Ancestral History and Past Distribution
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Vom Duxer Köpfl Bei Kufstein/Unterinntal, Österreich 129
48/49 Reihe A Series A/ Zitteliana An International Journal of Palaeontology and Geobiology Series A /Reihe A Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Geologie 48/49 An International Journal of Palaeontology and Geobiology München 2009 Zitteliana Zitteliana An International Journal of Palaeontology and Geobiology Series A/Reihe A Mitteilungen der Bayerischen Staatssammlung für Paläontologie und Geologie 48/49 CONTENTS/INHALT In memoriam † PROF. DR. VOLKER FAHLBUSCH 3 DHIRENDRA K. PANDEY, FRANZ T. FÜRSICH & ROSEMARIE BARON-SZABO Jurassic corals from the Jaisalmer Basin, western Rajasthan, India 13 JOACHIM GRÜNDEL Zur Kenntnis der Gattung Metriomphalus COSSMANN, 1916 (Gastropoda, Vetigastropoda) 39 WOLFGANG WITT Zur Ostracodenfauna des Ottnangs (Unteres Miozän) der Oberen Meeresmolasse Bayerns 49 NERIMAN RÜCKERT-ÜLKÜMEN Erstnachweis eines fossilen Vertreters der Gattung Naslavcea in der Türkei: Naslavcea oengenae n. sp., Untermiozän von Hatay (östliche Paratethys) 69 JÉRÔME PRIETO & MICHAEL RUMMEL The genus Collimys DAXNER-HÖCK, 1972 (Rodentia, Cricetidae) in the Middle Miocene fissure fillings of the Frankian Alb (Germany) 75 JÉRÔME PRIETO & MICHAEL RUMMEL Small and medium-sized Cricetidae (Mammalia, Rodentia) from the Middle Miocene fissure filling Petersbuch 68 (southern Germany) 89 JÉRÔME PRIETO & MICHAEL RUMMEL Erinaceidae (Mammalia, Erinaceomorpha) from the Middle Miocene fissure filling Petersbuch 68 (southern Germany) 103 JOSEF BOGNER The free-floating Aroids (Araceae) – living and fossil 113 RAINER BUTZMANN, THILO C. FISCHER & ERNST RIEBER Makroflora aus dem inneralpinen Fächerdelta der Häring-Formation (Rupelium) vom Duxer Köpfl bei Kufstein/Unterinntal, Österreich 129 MICHAEL KRINGS, NORA DOTZLER & THOMAS N. TAYLOR Globicultrix nugax nov. gen. et nov. spec. (Chytridiomycota), an intrusive microfungus in fungal spores from the Rhynie chert 165 MICHAEL KRINGS, THOMAS N. -
The Cordilleran Ice Sheet 3 4 Derek B
1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide. -
Geology of Blaine-Birch Bay Area Whatcom County, WA Wings Over
Geology of Blaine-Birch Bay Area Blaine Middle Whatcom County, WA School / PAC l, ul G ant, G rmor Wings Over Water 2020 C o n Nest s ero Birch Bay Field Trip Eagles! H March 21, 2020 Eagle "Trees" Beach Erosion Dakota Creek Eagle Nest , ics l at w G rr rfo la cial E te Ab a u ant W Eagle Nest n d California Heron Rookery Creek Wave Cut Terraces Kingfisher G Nests Roger's Slough, Log Jam Birch Bay Eagle Nest G Beach Erosion Sea Links Ponds Periglacial G Field Trip Stops G Features Birch Bay Route Birch Bay Berm Ice Thickness, 2,200 M G Surficial Geology Alluvium Beach deposits Owl Nest Glacial outwash, Fraser-age in Barn k Glaciomarine drift, Fraser-age e e Marine glacial outwash, Fraser-age r Heron Center ll C re Peat deposits G Ter Artificial fill Terrell Marsh Water T G err Trailhead ell M a r k sh Terrell Cr ee 0 0.25 0.5 1 1.5 2 ± Miles 2200 M Blaine Middle Glacial outwash, School / PAC Geology of Blaine-Birch Bay Area marine, Everson ll, G Gu Glaciomarine Interstade Whatcom County, WA morant, C or t s drift, Everson ron Nes Wings Over Water 2020 Semiahmoo He Interstade Resort G Blaine Semiahmoo Field Trip March 21, 2020 Eagle "Trees" Semiahmoo Park G Glaciomarine drift, Everson Beach Erosion Interstade Dakota Creek Eagle Nest Glac ial Abun E da rra s, Blaine nt ti c l W ow Eagle Nest a terf California Creek Heron Glacial outwash, Rookery Glaciomarine drift, G Field Trip Stops marine, Everson Everson Interstade Semiahmoo Route Interstade Ice Thickness, 2,200 M Kingfisher Surficial GNeeoslotsgy Wave Cut Alluvium Glacial Terraces Beach deposits outwash, Roger's Glacial outwash, Fraser-age Slough, SuGmlaacsio mSataridnee drift, Fraser-age Log Jam Marine glacial outwash, Fraser-age Peat deposits Beach Eagle Nest Artificial fill deposits Water Beach Erosion 0 0.25 0.5 1 1.5 2 Miles ± Chronology of Puget Sound Glacial Events Sources: Vashon Glaciation Animation; Ralph Haugerud; Milepost Thirty-One, Washington State Dept. -
Rhizopogon Togasawariana Sp. Nov., the First Report of Rhizopogon Associated with an Asian Species of Pseudotsuga
Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga Mujic, A. B., Hosaka, K., & Spatafora, J. W. (2014). Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga. Mycologia, 106(1), 105-112. doi:10.3852/13-055 10.3852/13-055 Allen Press Inc. Version of Record http://hdl.handle.net/1957/47245 http://cdss.library.oregonstate.edu/sa-termsofuse Mycologia, 106(1), 2014, pp. 105–112. DOI: 10.3852/13-055 # 2014 by The Mycological Society of America, Lawrence, KS 66044-8897 Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga Alija B. Mujic1 the natural and anthropogenic range of the family Department of Botany and Plant Pathology, Oregon and plays an important ecological role in the State University, Corvallis, Oregon 97331-2902 establishment and maintenance of forests (Tweig et Kentaro Hosaka al. 2007, Simard 2009). The foundational species Department of Botany, National Museum of Nature concepts for genus Rhizopogon were established in the and Science, Tsukuba-shi, Ibaraki, 305-0005, Japan North American monograph of Smith and Zeller (1966), and a detailed monograph also has been Joseph W. Spatafora produced for European Rhizopogon species (Martı´n Department of Botany and Plant Pathology, Oregon 1996). However, few data on Asian species of State University, Corvallis, Oregon 97331-2902 Rhizopogon have been incorporated into phylogenetic and taxonomic studies and only a limited account of Asian Rhizopogon species has been published for EM Abstract: Rhizopogon subgenus Villosuli are the only associates of Pinus (Hosford and Trappe 1988). -
The Anatomy of Spruce Needles '
THE ANATOMY OF SPRUCE NEEDLES ' By HERBERT F. MARCO 2 Junior forester. Northeastern Forest Experiment Station,^ Forest Service, United States Department of Agriculture INTRODUCTION In 1865 Thomas (16) * made a comparative study of the anatomy of conifer leaves and fomid that the structural variations exhibited by the different species warranted taxonomic considération. Since that time leaf anatomy has become a fertile and interesting field of research. Nearly all genera of gymnosperms have received some attention, and the literature on this subject has become voluminous. A detailed review of the literature will not be attempted in this paper, since com- prehensive reviews have already been published by Fulling (6) and Lacassagne (11). FuUing's paper contains in addition an extensive bibliography on conifer leaf anatomy. Most workers in tMs field of research have confined their efforts to the study of the cross sections of needles. This is partly because longitudinal sections are difficult to obtain and partly because they present but little structural variation of value for identification. The workers who have studied both longitudinal and cross sections have restricted their descrii)tions of longitudinal sections either to specific tissues or to a few species of a large number of genera, and the descrip- tions, although comprehensive, leave much to be desired from the standpoint of detailed information and illustration. Domer (S) was perhaps the first to use sketches to augment keys to and descriptions of the native firs and spruces. His diagrammatic sketches portray the shape of the needles in cross section and the position of the resin canals. Durrell (4) went a step further and illustrated his notes on the North American conifers by camera-lucida drawing^ depicting the orientation and arrangement of the various needle tissues in cross section. -
Phylogeny and Biogeography of Tsuga (Pinaceae)
Systematic Botany (2008), 33(3): pp. 478–489 © Copyright 2008 by the American Society of Plant Taxonomists Phylogeny and Biogeography of Tsuga (Pinaceae) Inferred from Nuclear Ribosomal ITS and Chloroplast DNA Sequence Data Nathan P. Havill1,6, Christopher S. Campbell2, Thomas F. Vining2,5, Ben LePage3, Randall J. Bayer4, and Michael J. Donoghue1 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106 U.S.A 2School of Biology and Ecology, University of Maine, Orono, Maine 04469-5735 U.S.A. 3The Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103 U.S.A. 4CSIRO – Division of Plant Industry, Center for Plant Biodiversity Research, GPO 1600, Canberra, ACT 2601 Australia; present address: Department of Biology, University of Memphis, Memphis, Tennesee 38152 U.S.A. 5Present address: Delta Institute of Natural History, 219 Dead River Road, Bowdoin, Maine 04287 U.S.A. 6Author for correspondence ([email protected]) Communicating Editor: Matt Lavin Abstract—Hemlock, Tsuga (Pinaceae), has a disjunct distribution in North America and Asia. To examine the biogeographic history of Tsuga, phylogenetic relationships among multiple accessions of all nine species were inferred using chloroplast DNA sequences and multiple cloned sequences of the nuclear ribosomal ITS region. Analysis of chloroplast and ITS sequences resolve a clade that includes the two western North American species, T. heterophylla and T. mertensiana, and a clade of Asian species within which one of the eastern North American species, T. caroliniana, is nested. The other eastern North American species, T. canadensis, is sister to the Asian clade. Tsuga chinensis from Taiwan did not group with T. -
Cedrus, Keteleeria, Pseudolarix, and Pseudo- Key Words: Abies, Larix
IAWA Journal, Vol. 15 (4), 1994: 399-406 FUSIFORM PARENCHYMA CELLS IN THE YOUNG WOOD OF PINACEAE, AND THEIR DISTINCTION FROM MARGINAL PARENCHYMA by Shuichi Noshiro and Tomoyuki Fujii Wood Anatomy Laboratory, Forestry and Forest Products Research Institute, Tsukuba Norin, P. O. Box 16, Ibaraki 305, Japan Summary Fusiform parenchyma cells found in sev ray tracheids, and the proportion of ray tra eral genera of Pinaceae are described and cheid pit border types. Recently, Anagnost compared with marginal parenchyma. Fusi et al. (1994) restudied all these features using form parenchyma cells are mostly fusiform world-wide sam pIes of Picea and Larix, and in shape, with occasional smooth horizontal confirmed the results of Bartholin (1979) that walls. They form discontinuous tangential ray tracheid pit border types were the most bands in complete or incomplete circ1es in the reliable characteristic. However, because of innermost growth rings of Larix, Abies, and restricted growth in branches, it was difficult Tsuga. Fusiform parenchyma always con to use these stemwood characteristics in iden tains resinous material, and is more conspic tifying branchwoods. uous in branchwoods than in stern woods. Modern branchwood materials gathered Marginal parenchyma cells were observed in for comparative purposes, however, revealed Cedrus, Keteleeria, Pseudolarix, and Pseudo the conspicuous occurrence of resinous paren tsuga as weIl as in Larix, Abies, and Tsuga, chyma cells in the inner growth rings of Larix and very rarely in Picea. Marginal paren and their absence in Picea. Occurrence of chyma cells are scattered along growth ring resinous parenchyma ceHs was also observed boundaries. They are always in strands with in the Quaternary branchwoods, and was used nodular horizontal walls with conspicuous to distinguish Larix branchwoods from Picea simple pits. -
Fluorescent Band Pattern of Chromosomes in Pseudolarix Amabilis, Pinaceae
© 2015 The Japan Mendel Society Cytologia 80(2): 151–157 Fluorescent Band Pattern of Chromosomes in Pseudolarix amabilis, Pinaceae Masahiro Hizume* Faculty of Education, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime 790–8577, Japan Received October 27, 2014; accepted November 18, 2014 Summary Pseudolarix amabilis belongs to one of three monotypic genera in Pinaceae. This species had 2n=44 chromosomes in somatic cells and its karyotype was composed of four long submetacentric chromosomes and 40 short telocentric chromosomes that varied gradually in length, supporting previous reports by conventional staining. The chromosomes were stained sequentially with the fluorochromes, chromomycin A3 (CMA) and 4′,6-diamidino-2-phenylindole (DAPI). CMA- bands appeared on 12 chromosomes at near terminal region and proximal region. DAPI-bands appeared at centromeric terminal regions of all 40 telocentric chromosomes. The fluorescent-banded karyotype of this species was compared with those of other Pinaceae genera considering taxonomical treatment and molecular phylogenetic analyses reported. On the basis of the fluorescent-banded karyotype, the relationship between Pseudolarix amabilis and other Pinaceae genera was discussed. Key words Chromomycin, Chromosome, DAPI, Fluorescent banding, Pinaceae, Pseudolarix amabilis. In Pinaceae, 11 genera with about 220 species are distinguished and grow mostly in the Northern Hemisphere (Farjon 1990). Most genera are evergreen trees, and only Larix and Pseudolarix are deciduous. Pinus is the largest genus in species number, and Cathaya, Nothotsuga and Pseudolarix are monotypic genera. The taxonomy of Pinaceae with 11 genera is complicated, having some problems in species or variety level. Several higher taxonomic treatments were reported on the base of anatomy and morphology such as resin canal in the vascular cylinder, seed scale, position of mature cones, male strobili in clusters from a single bud, and molecular characters in base sequences of several DNA regions. -
Utilization of Floodplains by Salmon
C S A S S C C S Canadian Science Advisory Secretariat Secrétariat canadien de consultation scientifique Research Document 2002/007 Document de recherche 2002/007 Not to be cited without Ne pas citer sans permission of the authors * autorisation des auteurs * Floodplains, flooding, and salmon Examen des plaines d’inondation, des rearing habitats in British Columbia: A inondations et des habitats d’alevinage review du saumon en Colombie-Britannique Tom G. Brown Pacific Biological Station Fisheries and Oceans Canada 3190 Hammond Bay Road Nanaimo, B.C. V9T 6N7 * This series documents the scientific basis for the * La présente série documente les bases scientifiques evaluation of fisheries resources in Canada. As des évaluations des ressources halieutiques du Canada. such, it addresses the issues of the day in the time Elle traite des problèmes courants selon les échéanciers frames required and the documents it contains are dictés. Les documents qu’elle contient ne doivent pas not intended as definitive statements on the subjects être considérés comme des énoncés définitifs sur les addressed but rather as progress reports on ongoing sujets traités, mais plutôt comme des rapports d’étape investigations. sur les études en cours. Research documents are produced in the official Les documents de recherche sont publiés dans la language in which they are provided to the langue officielle utilisée dans le manuscrit envoyé au Secretariat. Secrétariat. This document is available on the Internet at: Ce document est disponible sur l’Internet à: http://www.dfo-mpo.gc.ca/csas/ ISSN 1499-3848 (Printed) © Her Majesty the Queen in Right of Canada, 2002 © Sa majesté la Reine, Chef du Canada, 2002 2 Abstract The purpose of this review paper was to examine the relationships between floodplains, flooding, and juvenile salmon habitats. -
The Gelasian Stage (Upper Pliocene): a New Unit of the Global Standard Chronostratigraphic Scale
82 by D. Rio1, R. Sprovieri2, D. Castradori3, and E. Di Stefano2 The Gelasian Stage (Upper Pliocene): A new unit of the global standard chronostratigraphic scale 1 Department of Geology, Paleontology and Geophysics , University of Padova, Italy 2 Department of Geology and Geodesy, University of Palermo, Italy 3 AGIP, Laboratori Bolgiano, via Maritano 26, 20097 San Donato M., Italy The Gelasian has been formally accepted as third (and Of course, this consideration alone does not imply that a new uppermost) subdivision of the Pliocene Series, thus rep- stage should be defined to represent the discovered gap. However, the top of the Piacenzian stratotype falls in a critical point of the evo- resenting the Upper Pliocene. The Global Standard lution of Earth climatic system (i.e. close to the final build-up of the Stratotype-section and Point for the Gelasian is located Northern Hemisphere Glaciation), which is characterized by plenty in the Monte S. Nicola section (near Gela, Sicily, Italy). of signals (magnetostratigraphic, biostratigraphic, etc; see further on) with a worldwide correlation potential. Therefore, Rio et al. (1991, 1994) argued against the practice of extending the Piacenzian Stage up to the Pliocene-Pleistocene boundary and proposed the Introduction introduction of a new stage (initially “unnamed” in Rio et al., 1991), the Gelasian, in the Global Standard Chronostratigraphic Scale. This short report announces the formal ratification of the Gelasian Stage as the uppermost subdivision of the Pliocene Series, which is now subdivided into three stages (Lower, Middle, and Upper). Fur- The Gelasian Stage thermore, the Global Standard Stratotype-section and Point (GSSP) of the Gelasian is briefly presented and discussed. -
Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing
Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Huybers, Peter J. 2006. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 313(5786): 508-511. Published Version http://dx.doi.org/10.1126/science.1125249 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:3382981 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Early Pleistocene Glacial Cycles and the Integrated Summer Insolation Forcing Peter Huybers, et al. Science 313, 508 (2006); DOI: 10.1126/science.1125249 The following resources related to this article are available online at www.sciencemag.org (this information is current as of January 5, 2007 ): Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/cgi/content/full/313/5786/508 Supporting Online Material can be found at: http://www.sciencemag.org/cgi/content/full/1125249/DC1 A list of selected additional articles on the Science Web sites related to this article can be found at: http://www.sciencemag.org/cgi/content/full/313/5786/508#related-content This article cites 12 articles, 5 of which can be accessed for free: http://www.sciencemag.org/cgi/content/full/313/5786/508#otherarticles on January 5, 2007 This article has been cited by 1 article(s) on the ISI Web of Science. -
Pseudotsuga Menziesii)
120 - PART 1. CONSENSUS DOCUMENTS ON BIOLOGY OF TREES Section 4. Douglas-Fir (Pseudotsuga menziesii) 1. Taxonomy Pseudotsuga menziesii (Mirbel) Franco is generally called Douglas-fir (so spelled to maintain its distinction from true firs, the genus Abies). Pseudotsuga Carrière is in the kingdom Plantae, division Pinophyta (traditionally Coniferophyta), class Pinopsida, order Pinales (conifers), and family Pinaceae. The genus Pseudotsuga is most closely related to Larix (larches), as indicated in particular by cone morphology and nuclear, mitochondrial and chloroplast DNA phylogenies (Silen 1978; Wang et al. 2000); both genera also have non-saccate pollen (Owens et al. 1981, 1994). Based on a molecular clock analysis, Larix and Pseudotsuga are estimated to have diverged more than 65 million years ago in the Late Cretaceous to Paleocene (Wang et al. 2000). The earliest known fossil of Pseudotsuga dates from 32 Mya in the Early Oligocene (Schorn and Thompson 1998). Pseudostuga is generally considered to comprise two species native to North America, the widespread Pseudostuga menziesii and the southwestern California endemic P. macrocarpa (Vasey) Mayr (bigcone Douglas-fir), and in eastern Asia comprises three or fewer endemic species in China (Fu et al. 1999) and another in Japan. The taxonomy within the genus is not yet settled, and more species have been described (Farjon 1990). All reported taxa except P. menziesii have a karyotype of 2n = 24, the usual diploid number of chromosomes in Pinaceae, whereas the P. menziesii karyotype is unique with 2n = 26. The two North American species are vegetatively rather similar, but differ markedly in the size of their seeds and seed cones, the latter 4-10 cm long for P.