Lower Species Richness in Dioecious Clades

Total Page:16

File Type:pdf, Size:1020Kb

Lower Species Richness in Dioecious Clades vol. 156, no. 3 the american naturalist september 2000 Lower Species Richness in Dioecious Clades Jana C. Heilbuth* Department of Zoology, University of British Columbia, have evolved as a mechanism to reduce inbreeding (Baker Vancouver, British Columbia V6T 1Z4, Canada 1959; Carlquist 1966, 1974; Charlesworth and Charles- worth 1978) and/or to improve resource allocation (Bawa Submitted October 6, 1999; Accepted April 6, 2000 1980; Givnish 1980). Various authors (Baker 1959; Wil- liams 1975) have argued that dioecy is an easier route to outbreeding, both genetically and physiologically, and em- pirical evidence suggests that it is a more ef®cient means abstract: Despite the extensive research on the potential bene®ts of avoiding inbreeding than gametophytic self-incompat- of dioecy to individuals, little is known about the long-term success ibility (Anderson and Stebbins 1984). As well, theoretical of dioecious lineages in relation to their hermaphroditic or mon- oecious relatives. This study reports on the evolutionary success of studies show that plants carrying a mutation conferring worldwide dioecious ¯ora in light of recent phylogenetic work by male or female sterility can be favored in a hermaphroditic performing sister-group comparisons of species richness between population (Charnov 1982) when a division of labor into clades of angiosperms with different breeding systems. Whether this males and females allows each individual to ful®ll its roles analysis is performed at the family or genus level, species richness more ef®ciently. is generally far lower in dioecious taxa when compared to their Despite the many possible advantages of dioecy, dioe- hermaphroditic or monoecious sister taxa. Despite the advantages » of avoiding inbreeding depression and of allocating resources sep- cious ¯ora comprise only 6% of the world's angiosperms arately to male and female function, dioecy in angiosperms does not (Renner and Ricklefs 1995). The low representation of appear to be a key innovation promoting evolutionary radiation. A dioecy is consequently a puzzle and might be caused by potential explanation for the low representation of dioecious lineages dioecious species experiencing a higher extinction rate, is that dioecious plants may have lower colonization rates. Baker's lower speciation rate, high reversion rates back to the Law states that self-compatible lineages will have higher rates of monomorphic state (Richards 1997), or low origination successful long-range dispersal since they do not require a mate; rates. A possible explanation for the low representation of consequently, self-compatible lineages may have higher rates of al- lopatric speciation. However, identical analyses performed with her- dioecy might be that a recent environmental shift has fa- maphroditic self-incompatible angiosperms did not produce similar vored the evolution of dioecy so that dioecious groups are results, suggesting that Baker's law is not the reason for the poor fairly young but not necessarily speciating or going extinct representation of dioecy among angiosperm species. at different rates. This explanation would agree with the commonly held belief that dioecy occurs mostly on the Keywords: Baker's law, dioecy, extinction, sister-group comparison, speciation. tips of phylogenetic trees as they ªare usually more closely related to hermaphrodite species within their own genus or family than they are to each otherº (Lebel-Hardenack Dioecy, the separation of male and female function into and Grant 1997, p. 130.). This study is the ®rst to examine separate individuals, is taxonomically distributed among whether the infrequent occurrence of dioecy among an- most of the major orders of angiosperms, both primitive giosperms is due to a series of recent adaptations that arise and advanced (Thomson and Barrett 1981). Although on the tips of trees. Using phylogenetic evidence, I per- there has been considerable discussion regarding the evo- formed sister-group comparisons of species richness using lutionary forces leading to dioecy in plants (e.g., Carlquist clades that are entirely or mostly dimorphic (those with 1966, 1974; Bawa 1980; Thomson and Brunet 1990), little dioecious, polygamodioecious, gynodioecious, or sub- work has been done to determine whether dioecy is a dioecious breeding systems; see table 1 for terms) as the bene®cial evolutionary strategy. Dioecy is hypothesized to focal group and monomorphic lineages (those with bi- sexual, monoecious, andromonoecious, gynomonecious, * E-mail: [email protected]. or polygamomonoecious breeding systems) as the sister Am. Nat. 2000. Vol. 156, pp. 221±241. q 2000 by The University of Chicago. group to identify whether dioecious clades are more or 0003-0147/2000/15603-0001$03.00. All rights reserved. less species rich than their hermaphroditic sister taxa. A 222 The American Naturalist sister-group comparison (®g. 1) uses a phylogeny to de- termine the difference in number of species between a focal group (in this case, a dimorphic clade) and its sister group (a monomorphic clade). If dioecy is a recent ad- aptation, then both the dimorphic and the monomorphic clades in the sister-group comparison should be small but equally species rich. These sister-group comparisons were performed at the family and generic levels and, at both levels of analysis, dioecious clades were found to be far less species rich than their nondioecious sister groups, in- Figure 1: A sister-group comparison. Focal group and sister group have dicating that dioecious lineages have lower speciation rates existed for the same amount of time (i.e., since their divergence from a common ancestor) and, hence, should have equal numbers of species on and/or higher extinction rates. average unless the trait in question (here, dimorphic breeding system) The possibility that dioecious lineages experience low- has a direct or indirect effect on speciation and/or extinction rates. ered speciation rates is consistent with Baker's law (Baker 1953), which states that a self-compatible hermaphrodite will be a better colonizer than a dioecious plant owing to were as species rich as their sister groups, implying that the fact that it does not need a mate. Long-range dispersers Baker's law is not a large factor in determining divergence can found new populations that may diverge and form rates. new species allopatrically. If dioecious populations accom- The evidence gained in this study agrees with studies plish this long-range dispersal less often than hermaph- done on local ¯ora, such as that on the Hawaiian ¯ora roditic populations, it could potentially lead to a lower (Sakai et al. 1995a), which suggest that Baker's law does speciation rate among dioecious clades. To examine this not reduce the amount of dioecious colonizers. In fact, possibility, I have again used the sister-group comparison Sakai et al. (1995b) found that the high proportion of approach, this time using self-incompatible taxa as the dioecious ¯ora in Hawaii is due in part to a dispropor- focal group against self-compatible sister taxa. Self-incom- tionately high (»10%) percentage of dioecious colonizers. patibility is achieved in approximately half of the non- However, our results do differ from those of Sakai et al. dioecious angiosperms through a variety of morphological (1995b) in that their comparisons of lineage size in the (e.g., heterostyly) and molecular (e.g., gametophytic and Hawaiian Islands show no trend for higher extinction rates sporophytic self-incompatibility) means. Self-incompati- or lower speciation rates: dimorphic genera are as species ble species are subject to the same dif®culties as dioecious rich as monomorphic genera. Several factors may con- ones when dispersing to a new area where mates may be tribute to dioecy being relatively more successful on the either nonexistent or in short supply. If Baker's law plays Hawaiian Islands. The prevalence of dioecy has been a large role in determining diversi®cation rates, these in- shown to be correlated with tropical environments (Ren- compatible groups should also show lowered species rich- ner and Ricklefs 1995), a correlation that may result from ness than dioecious clades do when examined phyloge- dioecious species having higher speciation rates or lower netically using the same methods. However, this study extinction rates in tropical environments. Furthermore, found no evidence for this as the self-incompatible lineages the numbers of dimorphic and monomorphic species on Table 1: Quick reference for breeding systems in angiosperms Breeding system De®nition Dimorphism: Dioecy Male and female plants Gynodioecy Hermaphroditic and female plants Androdioecy Hermaphroditic and male plants Subdioecy Hermaphroditic, male, and female plants Polygamodioecy Synonymous with subdioecy Monomorphism: Hermaphroditism Bisexual ¯owers Monoecy Male and female ¯owers on each plant Andromonoecy Male and bisexual ¯owers on each plant Gynomonoecy Female and bisexual ¯owers on each plant Polygamomonoecy Male and/or female and bisexual ¯owers on each plant Polygamous Polygamomonoecious and/or polygamodioecious Lower Species Richness in Dioecious Clades 223 Hawaii may not re¯ect long-term expectations given the found by referring to Takhtajan (1997). When this source relatively recent (maximum 5.7 MYA; MacDonald et al. was ambiguous, other sources were found, usually that 1983) nature of the present-day islands. For example, di- given on the DELTA Web site (Watson and Dallwitz 1992) oecious plants may be more successful
Recommended publications
  • Proceedings Amurga Co
    PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 PROCEEDINGS OF THE AMURGA INTERNATIONAL CONFERENCES ON ISLAND BIODIVERSITY 2011 Coordination: Juli Caujapé-Castells Funded and edited by: Fundación Canaria Amurga Maspalomas Colaboration: Faro Media Cover design & layout: Estudio Creativo Javier Ojeda © Fundación Canaria Amurga Maspalomas Gran Canaria, December 2013 ISBN: 978-84-616-7394-0 How to cite this volume: Caujapé-Castells J, Nieto Feliner G, Fernández Palacios JM (eds.) (2013) Proceedings of the Amurga international conferences on island biodiversity 2011. Fundación Canaria Amurga-Maspalomas, Las Palmas de Gran Canaria, Spain. All rights reserved. Any unauthorized reprint or use of this material is prohibited. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system without express written permission from the author / publisher. SCIENTIFIC EDITORS Juli Caujapé-Castells Jardín Botánico Canario “Viera y Clavijo” - Unidad Asociada CSIC Consejería de Medio Ambiente y Emergencias, Cabildo de Gran Canaria Gonzalo Nieto Feliner Real Jardín Botánico de Madrid-CSIC José María Fernández Palacios Universidad de La Laguna SCIENTIFIC COMMITTEE Juli Caujapé-Castells, Gonzalo Nieto Feliner, David Bramwell, Águedo Marrero Rodríguez, Julia Pérez de Paz, Bernardo Navarro-Valdivielso, Ruth Jaén-Molina, Rosa Febles Hernández, Pablo Vargas. Isabel Sanmartín. ORGANIZING COMMITTEE Pedro
    [Show full text]
  • Floral Anatomy and Embryology of Cipadessa Baccifera Miq
    FLORAL ANATOMY AND EMBRYOLOGY OF CIPADESSA BACCIFERA MIQ. Department of Botany, Andhra University, Waltaii* (Received for pubJication on September 16, 1957) T hb family Meliaceae comprises 50 genera and 800 species (Lawrence, 1951). Tt is included in the order Geraniales by Bentham and Hooker (1862-1893) and Engler and Diels (1936). Rendle (1938) includes the family in his Rutales along with Simaroubaceje, Burseracea: and Rutacese- It is the only family in the Meliales of Hutchinson (1926) Our knowledge of floral anatomy in the family is meagre. Saunders (1937) made a study of Melia azadcrach. The flowers are hypogynous, isomerous with the floral parts arranged in six whorls. Sepals have commissural marginal veins. Traces for the stamens arise independently from the main stele. Dorsal carpellary traces are lack­ ing. Ventrais continue into the style. Recently Nair (1956 a) studied the placentation in Melia azadirachta (Azadirachta indica) and con­ cluded that the placentation is parietal on the basis of vascular ana- The embryological work done in the family till 1930 was summa­ rised by Schnarf (1931). Since then the important work in the family is by Wiger (1935) who studied 40 species, distributed in 13 genera. More recently Garudamma (1956 and 1957) has studied the embryology ot Melia azadirachta and Nair (1956 6) studied the development of endosperm in three species. The embryological features may be sum- The anther structure shows an epidermis and 4-5 wall layers. The hypodermal wall layer develops into the fibrous endothecium in the mature anther. The tapetum is of the secretory type. The tapetal cells ultimately become 2-4 nucleate.
    [Show full text]
  • Nzbotsoc No 107 March 2012
    NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 107 March 2012 New Zealand Botanical Society President: Anthony Wright Secretary/Treasurer: Ewen Cameron Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8013 Subscriptions The 2012 ordinary and institutional subscriptions are $25 (reduced to $18 if paid by the due date on the subscription invoice). The 2012 student subscription, available to full-time students, is $12 (reduced to $9 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $7.00 each. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28 February each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next years subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the June 2012 issue is 25 May 2012. Please post contributions to: Lara Shepherd Museum of New Zealand Te Papa Tongarewa P.O. Box 467 Wellington Send email contributions to [email protected]. Files are preferably in MS Word, as an open text document (Open Office document with suffix “.odt”) or saved as RTF or ASCII. Macintosh files can also be accepted. Graphics can be sent as TIF JPG, or BMP files; please do not embed images into documents.
    [Show full text]
  • Doctorat De L'université De Toulouse
    En vue de l’obt ention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par : Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier) Discipline ou spécialité : Ecologie, Biodiversité et Evolution Présentée et soutenue par : Joeri STRIJK le : 12 / 02 / 2010 Titre : Species diversification and differentiation in the Madagascar and Indian Ocean Islands Biodiversity Hotspot JURY Jérôme CHAVE, Directeur de Recherches CNRS Toulouse Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Frédéric MEDAIL, Professeur à l'Université Paul Cezanne Aix-Marseille Christophe THEBAUD, Professeur à l'Université Paul Sabatier Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : UMR 5174 CNRS-UPS Evolution & Diversité Biologique Directeur(s) de Thèse : Christophe THEBAUD Rapporteurs : Emmanuel DOUZERY, Professeur à l'Université de Montpellier II Porter LOWRY II, Curator Missouri Botanical Garden Contents. CONTENTS CHAPTER 1. General Introduction 2 PART I: ASTERACEAE CHAPTER 2. Multiple evolutionary radiations and phenotypic convergence in polyphyletic Indian Ocean Daisy Trees (Psiadia, Asteraceae) (in preparation for BMC Evolutionary Biology) 14 CHAPTER 3. Taxonomic rearrangements within Indian Ocean Daisy Trees (Psiadia, Asteraceae) and the resurrection of Frappieria (in preparation for Taxon) 34 PART II: MYRSINACEAE CHAPTER 4. Phylogenetics of the Mascarene endemic genus Badula relative to its Madagascan ally Oncostemum (Myrsinaceae) (accepted in Botanical Journal of the Linnean Society) 43 CHAPTER 5. Timing and tempo of evolutionary diversification in Myrsinaceae: Badula and Oncostemum in the Indian Ocean Island Biodiversity Hotspot (in preparation for BMC Evolutionary Biology) 54 PART III: MONIMIACEAE CHAPTER 6. Biogeography of the Monimiaceae (Laurales): a role for East Gondwana and long distance dispersal, but not West Gondwana (accepted in Journal of Biogeography) 72 CHAPTER 7 General Discussion 86 REFERENCES 91 i Contents.
    [Show full text]
  • Efficacy of Cipadessa Baccifera Leaf Extracts Against Gram Pod Borer, Helicoverpa Armigera (Hübner) (Lepidoptera: Noctuidae)
    J. ent. Res., 32 (1) : 1-3 (2008) Efficacy of Cipadessa baccifera leaf extracts against gram pod borer, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) S. Malarvannan, S. Sekar and H.D. Subashini* M.S. Swaminathan Research Foundation, III Cross Road, Institutional Area, Chennai - 600 113, India ABSTRACT Cipadessa baccifera, a common medicinal plant of Western Ghats was evakyated fir insecticidal property against Helicoverpa armigera. The different extracts of leaves differed significantly in their efficacy with the hexane extract being the most effective in curtailing the fecundity and egg hatchability in the first generation adults. The insecticidal effect against the resultant progeny proved that petroleum ether extract could cause significant reduction in pupation and pupal weight and higher percentage of malformed adults. Cipadessa baccifera Miq., belonging to production and cause 5-15% loss in yield world Meliaceae, is a small tree or bushy shrub with over (Banerjee, Das and Hui, 2000). Among them, pinnate leaves and small flowers. The plant is used American bollworm, Helicoverpa armigera, a traditionally for fuel, as tooth brush, leaf and fruit as polyphagous noctuid is a major pest in India from cattle fodder and fish poison (personal communication late seventies (Reed and Pawar, 1982; Guo, 1997). with tribals of Kolli Hills). Medicinally, it is reported to Devastating 181 plant species (of 39 families) cure piles, diabetes, diarrhea, food poison and head (Manjunath et al., 1989), the pest causes an annual ache (Amit and Shailendra, 2006). It is distributed in loss of US $300 million in pigeon pea and chick pea North Circas, common on laterite hills, near villages alone in India (Jayaraj et al., 1990).
    [Show full text]
  • Evolutionary Consequences of Dioecy in Angiosperms: the Effects of Breeding System on Speciation and Extinction Rates
    EVOLUTIONARY CONSEQUENCES OF DIOECY IN ANGIOSPERMS: THE EFFECTS OF BREEDING SYSTEM ON SPECIATION AND EXTINCTION RATES by JANA C. HEILBUTH B.Sc, Simon Fraser University, 1996 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 2001 © Jana Heilbuth, 2001 Wednesday, April 25, 2001 UBC Special Collections - Thesis Authorisation Form Page: 1 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. The University of British Columbia Vancouver, Canada http://www.library.ubc.ca/spcoll/thesauth.html ABSTRACT Dioecy, the breeding system with male and female function on separate individuals, may affect the ability of a lineage to avoid extinction or speciate. Dioecy is a rare breeding system among the angiosperms (approximately 6% of all flowering plants) while hermaphroditism (having male and female function present within each flower) is predominant. Dioecious angiosperms may be rare because the transitions to dioecy have been recent or because dioecious angiosperms experience decreased diversification rates (speciation minus extinction) compared to plants with other breeding systems.
    [Show full text]
  • ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB
    Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M.
    [Show full text]
  • Epilist 1.0: a Global Checklist of Vascular Epiphytes
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 EpiList 1.0: a global checklist of vascular epiphytes Zotz, Gerhard ; Weigelt, Patrick ; Kessler, Michael ; Kreft, Holger ; Taylor, Amanda Abstract: Epiphytes make up roughly 10% of all vascular plant species globally and play important functional roles, especially in tropical forests. However, to date, there is no comprehensive list of vas- cular epiphyte species. Here, we present EpiList 1.0, the first global list of vascular epiphytes based on standardized definitions and taxonomy. We include obligate epiphytes, facultative epiphytes, and hemiepiphytes, as the latter share the vulnerable epiphytic stage as juveniles. Based on 978 references, the checklist includes >31,000 species of 79 plant families. Species names were standardized against World Flora Online for seed plants and against the World Ferns database for lycophytes and ferns. In cases of species missing from these databases, we used other databases (mostly World Checklist of Selected Plant Families). For all species, author names and IDs for World Flora Online entries are provided to facilitate the alignment with other plant databases, and to avoid ambiguities. EpiList 1.0 will be a rich source for synthetic studies in ecology, biogeography, and evolutionary biology as it offers, for the first time, a species‐level overview over all currently known vascular epiphytes. At the same time, the list represents work in progress: species descriptions of epiphytic taxa are ongoing and published life form information in floristic inventories and trait and distribution databases is often incomplete and sometimes evenwrong.
    [Show full text]
  • Tropical Forests
    1740 TROPICAL FORESTS / Bombacaceae in turn cause wild swings in the ecology and these Birks JS and Barnes RD (1990) Provenance Variation in swings themselves can sometimes prove to be beyond Pinus caribaea, P. oocarpa and P. patula ssp. tecunuma- control through management. In the exotic environ- nii. Tropical Forestry Papers no. 21. Oxford, UK: Oxford ments, it is impossible to predict or even conceive of Forestry Institute. the events that may occur and to know their Critchfield WB and Little EL (1966) Geographic Distribu- consequences. Introduction of diversity in the forest tion of the Pines of the World. Washington, DC: USDA Miscellaneous Publications. through mixed ages, mixed species, rotation of Duffield JW (1952) Relationships and species hybridization species, silvicultural treatment, and genetic variation in the genus Pinus. Zeitschrift fu¨r Forstgenetik und may make ecology and management more complex Forstpflanzenzuchtung 1: 93–100. but it will render the crop ecosystem much more Farjon A and Styles BT (1997) Pinus (Pinaceae). Flora stable, robust, and self-perpetuating and provide Neotropica Monograph no. 75. New York: New York buffers against disasters. The forester must treat crop Botanical Garden. protection as part of silvicultural planning. Ivory MH (1980) Ectomycorrhizal fungi of lowland tropical pines in natural forests and exotic plantations. See also: Pathology: Diseases affecting Exotic Planta- In: Mikola P (ed.) Tropical Mycorrhiza Research, tion Species; Diseases of Forest Trees. Temperate and pp. 110–117. Oxford, UK: Oxford University Press. Mediterranean Forests: Northern Coniferous Forests; Ivory MH (1987) Diseases and Disorders of Pines in the Southern Coniferous Forests. Temperate Ecosystems: Tropics. Overseas Research Publication no.
    [Show full text]
  • Phylogenetic Relationships in the Order Cucurbitales and a New Classification of the Gourd Family (Cucurbitaceae)
    Schaefer & Renner • Phylogenetic relationships in Cucurbitales TAXON 60 (1) • February 2011: 122–138 TAXONOMY Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae) Hanno Schaefer1 & Susanne S. Renner2 1 Harvard University, Department of Organismic and Evolutionary Biology, 22 Divinity Avenue, Cambridge, Massachusetts 02138, U.S.A. 2 University of Munich (LMU), Systematic Botany and Mycology, Menzinger Str. 67, 80638 Munich, Germany Author for correspondence: Hanno Schaefer, [email protected] Abstract We analysed phylogenetic relationships in the order Cucurbitales using 14 DNA regions from the three plant genomes: the mitochondrial nad1 b/c intron and matR gene, the nuclear ribosomal 18S, ITS1-5.8S-ITS2, and 28S genes, and the plastid rbcL, matK, ndhF, atpB, trnL, trnL-trnF, rpl20-rps12, trnS-trnG and trnH-psbA genes, spacers, and introns. The dataset includes 664 ingroup species, representating all but two genera and over 25% of the ca. 2600 species in the order. Maximum likelihood analyses yielded mostly congruent topologies for the datasets from the three genomes. Relationships among the eight families of Cucurbitales were: (Apodanthaceae, Anisophylleaceae, (Cucurbitaceae, ((Coriariaceae, Corynocarpaceae), (Tetramelaceae, (Datiscaceae, Begoniaceae))))). Based on these molecular data and morphological data from the literature, we recircumscribe tribes and genera within Cucurbitaceae and present a more natural classification for this family. Our new system comprises 95 genera in 15 tribes, five of them new: Actinostemmateae, Indofevilleeae, Thladiantheae, Momordiceae, and Siraitieae. Formal naming requires 44 new combinations and two new names in Cucurbitaceae. Keywords Cucurbitoideae; Fevilleoideae; nomenclature; nuclear ribosomal ITS; systematics; tribal classification Supplementary Material Figures S1–S5 are available in the free Electronic Supplement to the online version of this article (http://www.ingentaconnect.com/content/iapt/tax).
    [Show full text]
  • Inventario De Las Plantas Cubanas Silvestres Parientes De Las Cultivadas De Importancia Alimenticia, Agronómica Y Forestal
    Inventario de las plantas cubanas silvestres parientes de las cultivadas de importancia alimenticia, agronómica y forestal por Werner Greuter y Rosa Rankin Rodríguez A Checklist of Cuban wild relatives of cultivated plants important for food, agriculture and forestry by Werner Greuter and Rosa Rankin Rodríguez Botanischer Garten und Botanisches Museum Berlin Jardín Botánico Nacional, Universidad de La Habana Publicado en el Internet el 22 marzo 2019 Published online on 22 March 2019 ISBN 978-3-946292-33-3 DOI: https://doi.org/10.3372/cubalist.2019.1 Published by: Botanischer Garten und Botanisches Museum Berlin Zentraleinrichtung der Freien Universität Berlin Königin-Luise-Str. 6–8, D-14195 Berlin, Germany © 2019 The Authors. This work is distributed under the Creative Commons Attribution 4.0 International Licence (CC BY 4.0), which permits unrestricted use provided the original author and source are credited (see https://creativecommons.org/licenses/by/4.0/) Greuter & Rankin – Parientes Cubanos Silvestres de Plantas Cultivadas 3 Inventario de las plantas cubanas silvestres parientes de las cultivadas de importancia alimenticia, agronómica y forestal Werner Greuter & Rosa Rankin Rodríguez Introducción Este Inventario se generó para servir de base a los trabajos de la reunión anual del Grupo de Especialistas en Plantas Cubanas de la Comisión para la supervivencia de las especies de la UICN en La Habana, Cuba, del 13 al 15 de Marzo del 2019. Abarca 57 familias y 859 taxones de plantas vasculares de la flora espontánea cubana congenéricas con las plantas útiles de importancia al nivel global y que puedan servir para enriquecer su patrimonio genético en el desarrollo de nuevas variedades con mejores propiedades de productividad y/o resistencia y cuya conservación por ende es de importancia prioritaria para la sobrevivencia de la raza humana (ver Meta 13 de las Metas nacionales cubanas para la diversidad biológica 2016-2020).
    [Show full text]
  • Appendix 1 Vernacular Names
    Appendix 1 Vernacular Names The vernacular names listed below have been collected from the literature. Few have phonetic spellings. Spelling is not helped by the difficulties of transcribing unwritten languages into European syllables and Roman script. Some languages have several names for the same species. Further complications arise from the various dialects and corruptions within a language, and use of names borrowed from other languages. Where the people are bilingual the person recording the name may fail to check which language it comes from. For example, in northern Sahel where Arabic is the lingua franca, the recorded names, supposedly Arabic, include a number from local languages. Sometimes the same name may be used for several species. For example, kiri is the Susu name for both Adansonia digitata and Drypetes afzelii. There is nothing unusual about such complications. For example, Grigson (1955) cites 52 English synonyms for the common dandelion (Taraxacum officinale) in the British Isles, and also mentions several examples of the same vernacular name applying to different species. Even Theophrastus in c. 300 BC complained that there were three plants called strykhnos, which were edible, soporific or hallucinogenic (Hort 1916). Languages and history are linked and it is hoped that understanding how lan- guages spread will lead to the discovery of the historical origins of some of the vernacular names for the baobab. The classification followed here is that of Gordon (2005) updated and edited by Blench (2005, personal communication). Alternative family names are shown in square brackets, dialects in parenthesis. Superscript Arabic numbers refer to references to the vernacular names; Roman numbers refer to further information in Section 4.
    [Show full text]