Survey of the Phyla- Animalia, Invertebrates the Kingdom Animalia Is in the Domain Eukarya and in the Supergroup Unikonta
Total Page:16
File Type:pdf, Size:1020Kb
Survey of the Phyla- Animalia, Invertebrates The Kingdom Animalia is in the domain Eukarya and in the supergroup Unikonta. They are in the group Opisthkonta with fungi. Both groups have different unicellular organisms that they are their common ancestor. That fact indicates the groups became multicellular organisms independent of one another. Characteristics of the Animal Kingdom 1. Animals are multicellular, heterotrophic, ingestive and eukaryotic. 2. The cells lack cell walls and are held together by structural proteins which are mostly collagen. They have intracellular junctions such as tight junctions, desmosomes and gap junctions. 3. Animal cells have nervous and muscle tissues found only in this kingdom. 4. Most animals have a diploid life cycle with a sperm fertilizing an egg. The zygote undergoes cleavage forming a blastula (hollow ball of cells). The blastula undergoes mass movement of cells to form a gastrula giving rise to three layers of tissue, endoderm, mesoderm and ectoderm. Often there is a larval stage to the animal which is sexually immature. It often will undergo metamorphosis to become an adult. 5. All animals contain both homeotic genes (any of the genes that control the overall body plan of animal by controlling the developmental fate of a group of cells) and homeobox (a 180- nucleotide sequence with a homeotic gene) encoding the part of the protein that binds to the DNA of the genes regulated by the protein. There is an increase in the number of these genes with an increase in the complexity of the animal. The protists most closely related to animals are the choanoflagellates. It is flagellated with a collar to collect food. It will form colonies. Diagramed are the steps thought to have given to evolution of multicellular animals. Other interesting points about animals Embryonic development -Deuterostomes versus protostomes. During development many animals first form a hollow ball of cells or blastula. Afterward that there is a mass movement of the cells called gastrulation. This process results in three layers of tissue being established. Ectoderm-becomes skin and nervous tissue Mesoderm-notochord, lining of coelom, kidneys, muscles and bone and circulatory system Endoderm-interior lining of organs and liver, pancreas, lungs and lining of digestive tract. During this process of gastrulation, the first opening to the gut or archenteron forms. In deuterostomes, this opening becomes the anus but in protostomes it becomes the mouth. Body plans- Asymmetrical-These animals lack orientation like the sponges. Radial symmetry-The body plan is around an axis and any plane going through the axis will produce opposite halves. -Bilaterial symmetry The body forms a body in a longitudinal plan that divides the body into two equal but opposite halves. It allows the senses to be concentrated up in one area. Can increase awareness, mobility and predation. -Bilaterial symmetry The body forms a body in a longitudinal plant that divides the body into two equal but opposite halves. Body cavities (coeloms) -Acoelomate-These animals do not have a body cavity like a flat worm or jelly fish -True coelom-The body cavity is lined with tissue derived from the mesoderm. -Pseudocoelom-The body cavity is lined with mesoderm on the outer part and with endoderm on the inside. Round worms have pseudocoeloms. Clade Parazoa or sponges-Most closely related to colonial choano-flagellates. These protists and animals have a common ancestor. Phylum Porifera 1. Sessile with no specialized tissue i.e. nerves or muscle. 2. Size 1 cm-2 m. Mostly marine species with few freshwater. The body of a sponge has a cavity called a spongocoel. The body is perforated with pores. Water flows into the pores and into the spongocoel and then out a larger opening called the osculum. There are two layers of cells with a gelatinous layer in between called the mesophyl. The outside of the body is lined with epidermal cells. 3. The pores are lined with cells (porocytes). The inside layer is lined with cells (choanocytes like choanoflagellates ). The flagella of choanocytes beat creating a water current. The choanocyte cell has a collar with a flagella. It also secretes mucus to filter and catch food. There are also amoebocytes which take food from the choanocytes and deliver it to the epidermal cells. 4. Sponges are hermaphrodites. Gametes come from amoebocytes and choanocytes. Eggs reside in the mesohyl and sperm from neighboring sponges fertilize them. Clade Eumetozoa-Animals with true tissues. Two clades are found in Clade Eumetazoa-Clade Radiata and Clade Bilateria Clade Radiata-Animals with radial symmetry (top and bottom with no head or rear end). Radiata has two tissue layers ectoderm and endoderm and no mesoderm resulting in dipolblastic embryos (no mesoderm). Phylum Cnidaria-Jellyfish and hydra-The basic body plan is a sac with a gastrovascular cavity (GVC). The single opening functions as both the mouth and the anus. Two variations of this body plan-the polyp and medusa. The polyp is a cylinder form that is sessile and adheres to the bottom of the water. The medusa is a "flattened-version of the polyp upside- down". It moves in the water by drifting and contracting its bell shaped body. Some species exists as polyps and others as medusas and others will have both forms in their life cycles. Both forms have two layers of tissue with a gelatinous layer of material in between called the mesoglea. Surrounding the mouth of these animals are a ring of tentacles. These tentacles have stinging cells called cnidocyte cells. These cells have poisonous, little dart like structures called nematocysts. No muscles but cell will bundles of contractile fibers. There is also nerve net that can detect stimuli causing the organism to react. The gastrovascular cavity has specialized cells that release digestive enzymes to aid in digestion. Class Hydrozoa-(Portuguese man-of-war, hydras, some corals). Mostly marine. Both medusa and polyp forms present. Polyp form usually colonial. Class Scypphozoa-(jellies, sea nettles). All marine. Polyp form greatly reduced. Medusa form up to 2 m in diameter. Class Cubozoa-(box jellies,and sea wasp) All marine. Polyp form greatly reduced. Medusa forms a box like shape with complex eyes and potent venom. Class Anthozoa-(sea anemones, most corals, and sea fans). Medusa stage completely absent sessile, many colonial. Phylum Ctenophora-Superficially looks like cnidarian medusas. These are the comb-jellies. Small and sperical or ovoid. 8 rows of comblike plates fused cilia. Clade Bilateria- These animals have bilateral symmetry. Gives animals dorsal and ventral side as well as an anterior (head) and posterior (tail) end. Cephalization is the movement of sensory organs to the anterior end. The anterior end is first to encounter danger, food and other important stimuli. This clade divides up three smaller clades, Deuterostomia, Lophotrochozoa, Ecdysozoa The first clade are the deuterostomes. The deuterostomes are characterizied by their embryonic development and formation of a deuterostome. The second clade are the lophotrochozoans either has a lophophore (a crown of ciliated tentacles function in feeding) or the development of a trochophore larva. The third clade is Ecydysozoa. These are animals that form an exoskeleton or thick cuticle. As the animals grow they molt or shed their outer covering (ecdysis). Clade Lophotrochozoa Phylum Platyhelminthes: Flatworms a. Have gastrovascular cavity with pharynx as mouth on ventral side b. Acoelomates c. Nervous system is a pair of ventral nerve cords. Can have eye spots on anterior end that responds to light. In the anterior region one can find a ganglion. d. Nitrogenous wastes removed by a “flame cell” system Four Classes found in this phylum Class Tubellaria-Mosly free-living, most marine, few terrestrial, predators, scavengers; body surface ciliated. Class Mongenea- Marine and freshwater parasites on external surfaces of fish. Class Trematoda- Flukes are parasites of vertebrates. Complicated life history witn intermediate host. Class Cestodea-Tapeworms with scolex. No head or digestive system. Complicated life history. Phylum Rotifera-Rotifers have pseudocoelomates, jaws, crowns of cilia and a complete digestive tract. Complete digestive tract allows for individual organs and processing of food differently for maximum extraction of nutrients. While many rotifers are smaller than single-celled protista, they are much more complicated than even flat worms. Some reproduction in some species is parthenogenesis. Phylum Ectoprocta- called moss animals because they resemble moss. Most species are marine and are small and form colonies. Most of the colony is enclosed in a hard skeleton with the lophophores that extend through the pores when feeding. Both phyla have lophophores Phylum Brachiopods-Look like clams but stand up vertically. Called lampshells. Attach to bottom by a stalk. The shells are opened slightly to allow water to flow through lophophores. Phylum Nemertea-Ribbon worms seem to be acoelmate but contain a fluid filled proboscis sac which is derived from a true coelom. A proboscis is a long retractable hollow tube at the anterior end. Used to probe enviroment, capture Phylum Mollusca-Soft-bodied animals with shells. This phylum includes snails, slugs oysters, clams octopuses and squid. Most are marine with some fresh-water and terrestrial species. They have three main parts: -Muscular foot for locomotion -Visceral mass that contains most of the internal organs. -A mantle, which is a heavy fold of tissue that surrounds the visceral mass and secretes the shell. Many will contain a radula or rasping tongue to scrap food from surfaces. Some species are monoecious while others are dioecious. Gonads are located in the viceral mass. It is possible that mollusks evolved before annelids because they lack segmentation or from an annelid like ancestor as they both have trochophore larva. Most have open circulatory systems with a heart. Structures for gas exchange. Ventral nerve chords with sensory organs.