for patient strat- HCT116 KRAS WT/G13D and HCT116 KRAS WT/À, which were ification. To this end, we screened our shRNA library for genes derived in the same manner as the DLD-1 isogenic pair (Shira- whose inhibition constitutes synthetic lethality with the KRAS sawa et al., 1993; Torrance et al., 2001). Many shRNAs that oncogene. We identified a functionally diverse set of genes scored in the DLD-1 cells also showed synthetic lethality in the including a number of mitotic proteins and demonstrate that HCT116 cells (50 of 68 tested, 73.5%, Table S3), indicating pharmacological inhibitors targeting these mitotic proteins can that the majority of candidate RSL shRNAs are likely to interact selectively impair the viability of Ras mutant cells. These findings genetically with KRAS. point to a previously underappreciated role of Ras in mitotic progression and demonstrate that mitotic stress induced by Functional Diversity of Candidate RSL Genes the Ras oncogene might be exploited for therapeutic purposes. We recovered shRNAs against KRAS itself from the screen. In accordance with the phenotype of the Ras WT isogenic controls, shRNA-mediated knockdown of KRAS expression (both Mut RESULTS
Recommended publications
  • I HIGH MASS ACCURACY COUPLED to SPATIALLY-DIRECTED
    HIGH MASS ACCURACY COUPLED TO SPATIALLY-DIRECTED PROTEOMICS FOR IMPROVED PROTEIN IDENTIFICATIONS IN IMAGING MASS SPECTROMETRY EXPERIMENTS By David Geoffrey Rizzo Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Chemistry August, 2016 Nashville, Tennessee Approved: Richard M. Caprioli, Ph.D. Kevin L. Schey, Ph.D. John A. McLean, Ph.D. Michael P. Stone, Ph.D. i Copyright © 2016 by David Geoffrey Rizzo All Rights Reserved ii This work is dedicated to my family and friends, who have shown nothing but support for me in all of life’s endeavors. iii ACKNOWLEDGEMENTS “As we express our gratitude, we must never forget that the highest appreciation is not to utter words, but to live by them.” - John F. Kennedy – There are many people I must thank for showing kindness, encouragement, and support for me during my tenure as a graduate student. First and foremost, I would like to thank my research advisor, Richard Caprioli, for providing both ample resources and guidance that allowed me to grow as a scientist. Our discussions about my research and science in general have helped me become a much more focused and discerning analytical chemist. I must also thank my Ph.D. committee members, Drs. Kevin Schey, John McLean, and Michael Stone, who have brought valuable insight into my research and provided direction along the way. My undergraduate advisor, Dr. Facundo Fernández, encouraged me to begin research in his lab and introduced me to the world of mass spectrometry.
    [Show full text]
  • 14321 NAE1/APPBP1 (D9I4Z) Rabbit Mab
    Revision 1 C 0 2 - t NAE1/APPBP1 (D9I4Z) Rabbit mAb a e r o t S Orders: 877-616-CELL (2355) [email protected] 1 Support: 877-678-TECH (8324) 2 3 Web: [email protected] 4 www.cellsignal.com 1 # 3 Trask Lane Danvers Massachusetts 01923 USA For Research Use Only. Not For Use In Diagnostic Procedures. Applications: Reactivity: Sensitivity: MW (kDa): Source/Isotype: UniProt ID: Entrez-Gene Id: WB H M R Mk Endogenous 60 Rabbit IgG Q13564 8883 Product Usage Information 2. Huang, D.T. et al. (2005) Mol Cell 17, 341-50. 3. Liakopoulos, D. et al. (1998) EMBO J 17, 2208-14. Application Dilution 4. Gong, L. and Yeh, E.T. (1999) J Biol Chem 274, 12036-42. 5. Wada, H. et al. (2000) J Biol Chem 275, 17008-15. Western Blotting 1:1000 6. Sakata, E. et al. (2007) Nat Struct Mol Biol 14, 167-8. 7. Kawakami, T. et al. (2001) EMBO J 20, 4003-12. Storage 8. Podust, V.N. et al. (2000) Proc Natl Acad Sci USA 97, 4579-84. 9. Wu, K. et al. (2002) J Biol Chem 277, 516-27. Supplied in 10 mM sodium HEPES (pH 7.5), 150 mM NaCl, 100 µg/ml BSA, 50% 10. Amir, R.E. et al. (2002) J Biol Chem 277, 23253-9. glycerol and less than 0.02% sodium azide. Store at –20°C. Do not aliquot the antibody. 11. Herrmann, J. et al. (2007) Circ Res 100, 1276-91. 12. Walden, H. et al. (2003) Mol Cell 12, 1427-37.
    [Show full text]
  • Is APP Key to the Appbp1 Pathway?
    Open Access Full Text Article Austin Alzheimer’s and Parkinson’s Disease A Austin Publishing Group Review Article Cycle on Wheels: Is APP Key to the AppBp1 Pathway? Chen Y1,2*, Neve RN4, Zheng H3, Griffin WST1,2, Barger SW1,2 and Mrak RE5 Abstract 1Department of Geriatrics, University of Arkansas for Alzheimer’s disease (AD) is the gradual loss of the cognitive function due Medical Sciences, USA to neuronal death. Currently no therapy is available to slow down, reverse 2Department of Neurobiology and Developmental or prevent the disease. Here we analyze the existing data in literature and Sciences, University of Arkansas for Medical Sciences, hypothesize that the physiological function of the Amyloid Precursor Protein USA (APP) is activating the AppBp1 pathway and this function is gradually lost during 3Huffington Center on Aging, Baylor College of Medicine, the progression of AD pathogenesis. The AppBp1 pathway, also known as the USA neddylation pathway, activates the small ubiquitin-like protein nedd8, which 4Department of Brain and Cognitive Sciences, covalently modifies and switches on Cullin ubiquitin ligases, which are essential Massachusetts Institute of Technology, USA in the turnover of cell cycle proteins. Here we discuss how APP may activate the 5Department of Pathology, University of Toledo Health AppBp1 pathway, which downregulates cell cycle markers and protects genome Sciences Campus, USA integrity. More investigation of this mechanism-driven hypothesis may provide *Corresponding author: Chen Y, Department insights into disease treatment and prevention strategies. of Geriatrics and Department of Neurobiology and Keywords: APP; Alzheimer’s disease; Ubiquitination; Neddylation; Cell Developmental Sciences, University of Arkansas for cycle Medical Sciences, Little Rock, AR 72205, USA Received: September 02, 2014; Accepted: September 29, 2014; Published: September 30, 2014 Abbreviations at least 18 proteins have been identified to bind AICD [25-27].
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • APPBP1 (NAE1) Mouse Monoclonal Antibody [Clone ID: OTI1E10] Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TA804384 APPBP1 (NAE1) Mouse Monoclonal Antibody [Clone ID: OTI1E10] Product data: Product Type: Primary Antibodies Clone Name: OTI1E10 Applications: IHC, WB Recommended Dilution: WB 1:2000, IHC 1:150 Reactivity: Human, Mouse, Rat Host: Mouse Isotype: IgG1 Clonality: Monoclonal Immunogen: Human recombinant protein fragment corresponding to amino acids 1-274 of human NAE1 (NP_001018170) produced in E.coli. Formulation: PBS (PH 7.3) containing 1% BSA, 50% glycerol and 0.02% sodium azide. Concentration: 1 mg/ml Purification: Purified from mouse ascites fluids or tissue culture supernatant by affinity chromatography (protein A/G) Conjugation: Unconjugated Storage: Store at -20°C as received. Stability: Stable for 12 months from date of receipt. Predicted Protein Size: 50.4 kDa Gene Name: NEDD8 activating enzyme E1 subunit 1 Database Link: NP_001018170 Entrez Gene 84019 RatEntrez Gene 234664 MouseEntrez Gene 8883 Human Q13564 This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 3 APPBP1 (NAE1) Mouse Monoclonal Antibody [Clone ID: OTI1E10] – TA804384 Background: The protein encoded by this gene binds to the beta-amyloid precursor protein. Beta-amyloid precursor protein is a cell surface protein with signal-transducing properties, and it is thought to play a role in the pathogenesis of Alzheimer's disease. In addition, the encoded protein can form a heterodimer with UBE1C and bind and activate NEDD8, a ubiquitin-like protein.
    [Show full text]
  • Cellular and Molecular Signatures in the Disease Tissue of Early
    Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of
    [Show full text]
  • NAE1 (APPBP1) Antibody (C-Term) Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap7273b
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 NAE1 (APPBP1) Antibody (C-term) Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP7273b Specification NAE1 (APPBP1) Antibody (C-term) - Product Information Application WB, IHC-P,E Primary Accession Q13564 Other Accession Q9Z1A5, Q8VBW6, Q4R3L6, NP_003896 Reactivity Human Predicted Monkey, Mouse, Rat Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Calculated MW 60246 Antigen Region 430-459 NAE1 (APPBP1) Antibody (C-term) - Additional Western blot analysis of anti-APPBP1 Information Antibody (C-term) (Cat.#AP7273b) in mouse brain tissue lysates (35ug/lane). Gene ID 8883 APPBP1(arrow) was detected using the purified Pab. Other Names NEDD8-activating enzyme E1 regulatory subunit, Amyloid beta precursor protein-binding protein 1, 59 kDa, APP-BP1, Amyloid protein-binding protein 1, Proto-oncogene protein 1, NAE1, APPBP1 Target/Specificity This NAE1 (APPBP1) antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 430-459 amino acids from the C-terminal region of human NAE1 (APPBP1). Dilution WB~~1:1000 IHC-P~~1:50~100 Western blot analysis of APP-BP1(arrow) using rabbit polyclonal APP-BP1 Antibody Format (C-term) (Cat.#AP7273b). 293 cell lysates (2 Purified monoclonal antibody supplied in ug/lane) either nontransfected (Lane 1) or PBS with 0.09% (W/V) sodium azide. This transiently transfected with the APP-BP1 antibody is purified through a protein G gene (Lane 2) (Origene Technologies). column, followed by dialysis against PBS. Storage Maintain refrigerated at 2-8°C for up to 2 Page 1/2 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 weeks.
    [Show full text]
  • Recombinant Human NEDD8 E1/APPBP1/UBA3 Protein Catalog Number: ATGP1425
    Recombinant human NEDD8 E1/APPBP1/UBA3 protein Catalog Number: ATGP1425 PRODUCT INPORMATION Expression system E.coli Domain 1-463aa UniProt No. Q8TBC4 NCBI Accession No. AAH22853 Alternative Names NEDD8-activating enzyme E1 catalytic subunit, uBE1C PRODUCT SPECIFICATION Molecular Weight 54.4 kDa (487aa) Concentration 1mg/ml (determined by Bradford assay) Formulation Liquid in. 20mM Tris-HCl buffer (pH 8.0) containing 20% glycerol, 1mM DTT Purity > 90% by SDS-PAGE Tag His-Tag Application SDS-PAGE Storage Condition Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles. BACKGROUND Description uBA3, also known as NEDD8-activating enzyme E1 catalytic subunit, is the catalytic subunit of the dimeric uBA3- NAE1 E1 enzyme. E1 activates NEDD8 by first adenylating its C-terminal glycine residue with ATP, thereafter linking this residue to the side chain of the catalytic cysteine, yielding a NEDD8-uBA3 thioester and free AMP. E1 finally transfers NEDD8 to the catalytic cysteine of uBE2M. Recombinant human uBA3 protein, fused to His-tag at N-terminus, was expressed in E. coli and purified by using conventional chromatography. 1 Recombinant human NEDD8 E1/APPBP1/UBA3 protein Catalog Number: ATGP1425 Amino acid Sequence MGSSHHHHHH SSGLVPRGSH MGSHMADGEE PERKRRRIEE LLAEKMAVDG GCGDTGDWEG RWNHVKKFLE RSGPFTHPDF EPSTESLQFL LDTCKVLVIG AGGLGCELLK NLALSGFRQI HVIDMDTIDV SNLNRQFLFR PKDIGRPKAE VAAEFLNDRV PNCNVVPHFN KIQDFNDTFY RQFHIIVCGL DSIIARRWIN GMLISLLNYE DGVLDPSSIV PLIDGGTEGF KGNARVILPG MTACIECTLE LYPPQVNFPM CTIASMPRLP EHCIEYVRML QWPKEQPFGE GVPLDGDDPE HIQWIFQKSL ERASQYNIRG VTYRLTQGVV KRIIPAVAST NAVIAAVCAT EVFKIATSAY IPLNNYLVFN DVDGLYTYTF EAERKENCPA CSQLPQNIQF SPSAKLQEVL DYLTNSASLQ MKSPAITATL EGKNRTLYLQ SVTSIEERTR PNLSKTLKEL GLVDGQELAV ADVTTPQTVL FKLHFTS General References Gong L., et al.
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Discovery of a Molecular Glue That Enhances Uprmt to Restore
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431525; this version posted February 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Discovery of a molecular glue that enhances UPRmt to restore proteostasis via TRKA-GRB2-EVI1-CRLS1 axis Authors: Li-Feng-Rong Qi1, 2 †, Cheng Qian1, †, Shuai Liu1, 2†, Chao Peng3, 4, Mu Zhang1, Peng Yang1, Ping Wu3, 4, Ping Li1 and Xiaojun Xu1, 2 * † These authors share joint first authorship Running title: Ginsenoside Rg3 reverses Parkinson’s disease model by enhancing mitochondrial UPR Affiliations: 1 State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China. 2 Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China. 3. National Facility for Protein Science in Shanghai, Zhangjiang Lab, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China 4. Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai, 201204, China. Corresponding author: Ping Li, State Key Laboratory of Natural Medicines, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China. Email: [email protected], Xiaojun Xu, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, 210009, Nanjing, Jiangsu, China. Telephone number: +86-2583271203, E-mail: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/2021.02.17.431525; this version posted February 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • The Proteasomal Deubiquitinating Enzyme PSMD14 Regulates Macroautophagy by Controlling Golgi-To-ER Retrograde Transport
    Supplementary Materials The proteasomal deubiquitinating enzyme PSMD14 regulates macroautophagy by controlling Golgi-to-ER retrograde transport Bustamante HA., et al. Figure S1. siRNA sequences directed against human PSMD14 used for Validation Stage. Figure S2. Primer pairs sequences used for RT-qPCR. Figure S3. The PSMD14 DUB inhibitor CZM increases the Golgi apparatus area. Immunofluorescence microscopy analysis of the Golgi area in parental H4 cells treated for 4 h either with the vehicle (DMSO; Control) or CZM. The Golgi marker GM130 was used to determine the region of interest in each condition. Statistical significance was determined by Student's t-test. Bars represent the mean ± SEM (n =43 cells). ***P <0.001. Figure S4. CZM causes the accumulation of KDELR1-GFP at the Golgi apparatus. HeLa cells expressing KDELR1-GFP were either left untreated or treated with CZM for 30, 60 or 90 min. Cells were fixed and representative confocal images were acquired. Figure S5. Effect of CZM on proteasome activity. Parental H4 cells were treated either with the vehicle (DMSO; Control), CZM or MG132, for 90 min. Protein extracts were used to measure in vitro the Chymotrypsin-like peptidase activity of the proteasome. The enzymatic activity was quantified according to the cleavage of the fluorogenic substrate Suc-LLVY-AMC to AMC, and normalized to that of control cells. The statistical significance was determined by One-Way ANOVA, followed by Tukey’s test. Bars represent the mean ± SD of biological replicates (n=3). **P <0.01; n.s., not significant. Figure S6. Effect of CZM and MG132 on basal macroautophagy. (A) Immunofluorescence microscopy analysis of the subcellular localization of LC3 in parental H4 cells treated with either with the vehicle (DMSO; Control), CZM for 4 h or MG132 for 6 h.
    [Show full text]
  • Drosophila and Human Transcriptomic Data Mining Provides Evidence for Therapeutic
    Drosophila and human transcriptomic data mining provides evidence for therapeutic mechanism of pentylenetetrazole in Down syndrome Author Abhay Sharma Institute of Genomics and Integrative Biology Council of Scientific and Industrial Research Delhi University Campus, Mall Road Delhi 110007, India Tel: +91-11-27666156, Fax: +91-11-27662407 Email: [email protected] Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 Running head: Pentylenetetrazole mechanism in Down syndrome 1 Abstract Pentylenetetrazole (PTZ) has recently been found to ameliorate cognitive impairment in rodent models of Down syndrome (DS). The mechanism underlying PTZ’s therapeutic effect is however not clear. Microarray profiling has previously reported differential expression of genes in DS. No mammalian transcriptomic data on PTZ treatment however exists. Nevertheless, a Drosophila model inspired by rodent models of PTZ induced kindling plasticity has recently been described. Microarray profiling has shown PTZ’s downregulatory effect on gene expression in fly heads. In a comparative transcriptomics approach, I have analyzed the available microarray data in order to identify potential mechanism of PTZ action in DS. I find that transcriptomic correlates of chronic PTZ in Drosophila and DS counteract each other. A significant enrichment is observed between PTZ downregulated and DS upregulated genes, and a significant depletion between PTZ downregulated and DS dowwnregulated genes. Further, the common genes in PTZ Nature Precedings : hdl:10101/npre.2010.4330.1 Posted 5 Apr 2010 downregulated and DS upregulated sets show enrichment for MAP kinase pathway. My analysis suggests that downregulation of MAP kinase pathway may mediate therapeutic effect of PTZ in DS. Existing evidence implicating MAP kinase pathway in DS supports this observation.
    [Show full text]