Threatened Jott

Total Page:16

File Type:pdf, Size:1020Kb

Threatened Jott Journal ofThreatened JoTT TaxaBuilding evidence for conservation globally PLATINUM OPEN ACCESS 10.11609/jott.2020.12.3.15279-15406 www.threatenedtaxa.org 26 February 2020 (Online & Print) Vol. 12 | No. 3 | Pages: 15279–15406 ISSN 0974-7907 (Online) ISSN 0974-7893 (Print) ISSN 0974-7907 (Online); ISSN 0974-7893 (Print) Publisher Host Wildlife Information Liaison Development Society Zoo Outreach Organization www.wild.zooreach.org www.zooreach.org No. 12, Thiruvannamalai Nagar, Saravanampatti - Kalapatti Road, Saravanampatti, Coimbatore, Tamil Nadu 641035, India Ph: +91 9385339863 | www.threatenedtaxa.org Email: [email protected] EDITORS English Editors Mrs. Mira Bhojwani, Pune, India Founder & Chief Editor Dr. Fred Pluthero, Toronto, Canada Dr. Sanjay Molur Mr. P. Ilangovan, Chennai, India Wildlife Information Liaison Development (WILD) Society & Zoo Outreach Organization (ZOO), 12 Thiruvannamalai Nagar, Saravanampatti, Coimbatore, Tamil Nadu 641035, Web Design India Mrs. Latha G. Ravikumar, ZOO/WILD, Coimbatore, India Deputy Chief Editor Typesetting Dr. Neelesh Dahanukar Indian Institute of Science Education and Research (IISER), Pune, Maharashtra, India Mr. Arul Jagadish, ZOO, Coimbatore, India Mrs. Radhika, ZOO, Coimbatore, India Managing Editor Mrs. Geetha, ZOO, Coimbatore India Mr. B. Ravichandran, WILD/ZOO, Coimbatore, India Mr. Ravindran, ZOO, Coimbatore India Associate Editors Fundraising/Communications Dr. B.A. Daniel, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Mrs. Payal B. Molur, Coimbatore, India Dr. Mandar Paingankar, Department of Zoology, Government Science College Gadchiroli, Chamorshi Road, Gadchiroli, Maharashtra 442605, India Dr. Ulrike Streicher, Wildlife Veterinarian, Eugene, Oregon, USA Editors/Reviewers Ms. Priyanka Iyer, ZOO/WILD, Coimbatore, Tamil Nadu 641035, India Subject Editors 2016–2018 Fungi Editorial Board Ms. Sally Walker Dr. B. Shivaraju, Bengaluru, Karnataka, India Founder/Secretary, ZOO, Coimbatore, India Prof. Richard Kiprono Mibey, Vice Chancellor, Moi University, Eldoret, Kenya Dr. R.K. Verma, Tropical Forest Research Institute, Jabalpur, India Dr. Robert Lacy Dr. V.B. Hosagoudar, Bilagi, Bagalkot, India Department of Conservation Biology, Chicago Zoological Society (also known as Dr. Vatsavaya S. Raju, Kakatiay University, Warangal, Andhra Pradesh, India the Brookfield Zoo), Brookfield, Illinois 60513 USA; and Committee on Evolutionary Dr. D.J. Bhat, Retd. Professor, Goa University, Goa, India Biology, University of Chicago Plants Dr. Russel Mittermeier Executive Vice Chair, Conservation International, Arlington, Virginia 22202, USA Dr. G.P. Sinha, Botanical Survey of India, Allahabad, India Dr. N.P. Balakrishnan, Ret. Joint Director, BSI, Coimbatore, India Prof. Mewa Singh Ph.D., FASc, FNA, FNASc, FNAPsy Dr. Shonil Bhagwat, Open University and University of Oxford, UK Ramanna Fellow and Life-Long Distinguished Professor, Biopsychology Laboratory, Prof. D.J. Bhat, Retd. Professor, Goa University, Goa, India and Institute of Excellence, University of Mysore, Mysuru, Karnataka 570006, India; Dr. Ferdinando Boero, Università del Salento, Lecce, Italy Honorary Professor, Jawaharlal Nehru Centre for Advanced Scientific Research, Dr. Dale R. Calder, Royal Ontaro Museum, Toronto, Ontario, Canada Bangalore; and Adjunct Professor, National Institute of Advanced Studies, Bangalore Dr. Cleofas Cervancia, Univ. of Philippines Los Baños College Laguna, Philippines Dr. F.B. Vincent Florens, University of Mauritius, Mauritius Dr. Ulrike Streicher, DVM Dr. Merlin Franco, Curtin University, Malaysia Wildlife Veterinarian / Wildlife Management Consultant, 1185 East 39th Place, Eugene, Dr. V. Irudayaraj, St. Xavier’s College, Palayamkottai, Tamil Nadu, India OR 97405, USA Dr. B.S. Kholia, Botanical Survey of India, Gangtok, Sikkim, India Dr. Pankaj Kumar, Kadoorie Farm and Botanic Garden Corporation, Hong Kong S.A.R., Stephen D. Nash China Scientific Illustrator, Conservation International, Dept. of Anatomical Sciences, Health Dr. V. Sampath Kumar, Botanical Survey of India, Howrah, West Bengal, India Sciences Center, T-8, Room 045, Stony Brook University, Stony Brook, NY 11794-8081, Dr. A.J. Solomon Raju, Andhra University, Visakhapatnam, India USA Dr. Vijayasankar Raman, University of Mississippi, USA Dr. B. Ravi Prasad Rao, Sri Krishnadevaraya University, Anantpur, India Dr. Fred Pluthero Dr. K. Ravikumar, FRLHT, Bengaluru, Karnataka, India Toronto, Canada Dr. Aparna Watve, Pune, Maharashtra, India Dr. Qiang Liu, Xishuangbanna Tropical Botanical Garden, Yunnan, China Dr. Martin Fisher Dr. Noor Azhar Mohamed Shazili, Universiti Malaysia Terengganu, Kuala Terengganu, Senior Associate Professor, Battcock Centre for Experimental Astrophysics, Cavendish Malaysia Laboratory, JJ Thomson Avenue, Cambridge CB3 0HE, UK Dr. M.K. Vasudeva Rao, Shiv Ranjani Housing Society, Pune, Maharashtra, India Prof. A.J. Solomon Raju, Andhra University, Visakhapatnam, India Dr. Ulf Gärdenfors Dr. Mandar Datar, Agharkar Research Institute, Pune, Maharashtra, India Professor, Swedish Species Information Center, SLU, Uppsala, Sweden Dr. M.K. Janarthanam, Goa University, Goa, India Dr. K. Karthigeyan, Botanical Survey of India, India Dr. John Fellowes Dr. Errol Vela, University of Montpellier, Montpellier, France Honorary Assistant Professor, The Kadoorie Institute, 8/F, T.T. Tsui Building, The Dr. P. Lakshminarasimhan, Botanical Survey of India, Howrah, India University of Hong Kong, Pokfulam Road, Hong Kong Dr. Larry R. Noblick, Montgomery Botanical Center, Miami, USA Dr. K. Haridasan, Pallavur, Palakkad District, Kerala, India Dr. Philip S. Miller Dr. Analinda Manila-Fajard, University of the Philippines Los Banos, Laguna, Philippines Senior Program Officer, Conservation Breeding Specialist Group (SSC/IUCN), 12101 Dr. P.A. Sinu, Central University of Kerala, Kasaragod, Kerala, India Johnny Cake Ridge Road, Apple Valley, MN 55124, USA Invertebrates Prof. Dr. Mirco Solé Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Vice- Dr. R.K. Avasthi, Rohtak University, Haryana, India coordenador do Programa de Pós-Graduação em Zoologia, Rodovia Ilhéus/Itabuna, Km Dr. D.B. Bastawade, Maharashtra, India 16 (45662-000) Salobrinho, Ilhéus - Bahia - Brasil Dr. Partha Pratim Bhattacharjee, Tripura University, Suryamaninagar, India continued on the back inside cover Cover: A Western Bent-winged Bat Miniopterus magnater from Umlyngsha, Meghalaya. © M. Ruedi. Journal of Threatened Taxa | www.threatenedtaxa.org | 26 February 2020 | 12(3): 15279–15288 ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print) PLATINUM OPEN ACCESS DOI: https://doi.org/10.11609/jott.5390.12.3.15279-15288 #5390| Received 06 September 2019 | Final received 02 December 2019 | Finally accepted 04 February 2020 R e v Ramifications of reproductive diseases on the recovery of the i e Sumatran Rhinoceros Dicerorhinus sumatrensis w (Mammalia: Perissodactyla: Rhinocerotidae) Nan E. Schaffer 1 , Muhammad Agil 2 & Zainal Z. Zainuddin 3 1 SOS Rhino; IUCN/SSC Asian Rhino Specialist Group, 2414 Tracy Place, NW, Washington, D.C., USA. 2 Department of Clinic, Reproduction and Pathology, Faculty of Veterinary Medicine, Bogor Agricultural University; IUCN/SSC Asian Rhino Specialist Group , Jl. Agatis, Kampas IPB Dramaga, Bogor 16680, Indonesia. 3 Borneo Rhino Alliance; IUCN/SSC Asian Rhino Specialist Group, c/o Fakulti Sains Dan Sumbur Alam, Jalan UMS, 88400 Kota Kinabalu, Malaysia. 1 [email protected] (corresponding author), 2 [email protected], 3 [email protected] Abstract: The Sumatran Rhinoceros Dicerorhinus sumatrensis is on the edge of extinction. The decline of this species was initially attributed to poaching and habitat loss, but evidence presented here indicates that reproductive failure has also been a significant cause of loss, and continues to affect wild populations. Indonesia’s remaining populations of Sumatran Rhino are small and scattered, with limited access to breeding opportunities with unrelated mates. This leaves them subject to inbreeding and isolation-induced infertility, linked to fertility problems analyzed here. Sumatran Rhino females in captivity showed high rates (>70%) of reproductive pathology and/or problems with conception, which has significantly hindered the breeding program. Technological advances enabling examination immediately after capture revealed similarly high rates and types of reproductive problems in individuals from wild populations. The last seven Sumatran Rhino females captured were from areas with small declining populations, and six had reproductive problems. Going forward, capturing similarly compromised animals will take up valuable space and resources needed for fertile animals. The high risk of infertility and difficulty of treating underlying conditions, coupled with the decreasing number of remaining animals, means that the success of efforts to build a viable captive population will depend upon utilizing fertile animals and applying assisted reproductive techniques. Decades of exhaustive in situ surveys have not provided information relevant to population management or to ascertaining the fertility status of individual animals. Thus the first priority should be the capture of individuals as new founders from areas with the highest likelihood of containing fertile rhinos, indicated by recent camera trap photos of mothers with offspring. In Sumatra these areas include Way Kambas and parts of the Leuser ecosystem. Keywords: Extinction, isolation-induced infertility, pathology, reproduction. Editor:
Recommended publications
  • A Survey of Fungi at the University of Wisconsin-Waukesha Field Station
    University of Wisconsin Milwaukee UWM Digital Commons Field Station Bulletins UWM Field Station Spring 1993 A survey of fungi at the University of Wisconsin- Waukesha Field Station Alan D. Parker University of Wisconsin-Waukesha Follow this and additional works at: https://dc.uwm.edu/fieldstation_bulletins Part of the Forest Biology Commons, and the Zoology Commons Recommended Citation Parker, A.D. 1993 A survey of fungi at the University of Wisconsin-Waukesha Field Station. Field Station Bulletin 26(1): 1-10. This Article is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Field Station Bulletins by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. A Survey of Fungi at the University of Wisconsin-Waukesha Field Station Alan D. Parker Department of Biological Sciences University of Wisconsin-Waukesha Waukesha, Wisconsin 53188 Introduction The University of Wisconsin-Waukesha Field Station was founded in 1967 through the generous gift of a 98 acre farm by Ms. Gertrude Sherman. The facility is located approximately nine miles west of Waukesha on Highway 18, just south of the Waterville Road intersection. The site consists of rolling glacial deposits covered with old field vegetation, 20 acres of xeric oak woods, a small lake with marshlands and bog, and a cold water stream. Other communities are being estab- lished as a result of restoration work; among these are mesic prairie, oak opening, and stands of various conifers. A long-term study of higher fungi and Myxomycetes, primarily from the xeric oak woods, was started in 1978.
    [Show full text]
  • Plant List 2016
    Established 1990 PLANT LIST 2016 European mail order website www.crug-farm.co.uk CRÛG FARM PLANTS • 2016 Welcome to our 2016 list hope we can tempt you with plenty of our old favourites as well as some exciting new plants that we have searched out on our travels. There has been little chance of us standing still with what has been going on here in 2015. The year started well with the birth of our sixth grandchild. January into February had Sue and I in Colombia for our first winter/early spring expedition. It was exhilarating, we were able to travel much further afield than we had previously, as the mountainous areas become safer to travel. We are looking forward to working ever closer with the Colombian institutes, such as the Medellin Botanic Gardens whom we met up with. Consequently we were absent from the RHS February Show at Vincent Square. We are finding it increasingly expensive participating in the London shows, while re-branding the RHS February Show as a potato event hardly encourages our type of customer base to visit. A long standing speaking engagement and a last minute change of date, meant that we missed going to Fota near Cork last spring, no such problem this coming year. We were pleasantly surprised at the level of interest at the Trgrehan Garden Rare Plant Fair, in Cornwall. Hopefully this will become an annual event for us, as well as the Cornwall Garden Society show in April. Poor Sue went through the wars having to have a rush hysterectomy in June, after some timely results revealed future risks.
    [Show full text]
  • 261 Comparative Morphology and Anatomy of Few Mangrove Species
    261 International Journal of Bio-resource and Stress Management 2012, 3(1):001-017 Comparative Morphology and Anatomy of Few Mangrove Species in Sundarbans, West Bengal, India and its Adaptation to Saline Habitat Humberto Gonzalez Rodriguez1, Bholanath Mondal2, N. C. Sarkar3, A. Ramaswamy4, D. Rajkumar4 and R. K. Maiti4 1Facultad de Ciencias Forestales, Universidad Autonoma de Nuevo Leon, Carr. Nac. No. 85, Km 145, Linares, N.L. Mexico 2Department of Plant Protection, Palli Siksha Bhavana, Visva-Bharati, Sriniketan (731 236), West Bengal, India 3Department of Agronomy, SASRD, Nagaland University, Medziphema campus, Medziphema (PO), DImapur (797 106), India 4Vibha Seeds, Inspire, Plot#21, Sector 1, Huda Techno Enclave, High Tech City Road, Madhapur, Hyderabad, Andhra Pradesh (500 081), India Article History Abstract Manuscript No. 261 Mangroves cover large areas of shoreline in the tropics and subtropics where they Received in 30th January, 2012 are important components in the productivity and integrity of their ecosystems. High Received in revised form 9th February, 2012 variability is observed among the families of mangroves. Structural adaptations include Accepted in final form th4 March, 2012 pneumatophores, thick leaves, aerenhyma in root helps in surviving under flooded saline conditions. There is major inter- and intraspecific variability among mangroves. In this paper described morpho-anatomical characters helps in identification of family Correspondence to and genus and species of mangroves. Most of the genus have special type of roots which include Support roots of Rhizophora, Pnematophores of Avicennia, Sonneratia, Knee *E-mail: [email protected] roots of Bruguiera, Ceriops, Buttress roots of Xylocarpus. Morpho-anatomically the leaves show xerophytic characteristics.
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Field Guide to Common Macrofungi in Eastern Forests and Their Ecosystem Functions
    United States Department of Field Guide to Agriculture Common Macrofungi Forest Service in Eastern Forests Northern Research Station and Their Ecosystem General Technical Report NRS-79 Functions Michael E. Ostry Neil A. Anderson Joseph G. O’Brien Cover Photos Front: Morel, Morchella esculenta. Photo by Neil A. Anderson, University of Minnesota. Back: Bear’s Head Tooth, Hericium coralloides. Photo by Michael E. Ostry, U.S. Forest Service. The Authors MICHAEL E. OSTRY, research plant pathologist, U.S. Forest Service, Northern Research Station, St. Paul, MN NEIL A. ANDERSON, professor emeritus, University of Minnesota, Department of Plant Pathology, St. Paul, MN JOSEPH G. O’BRIEN, plant pathologist, U.S. Forest Service, Forest Health Protection, St. Paul, MN Manuscript received for publication 23 April 2010 Published by: For additional copies: U.S. FOREST SERVICE U.S. Forest Service 11 CAMPUS BLVD SUITE 200 Publications Distribution NEWTOWN SQUARE PA 19073 359 Main Road Delaware, OH 43015-8640 April 2011 Fax: (740)368-0152 Visit our homepage at: http://www.nrs.fs.fed.us/ CONTENTS Introduction: About this Guide 1 Mushroom Basics 2 Aspen-Birch Ecosystem Mycorrhizal On the ground associated with tree roots Fly Agaric Amanita muscaria 8 Destroying Angel Amanita virosa, A. verna, A. bisporigera 9 The Omnipresent Laccaria Laccaria bicolor 10 Aspen Bolete Leccinum aurantiacum, L. insigne 11 Birch Bolete Leccinum scabrum 12 Saprophytic Litter and Wood Decay On wood Oyster Mushroom Pleurotus populinus (P. ostreatus) 13 Artist’s Conk Ganoderma applanatum
    [Show full text]
  • Floral Anatomy and Embryology of Cipadessa Baccifera Miq
    FLORAL ANATOMY AND EMBRYOLOGY OF CIPADESSA BACCIFERA MIQ. Department of Botany, Andhra University, Waltaii* (Received for pubJication on September 16, 1957) T hb family Meliaceae comprises 50 genera and 800 species (Lawrence, 1951). Tt is included in the order Geraniales by Bentham and Hooker (1862-1893) and Engler and Diels (1936). Rendle (1938) includes the family in his Rutales along with Simaroubaceje, Burseracea: and Rutacese- It is the only family in the Meliales of Hutchinson (1926) Our knowledge of floral anatomy in the family is meagre. Saunders (1937) made a study of Melia azadcrach. The flowers are hypogynous, isomerous with the floral parts arranged in six whorls. Sepals have commissural marginal veins. Traces for the stamens arise independently from the main stele. Dorsal carpellary traces are lack­ ing. Ventrais continue into the style. Recently Nair (1956 a) studied the placentation in Melia azadirachta (Azadirachta indica) and con­ cluded that the placentation is parietal on the basis of vascular ana- The embryological work done in the family till 1930 was summa­ rised by Schnarf (1931). Since then the important work in the family is by Wiger (1935) who studied 40 species, distributed in 13 genera. More recently Garudamma (1956 and 1957) has studied the embryology ot Melia azadirachta and Nair (1956 6) studied the development of endosperm in three species. The embryological features may be sum- The anther structure shows an epidermis and 4-5 wall layers. The hypodermal wall layer develops into the fibrous endothecium in the mature anther. The tapetum is of the secretory type. The tapetal cells ultimately become 2-4 nucleate.
    [Show full text]
  • Lamiaceae), with Emphasis on Taxonomic Implications
    Biologia 67/5: 867—874, 2012 Section Botany DOI: 10.2478/s11756-012-0076-z Trichome micromorphology of the Chinese-Himalayan genus Colquhounia (Lamiaceae), with emphasis on taxonomic implications Guo-Xiong Hu1,3,TeodoraD.Balangcod2 & Chun-Lei Xiang1* 1Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Heilongtan, Kunming 650201, Yunnan, P. R. China; e-mail: [email protected] 2Department of Biology, College of Science, University of the Philippines Baguio, 2600 Baguio City, Philippines 3Graduate School of Chinese Academy of Sciences, Beijing 100039,P.R.China Abstract: Trichome micromorphology of leaves and young stems of nine taxa (including four varieties) of Colquhounia were examined using light and scanning microscopy. Two basic types of trichomes were recognized: eglandular and glandular. Eglandular trichomes are subdivided into simple and branched trichomes. Based on the number of cells and trichome configuration, simple eglandular trichomes are further divided into four forms: unicellular, two-celled, three-celled and more than three-celled trichomes. Based on branching configuration, the branched eglandular trichomes can be separated into three forms: biramous, stellate and dendroid. Glandular trichomes can be divided into two subtypes: capitate and peltate glandular trichomes. Results from this study of morphological diversity of trichomes within Colquhounia lend insight into infrageneric classification and species relationships. Based on the presence of branched trichomes in C. elegans,thisspecies should be transferred from Colquhounia sect. Simplicipili to sect. Colquhounia. We provide a taxonomic key to species of Chinese Colquhounia based on trichome morphology and other important morphological traits. Key words: Colquhounia; glandular hairs; leaf anatomy; Lamioideae; Yunnan Introduction in spikes or capitula; equally 5–toothed calyces; and nutlets winged at apex (Li & Hedge 1994).
    [Show full text]
  • Plant Associations and Descriptions for American Memorial Park, Commonwealth of the Northern Mariana Islands, Saipan
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Vegetation Inventory Project American Memorial Park Natural Resource Report NPS/PACN/NRR—2013/744 ON THE COVER Coastal shoreline at American Memorial Park Photograph by: David Benitez Vegetation Inventory Project American Memorial Park Natural Resource Report NPS/PACN/NRR—2013/744 Dan Cogan1, Gwen Kittel2, Meagan Selvig3, Alison Ainsworth4, David Benitez5 1Cogan Technology, Inc. 21 Valley Road Galena, IL 61036 2NatureServe 2108 55th Street, Suite 220 Boulder, CO 80301 3Hawaii-Pacific Islands Cooperative Ecosystem Studies Unit (HPI-CESU) University of Hawaii at Hilo 200 W. Kawili St. Hilo, HI 96720 4National Park Service Pacific Island Network – Inventory and Monitoring PO Box 52 Hawaii National Park, HI 96718 5National Park Service Hawaii Volcanoes National Park – Resources Management PO Box 52 Hawaii National Park, HI 96718 December 2013 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Species Composition and Zonal Distribution of Mangrove Plants in the Myeik Coastal Areas of Myanmar
    Journal of Aquaculture & Marine Biology Research Article Open Access Species composition and zonal distribution of mangrove plants in the Myeik coastal areas of Myanmar Abstract Volume 9 Issue 2 - 2020 The species composition and zonal distribution of mangroves in five research sites viz., Tin-Zar-Ni-Win,1 U Soe-Win2 Kapa, Masanpa, Panadoung, Kywe Ka Yan and Kyauk Phyar from Myeik coastal areas 1Marine Biologist, Fauna & Flora International (FFI), Myanmar were studied from December 2017 to July 2018. Transect lines in landward, seaward 2Department of Marine Science, Mawlamyine University, and shoreline, and plots based on Point Center Quarter Method (PCQM) were used. Myanmar A total of 21 species of true mangrove were recorded. Rhizophora apiculata and R. Mucronata were the most dominant species in the study sites, especially in the seaward Correspondence: Tin-Zar-Ni-Win, Marine Biologist, Fauna & areas. Among the recorded species, Aegiceras corniculatum, Avicennia officinalis, R. Flora International (FFI), Myanmar apiculata, R. mucronata, Sonneratia alba and Nypa fruticans were distributed in all study Email sites. Bruguiera gymnorhiza and B.cylindrica, were recorded only in shoreline areas and Heritiera littoralisis was found only in landward areas in all study sites. Among the Received: April 07, 2020 | Published: April 28, 2020 study sites, Kapa has been designated as the highest species composition, representing 17 species, whereas Kyauk Phyar, representing 12 species as the lowest species composition. The environmental parameters of mangrove forests were also provided in all study sites. The various salinity and temperature ranges of seawater (25.0-30.0‰ and 28.0-32.0ºC) and soil (25.0-33.0‰ and 27.6-31.4ºC) significantly controlled the distribution of mangrove species of mangroves.
    [Show full text]
  • Forest Fungi in Ireland
    FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix
    [Show full text]
  • For Enumeration of This Part a Linear Sequence of Lycophytes and Ferns After Christenhusz, M
    PTERIDOPHYTA For enumeration of this part A linear sequence of Lycophytes and Ferns after Christenhusz, M. J. M.; Zhang, X.C. & Schneider, H. (2011) has been followed Subclass: Lycopodiidae Beketov (1863). Order: Selaginellales (1874). Selaginellaceae Willkomm, Anleit. Stud. Bot. 2: 163. 1854; Prodr. FI. Hisp. 1(1): 14. 1861. SELAGINELLA P. Beauvois, Megasin Encycl. 9: 478. 1804. Selaginella monospora Spring, Mém. Acad. Roy. Sci. Belgique 24: 135. 1850; Monogr. Lyc. II:135. 1850; Alston, Bull. Fan. Mem. Inst. Biol. Bot. 5: 288, 1954; Alston, Proc. Nat. Inst. Sc. Ind. 11: 228. 1945; Reed, C.F., Ind. Sellaginellarum 160 – 161. 1966; Panigrahi et Dixit, Proc. Nat. Inst. Sc. Ind. 34B (4): 201, f.6. 1968; Kunio Iwatsuki in Hara, Fl. East. Himal. 3: 168. 1972; Ghosh et al., Pter. Fl. East. Ind. 1: 127. 2004. Selaginella gorvalensis Spring, Monogr. Lyc. II: 256. 1850; Bak, Handb. Fern Allies 107. 1887; Selaginella microclada Bak, Jour. Bot. 22: 246. 1884; Selaginella plumose var. monospora (Spring) Bak, Jour. Bot. 21:145. 1883; Selaginella semicordata sensu Burkill, Rec. Bot. Surv. Ind. 10: 228. 1925, non Spring. Plant up to 90 cm, main stem prostrate, rooting on all sides and at intervals, unequally tetragonal, main stem alternately branched 5 – 9 times, branching unequal, flexuous; leavesobscurely green, dimorphus, lateral leaves oblong to ovate-lanceolate, subacute, denticulate to serrulate at base. Spike short, quadrangular, sporophylls dimorphic, large sporophyls less than half as long as lateral leaves, oblong- lanceolate, obtuse, denticulate, small sporophylls dentate, ovate, acuminate. Fertile: October to January. Specimen Cited: Park, Rajib & AP Das 0521, dated 23. 07.
    [Show full text]
  • Efficacy of Cipadessa Baccifera Leaf Extracts Against Gram Pod Borer, Helicoverpa Armigera (Hübner) (Lepidoptera: Noctuidae)
    J. ent. Res., 32 (1) : 1-3 (2008) Efficacy of Cipadessa baccifera leaf extracts against gram pod borer, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) S. Malarvannan, S. Sekar and H.D. Subashini* M.S. Swaminathan Research Foundation, III Cross Road, Institutional Area, Chennai - 600 113, India ABSTRACT Cipadessa baccifera, a common medicinal plant of Western Ghats was evakyated fir insecticidal property against Helicoverpa armigera. The different extracts of leaves differed significantly in their efficacy with the hexane extract being the most effective in curtailing the fecundity and egg hatchability in the first generation adults. The insecticidal effect against the resultant progeny proved that petroleum ether extract could cause significant reduction in pupation and pupal weight and higher percentage of malformed adults. Cipadessa baccifera Miq., belonging to production and cause 5-15% loss in yield world Meliaceae, is a small tree or bushy shrub with over (Banerjee, Das and Hui, 2000). Among them, pinnate leaves and small flowers. The plant is used American bollworm, Helicoverpa armigera, a traditionally for fuel, as tooth brush, leaf and fruit as polyphagous noctuid is a major pest in India from cattle fodder and fish poison (personal communication late seventies (Reed and Pawar, 1982; Guo, 1997). with tribals of Kolli Hills). Medicinally, it is reported to Devastating 181 plant species (of 39 families) cure piles, diabetes, diarrhea, food poison and head (Manjunath et al., 1989), the pest causes an annual ache (Amit and Shailendra, 2006). It is distributed in loss of US $300 million in pigeon pea and chick pea North Circas, common on laterite hills, near villages alone in India (Jayaraj et al., 1990).
    [Show full text]