Segmentation in Vertebrates: Clock and Gradient Finally Joined
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anti-Lunatic Fringe Antibody (ARG40136)
Product datasheet [email protected] ARG40136 Package: 100 μl anti-Lunatic Fringe antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes Lunatic Fringe Tested Reactivity Hu Tested Application FACS, IHC-P, WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name Lunatic Fringe Antigen Species Human Immunogen KLH-conjugated synthetic peptide corresponding to aa. 86-114 of Human Lunatic Fringe. Conjugation Un-conjugated Alternate Names O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase; EC 2.4.1.222; SCDO3; Beta-1,3-N- acetylglucosaminyltransferase lunatic fringe Application Instructions Application table Application Dilution FACS 1:10 - 1:50 IHC-P 1:50 - 1:100 WB 1:1000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control K562 Calculated Mw 42 kDa Properties Form Liquid Purification Purification with Protein A and immunogen peptide. Buffer PBS and 0.09% (W/V) Sodium azide. Preservative 0.09% (W/V) Sodium azide. Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C or below. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/3 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol LFNG Gene Full Name LFNG O-fucosylpeptide 3-beta-N-acetylglucosaminyltransferase Background This gene is a member of the fringe gene family which also includes radical and manic fringe genes. -
Perspectives
Copyright 0 1994 by the Genetics Society of America Perspectives Anecdotal, Historical and Critical Commentaries on Genetics Edited by James F. Crow and William F. Dove A Century of Homeosis, A Decade of Homeoboxes William McGinnis Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114 NE hundred years ago, while the science of genet- ing mammals, and were proposed to encode DNA- 0 ics still existed only in the yellowing reprints of a binding homeodomainsbecause of a faint resemblance recently deceased Moravian abbot, WILLIAMBATESON to mating-type transcriptional regulatory proteins of (1894) coined the term homeosis to define a class of budding yeast and an even fainter resemblance to bac- biological variations in whichone elementof a segmen- terial helix-turn-helix transcriptional regulators. tally repeated array of organismal structures is trans- The initial stream of papers was a prelude to a flood formed toward the identity of another. After the redis- concerning homeobox genes and homeodomain pro- coveryof MENDEL’Sgenetic principles, BATESONand teins, a flood that has channeled into a steady river of others (reviewed in BATESON1909) realized that some homeo-publications, fed by many tributaries. A major examples of homeosis in floral organs and animal skel- reason for the continuing flow of studies is that many etons could be attributed to variation in genes. Soon groups, working on disparate lines of research, have thereafter, as the discipline of Drosophila genetics was found themselves swept up in the currents when they born and was evolving into a formidable intellectual found that their favorite protein contained one of the force enriching many biologicalsubjects, it gradually be- many subtypes of homeodomain. -
PAPC Couples the Segmentation Clock to Somite Morphogenesis by Regulating N-Cadherin-Dependent Adhesion
© 2017. Published by The Company of Biologists Ltd | Development (2017) 144, 664-676 doi:10.1242/dev.143974 RESEARCH ARTICLE PAPC couples the segmentation clock to somite morphogenesis by regulating N-cadherin-dependent adhesion Jérome Chal1,2,3,4,5,*, Charlenè Guillot3,4,* and Olivier Pourquié1,2,3,4,5,6,7,‡ ABSTRACT specific level of the PSM called the determination front. The Vertebrate segmentation is characterized by the periodic formation of determination front is defined as a signaling threshold epithelial somites from the mesenchymal presomitic mesoderm implemented by posterior gradients of Wnt and FGF (Aulehla (PSM). How the rhythmic signaling pulse delivered by the et al., 2003; Diez del Corral and Storey, 2004; Dubrulle et al., segmentation clock is translated into the periodic morphogenesis of 2001; Hubaud and Pourquie, 2014; Sawada et al., 2001). Cells of somites remains poorly understood. Here, we focused on the role of the posterior PSM exhibit mesenchymal characteristics and paraxial protocadherin (PAPC/Pcdh8) in this process. We showed express Snail-related transcription factors (Dale et al., 2006; that in chicken and mouse embryos, PAPC expression is tightly Nieto, 2002). In the anterior PSM, cells downregulate snail/slug regulated by the clock and wavefront system in the posterior PSM. We expression and upregulate epithelialization-promoting factors such observed that PAPC exhibits a striking complementary pattern to N- as paraxis (Barnes et al., 1997; Sosic et al., 1997). This molecular cadherin (CDH2), marking the interface of the future somite boundary transition correlates with the anterior PSM cells progressively in the anterior PSM. Gain and loss of function of PAPC in chicken acquiring epithelial characteristics (Duband et al., 1987; Martins embryos disrupted somite segmentation by altering the CDH2- et al., 2009). -
Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B. -
Rapid Changes in Morphogen Concentration Control Self-Organized
RESEARCH COMMUNICATION Rapid changes in morphogen concentration control self-organized patterning in human embryonic stem cells Idse Heemskerk1†, Kari Burt1, Matthew Miller1, Sapna Chhabra2, M Cecilia Guerra1, Lizhong Liu1, Aryeh Warmflash1,3* 1Department of Biosciences, Rice University, Houston, United States; 2Systems, Synthetic and Physical Biology Program, Rice University, Houston, United States; 3Department of Bioengineering, Rice University, Houston, United States Abstract During embryonic development, diffusible signaling molecules called morphogens are thought to determine cell fates in a concentration-dependent way. Yet, in mammalian embryos, concentrations change rapidly compared to the time for making cell fate decisions. Here, we use human embryonic stem cells (hESCs) to address how changing morphogen levels influence differentiation, focusing on how BMP4 and Nodal signaling govern the cell-fate decisions associated with gastrulation. We show that BMP4 response is concentration dependent, but that expression of many Nodal targets depends on rate of concentration change. Moreover, in a self- organized stem cell model for human gastrulation, expression of these genes follows rapid changes in endogenous Nodal signaling. Our study shows a striking contrast between the specific ways ligand dynamics are interpreted by two closely related signaling pathways, highlighting both the *For correspondence: subtlety and importance of morphogen dynamics for understanding mammalian embryogenesis [email protected] and designing optimized protocols for directed stem cell differentiation. Editorial note: This article has been through an editorial process in which the authors decide how † Present address: Department to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all of Cell and Developmental the issues have been addressed (see decision letter). -
SOMITOGENESIS in the CORN SNAKE Céline Gomez
SOMITOGENESIS IN THE CORN SNAKE Céline Gomez To cite this version: Céline Gomez. SOMITOGENESIS IN THE CORN SNAKE. Development Biology. Université Pierre et Marie Curie - Paris VI, 2007. English. NNT : 2007PA066439. tel-00807996 HAL Id: tel-00807996 https://tel.archives-ouvertes.fr/tel-00807996 Submitted on 4 Apr 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESE DE DOCTORAT DE L’UNIVERSITE PIERRE ET MARIE CURIE Spécialité Biologie du Développement Présentée par Céline GOMEZ Pour obtenir le grade de DOCTEUR de l’UNIVERSITE PIERRE ET MARIE CURIE ETUDE DE LA SOMITOGENESE CHEZ LE SERPENT DES BLES Soutenue le 19 décembre 2007 Devant le jury composé de : Dr. Olivier POURQUIE: Directeur de thèse Dr. Guillaume BALAVOINE: Rapporteur Pr. Martin CATALA: Rapporteur Pr. Muriel UMBHAUER: Examinateur Pr. Denis DUBOULE: Examinateur 1 The Pierre et Marie Curie University SOMITOGENESIS IN THE CORN SNAKE A Thesis in Developmental Biology by Céline GOMEZ Submitted in Partial Fulfillement of the Requirements for the Degree of Doctor of Philosophy December 2007 2 ACKNOWLEDGMENTS I would like to heartily thank the Dr. Olivier Pourquié for his help in many ways. Thank you for having welcomed me in your team, whereas I was struggling to escape another laboratory, after having spent one year of my PhD. -
Involvement Ofnotchanddeltagenes in Spider Segmentation
letters to nature 4. Urick, R. J. Principles of Underwater Sound (McGraw Hill, New York, 1983). as arthropods, vertebrates and annelids, that are not closely related in 5. Henson, O. W. Jr The activity and function of the middle ear muscles in echolocating bats. J. Physiol. current phylogenies10. The complexity of generating a segmented (Lond.) 180, 871–887 (1965). 6. Suga, N. & Jen, P. H. S. Peripheral control of acoustic signals in the auditory system of echolocating body plan might argue for a common origin of segmentation and a bats. J. Exp. Biol. 62, 277–331 (1975). common genetic programme1,2. In the past two decades, however, 7. Au, W. W. L. The Sonar of Dolphins (Springer, New York, 1993). genetic analyses in the fruitfly Drosophila3,4 and in various vertebrates 8. Au, W. W. L., Ford, J. K. B. & Allman, K. A. Echolocation signals of foraging killer whales (Orcinus 7–9,11–14 orca). J. Acoust. Soc. Am. 111, 2343–2344 (2002). such as mouse, chick and zebrafish suggest that fundamentally 9. Rasmussen, M. H., Miller, L. A. & Au, W. W. L. Source levels of clicks from free-ranging white beaked different mechanisms and gene networks are involved in arthropod dolphins (Lagenorhynchus albirostris Gray 1846) recorded in Icelandic waters. J. Acoust. Soc. Am. 111, and vertebrate segmentation. Drosophila segments are generated by a 1122–1125 (2002). successive spatial refinement along the anterior–posterior axis under 10. Ketten, D. R. in Hearing by Whales and Dolphins (eds Au, W. W. L., Popper, A. N. & Fay, R. R.) 43–108 3,4 (Springer, New York, 2000). -
Somitogenesis in Amphibia IV
/. Embryol. exp. Morph. 76, 157-176 (1983) 257 Printed in Great Britain © The Company of Biologists Limited 1983 Somitogenesis in amphibia IV. The dynamics of tail development By TOM ELSDALE1 AND DUNCAN DAVIDSON From the MRC Clinical and Population Cytogenetics Unit, Western General Hospital, Edinburgh SUMMARY Following neurulation, the frog segments c.40 somites and concurrently undergoes a strik- ing elongation along the anteroposterior axis. This elongation (excluding the head) is largely the result of a presegmental extension of posterior tissue with a lesser contribution from the extension of segmented tissue. Presegmental extension is entirely the result of activity within a narrow zone of extension that occupies the central region in the tail bud. Within the zone of extension, a minimum of six prospective somites undergo an eight- to ten-fold extension along the axis. The zone passes posteriorly across the tissue of the tail tip. The anterior of the tail bud contains three extended prospective somites in the course of segmentation. The anterior boundary of the zone of extension coincides in space exactly with the anterior boundary of the zone of abnormal seg- mentation that results from temperature shock. This means that extension ceases immediately before the sudden tissue change associated with segmentation. INTRODUCTION There are thirteen paired myotomes in the adult frog, and some forty pairs in the tadpole. Two thirds of the somites segmented in the embryo are therefore tail somites. Previous accounts of tail development have been concerned with the origins of the parts of the tail in early development and the fate map on the early gastrula (Pasteels, 1939). -
Stages of Embryonic Development of the Zebrafish
DEVELOPMENTAL DYNAMICS 2032553’10 (1995) Stages of Embryonic Development of the Zebrafish CHARLES B. KIMMEL, WILLIAM W. BALLARD, SETH R. KIMMEL, BONNIE ULLMANN, AND THOMAS F. SCHILLING Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403-1254 (C.B.K., S.R.K., B.U., T.F.S.); Department of Biology, Dartmouth College, Hanover, NH 03755 (W.W.B.) ABSTRACT We describe a series of stages for Segmentation Period (10-24 h) 274 development of the embryo of the zebrafish, Danio (Brachydanio) rerio. We define seven broad peri- Pharyngula Period (24-48 h) 285 ods of embryogenesis-the zygote, cleavage, blas- Hatching Period (48-72 h) 298 tula, gastrula, segmentation, pharyngula, and hatching periods. These divisions highlight the Early Larval Period 303 changing spectrum of major developmental pro- Acknowledgments 303 cesses that occur during the first 3 days after fer- tilization, and we review some of what is known Glossary 303 about morphogenesis and other significant events that occur during each of the periods. Stages sub- References 309 divide the periods. Stages are named, not num- INTRODUCTION bered as in most other series, providing for flexi- A staging series is a tool that provides accuracy in bility and continued evolution of the staging series developmental studies. This is because different em- as we learn more about development in this spe- bryos, even together within a single clutch, develop at cies. The stages, and their names, are based on slightly different rates. We have seen asynchrony ap- morphological features, generally readily identi- pearing in the development of zebrafish, Danio fied by examination of the live embryo with the (Brachydanio) rerio, embryos fertilized simultaneously dissecting stereomicroscope. -
Understanding Paraxial Mesoderm Development and Sclerotome Specification for Skeletal Repair Shoichiro Tani 1,2, Ung-Il Chung2,3, Shinsuke Ohba4 and Hironori Hojo2,3
Tani et al. Experimental & Molecular Medicine (2020) 52:1166–1177 https://doi.org/10.1038/s12276-020-0482-1 Experimental & Molecular Medicine REVIEW ARTICLE Open Access Understanding paraxial mesoderm development and sclerotome specification for skeletal repair Shoichiro Tani 1,2, Ung-il Chung2,3, Shinsuke Ohba4 and Hironori Hojo2,3 Abstract Pluripotent stem cells (PSCs) are attractive regenerative therapy tools for skeletal tissues. However, a deep understanding of skeletal development is required in order to model this development with PSCs, and for the application of PSCs in clinical settings. Skeletal tissues originate from three types of cell populations: the paraxial mesoderm, lateral plate mesoderm, and neural crest. The paraxial mesoderm gives rise to the sclerotome mainly through somitogenesis. In this process, key developmental processes, including initiation of the segmentation clock, formation of the determination front, and the mesenchymal–epithelial transition, are sequentially coordinated. The sclerotome further forms vertebral columns and contributes to various other tissues, such as tendons, vessels (including the dorsal aorta), and even meninges. To understand the molecular mechanisms underlying these developmental processes, extensive studies have been conducted. These studies have demonstrated that a gradient of activities involving multiple signaling pathways specify the embryonic axis and induce cell-type-specific master transcription factors in a spatiotemporal manner. Moreover, applying the knowledge of mesoderm development, researchers have attempted to recapitulate the in vivo development processes in in vitro settings, using mouse and human PSCs. In this review, we summarize the state-of-the-art understanding of mesoderm development and in vitro modeling of mesoderm development using PSCs. We also discuss future perspectives on the use of PSCs to generate skeletal tissues for basic research and clinical applications. -
The Regulation of Lunatic Fringe During Somitogenesis
THE REGULATION OF LUNATIC FRINGE DURING SOMITOGENESIS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Emily T. Shifley ***** The Ohio State University 2009 Dissertation Committee: Approved by Professor Susan Cole, Advisor Professor Christine Beattie _________________________________ Professor Mark Seeger Advisor Graduate Program in Molecular Genetics Professor Michael Weinstein ABSTRACT Somitogenesis is the morphological hallmark of vertebrate segmentation. Somites bud from the presomitic mesoderm (PSM) in a sequential, periodic fashion and give rise to the rib cage, vertebrae, and dermis and muscles of the back. The regulation of somitogenesis is complex. In the posterior region of the PSM, a segmentation clock operates to organize cohorts of cells into presomites, while in the anterior region of the PSM the presomites are patterned into rostral and caudal compartments (R/C patterning). Both of these stages of somitogenesis are controlled, at least in part, by the Notch pathway and Lunatic fringe (Lfng), a glycosyltransferase that modifies the Notch receptor. To dissect the roles played by Lfng during somitogenesis, we created a novel allele that lacks cyclic Lfng expression within the segmentation clock, but that maintains expression during R/C somite patterning (Lfng∆FCE1). Lfng∆FCE1/∆FCE1 mice have severe defects in their anterior vertebrae and rib cages, but relatively normal sacral and tail vertebrae, unlike Lfng knockouts. Segmentation clock function is differentially affected by the ∆FCE1 deletion; during anterior somitogenesis the expression patterns of many clock genes are disrupted, while during posterior somitogenesis, certain clock components have recovered. R/C patterning occurs relatively normally in Lfng∆FCE1/∆FCE1 embryos, likely contributing to the partial phenotype rescue, and confirming that Lfng ii plays separate roles in the two regions of the PSM. -
Neural Development
31 October 2007 NEURAL DEVELOPMENT www.neuraldevelopment.com Analysis of Lrrn1 expression and its relationship to neuromeric boundaries during chick neural development Laura C Andreae et al. Neural Development 2007, 2:22 http://www.neuraldevelopment.com/content/2/1/22 Neural Development BioMed Central Research article Open Access Analysis of Lrrn1 expression and its relationship to neuromeric boundaries during chick neural development LauraCAndreae1,2, Daniela Peukert1, Andrew Lumsden1 and Jonathan D Gilthorpe*1 Address: 1MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, Guy's Campus, London, UK, SE1 1UL and 2Department of Neurophysiology, National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK, NW7 1AA Email: Laura C Andreae - [email protected]; Daniela Peukert - [email protected]; Andrew Lumsden - [email protected]; Jonathan D Gilthorpe* - [email protected] * Corresponding author Published: 31 October 2007 Received: 26 March 2007 Accepted: 31 October 2007 Neural Development 2007, 2:22 doi:10.1186/1749-8104-2-22 This article is available from: http://www.neuraldevelopment.com/content/2/1/22 © 2007 Andreae et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The Drosophila leucine-rich repeat proteins Tartan (TRN) and Capricious (CAPS) mediate cell affinity differences during compartition of the wing imaginal disc. This study aims to identify and characterize the expression of a chick orthologue of TRN/CAPS and examine its potential function in relation to compartment boundaries in the vertebrate central nervous system.