Industrial Exhaust Fans As Source of Power INDUSTRIAL EXHAUST FANS AS SOURCE of POWER

Total Page:16

File Type:pdf, Size:1020Kb

Industrial Exhaust Fans As Source of Power INDUSTRIAL EXHAUST FANS AS SOURCE of POWER Industrial Exhaust Fans As Source Of Power INDUSTRIAL EXHAUST FANS AS SOURCE OF POWER 1ARCHIT PATNAIK, 2S.M.ALI KIIT University, Bhubaneswar, Odisha, India Abstract: The energy demand of the world has become unbridled in the past years and is augmenting by leaps and bounds. With increase in energy demand, the conventional sources of energy (fossil fuels, nuclear) are encumbered with monumental pressure and hence, the unremitting use of it, leads to dearth of fossil fuels. This has provoked an extensive research into the area of non-conventional energy sources like hydro, wind, thermal energy, etc. Out of these, the wind energy is being discussed in this paper. Wind energy has a lot of potential and advantages but its utilization is restricted due to its irregularity, geographical conditions and its availability. Our primary goal is to suggest an idea that can surmount these conundrums and utilize the wind energy to its maximum extent. This paper deals with the wind energy that can be derived from the wasted wind energy from industrial exhaust fans. The wind force from an exhaust fan can drive a small windmill and the energy generated from it will be stored in energy storage unit. The dc power stored in the battery will be converted into ac through inverter and then will be supplied to load and hence, can be utilized to meet the growing energy demand. Keywords: Wind power, Exhaust fan, Wind turbine, Electrical storage I. INTRODUCTION Local winds: These winds are caused by unequal heating and cooling of ground and The rapid depletion of natural resources and fossil ocean/lake surfaces during day and night. fuels have led to the development of alternative Planetary winds (Global winds): These sources of energy. The conventional sources of winds are engendered by daily rotation of energy are non-renewable, cause pollution, not earth around its polar axis and unequal sufficient to meet the growing energy demand. Due to temperature between polar regions and these reasons, it is imperative that we must start equatorial regions. exploring and developing methods to utilize the non- conventional energy sources to reduce too much of III. WIND POWER dependence on conventional sources. One of the most arresting form of non-conventional Wind power is the conversion of wind energy into a energy is wind energy. But due to some of its useful form of energy, such as using: wind turbines to limitations, the wind energy cannot be utilized fully make electrical power, windmills for mechanical to produce electricity. This limitation can be power, wind pumps for water pumping or drainage, surmounted with idea of using the wind from exhaust or sails to propel ships. fan of big industries as a source of power. Advantages of wind energy: It is renewable source of energy. II. WIND FORMATION It emits no greenhouse gases and hence non- polluting. Wind is the movement of air across the surface of the It uses very little land Earth, affected by areas of high pressure and of low Fuel transportation are not required in wind pressure. The surface of the Earth is heated unevenly energy conversion system. by the Sun, depending on factors such as the angle of Disadvantages of wind energy: incidence of the sun's rays at the surface (which Owing to its irregularity, the wind energy differs with latitude and time of day) and whether the needs storage. land is open or covered with vegetation. Also, large Availability of energy is fluctuating in bodies of water, such as the oceans, heat up and cool nature. down slower than the land. The heat energy absorbed Wind energy conversion is noisy in at the Earth's surface is transferred to the air directly operation. above it and, as warmer air is less dense than cooler air, it rises above the cool air to form areas of high Low energy density pressure and thus pressure differentials. The rotation Maintenance is required. of the Earth drags the atmosphere around with it Wind turbines design, manufacture and causing turbulence. These effects combine to cause a installation have proved to be most complex constantly varying pattern of winds across the surface due to several variables and extreme of the Earth. stresses. Its implementation is limited due to Sources of wind are discussed below [1]: geographical locations. Proceedings of 6th IACEECE-2013, 29th September 2013, Chennai, India. ISBN: 978-93-82702-31-3 35 Industrial Exhaust Fans As Source Of Power IV. ELECTRICAL POWER GENERATION process. Then inverter will convert the stored dc FROM WIND ENERGY HISTORY energy into ac. This ac energy can be supplied to the load and grid. In July 1887, a Scottish academic, Professor James This mechanism beget several advantages: Blyth, built a cloth-sailed wind turbine in the garden Wasted wind force from the exhaust fan can of his holiday cottage in Marykirk and used the be utilized to generated electrical power. electricity it produced to charge accumulators which It will surmount the present day problems of he used to power the lights in his cottage. His wind energy conversion, that is, it can experiments culminated in a UK patent in 1891. In provide a constant source of wind and the the winter of 1887/8 US inventor Charles F. Brush wind fluctuations can be surmounted. produced electricity using a wind powered generator It will not be affected by geographical which powered his home and laboratory until about locations and hence can be implemented in 1900. In the 1890s, the Danish scientist and inventor many big industries. Poul la Cour constructed wind turbines to generate It will be plentiful, renewable and eco- electricity, which was used to produce hydrogen and friendly source of energy. Oxygen by electrolysis and a mixture of the two The stored energy can be used when main gases was stored for use as a fuel. La Cour was the supply is cut off. Hence, can be used as a first to discover that fast rotating wind turbines with emergency unit. fewer rotor blades were the most efficient in generating electricity and in 1904 he founded the Society of Wind Electricians [2]. By the mid-1920s, 1 to 3-kilowatt wind generators developed by companies such as Parris-Dunn and Jacobs Wind-electric found widespread use in the rural areas of the mid western Great Plains of the US but by the 1940s the demand for more power and the coming of the electrical grid throughout those areas made these small generators obsolete. During the 1920s the first vertical axis wind turbine was built by Frenchman George Darrieus and in 1931 a 100 kW precursor to the modern horizontal wind generator was used in Yalta, in the USSR. In 1956 Johannes Juul, a former student of la Cour, built a 200 kW, three-bladed turbine at Gedser in Denmark, which influenced the design af many later turbines. In 1975 the United States Department of Energy funded a project to develop utility-scale wind turbines. The NASA wind turbines project built thirteen experimental turbines which paved the way for much of the technology used today. Since then, turbines have increased greatly in size with the Enercon E-126 capable of delivering up to 7 MW. Wind turbine production has expanded to many countries and wind power is expected to grow worldwide in the twenty-first century. V. WORKING PRINCIPLE The exhaust fan in big industries can play a seminal role in producing electrical energy which can surmount the energy demand to certain extent. The wind force from the exhaust fan can be directed Fig 1.Flow chart of the process of using exhaust fan as a source towards a small windmill in front of it. The wind of power Wind energy thrust from the exhaust fan can drive wind turbine and these wind turbines produce electricity which can Wind energy is the kinetic energy of air in motion, be stored in storage unit. also called wind. Total wind energy flowing through The storage unit may vary according to the an imaginary area A during the time t is[2]: production of electricity from the wind turbines. Preferably ultra capacitors can be used to store monumental amount of energy produced in the ………………………(1) Proceedings of 6th IACEECE-2013, 29th September 2013, Chennai, India. ISBN: 978-93-82702-31-3 36 Industrial Exhaust Fans As Source Of Power where ρ is the air density; v is the wind speed; Avt is operating in. Once we incorporate various the volume of air passing through A (which is engineering requirements of a wind turbine - strength considered perpendicular to the direction of the and durability in particular – the real world limit is wind); Avtρ is therefore the mass m passing per unit well below the Betz Limit with values of 0.35-0.45 time. Note that ½ ρv2 is the kinetic energy of the common even in the best designed wind turbines. moving air per unit volume. Hence, the power equation becomes Power is energy per unit time, so the wind power Power generated =0.5×A×ρ× Cp× v3 incident on A (e.g. equal to the rotor area of a wind ……………………………………… (4) turbine) is: Typical modern wind turbines have diameters of 40 to 90 metres (130 to 300 ft) and are rated between 500 kW and 2 MW. These values are being tabulated ………………………………………………...... (2) below and the power that can be generated using the Wind power in an open air stream is thus proportional wind from the exhaust fan (taking the exhaust fan to the third power of the wind speed; the available specification of sinter plant 2) is calculated.
Recommended publications
  • Final Report DE-EE0005380: Assessment of Offshore Wind Farm
    THE UNIVERSITY OF TEXAS AT AUSTIN Final Report DE-EE0005380 Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Prepared for: U.S. Department of Energy Prepared by: Hao Ling (UT) Mark F. Hamilton (ARL:UT) Rajan Bhalla (SAIC) Walter E. Brown (ARL:UT) Todd A. Hay (ARL:UT) Nicholas J. Whitelonis (UT) Shang-Te Yang (UT) Aale R. Naqvi (UT) 9/30/2013 DE-EE0005380 The University of Texas at Austin Notice and Disclaimer This report is being disseminated by the Department of Energy. As such, the document was prepared in compliance with Section 515 of the Treasury and General Government Appropriations Act for Fiscal Year 2001 (Public Law 106-554) and information quality guidelines issued by the Department of Energy. Though this report does not constitute “influential” information, as that term is defined in DOE’s information quality guidelines or the Office of Management and Budget's Information Quality Bulletin for Peer Review (Bulletin), the study was reviewed both internally and externally prior to publication. For purposes of external review, the study benefited from the advice, technical responses and comments of an expert group of stakeholders. That group of contributors and reviewers included representatives from academia, private corporations, national laboratories, and a broad spectrum of federal agencies. ii DE-EE0005380 The University of Texas at Austin Acknowledgments For their support of this report, the authors thank the entire U.S. Department of Energy (DOE) Wind & Water Power Technologies Program team, and in particular Brian Connor, Gary Norton, Bryan Miller, Michael Hahn, Gretchen Andrus, and Patrick Gilman.
    [Show full text]
  • WIND FARMS of TOMORROW PROFILE NRG Systems, Inc
    Giving Wind Direction SYSTEMS IN FOCUS Turbine Inspection Systems & Parts WIND FARMS OF TOMORROW PROFILE NRG Systems, Inc. MARCH 2019 windsystemsmag.com [email protected] 888.502.WORX torkworx.com OH BABY! We have cut the cord on RAD Extreme Torque Machines. See it at the WINDPOWER EXPO in Houston, TX May 20 –23, 2019. BOOTH 3528 • Range from 250 to 3000 ft/lbs • Torque and angle feature • Automatic -2 speed gaearbox • Programmable preset torque settings • Latest Li-ion 18V battery • High accuracy +/- 5% CONTENTS 12 PROFILE IN FOCUS NRG Systems, Inc. helps its customers secure the lowest possible financing rates for their prospective wind projects, AUTOMATING and ensures those projects keep running INSPECTIONS efficiently after they go live. 22 WITH DRONES AND AI AI-based autonomous drones can complete visual inspections for the entire turbine in as little as 15 minutes, 10 times more efficiently than traditional methods. SEVEN YEARS OF SOLID RESULTS Field testing confirms the long-life potential CONVERSATION for Timken™ wear-resistant mainshaft Ben Moss, senior projects director at New bearings in wind turbines. 16 Energy Update, says business gets done at Wind O&M Dallas, and that creates an excitement that people thrive off. 26 2 MARCH 2019 THE COVER: Shutterstock / Illustration by Michele Hall EcoGear 270XP EcoGear ® 270 XP Full-Synthetic PAG Wind Turbine Gear Oil Eliminate oil change headaches THE LIFETIME FILL Reduction in wear on critical equipment Higher load carrying capacity Chemically Engineered Load-Carrying Capacity Non-sludge or varnish forming Better Cold Temperature Start-Ups Hydrolytic stability forgives water ingression Condensation/Water Forgiveness Superior Wear Characteristics Polyalkalene Glycol based synthetic lubricants by American Chemical Technologies protect your turbines and stay within spec while extendingwww.AmericanChemTech.com oil changes to 20 years.
    [Show full text]
  • Wind Power Today, 2010, Wind and Water Power Program
    WIND AND WATER POWER PROGRAM Wind Power Today 2010 •• BUILDING•A•CLEAN• ENERGY •ECONOMY •• ADVANCING•WIND• TURBINE •TECHNOLOGY •• SUPPORTING•SYSTEMS•• INTERCONNECTION •• GROWING•A•LARGER• MARKET 2 WIND AND WATER POWER PROGRAM BUILDING•A•CLEAN•ENERGY•ECONOMY The mission of the U.S. Department of Energy Wind Program is to focus the passion, ingenuity, and diversity of the nation to enable rapid expansion of clean, affordable, reliable, domestic wind power to promote national security, economic vitality, and environmental quality. Built in 2009, the 63-megawatt Dry Lake Wind Power Project is Arizona’s first utility-scale wind power project. Building•a•Green•Economy• In 2009, more wind generation capacity was installed in the United States than in any previous year despite difficult economic conditions. The rapid expansion of the wind industry underscores the potential for wind energy to supply 20% of the nation’s electricity by the year 2030 as envisioned in the 2008 Department of Energy (DOE) report 20% Wind Energy by 2030: Increasing Wind Energy’s Contribution to U.S. Electricity Supply. Funding provided by DOE, the American Recovery and Reinvestment Act CONTENTS of 2009 (Recovery Act), and state and local initiatives have all contributed to the wind industry’s growth and are moving the BUILDING•A•CLEAN•ENERGY•ECONOMY• ........................2 nation toward achieving its energy goals. ADVANCING•LARGE•WIND•TURBINE•TECHNOLOGY• .....7 Wind energy is poised to make a major contribution to the President’s goal of doubling our nation’s electricity generation SMALL •AND•MID-SIZED•TURBINE•DEVELOPMENT• ...... 15 capacity from clean, renewable sources by 2012. The DOE Office of Energy Efficiency and Renewable Energy invests in clean SUPPORTING•GRID•INTERCONNECTION• ....................
    [Show full text]
  • Wind Powering America Fy08 Activities Summary
    WIND POWERING AMERICA FY08 ACTIVITIES SUMMARY Energy Efficiency & Renewable Energy Dear Wind Powering America Colleague, We are pleased to present the Wind Powering America FY08 Activities Summary, which reflects the accomplishments of our state Wind Working Groups, our programs at the National Renewable Energy Laboratory, and our partner organizations. The national WPA team remains a leading force for moving wind energy forward in the United States. At the beginning of 2008, there were more than 16,500 megawatts (MW) of wind power installed across the United States, with an additional 7,000 MW projected by year end, bringing the U.S. installed capacity to more than 23,000 MW by the end of 2008. When our partnership was launched in 2000, there were 2,500 MW of installed wind capacity in the United States. At that time, only four states had more than 100 MW of installed wind capacity. Twenty-two states now have more than 100 MW installed, compared to 17 at the end of 2007. We anticipate that four or five additional states will join the 100-MW club in 2009, and by the end of the decade, more than 30 states will have passed the 100-MW milestone. WPA celebrates the 100-MW milestones because the first 100 megawatts are always the most difficult and lead to significant experience, recognition of the wind energy’s benefits, and expansion of the vision of a more economically and environmentally secure and sustainable future. Of course, the 20% Wind Energy by 2030 report (developed by AWEA, the U.S. Department of Energy, the National Renewable Energy Laboratory, and other stakeholders) indicates that 44 states may be in the 100-MW club by 2030, and 33 states will have more than 1,000 MW installed (at the end of 2008, there were six states in that category).
    [Show full text]
  • To Download This Report (PDF)
    2009 INDIANA RENEWABLE ENERGY RESOURCES STUDY State Utility Forecasting Group Energy Center Purdue University West Lafayette, Indiana David Nderitu Emily Gall Douglas Gotham Forrest Holland Marco Velastegui Paul Preckel September 2009 2009 Indiana Renewable Energy Resources Study - State Utility Forecasting Group Table of Contents Page List of Figures iii List of Tables v Acronyms and Abbreviations vi Foreword ix 1. Overview 1 1.1 Trends in renewable energy consumption in the United States 1 1.2 Trends in renewable energy consumption in Indiana 4 1.3 References 8 2. Energy from Wind 9 2.1 Introduction 9 2.2 Economics of wind energy 11 2.3 State of wind energy nationally 14 2.4 Wind energy in Indiana 18 2.5 Incentives for wind energy 24 2.6 References 26 3. Dedicated Energy Crops 27 3.1 Introduction 27 3.2 Economics of energy crops 30 3.3 State of energy crops nationally 32 3.4 Energy crops in Indiana 36 3.5 Incentives for energy crops 38 3.6 References 40 4. Organic Waste Biomass 43 4.1 Introduction 43 4.2 Economics of organic waste biomass 46 4.3 State of organic waste biomass nationally 47 4.4 Organic waste biomass in Indiana 49 4.5 Incentives for organic waste biomass 53 4.6 References 54 i 2009 Indiana Renewable Energy Resources Study - State Utility Forecasting Group 5. Solar Energy 57 5.1 Introduction 57 5.2 Economics of solar technologies 60 5.3 State of solar energy nationally 60 5.4 Solar energy in Indiana 66 5.5 Incentives for solar energy 66 5.6 References 69 6.
    [Show full text]
  • Wind Turbines and Proximity to Homes
    ! ! ! ! ! ! ! Wind Turbines and Proximity! to Homes: The Impact of Wind Turbine Noise on Health a review of the literature & discussion of the issues ! ! ! by! ! Barbara J Frey, BA, MA (University of Minnesota) & Peter J Hadden, BSc (Est Man), FRICS January 2012 Health is a state of complete physical, mental, and social well-being, and not merely the absence of disease and infirmity. -- The World Health Organization Charter The objective of science is not agreement on a course of action, but the pursuit of truth. -- John Kay (2007) First, Do No Harm. -- The Hippocratic Oath ! "! Table of Contents ! Acknowledgements 3 Preface 4 Introduction 5 Chapter 1 Wind Turbines built near Homes: the Effects on People 8 Appendix 1: People’s Health Experiences: Additional References 21 Chapter 2 Wind Turbine Noise and Guidance 22 2.1 Wind turbine noise 22 2.2 Wind turbine noise guidance 38 2.3 Wind turbine noise: Guidance process 43 2.4 Wind turbine noise: Low frequency noise (LFN) 54 2.5 Wind turbine noise: Amplitude modulation (AM) 60 Appendix 2: Wind Turbine Noise & Guidance: Additional References 65 Chapter 3 Wind Turbine Noise: Impacts on Health 67 3.1 Wind turbine noise and its impacts on health, sleep, and cognition 67 3.2 Wind turbine noise: Clinical studies and counterclaims 92 Appendix 3.1 Health: International Perspectives 101 Appendix 3.2 Health: Additional References 102 Chapter 4 Wind Turbine Noise and Human Rights 103 4.1 Potential violations 103 4.2 The United Nations Universal Declaration of Human Rights 112 4.3 State Indifference to
    [Show full text]
  • Wind Energy for Future
    Wind Energy For Future Presented by: Email id: 1)[email protected] V.ARAVIND 2) [email protected] C.VENKATESHWARAN Mobile no: 1).7401128404 Department Of Mechanical Engineering 2).9942203321 Velammal Engineering College Chennai. It doesn’t matter how many resources you have……. If you don’t know how to use them…they will never be enough…….!!! the RE sources started to appear in the Abstract agenda and hence the wind energy gained significant interest. As a result of extensive Towards the end of 20th and beginning of studies on this topic, wind energy has the 21st centuries, interest has risen in new recently been applied in various industries, and renewable energy(RE) sources and it started to compete with other energy especially windenergy for electricity resources. In this paper, wind energy is generation. The scientists and researchers reviewed and opened for further discussion. attempted to accelerate solutions for Wind energy history, wind-power windenergy generation design parameters. meteorology, the energy–climate relations, Our life is directly related to energy and its wind-turbine technology, wind economy, consumption, and the issues of energy wind–hybrid applications and the current research are extremely important and highly status of installed wind energy capacity all sensitive. over the world reviewed critically with further enhancements and new research trend direction suggestions. In a short time, wind energy is welcomed by society, industry and politics as a clean, practical, economical and environmentally friendly alternative. After the 1973 oil crisis, Keywords: on the environment are generally less problematic than those from other power Wind farm, wind mill, offshore sources.
    [Show full text]
  • Chapter 1 History
    CHAPTER 1 HISTORY 1.0 INTRODUCTION Since early recorded history, people have been harnessing the energy of the wind. Wind energy propelled boats along the Nile River as early as 5000 B.C. By 200 B.C., simple windmills in China were pumping water, while vertical-axis windmills with woven reed sails were grinding grain in Persia and the Middle East. New ways of using the energy of the wind eventually spread around the world. By the 11th century, people in the Middle East were using windmills extensively for food production; returning merchants and crusaders carried this idea back to Europe. The Dutch refined the windmill and adapted it for draining lakes and marshes in the Rhine River Delta. When settlers took this technology to the New World in the late 19th century, they began using windmills to pump water for farms and ranches, and later, to generate electricity for homes and industry. Industrialization, first in Europe and later in America, led to a gradual decline in the use of windmills. The steam engine replaced European water-pumping windmills. In the 1930s, the Rural Electrification Administration's programs brought inexpensive electric power to most rural areas in the United States. However, industrialization also sparked the development of larger windmills to generate electricity. Commonly called wind turbines, these machines appeared in Denmark as early as 1890. In the 1940s the largest wind turbine of the time began operating on a Vermont hilltop known as Grandpa's Knob. This turbine, rated at 1.25 megawatts in winds of about 30 mph, fed electric power to the local utility network for several months during World War II.
    [Show full text]
  • Assessment of Wind Energy Production Software
    Assessment of Wind Energy Production Software Hermann Reynir Hermannsson A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering University of Washington 2013 Committee: Joe Mahoney Timothy Larson Program Authorized to Offer Degree: Department of Civil and Environmental Engineering ©Copyright 2013 Hermann Reynir Hermannsson University of Washington Abstract Assessment of Wind Energy Production Software Hermann Reynir Hermannsson Chair of the Supervisory Committee: Professor Joe Mahoney Professor Timothy Larson Department of Civil and Environmental Engineering An examination of two computer programs used for estimating wind energy, RETScreen and System Advisor Model (SAM), are examined and compared to measured data from a wind farm. Wind speed and electrical production estimated by these programs are examined and compared to the measured data. Both programs assume no losses and predict data for an ideal wind farm. Measured data on the other hand includes losses within the farm (e.g. array loss, airfoil loss and availability loss). According to results, RETScreen underestimates the electrical production by 35% and SAM overestimates it by 26%. 1 Introduction ............................................................................................................................. 1 2 Methods................................................................................................................................... 4 2.1 Measured data from the wind farm .................................................................................
    [Show full text]
  • Wind Turbine Sound: Past, Present, and Future
    Proceedings of ACOUSTICS 2016 9-11 November 2016, Brisbane, Australia Wind turbine sound: past, present, and future Mark Bastasch Principal Acoustical Engineer, CH2M, Portland, Oregon, USA ABSTRACT In the 1980s, research in the United States led by NASA and the National Renewable Energy Laboratory focused on the experience of people living near the first megawatt-scale turbines. In 2005, Dr Geoff Leventhall established the first biannual conference focusing solely on wind turbine noise. Since that time, wind turbine-specific sessions are increasingly common at acoustical conferences. Several large studies recently investigated individual and community response to wind developments. Notably, Health Canada concluded its multi-year epidemiological study, and similarly extensive efforts funded by the Japanese Ministry of Environment have been published. The Crichton team from New Zealand published numerous papers about the role of the nocebo effect and infrasound, and a small study in the United Kingdom measured the psychophysiological response to the visual impact of turbines on the landscape. In Australia, the Senate’s Select Committee on Wind Turbines published a 350-page final report. Australia’s (and likely the world’s) first national Wind Farm Commissioner was appointed in late 2015, and the National Health and Medical Research Council-targeted grant for Research into Wind Farms and Human Health was recently awarded. This paper summarizes highlights of past, present, and future research. 1. OVERVIEW OF 1980s RESEARCH In the United States, the late 1970s and early 1980s were characterized by political tensions in the Middle East, an oil embargo, and an energy crisis. The focus was on energy security, and President Carter installed solar panels at the White House.
    [Show full text]
  • )0 NOT Dfstro NASA TM-79174 to , V
    \ DOE/NASA/1059-79/2 )0 NOT DfSTRO NASA TM-79174 TO , v LARGE HORIZONTAL AXIS WIND TURBINE DEVELOPMENT William H. Robbins and Ronald L. Thomas National Aeronautics and Space Administration Lewis Research Center Work performed for U.S. DEPARTMENT OF ENERGY Office of Energy Technology Division of Distributed Solar Technology 24 JUL1979 MCDONNELL DOUGLAS >EAKCH & ENGINEERING LIBRARY ST. LOUIS Prepared for Wind Energy Innovative Systems Conference sponsored by the Solar Energy Research Institute (SERI) Colorado Springs, Colorado, May 23-25, 1979 NOTICE This report was prepared to document work sponsored by the United States Government. Neither the United States nor its agent, the United States Department of Energy, nor any Federal employees, nor any of their contractors, subcontractors or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or useful- ness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. DOE/NASA/1059-79/2 NASA TM-79174 LARGE HORIZONTAL AXIS WIND TURBINE DEVELOPMENT William H, Robbins and Ronald L Thomas National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 44135 Prepared for U.S. DEPARTMENT OF ENERGY Office of Energy Technology Division of Distributed Solar Technology Washington, D.C. 20545 Under Interagency Agreement E(49-26H059 Wind Energy Innovative Systems Conference sponsored by the Solar Energy Research Institute (SERI) Colorado Springs, Colorado, May 23-25, 1979 LARGE HORIZONTAL-AXIS WIND TURBINE DEVELOPMENT William H. Robbins and Ronald L. Thomas NASA Lewis Research Center Cleveland, OH 44135 ABSTRACT One facet of the Federal Wind Energy Program, Large Horizontal Axis Wind Turbine Development, is being managed by the NASA Lewis Research Center.
    [Show full text]
  • March 1, 2012 Meeting of the Area Plan Commission Was Called to Order at 7:45 P.M
    AREAPLAN COMMISSION MINUTES March 1,2012 ROLL CALL /$pfc\ Harry Baumgartner, Jr. Jerome Markley Angie Dial Keith Masterson Jarrod Hahn Mike Morrissey Bill Horan Tim Rohr Richard Kolkman John Schuhmacher Finley Lane Michael Lautzenheiser, Jr., Director The March 1, 2012 meeting of the Area Plan Commission was called to order at 7:45 p.m. by President Jerome Markley. Tenmembers were present forroll call. Mike Morrissey was absent. APPROVAL OF MINUTES: Jarrod Hahn made a motion to approve the minutes from the February 2, 2012 meeting; Bill Horan seconded the motion, the motion carried with a vote of 10-0. OLD ITEMS: Continued from the December 8,2011 meeting Andy Antrim, attorney representing the Wells County Area Plan Commission, discussed the purpose of the meeting. He stated when the WECS ordinance was added and amended into the ordinance. He also discussed the agenda and the order of the meeting. THESE WERE DISCUSSED TOGETHER Al1-12-27 CHESTER TWP & LIBERY TWP Multiple Locations Wells County Wind, LLC (APEX) requesting development plan approval for Phase 1 of a LargeWECS project with a minimum of 111.6 MW consisting of62 -1.8 MW wind turbines. The multiple properties are zoned A-l. All-12-28 CHESTER TWP & NOTTINGHAM TWP Multiple Locations Wells County Wind, LLC (APEX) requestingdevelopment plan approval for Phase 2 of a Large WECS projectwith a minimum of 100.8 MW consisting of 56- 1.8 MW wind turbines. The multiple properties are zoned A-l. Kent Dougherty and Rob Propes represented Apex Wind Energy. Kent Dougherty stated the significant revision to the project layout in response to the community's concerns.
    [Show full text]