Fine-Tuning of Notch Signaling Sets the Boundary of the Organ of Corti And
RESEARCH ARTICLE Fine-tuning of Notch signaling sets the boundary of the organ of Corti and establishes sensory cell fates Martin L Basch1†, Rogers M Brown II2, Hsin-I Jen2, Fatih Semerci2, Frederic Depreux3, Rene´ e K Edlund2, Hongyuan Zhang1, Christine R Norton4, Thomas Gridley4, Susan E Cole5, Angelika Doetzlhofer6, Mirjana Maletic-Savatic1,2,7,8, Neil Segil9, Andrew K Groves1,2,10* 1Department of Neuroscience, Baylor College of Medicine, Houston, United States; 2Program in Developmental Biology, Baylor College of Medicine, Houston, United States; 3Department of Cell Biology and Anatomy, Rosalind Franklin University of Medicine and Science, Chicago, United States; 4Maine Medical Center Research Institute, Scarborough, United States; 5Department of Molecular Genetics, The Ohio State University, Columbus, United States; 6Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, United States; 7Department of Pediatrics, Baylor College of Medicine, Houston, United States; 8Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, United States; 9Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, United States; 10Department of Molecular and Human Genetics, Baylor *For correspondence: akgroves@ College of Medicine, Houston, United States bcm.edu Present address: †Department of Otolaryngology Head and Neck Surgery, University Abstract The signals that induce the organ of Corti and define its boundaries in the cochlea are Hospitals, Case Medical Center, poorly understood. We show that two Notch modifiers, Lfng and Mfng, are transiently expressed Case Western Reserve University, precisely at the neural boundary of the organ of Corti. Cre-Lox fate mapping shows this region Cleveland, United States gives rise to inner hair cells and their associated inner phalangeal cells.
[Show full text]