Reidentification of Sex Pheromones of Tea Geometrid Ectropis Obliqua Prout (Lepidoptera: Geometridae)

Total Page:16

File Type:pdf, Size:1020Kb

Reidentification of Sex Pheromones of Tea Geometrid Ectropis Obliqua Prout (Lepidoptera: Geometridae) Journal of Economic Entomology, 109(1), 2016, 167–175 doi: 10.1093/jee/tov282 Advance Access Publication Date: 21 October 2015 Ecology and Behavior Research article Reidentification of Sex Pheromones of Tea Geometrid Ectropis obliqua Prout (Lepidoptera: Geometridae) Yunqiu Yang,1 Longwa Zhang,2 Feng Guo,1,3 Yanhua Long,3 Yun Wang,1 and Xiaochun Wan1,4 1State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China ([email protected]; [email protected]; [email protected]), 2Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, China ([email protected]), 3School of Life Science, Anhui Agricultural University, Hefei 230036, China (yyq_ly- [email protected]), and 4Corresponding author, e-mail: [email protected]. Received 26 March 2015; Accepted 2 September 2015 Downloaded from Abstract Tea geometrid Ectropis obliqua Prout (Lepidoptera: Geometridae) is an important defoliator of the tree crop Camellia sinensis L. in China. The sex pheromones of E. obliqua have not been identified, but have potential im- portance relative to the biological control of this predator. In this study, the female sex pheromones of E. obli- qua were identified and evaluated for use in the monitoring and mass trapping of this pest. The sex pheromone http://jee.oxfordjournals.org/ extracts were subjected to gas chromatography–electroantennographic detection and gas chromatography– mass spectrometry. The identified chemicals were synthesized and applied to wind-tunnel tests and field exper- iments. (Z,Z,Z )-3,6,9-octadecatriene and 6,7-epoxy-(Z,Z )-3,9-octadecadiene were determined to be the primary sex pheromones produced by the female E. obliqua; the latter elicits the strongest electroantennogram responses from male E. obliqua antennae. However, males did not respond to single components in the wind- tunnel tests. The results of a field-trapping experiment indicated that a 4:6 v/v blend of (Z,Z,Z )-3,6,9-octadeca- triene and 6,7-epoxy-(Z,Z )-3,9-octadecadiene was highly effective in attracting male moths. Key words Ectropis oblique Prout, sex pheromone, (Z,Z,Z )-3,6,9-octadecatriene, 6,7-epoxy-(Z,Z )-3,9-octadecadiene, Camellia by guest on March 21, 2016 sinensis L Tea geometrid Ectropis obliqua Prout (Lepidoptera: Geometridae 9-nonadecatriene as sex pheromones of E. obliqua (Li et al. 1988). Ennominae) is a major pest that infests thousands of hectares of tea Yao et al. (1991) deduced that (Z,Z,Z )-3,6,9-octadecatriene and plantations (Camellia sinensis L) in China annually. E. obliqua can 6,7-epoxy-(Z,Z )-3,9-octadecadiene were sex pheromones of this also be found in Japan, but it is not considered a serious pest in that pest through gas chromatography–mass spectrometry (GC-MS). country (Hu et al. 1994). Outbreak populations of this pest can com- These authors also reported that (Z,Z,Z )-3,6,9-docosatriene and pletely consume all the leaves on a tea bush, thereby limiting tea pro- (Z,Z,Z )-3,6,9-tetracosatriene exhibit a certain capability to duction in summer and autumn severely and affecting tea production attract(Yao et al. 1991). However, Yao et al. did not present the for the following year (Hazarika et al. 2009, Zhang et al. 2014). E. field attraction data and the statistical analyses or details about the obliqua is multivoltine and produces six to seven generations per year doses and dispensers used. (Yang et al. 2008). Recurring E. obliqua outbreaks can be controlled The sex pheromones of E. obliqua have not been accurately iden- with large doses of chemical pesticides; however, this practice leaves tified; therefore, the use of pheromones to monitor and control this pesticide residues on the tea that is shipped to the market and pollutes moth in tea orchards has been hampered. In the present work, we the environment (Hazarika et al. 2001, Ye et al. 2014). As such, non- examine the active compounds extracted from the female sex phero- insecticidal measures must urgently be developed to control E. obli- mone glands of E. obliqua, the sensory responses of male moths to qua; the utilization of sex pheromones to manipulate behavior is a synthetic compounds, and the behavioral responses of male moths promising alternative to pesticides (Hazarika et al. 2009). as per wind-tunnel and field bioassays. Attempts to identify the sex pheromones of E. obliqua were initi- ated more than 30 yr ago. Du (1978–1981) studied E. obliqua sex Materials and Methods pheromones and identified multiple potential components, but the chemical structures of these components were not reported (date Insects unpublished). Li et al. (1988) identified (Z,Z,Z )-3,6,9-octadeca- E. obliqua insects were obtained from Qian-Shan County (31.5 N, trienyl acetate, (Z,Z,Z )-3,6,9-octadecatriene, and (Z,Z,Z )-3,6, 116.3 E), Anhui Province, China. Approximately 10 generations of VC The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: [email protected] 167 168 Journal of Economic Entomology, 2016, Vol. 109, No. 1 this moth were maintained in the laboratory. Fresh material was col- although we modified their process slightly (Fig. 1). We used methyl lected regularly from the field and introduced into the laboratory linolenate (“1”) instead of linolenic acid to react with LiAlH4 in culture to prevent degeneration, and the larvae were reared on tea THF to produce the corresponding 9,12,15-octadecatrien-1-ol leaves. Furthermore, both adults and larvae were maintained under (“2”). Alcohol reacted with 4-methylbenzene-1-sulfonyl chloride controlled conditions at 22 6 3C, 60–70% RH, and a photoperiod (TosCl) in DCM converted to tosylate (“3”); then, tosylate reacted of 14:10 (L:D) h. Scotophase and photophase were reversed from with LiAlH4 in ether. Once the solvent evaporated, the crude prod- the natural light cycle to permit scotophase observation during nor- uct was purified through chromatography (PE ¼ 100%) to obtain mal working hours. The pupae were sexed based on the morphology (Z,Z,Z )-3,6,9-octadecatriene (“4”). The purity of the produced of the eighth-tenth abdominal segments and were maintained in (Z,Z,Z )-3,6,9-octadecatriene was >98%. (Z,Z,Z )-3,6,9-octadeca- moist sand for eclosion. The adults were housed separately in 240- triene MS (EI. 70 eV): 248 (1) [Mþ], 192 (11), 135 (6), 108 (41), 95 ml plastic jars and fed with 10% honey solution soaked in cotton. (32) [C7H11þ], 67 (60) [C5H7þ], 79 (100) [C6H7þ], 55 (44) [C4H7þ], 41 (70). Female Calling (Z,Z,Z)-3,6,9-octadecatriene was converted to a mixture of the The diel rhythm of calling behavior was observed in 1- to 3-d-old three corresponding mono-epoxydienes through oxidation with m- virgin females (N ¼ 50) that were individually placed in plastic con- chloroperoxybenzoic acid in dichloromethane (Ando et al. 1993). tainers and housed under the artificial environment. Observations The crude product was separated with a reversed-phase column were conducted under red light (3 lux) at 1-h intervals during (SEPAX-GP18, Sepax Technologies, Inc., Newark, DE) and eluted scotophase. with 80% acetonitrile. A portion of the three regio-isomers was then separated into individual monoepoxides with silica gel (200–300 mesh; Sinopharm Chemical Reagent Beijing Co., Ltd.) and then Downloaded from Extraction of Sex Pheromones eluted with 50% benzene in hexane. The elution order was 6,7- Active sex pheromones were extracted from the glands of 1-day-old epoxide < 9,10-epoxide < 3,4-epoxide. The purity of the produced virgin females (N ¼ 20) 5 h after the scotophase began. Mating was 6,7-epoxy-(Z, Z)-3,9-octadecadiene was 95% with respect to the most frequently observed during this period. The terminal abdomi- other positional isomers. 6,7-epoxy-(Z,Z)-3,9-octadecadiene MS nal tip, including the pheromone gland, was excised from the virgin (EI. 70 eV): 264(1) [Mþ], 235(1) [C16H27Oþ], 181 (2), 195 (1) female moth. The tip was immersed in 10 ll of redistilled hexane for http://jee.oxfordjournals.org/ [C13H23Oþ], 111(13) [C7H11Oþ], 97 (18), 95 (25), 81 (40), 79 4–6 h at room temperature. Experimental procedures were per- (27), 67 (100), 55 (78), 41 (82). formed under red light (3 lux) to facilitate observation and to avoid disturbing the insects. Then, the tip was removed and the extracts merged for either gas chromatography–electroantennogram (GC- Electrophysiology EAG) or GC-MS analyses without purification. EAG was conducted with an EAG apparatus (Syntech Co., the Netherlands) to test the electrophysiological activity of male E. obli- GC-EAG and GC-MS Analyses qua antennae in response to different doses of (Z, Z, Z)-3,6,9-octa- decatriene and 6,7-epoxy-(Z, Z )-3,9-octadecadiene. These antennae The EAG activity of the natural E. obliqua pheromone components by guest on March 21, 2016 was determined using a gas chromatograph equipped with an elec- were prepared for GC-EAD by exposure to 4 ml/s of humidified and troantennographic detector (EAD; Struble and Arn 1984). An charcoal-filtered air through a 35-cm-long glass tube (inner diame- Agilent 7890 gas chromatograph was equipped with an INNOWAX ter, 8 mm; outer diameter, 10 mm). Approximately 3-mm holes were capillary column (60 m by 0.35 mm i.d. by 0.25 lm, J&W Scientific bored into the glass tube to facilitate the insertion of a Pasteur pip- Palo Alto, CA, USA). The column temperature was programmed at ette and to administer the pheromone test stimuli.
Recommended publications
  • Butterflies and Moths of Gwinnett County, Georgia, United States
    Heliothis ononis Flax Bollworm Moth Coptotriche aenea Blackberry Leafminer Argyresthia canadensis Apyrrothrix araxes Dull Firetip Phocides pigmalion Mangrove Skipper Phocides belus Belus Skipper Phocides palemon Guava Skipper Phocides urania Urania skipper Proteides mercurius Mercurial Skipper Epargyreus zestos Zestos Skipper Epargyreus clarus Silver-spotted Skipper Epargyreus spanna Hispaniolan Silverdrop Epargyreus exadeus Broken Silverdrop Polygonus leo Hammock Skipper Polygonus savigny Manuel's Skipper Chioides albofasciatus White-striped Longtail Chioides zilpa Zilpa Longtail Chioides ixion Hispaniolan Longtail Aguna asander Gold-spotted Aguna Aguna claxon Emerald Aguna Aguna metophis Tailed Aguna Typhedanus undulatus Mottled Longtail Typhedanus ampyx Gold-tufted Skipper Polythrix octomaculata Eight-spotted Longtail Polythrix mexicanus Mexican Longtail Polythrix asine Asine Longtail Polythrix caunus (Herrich-Schäffer, 1869) Zestusa dorus Short-tailed Skipper Codatractus carlos Carlos' Mottled-Skipper Codatractus alcaeus White-crescent Longtail Codatractus yucatanus Yucatan Mottled-Skipper Codatractus arizonensis Arizona Skipper Codatractus valeriana Valeriana Skipper Urbanus proteus Long-tailed Skipper Urbanus viterboana Bluish Longtail Urbanus belli Double-striped Longtail Urbanus pronus Pronus Longtail Urbanus esmeraldus Esmeralda Longtail Urbanus evona Turquoise Longtail Urbanus dorantes Dorantes Longtail Urbanus teleus Teleus Longtail Urbanus tanna Tanna Longtail Urbanus simplicius Plain Longtail Urbanus procne Brown Longtail
    [Show full text]
  • Report-VIC-Croajingolong National Park-Appendix A
    Croajingolong National Park, Victoria, 2016 Appendix A: Fauna species lists Family Species Common name Mammals Acrobatidae Acrobates pygmaeus Feathertail Glider Balaenopteriae Megaptera novaeangliae # ~ Humpback Whale Burramyidae Cercartetus nanus ~ Eastern Pygmy Possum Canidae Vulpes vulpes ^ Fox Cervidae Cervus unicolor ^ Sambar Deer Dasyuridae Antechinus agilis Agile Antechinus Dasyuridae Antechinus mimetes Dusky Antechinus Dasyuridae Sminthopsis leucopus White-footed Dunnart Felidae Felis catus ^ Cat Leporidae Oryctolagus cuniculus ^ Rabbit Macropodidae Macropus giganteus Eastern Grey Kangaroo Macropodidae Macropus rufogriseus Red Necked Wallaby Macropodidae Wallabia bicolor Swamp Wallaby Miniopteridae Miniopterus schreibersii oceanensis ~ Eastern Bent-wing Bat Muridae Hydromys chrysogaster Water Rat Muridae Mus musculus ^ House Mouse Muridae Rattus fuscipes Bush Rat Muridae Rattus lutreolus Swamp Rat Otariidae Arctocephalus pusillus doriferus ~ Australian Fur-seal Otariidae Arctocephalus forsteri ~ New Zealand Fur Seal Peramelidae Isoodon obesulus Southern Brown Bandicoot Peramelidae Perameles nasuta Long-nosed Bandicoot Petauridae Petaurus australis Yellow Bellied Glider Petauridae Petaurus breviceps Sugar Glider Phalangeridae Trichosurus cunninghami Mountain Brushtail Possum Phalangeridae Trichosurus vulpecula Common Brushtail Possum Phascolarctidae Phascolarctos cinereus Koala Potoroidae Potorous sp. # ~ Long-nosed or Long-footed Potoroo Pseudocheiridae Petauroides volans Greater Glider Pseudocheiridae Pseudocheirus peregrinus
    [Show full text]
  • Behaviour of First Instar Ectropis Excursaria
    wAÌ'l'þ. lì\'';ll lll'['E zo' r D't5\ Liiliì,¡'ï17 BEHA\TIOIIR 0F EIRST INSTÁR EeIrcPß EXC{IRSARIA(I.BPII}OPIERA: GEOITETRIDAE) IN RELATTON TO HOST-ETNDING PROCESS by RAMÅN RÄ}ÍACIÂ}IDRÂN B. Sc. (Âg), M. Sc. (I.À.R.I.' NBIü DEIflI). A thesLs subnítted for the degræ of Doctor of PhiTosophy 7n the FacuTty of AgricuTturaT Scienæ to the Aníversity of AdeLaide. /. 1'¡¡..... '-- ?5'" Jvt,--t , /-{'-ì8å Department of Entomology, I{aite .Agrlcultural Research Institute, Ttre Unversity of Adelaide. MARCI, 1986. PLATE 1 First lnstars of Ectropis excursaria on the edge of a citrus leaf. IO MY PÂRENÏS TABT,E OF CONTENIS SIIMMÄRY t DECLARATIOII iv ACKiIOWI.EDGH,IM{TS v CfrAPTER 1 I}ITRODUGIIOI{ I ffiAPTER 2 PRBLII{INÂRIËS 2,I General Methods. 5 2.2 Hatchíng of eggs. 6 2,2.t Hatching in the field. 7 2.3.I Hatching in laborat,ory. 7 CTAPTER 3 \TISUAL BBHAVIOIIR OF HTRST INSTAR ECIROPIS EXCTIRSARIA 3.1 fntroduction. 10 3.1.1 Role of vision in detection of host plants. 10 3.I.2 Role of vision in the host-finding of larval stages of lepidoptera. 11 3.2 Response of first. instar caterpillars to vertical and horizontal angles subtended by objects. 11 3.2.L Materials and methods. L2 3.2.2 Results and discussion t3 3.3 Discrimination of objects on the basis of vertical and horÍzontal angles. L4 3.3.1 Matería1s and methods. T4 3.3.2 Results and discussion. 16 3.4 Distance perception in caterpillars. T7 3.4.I Materials and methods.
    [Show full text]
  • Viruses 2015, 7, 306-319; Doi:10.3390/V7010306 OPEN ACCESS
    Viruses 2015, 7, 306-319; doi:10.3390/v7010306 OPEN ACCESS viruses ISSN 1999-4915 www.mdpi.com/journal/viruses Review History and Current Status of Development and Use of Viral Insecticides in China Xiulian Sun Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; E-Mail: [email protected]; Tel.: +86-27-8719-8641; Fax: +86-27-8719-8072 Academic Editors: John Burand and Madoka Nakai Received: 1 December 2014 / Accepted: 14 January 2015 / Published: 20 January 2015 Abstract: The use of insect viruses as biological control agents started in the early 1960s in China. To date, more than 32 viruses have been used to control insect pests in agriculture, forestry, pastures, and domestic gardens in China. In 2014, 57 products from 11 viruses were authorized as commercial viral insecticides by the Ministry of Agriculture of China. Approximately 1600 tons of viral insecticidal formulations have been produced annually in recent years, accounting for about 0.2% of the total insecticide output of China. The development and use of Helicoverpa armigera nucleopolyhedrovirus, Mamestra brassicae nucleopolyhedrovirus, Spodoptera litura nucleopolyhedrovirus, and Periplaneta fuliginosa densovirus are discussed as case studies. Additionally, some baculoviruses have been genetically modified to improve their killing rate, infectivity, and ultraviolet resistance. In this context, the biosafety assessment of a genetically modified Helicoverpa armigera nucleopolyhedrovirus is discussed. Keywords: viral insecticides; commercialization; genetic modification 1. Introduction Research on insect viruses in China started with the Bombyx mori nucleopolyhedrovirus in the mid-1950s [1] and, to date, more than 200 insect virus isolates have been recorded in China.
    [Show full text]
  • Detecting Deep Divergence in Seventeen Populations of Tea Geometrid (Ectropis Obliqua Prout) in China by COI Mtdna and Cross-Breeding
    Detecting Deep Divergence in Seventeen Populations of Tea Geometrid (Ectropis obliqua Prout) in China by COI mtDNA and Cross-Breeding Gui-Hua Zhang1., Zhi-Jun Yuan1., Chuan-Xi Zhang2, Kun-Shan Yin1, Mei-Jun Tang1, Hua-Wei Guo1, Jian-Yu Fu1*, Qiang Xiao1* 1 Key Laboratory of Tea Plants Biology and Resources Utilization of Agriculture Ministry, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China, 2 Institute of Insect Science, Zhejiang University, Hangzhou, China Abstract The tea geometrid (Ectropis obliqua Prout, Lepidoptera: Geometridae) is a dominant chewing insect endemic in most tea- growing areas in China. Recently some E. obliqua populations have been found to be resistant to the nucleopolyhedrovirus (EoNPV), a host-specific virus that has so far been found only in E. obliqua. Although the resistant populations are morphologically indistinguishable from susceptible populations, we conducted a nationwide collection and examined the genetic divergence in the COI region of the mtDNA in E. obliqua. Phylogenetic analyses of mtDNA in 17 populations revealed two divergent clades with genetic distance greater than 3.7% between clades and less than 0.7% within clades. Therefore, we suggest that E. obliqua falls into two distinct groups. Further inheritance analyses using reciprocal single-pair mating showed an abnormal F1 generation with an unbalanced sex ratio and the inability to produce fertile eggs (or any eggs) through F1 self-crossing. These data revealed a potential cryptic species complex with deep divergence and reproductive isolation within E. obliqua. Uneven distribution of the groups suggests a possible geographic effect on the divergence. Future investigations will be conducted to examine whether EoNPV selection or other factors prompted the evolution of resistance.
    [Show full text]
  • Home Pre-Fire Moth Species List by Species
    Species present before fire - by species Scientific Name Common Name Family Abantiades aphenges Hepialidae Abantiades hyalinatus Mustard Ghost Moth Hepialidae Abantiades labyrinthicus Hepialidae Acanthodela erythrosema Oecophoridae Acantholena siccella Oecophoridae Acatapaustus leucospila Nolidae Achyra affinitalis Cotton Web Spinner Crambidae Aeolochroma mniaria Geometridae Ageletha hemiteles Oecophoridae Aglaosoma variegata Notodontidae Agriophara discobola Depressariidae Agrotis munda Brown Cutworm Noctuidae Alapadna pauropis Erebidae Alophosoma emmelopis Erebidae Amata nigriceps Erebidae Amelora demistis Pointed Cape Moth Geometridae Amelora sp. Cape Moths Geometridae Antasia flavicapitata Geometridae Anthela acuta Common Anthelid Moth Anthelidae Anthela ferruginosa Anthelidae Anthela repleta Anthelidae Anthela sp. Anthelidae Anthela varia Variable Anthelid Anthelidae Antipterna sp. Oecophoridae Ardozyga mesochra Gelechiidae Ardozyga sp. Gelechiidae Ardozyga xuthias Gelechiidae Arhodia lasiocamparia Pink Arhodia Geometridae Arrade destituta Erebidae Arrade leucocosmalis Erebidae Asthenoptycha iriodes Tortricidae Asura lydia Erebidae Azelina biplaga Geometridae Barea codrella Oecophoridae Calathusa basicunea Nolidae Calathusa hypotherma Nolidae Capusa graodes Geometridae Capusa sp. Geometridae Carposina sp. Carposinidae Casbia farinalis Geometridae Casbia sp. Geometridae Casbia tanaoctena Geometridae Catacometes phanozona Oecophoridae Catoryctis subparallela Xyloryctidae Cernia amyclaria Geometridae Chaetolopha oxyntis Geometridae Chelepteryx
    [Show full text]
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS INDIA January 2007 Forest Resources Development Service Working Paper FBS/18E Forest Management Division FAO, Rome, Italy Forestry Department Overview of forest pests - India DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in India. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). ii Overview of forest pests - India TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases..................................................................................................................
    [Show full text]
  • Effects of Chemical Insecticide Imidacloprid on the Release of C6
    www.nature.com/scientificreports OPEN Efects of Chemical Insecticide Imidacloprid on the Release of C6 Green Leaf Volatiles in Tea Plants Received: 31 May 2018 Accepted: 23 November 2018 (Camellia sinensis) Published: xx xx xxxx Qiying Zhou1,2,3, Xi Cheng1, Shuangshuang Wang1, Shengrui Liu1 & Chaoling Wei1 Chemical insecticides are widely used for pest control worldwide. However, the impact of insecticides on indirect plant defense is seldom reported. Here, using tea plants and the pesticide imidacloprid, efects of chemical insecticides on C6-green leaf volatiles (GLVs) anabolism and release were investigated frst time. Compared with the non-treated control plants, the treatment of imidacloprid resulted in the lower release amount of key GLVs: (Z)-3-hexenal, n-hexenal, (Z)-3-hexene-1-ol and (Z)-3-Hexenyl acetate. The qPCR analysis revealed a slight higher transcript level of the CsLOX3 gene but a signifcantly lower transcript level of CsHPL gene. Our results suggest that imidacloprid treatment can have a negative efect on the emission of GLVs due to suppressing the critical GLVs synthesis-related gene, consequently afecting plant indirect defense. In response to insect herbivore and pathogen attacks, tea plants can exhibit direct and indirect defenses. Direct defenses employs structural or toxic components to against the aggressor. By contrast, indirect defenses utilizes 1–4 volatiles to attract natural enemies of the attackers . Green leaf volatiles (GLVs) including six-carbon (C6) alde- hydes, alcohols, and their esters, are important components of plant indirect defenses5–7. GLVs are formed by a two-step reaction catalyzed by lipoxygenase (LOX) and fatty acid 13-hydroperoxide lyase (13HPL), which use linolenic or linoleic acids as substrate.
    [Show full text]
  • º'‡ Èõàπõπ§ ∫ (Lepidoptera: Geometridae) ¢Õ߇¢Μ√—°…“Æ
    π‘æπ∏åµâπ©∫—∫ º’‡ ◊ÈÕÀπÕπ§◊∫ (Lepidoptera: Geometridae) ¢Õ߇¢µ√—°…“æ—π∏ÿå —µ«åªÉ“ Œ“≈“-∫“≈“ ®—ßÀ«—¥π√“∏‘«“ »ÿ¿ƒ°…å «—≤π ‘∑∏‘Ï 1 ™—¬«—≤πå ª√–¡«≈2 ÿ√‰°√ ‡æ‘Ë¡§”3 ·≈– »‘√‘æ√ ∑ÕßÕ“√’¬å 4 Abstract Watanasit, S.1, Pramual, C.1, Permkam, S.2, and Thong-Aree, S.3 Geometrid moths (Lepidoptera: Geometridae) in Hala-Bala Wildlife Sanctuary, Narathiwat Province Songklanakarin J. Sci. Technol., 2004, 26(2) : 197-210 The purpose of this research was to investigate the species diversity and abundance of geometrid moths in tropical rain forest of Hala-Bala Wildlife Sanctuary (< 200 meters above sea level), Narathiwat Province, southern Thailand. Field data were collected every 2 months from July 2001 to July 2002. Three light traps were placed 200 meters apart. Moths were collected every 2 hours between 18.00 - 24.00 pm for 1Department of Biology, Faculty of Science, 2Department of Pest Management, Faculty of Natural Resourecs, Prince of Songkla University, Hat Yai, Songkhla, 90112, 3Peat Swamp Hala-Bala Research Station, Narathiwat, 96160 Thailand. 1«∑.¡. ( —µ««‘∑¬“) √Õß»“ µ√“®“√¬å 2«∑.¡. (𑇫»«‘∑¬“) π—°»÷°…“ ¿“§«‘™“™’««‘∑¬“ §≥–«‘∑¬“»“ µ√å 3Ph.D. (Entomology) √Õß»“ µ√“®“√¬å ¿“§«‘™“°“√®—¥°“√»—µ√Ÿæ◊™ §≥–∑√—欓°√∏√√¡™“µ‘ ¡À“«‘∑¬“≈—¬ ߢ≈“π§√‘π∑√å Õ”‡¿ÕÀ“¥„À≠à ®—ßÀ«—¥ ߢ≈“ 90112 4«∑.¡. (™’««‘∑¬“ªÉ“‰¡â) π—°«‘™“°“√ ∂“π’«‘®—¬ —µ«åªÉ“ ªÉ“æ√ÿªÉ“Œ“≈“-∫“≈“ 96160 π√“∏‘«“ Corresponding e-mail : [email protected] √—∫µâπ©∫—∫ 10 µÿ≈“§¡ 2546 √—∫≈ßæ‘¡æå 18 µÿ≈“§¡ 2546 Songklanakarin J. Sci. Technol. Geometrid moths in Hala-Bala Wildlife Sanctuary, Narathiwat Vol. 26 No. 2 Mar.-Apr. 2004 198 Watanasit, S., et al. 3 consecutive nights. Seven hundred and fifty six individuals of geometrid moths comprising 5 subfamilies, 17 tribes, 67 genera and 129 species were collected and identified.
    [Show full text]
  • Biosearch 2004 Report
    Biosearch Nyika: Malawi 2004 Edited by Marianne J Overton FOREWORD Peter Overton It is ten years since the Biosearch Nyika project was first mooted and agreement with the Director of National Parks and Wildlife obtained for our exploration of the remoter parts of the Nyika National Park. Over this period the teams have focused mainly on the northern part of the park where patrolling has been very limited and our gathering of intelligence has been most helpful to the Nyika management. In 2004 we undertook the most challenging expedition to date, launched from the extreme north of the park at Uledi, a four-hour drive from Thazima. The team‟s first challenge was to cross the unbridged North Rukuru River with all their supplies. They then had to climb up the western escarpment of the Mpanda ridge to a point on the Mpero River, where they set up a Base Camp, from which to launch out on their surveys. The greatest achievement was to climb both Mpanda and Kawozya and discover the remote Bleak House, now derelict but offering stunning views over Lake Malawi and far beyond. At this point they could certainly claim to be in remote country since this old site is much talked about but very rarely seen by visitors. We have yet to have clear information about who built it, when and why. Perhaps it was a holiday „retreat‟ for Livingstonia or a staging post for missionaries who conducted business on the west of the Nyika National Park and into Zambia. In many ways this expedition was the pinnacle of logistical achievement.
    [Show full text]
  • Beginner S Guide to Moths of the Midwest Geometers
    0LGZHVW5HJLRQ86$ %HJLQQHU V*XLGHWR0RWKVRIWKH0LGZHVW*HRPHWHUV $QJHOOD0RRUHKRXVH ,OOLQRLV1DWXUH3UHVHUYH&RPPLVVLRQ Photos: Angella Moorehouse ([email protected]). Produced by: Angella Moorehouse with the assistance of Alicia Diaz, Field Museum. Identification assistance provided by: multiple sources (inaturalist.org; bugguide.net) )LHOG0XVHXP &&%<1&/LFHQVHGZRUNVDUHIUHHWRXVHVKDUHUHPL[ZLWKDWWULEXWLRQEXWFRPPHUFLDOXVHRIWKHRULJLQDOZRUN LVQRWSHUPLWWHG >ILHOGJXLGHVILHOGPXVHXPRUJ@>@YHUVLRQ $ERXWWKH%(*,11(5¶6027+62)7+(0,':(67*8,'(6 Most photos were taken in west-central and central Illinois; a fewDUH from eastern Iowa and north-central Wisconsin. Nearly all were posted to identification websites: BugGuide.netDQG iNaturalist.org. Identification help was provided by Aaron Hunt, Steve Nanz, John and Jane Balaban, Chris Grinter, Frank Hitchell, Jason Dombroskie, William H. Taft, Jim Wiker,DQGTerry Harrison as well as others contributing to the websites. Attempts were made to obtain expert verifications for all photos to the field identification level, however, there will be errors. Please contact the author with all corrections Additional assistance was provided by longtime Lepidoptera survey partner, Susan Hargrove. The intention of these guides is to provide the means to compare photographs of living specimens of related moths from the Midwest to aid the citizen scientists with identification in the field for Bio Blitz, Moth-ers Day, and other night lighting events. A taxonomic list to all the species featured is provided at the end along with some field identification tips. :(%6,7(63529,',1*,'(17,),&$7,21,1)250$7,21 BugGuide.net LNaturalist.org Mothphotographersgroup.msstate.edu Insectsofiowa.org centralillinoisinsects.org/weblog/resources/ :+,&+027+*8,'(7286( The moths were split into 6 groups for the purposes of creating smaller guides focusing on similar features of 1 or more superfamilies.
    [Show full text]
  • Acquired Natural Enemies of Oxyops Vitiosa 1
    Christensen et al.: Acquired Natural Enemies of Oxyops vitiosa 1 ACQUIRED NATURAL ENEMIES OF THE WEED BIOLOGICAL CONTROL AGENT OXYOPS VITIOSA (COLEPOTERA: CURCULIONIDAE) ROBIN M. CHRISTENSEN, PAUL D. PRATT, SHERYL L. COSTELLO, MIN B. RAYAMAJHI AND TED D. CENTER USDA/ARS, Invasive Plant Research Laboratory, 3225 College Ave., Ft. Lauderdale, FL 33314 ABSTRACT The Australian curculionid Oxyops vitiosa Pascoe was introduced into Florida in 1997 as a biological control agent of the invasive tree Melaleuca quinquenervia (Cav.) S. T. Blake. Pop- ulations of the weevil increased rapidly and became widely distributed throughout much of the invasive tree’s adventive distribution. In this study we ask if O. vitiosa has acquired nat- ural enemies in Florida, how these enemies circumvent the protective terpenoid laden exu- dates on larvae, and what influence 1 of the most common natural enemies has on O. vitiosa population densities? Surveys of O. vitiosa populations and rearing of field-collected individ- uals resulted in no instances of parasitoids or pathogens exploiting weevil eggs or larvae. In contrast, 44 species of predatory arthropods were commonly associated (>5 individuals when pooled across all sites and sample dates) with O. vitiosa. Eleven predatory species were ob- served feeding on O. vitiosa during timed surveys, including 6 pentatomid species, 2 formi- cids and 3 arachnids. Species with mandibulate or chelicerate mouthparts fed on adult stages whereas pentatomids, with haustellate beaks, pierced larval exoskeletons thereby by- passing the protective larval coating. Observations of predation were rare, with only 8% of timed surveys resulting in 1 or more instances of attack. Feeding by the pentatomid Podisus mucronatus Uhler accounted for 76% of all recorded predation events.
    [Show full text]