Adult and Larval Traits As Determinants of Geographic Range Size Among Tropical Reef fishes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coral Reef Monitoring in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua. 2009—2011
August 2012 Indo-Pacific Division Indonesia Report No 6/12 Coral Reef Monitoring in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua. 2009—2011 Report Compiled By: Purwanto, Muhajir, Joanne Wilson, Rizya Ardiwijaya, and Sangeeta Mangubhai August 2012 Indo-Pacific Division Indonesia Report No 6/12 Coral Reef Monitoring in Kofiau and Boo Islands Marine Protected Area, Raja Ampat, West Papua. 2009—2011 Report Compiled By: Purwanto, Muhajir, Joanne Wilson, Rizya Ardiwijaya, and Sangeeta Mangubhai Published by: TheNatureConservancy,Indo-PacificDivision Purwanto:TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur,Bali, Indonesia.Email: [email protected] Muhajir: TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur,Bali, Indonesia.Email: [email protected] JoanneWilson: TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur,Bali, Indonesia. RizyaArdiwijaya:TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2,Sanur, Bali,Indonesia.Email: [email protected] SangeetaMangubhai: TheNatureConservancy,IndonesiaMarineProgram,Jl.Pengembak2, Sanur,Bali,Indonesia.Email: [email protected] Suggested Citation: Purwanto,Muhajir,Wilson,J.,Ardiwijaya,R.,Mangubhai,S.2012.CoralReefMonitoringinKofiau andBooIslandsMarineProtectedArea,RajaAmpat,WestPapua.2009-2011.TheNature Conservancy,Indo-PacificDivision,Indonesia.ReportN,6/12.50pp. © 2012012012201 222 The Nature Conservancy AllRightsReserved.Reproductionforanypurposeisprohibitedwithoutpriorpermission. AllmapsdesignedandcreatedbyMuhajir. CoverPhoto: -
Patterns in Marine Community Assemblages on Continental Margins: a Faunal and Floral Synthesis from Northern Western Australian Atolls
Journal of the Royal Society of Western Australia, 94: 267–284, 2011 Patterns in marine community assemblages on continental margins: a faunal and floral synthesis from northern Western Australian atolls A Sampey 1 & J Fromont 2 1 Aquatic Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986 [email protected] 2 Aquatic Zoology, Western Australian Museum, Locked Bag 49, Welshpool DC, WA 6986 [email protected] Manuscript received November 2010; accepted January 2011 Abstract Corals and fishes are the most visually apparent fauna on coral reefs and the most often monitored groups to detect change. In comparison, data on noncoral benthic invertebrates and marine plants is sparse. Whether patterns in diversity and distribution for other taxonomic groups align with those detected in corals and fishes is largely unknown. Four shelf-edge atolls in the Kimberley region of Western Australia were surveyed for marine plants, sponges, scleractinian corals, crustaceans, molluscs, echinoderms and fishes in 2006, with a consequent 1521 species reported. Here, we provide the first community level assessment of the biodiversity of these atolls based on these taxonomic groups. Four habitats were surveyed and each was found to have a characteristic community assemblage. Different species assemblages were found among atolls and within each habitat, particularly in the lagoon and reef flat environments. In some habitats we found the common taxa groups (fishes and corals) provide adequate information for community assemblages, but in other cases, for example in the intertidal reef flats, these commonly targeted groups are far less useful in reflecting overall community patterns. -
Pomacentridae)
Zoologischer Anzeiger 264 (2016) 47–55 Contents lists available at ScienceDirect Zoologischer Anzeiger jou rnal homepage: www.elsevier.com/locate/jcz Insight into biting diversity to capture benthic prey in damselfishes (Pomacentridae) Damien Olivier ∗, Eric Parmentier, Bruno Frédérich Laboratoire de Morphologie Fonctionnelle et Evolutive, AFFISH Research Center, Institut de Chimie (B6C) Université de Liege, B-4000 Liege, Belgium a r t i c l e i n f o a b s t r a c t Article history: The cerato-mandibular (c-md) ligament, joining the hyoid bar to the coronoid process of the angular, Received 9 May 2016 allows Pomacentridae to slam their mouth shut in a few milliseconds. Previous works have revealed that Received in revised form 13 July 2016 such a mechanism is used to feed, but some variability in biting patterns has been observed between two Accepted 13 July 2016 damselfish species. The pelagic feeder Amphiprion clarkii performs two different kinematic patterns to Available online 15 July 2016 bite fixed prey, one that does not depend on the c-md ligament (biting-1) and one that does (biting-2). The benthic feeder Stegastes rectifraenum only performs biting-2. The present study aims to shed light on Keywords: the occurrence of biting-2 in the feeding behaviour of Pomacentridae. To test our hypothesis that biting-2 Cerato-mandibular ligament would be the only biting pattern for benthic feeders, we compared biting behaviours among four species: Feeding behaviour one pelagic feeder, A. clarkii, and three benthic feeders, Neoglyphidodon nigroris, Stegastes leucostictus and Functional morphology Grazing S. rectifraenum. -
Trait Decoupling Promotes Evolutionary Diversification of The
Trait decoupling promotes evolutionary diversification of the trophic and acoustic system of damselfishes rspb.royalsocietypublishing.org Bruno Fre´de´rich1, Damien Olivier1, Glenn Litsios2,3, Michael E. Alfaro4 and Eric Parmentier1 1Laboratoire de Morphologie Fonctionnelle et Evolutive, Applied and Fundamental Fish Research Center, Universite´ de Lie`ge, 4000 Lie`ge, Belgium 2Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland Research 3Swiss Institute of Bioinformatics, Ge´nopode, Quartier Sorge, 1015 Lausanne, Switzerland 4Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA Cite this article: Fre´de´rich B, Olivier D, Litsios G, Alfaro ME, Parmentier E. 2014 Trait decou- Trait decoupling, wherein evolutionary release of constraints permits special- pling promotes evolutionary diversification of ization of formerly integrated structures, represents a major conceptual the trophic and acoustic system of damsel- framework for interpreting patterns of organismal diversity. However, few fishes. Proc. R. Soc. B 281: 20141047. empirical tests of this hypothesis exist. A central prediction, that the tempo of morphological evolution and ecological diversification should increase http://dx.doi.org/10.1098/rspb.2014.1047 following decoupling events, remains inadequately tested. In damselfishes (Pomacentridae), a ceratomandibular ligament links the hyoid bar and lower jaws, coupling two main morphofunctional units directly involved in both feeding and sound production. Here, we test the decoupling hypothesis Received: 2 May 2014 by examining the evolutionary consequences of the loss of the ceratomandib- Accepted: 9 June 2014 ular ligament in multiple damselfish lineages. As predicted, we find that rates of morphological evolution of trophic structures increased following the loss of the ligament. -
Conservation and Management of Ornamental Coral Reef Wildlife: Successes, Shortcomings, and Future Directions Q ⇑ Laura E
Biological Conservation 169 (2014) 225–237 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Review Conservation and management of ornamental coral reef wildlife: Successes, shortcomings, and future directions q ⇑ Laura E. Dee a, Stephanie S. Horii a, Daniel J. Thornhill b, a Bren School of Environmental Science & Management, University of California, Santa Barbara, 2400 Bren Hall, Santa Barbara, CA 93106, USA b Department of Conservation Science and Policy, Defenders of Wildlife, 1130 17th Street NW, Washington, DC 20036, USA article info abstract Article history: Trade in ornamental coral reef wildlife supports a multi-million dollar industry but in some places threat- Received 23 August 2013 ens vulnerable coral reef species and ecosystems due to unsustainable practices and lack of effective reg- Received in revised form 12 November 2013 ulation. To supply this trade, fishers sometimes deplete fish populations and rely on practices, such as Accepted 14 November 2013 cyanide fishing, that harm coral reef organisms and habitats. The number of countries involved, dispersed fishing localities, and the diversity of species in trade present considerable impediments to conservation and management. For instance, traditional fisheries management techniques such as stock assessments Keywords: and total catch limits may not be feasible for ornamental fisheries, which are characterized by limited Aquarium trade data on population dynamics, stock status, and collection effort, as well as instances of illegal, underre- Coral reef conservation Coral reef fisheries ported, and unregulated fishing. A number of strategies to monitor, regulate, and manage the trade have Ornamental fisheries been implemented with varying efficacy. In order to learn from previous attempts and identify promising Sustainable fisheries management approaches, we reviewed selected management practices and regulations from diverse settings, with attention to the effectiveness of each approach. -
Reef Fishes of the Bird's Head Peninsula, West
Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT). -
Spatial Structure of Coral Reef Fish Communities in the Ryukyu Islands
Oceanologica Acta 26 (2003) 537–547 www.elsevier.com/locate/oceact Spatial structure of coral reef fish communities in the Ryukyu Islands, southern Japan Répartition spatiale des communautés de poissons dans différentes îles coralliennes des Ryukyus (sud du Japon) David Lecchini a,*, Mehdi Adjeroud a,b, Morgan S. Pratchett a,c, Laurence Cadoret a,b, René Galzin a a École pratique des Hautes-Études, UMR CNRS 8046, Université de Perpignan, 66860 Perpignan, France b Department of Chemistry, Biology, and Marine Science, University of the Ryukyus Nishihava, Okinawa 903-01, Japan c Centre for Coral Reef Biodiversity, James Cook University, Townsville, Qld 4811, Australia Abstract Coral reef fishes often exhibit a high degree of structure in their distribution and abundance, but the factors that influence their spatial arrangement are poorly understood. This study sought to explain the spatial structure of coral reef fish communities in the Ryukyu Archipelago, southern Japan.Visual surveys of coral reef fishes were conducted at multiple stations across the fringing reef (from the inner reef flat to the outer slope) at each of three different islands; Aka, Ishigaki and Sesoko. Spatial variation in fish communities (within and among reefs) was then compared to changes in environmental variables (water depth, distance from the shoreline, reef zone, coral abundance and coral richness). Despite being small islands, the total species richness of coral reef fishes in the Ryukyu Islands was very high (>87 species per reef). Mean abundance of reef fishes was also very high (x = 2.26 ± 0.20 S.E. fishes per m2), but more than 80% of all fishes were from the family Pomacentridae. -
Pomacentridae): Structural and Expression Variation in Opsin Genes
Molecular Ecology (2017) 26, 1323–1342 doi: 10.1111/mec.13968 Why UV vision and red vision are important for damselfish (Pomacentridae): structural and expression variation in opsin genes SARA M. STIEB,*† FABIO CORTESI,*† LORENZ SUEESS,* KAREN L. CARLETON,‡ WALTER SALZBURGER† and N. J. MARSHALL* *Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia, †Zoological Institute, University of Basel, Basel 4051, Switzerland, ‡Department of Biology, The University of Maryland, College Park, MD 20742, USA Abstract Coral reefs belong to the most diverse ecosystems on our planet. The diversity in col- oration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae) and exam- ined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, conver- gent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long- wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Inter- estingly, not only did all species express SWS1 – a UV-sensitive opsin – and possess UV-transmitting lenses, most species also feature UV-reflective body parts. -
02-Wantiez 119.Indd
FIRST DATA ON COMMUNITY STRUCTURE AND TROPHIC NETWORKS OF UVEA CORAL REEF FISH ASSEMBLAGES (WALLIS AND FUTUNA, SOUTH PACIFIC OCEAN) by Laurent WANTIEZ & Claude CHAUVET (1) ABSTRACT. - Coral reef fish communities of Uvea (Wallis and Futuna) fringing reefs, mid-lagoon reefs, inner barrier reefs and outer barrier reef slopes were studied along four transects using visual censuses during September 1999. A total of 194 fish species in 33 families were recorded. Labridae (34 species), Pomacentridae (33 species) and Chaetodontidae (23 species) were the main families. The composition of the species suggests that Uvea is located at a faunal junction between Pacific biogeographic regions. Mean density (2.5 fish/m2) was similar to other Pacific reef fish communities whereas mean biomass (43 g/m2) was within the lowest known values. Four fish assemblages were identified along an inshore-offshore gradient and related to substrate characteristics (live corals, dead corals, seagrass, algae and sand): One seagrass bed assemblage, two lagoon assemblages and one outer barrier reef slope assemblage. The major energy intake comes from lower levels of the trophic network, grazers (45.1% biomass) being the main trophic group. Other important trophic categories came from upper trophic levels: macro-carnivores (24.4%) and piscivores (14.5%). Micro-algae → grazers → piscivores was the most important energy path, before macro-invertebrates → macro-carnivores → piscivores. Plankton represented a minor resource (only 5% planktivores) during the study, which is unusual. Spatial variations in trophic networks occurred among the four fish assemblages with significant variations for grazers and macro-carnivores, and high variations for piscivores, planktivores and corallivores. -
The Global Trade in Marine Ornamental Species
From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak From Ocean to Aquarium The global trade in marine ornamental species Colette Wabnitz, Michelle Taylor, Edmund Green and Tries Razak ACKNOWLEDGEMENTS UNEP World Conservation This report would not have been The authors would like to thank Helen Monitoring Centre possible without the participation of Corrigan for her help with the analyses 219 Huntingdon Road many colleagues from the Marine of CITES data, and Sarah Ferriss for Cambridge CB3 0DL, UK Aquarium Council, particularly assisting in assembling information Tel: +44 (0) 1223 277314 Aquilino A. Alvarez, Paul Holthus and and analysing Annex D and GMAD data Fax: +44 (0) 1223 277136 Peter Scott, and all trading companies on Hippocampus spp. We are grateful E-mail: [email protected] who made data available to us for to Neville Ash for reviewing and editing Website: www.unep-wcmc.org inclusion into GMAD. The kind earlier versions of the manuscript. Director: Mark Collins assistance of Akbar, John Brandt, Thanks also for additional John Caldwell, Lucy Conway, Emily comments to Katharina Fabricius, THE UNEP WORLD CONSERVATION Corcoran, Keith Davenport, John Daphné Fautin, Bert Hoeksema, Caroline MONITORING CENTRE is the biodiversity Dawes, MM Faugère et Gavand, Cédric Raymakers and Charles Veron; for assessment and policy implemen- Genevois, Thomas Jung, Peter Karn, providing reprints, to Alan Friedlander, tation arm of the United Nations Firoze Nathani, Manfred Menzel, Julie Hawkins, Sherry Larkin and Tom Environment Programme (UNEP), the Davide di Mohtarami, Edward Molou, Ogawa; and for providing the picture on world’s foremost intergovernmental environmental organization. -
Report Re Report Title
ASSESSMENT OF CORAL REEF BIODIVERSITY IN THE CORAL SEA Edgar GJ, Ceccarelli DM, Stuart-Smith RD March 2015 Report for the Department of Environment Citation Edgar GJ, Ceccarelli DM, Stuart-Smith RD, (2015) Reef Life Survey Assessment of Coral Reef Biodiversity in the Coral Sea. Report for the Department of the Environment. The Reef Life Survey Foundation Inc. and Institute of Marine and Antarctic Studies. Copyright and disclaimer © 2015 RLSF To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of RLSF. Important disclaimer RLSF advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert professional, scientific and technical advice. To the extent permitted by law, RLSF (including its employees and consultants) excludes all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this publication (in part or in whole) and any information or material contained in it. Cover Image: Wreck Reef, Rick Stuart-Smith Back image: Cato Reef, Rick Stuart-Smith Catalogue in publishing details ISBN ……. printed version ISBN ……. web version Chilcott Island Contents Acknowledgments ........................................................................................................................................ iv Executive summary........................................................................................................................................ v 1 Introduction ................................................................................................................................... -
5-Review-Fish-Habita
United Nations UNEP/GEF South China Sea Global Environment Environment Programme Project Facility UNEP/GEF/SCS/RWG-F.8/5 Date: 12th October 2006 Original: English Eighth Meeting of the Regional Working Group for the Fisheries Component of the UNEP/GEF Project: “Reversing Environmental Degradation Trends in the South China Sea and Gulf of Thailand” Bangka Belitung Province, Indonesia 1st - 4th November 2006 INFORMATION COLLATED BY THE FISHERIES AND HABITAT COMPONENTS OF THE SOUTH CHINA SEA PROJECT ON SITES IMPORTANT TO THE LIFE- CYCLES OF SIGNIFICANT FISH SPECIES UNEP/GEF/SCS/RWG-F.8/5 Page 1 IDENTIFICATION OF FISHERIES REFUGIA IN THE GULF OF THAILAND It was discussed at the Sixth Meeting of the Regional Scientific and Technical Committee (RSTC) in December 2006 that the Regional Working Group on Fisheries should take the following two-track approach to the identification of fisheries refugia: 1. Review known spawning areas for pelagic and invertebrate species, with the aim of evaluating these sites as candidate spawning refugia. 2. Evaluate each of the project’s habitat demonstration sites as potential juvenile/pre-recruit refugia for significant demersal species. Rationale for the Two-Track Approach to the Identification of Fisheries Refugia The two main life history events for fished species are reproduction and recruitment. It was noted by the RSTC that both of these events involve movement between areas, and some species, often pelagic fishes, migrate to particular spawning areas. It was also noted that many species also utilise specific coastal habitats such as coral reefs, seagrass, and mangroves as nursery areas. In terms of the effects of fishing, most populations of fished species are particularly vulnerable to the impacts of high levels of fishing effort in areas and at times where there are high abundances of (a) stock in spawning condition, (b) juveniles and pre-recruits, or (c) pre-recruits migrating to fishing grounds.