Perspectives
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Functional Analysis of the Homeobox Gene Tur-2 During Mouse Embryogenesis
Functional Analysis of The Homeobox Gene Tur-2 During Mouse Embryogenesis Shao Jun Tang A thesis submitted in conformity with the requirements for the Degree of Doctor of Philosophy Graduate Department of Molecular and Medical Genetics University of Toronto March, 1998 Copyright by Shao Jun Tang (1998) National Library Bibriothèque nationale du Canada Acquisitions and Acquisitions et Bibiiographic Services seMces bibliographiques 395 Wellington Street 395, rue Weifington OtbawaON K1AW OttawaON KYAON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence alIowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distri%uteor sell reproduire, prêter' distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Functional Analysis of The Homeobox Gene TLr-2 During Mouse Embryogenesis Doctor of Philosophy (1998) Shao Jun Tang Graduate Department of Moiecular and Medicd Genetics University of Toronto Abstract This thesis describes the clonhg of the TLx-2 homeobox gene, the determination of its developmental expression, the characterization of its fiuiction in mouse mesodem and penpheral nervous system (PNS) developrnent, the regulation of nx-2 expression in the early mouse embryo by BMP signalling, and the modulation of the function of nX-2 protein by the 14-3-3 signalling protein during neural development. -
High-Affinity Binding Sites for the Deformed Protein Are Required for the Function of an Autoregulatory Enhancer of the Deformed Gene
Downloaded from genesdev.cshlp.org on October 9, 2021 - Published by Cold Spring Harbor Laboratory Press High-affinity binding sites for the Deformed protein are required for the function of an autoregulatory enhancer of the Deformed gene Michael Regulski,*'^ Scott Dessain/ Nadine McGinnis/ and William McGinnis*'^ Departments of Biology' and Molecular Biophysics and Biochemistry^ Yale University, New Haven, Connecticut 06511 USA The homeotic selector gene Deformed [Dfd) is required to specify the identity of head segments during Drosophila development. Previous experiments have shown that for the Dfd segmental identity function to operate in epidermal cells, the Dfd gene must be persistently expressed. One mechanism that provides persistent embryonic expression of Dfd is an autoregulatory circuit. Here, we show that the control of this autoregulatory circuit is likely to be directly mediated by the binding of Dfd protein to an upstream enhancer in Dfd locus DNA. In a 25-kb region around the Dfd transcription unit, restriction fragments with the highest binding affinity for Dfd protein map within the limits of the upstream autoregulatory element at approximately -5 kb. A minimal autoregulatory element, within a 920-bp segment of upstream DNA, has four moderate- to high-affinity binding sites for Dfd protein, with the two highest affinity sites sharing an ATCATTA consensus sequence. Site-specific mutagenesis of these four sites results in an element that has low affinity for Dfd protein when assayed in vitro and is nonfunctional when assayed in embryos. \Key Words: Deformed; autoregulatory circuit; homeo domain, homeotic protein] Received October 26, 1990; revised version accepted December 13, 1990. -
Long Noncoding Rnas: Functional Surprises from the RNA World
Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Long noncoding RNAs: functional surprises from the RNA world Jeremy E. Wilusz,1 Hongjae Sunwoo,2 and David L. Spector1,3 1Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA; 2Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11794 Most of the eukaryotic genome is transcribed, yielding complexity. In addition, there has been an explosion of a complex network of transcripts that includes tens of research addressing possible functional roles for the thousands of long noncoding RNAs with little or no other 98% of the human genome that does not encode protein-coding capacity. Although the vast majority of proteins. Rather unexpectedly, transcription is not lim- long noncoding RNAs have yet to be characterized thor- ited to protein-coding regions, but is instead pervasive oughly, many of these transcripts are unlikely to represent throughout the mammalian genome as demonstrated by transcriptional ‘‘noise’’ as a significant number have been large-scale cDNA cloning projects (Carninci et al. 2005; shown to exhibit cell type-specific expression, localiza- Katayama et al. 2005) and genomic tiling arrays (Bertone tion to subcellular compartments, and association with et al. 2004; Cheng et al. 2005; Birney et al. 2007; Kapranov human diseases. Here, we highlight recent efforts that et al. 2007a). In fact, >90% of the human genome is likely have identified a myriad of molecular functions for long to be transcribed (Birney et al. 2007), yielding a complex noncoding RNAs. -
Segmentation in Vertebrates: Clock and Gradient Finally Joined
Downloaded from genesdev.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Segmentation in vertebrates: clock and gradient finally joined Alexander Aulehla1 and Bernhard G. Herrmann2 Max-Planck-Institute for Molecular Genetics, Department of Developmental Genetics, 14195 Berlin, Germany The vertebral column is derived from somites formed by terior (A–P) axis. Somite formation takes place periodi- segmentation of presomitic mesoderm, a fundamental cally in a fixed anterior-to-posterior sequence. process of vertebrate embryogenesis. Models on the In the chick embryo, a new somite is formed approxi- mechanism controlling this process date back some mately every 90 min, whereas in the mouse embryo, the three to four decades. Access to understanding the mo- periodicity varies, dependent on the axial position (Tam lecular control of somitogenesis has been gained only 1981). Classical embryology experiments revealed that recently by the discovery of molecular oscillators (seg- periodicity and directionality of somite formation are mentation clock) and gradients of signaling molecules, controlled by an intrinsic program set off in the cells as as predicted by early models. The Notch signaling path- they are recruited into the psm. For instance, when the way is linked to the oscillator and plays a decisive role in psm is inverted rostro–caudally, somite formation in the inter- and intrasomitic boundary formation. An Fgf8 sig- inverted region proceeds from caudal to rostral, main- naling gradient is involved in somite size control. And taining the original direction (Christ et al. 1974). More- the (canonical) Wnt signaling pathway, driven by Wnt3a, over, neither the transversal bisection nor the isolation appears to integrate clock and gradient in a global of the psm from all surrounding tissues stops the seg- mechanism controlling the segmentation process. -
PAPC Couples the Segmentation Clock to Somite Morphogenesis by Regulating N-Cadherin-Dependent Adhesion
© 2017. Published by The Company of Biologists Ltd | Development (2017) 144, 664-676 doi:10.1242/dev.143974 RESEARCH ARTICLE PAPC couples the segmentation clock to somite morphogenesis by regulating N-cadherin-dependent adhesion Jérome Chal1,2,3,4,5,*, Charlenè Guillot3,4,* and Olivier Pourquié1,2,3,4,5,6,7,‡ ABSTRACT specific level of the PSM called the determination front. The Vertebrate segmentation is characterized by the periodic formation of determination front is defined as a signaling threshold epithelial somites from the mesenchymal presomitic mesoderm implemented by posterior gradients of Wnt and FGF (Aulehla (PSM). How the rhythmic signaling pulse delivered by the et al., 2003; Diez del Corral and Storey, 2004; Dubrulle et al., segmentation clock is translated into the periodic morphogenesis of 2001; Hubaud and Pourquie, 2014; Sawada et al., 2001). Cells of somites remains poorly understood. Here, we focused on the role of the posterior PSM exhibit mesenchymal characteristics and paraxial protocadherin (PAPC/Pcdh8) in this process. We showed express Snail-related transcription factors (Dale et al., 2006; that in chicken and mouse embryos, PAPC expression is tightly Nieto, 2002). In the anterior PSM, cells downregulate snail/slug regulated by the clock and wavefront system in the posterior PSM. We expression and upregulate epithelialization-promoting factors such observed that PAPC exhibits a striking complementary pattern to N- as paraxis (Barnes et al., 1997; Sosic et al., 1997). This molecular cadherin (CDH2), marking the interface of the future somite boundary transition correlates with the anterior PSM cells progressively in the anterior PSM. Gain and loss of function of PAPC in chicken acquiring epithelial characteristics (Duband et al., 1987; Martins embryos disrupted somite segmentation by altering the CDH2- et al., 2009). -
REVIEW Cell and Molecular Biology of Notch
459 REVIEW Cell and molecular biology of Notch Ulla-Maj Fiu´za and Alfonso Martinez Arias Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK (Correspondence should be addressed to U-M Fiu´za; Email: [email protected]) Abstract Notch signalling is a cell–cell communication process, which complexity which could account for the multitude of roles it has allows the establishment of patterns of gene expression and during development and in adult organisms. In this review, we differentiation, regulates binary cell fate choice and the will describe the multiple roles of Notch and how various factors maintenance of stem cell populations. So far, the data published can regulate Notch signalling. has elucidated the main players in the Notch signalling pathway. Journal of Endocrinology (2007) 194, 459–474 However, its regulatory mechanisms are exhibiting an increasing The structure of Notch and the Notch signalling which allowed the discovery of a core set of molecules involved pathway in Notch signalling and lead to the understanding of how they organize into a signalling pathway. The Notch genes encode members of a family of receptors that In mammals, there are four Notch genes and five genes mediate short-range signalling events. A prototypical Notch encoding ligands, three Delta-like and two Jagged (Fig. 1). In gene encodes a single transmembrane receptor composed in Drosophila, there is only one Notch-encoding gene, one Delta its extracellular region of a conserved array of up to 36 and one Jagged homologue (Serrate; Maine et al. 1995, epidermal growth factor (EGF)-like repeats, involved in Lissemore & Starmer 1999). -
Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B. -
Rapid Changes in Morphogen Concentration Control Self-Organized
RESEARCH COMMUNICATION Rapid changes in morphogen concentration control self-organized patterning in human embryonic stem cells Idse Heemskerk1†, Kari Burt1, Matthew Miller1, Sapna Chhabra2, M Cecilia Guerra1, Lizhong Liu1, Aryeh Warmflash1,3* 1Department of Biosciences, Rice University, Houston, United States; 2Systems, Synthetic and Physical Biology Program, Rice University, Houston, United States; 3Department of Bioengineering, Rice University, Houston, United States Abstract During embryonic development, diffusible signaling molecules called morphogens are thought to determine cell fates in a concentration-dependent way. Yet, in mammalian embryos, concentrations change rapidly compared to the time for making cell fate decisions. Here, we use human embryonic stem cells (hESCs) to address how changing morphogen levels influence differentiation, focusing on how BMP4 and Nodal signaling govern the cell-fate decisions associated with gastrulation. We show that BMP4 response is concentration dependent, but that expression of many Nodal targets depends on rate of concentration change. Moreover, in a self- organized stem cell model for human gastrulation, expression of these genes follows rapid changes in endogenous Nodal signaling. Our study shows a striking contrast between the specific ways ligand dynamics are interpreted by two closely related signaling pathways, highlighting both the *For correspondence: subtlety and importance of morphogen dynamics for understanding mammalian embryogenesis [email protected] and designing optimized protocols for directed stem cell differentiation. Editorial note: This article has been through an editorial process in which the authors decide how † Present address: Department to respond to the issues raised during peer review. The Reviewing Editor’s assessment is that all of Cell and Developmental the issues have been addressed (see decision letter). -
Evolution of Development Secondary Article
Evolution of Development Secondary article Ehab Abouheif, Duke University, Durham, North Carolina, USA Article Contents Gregory A Wray, Duke University, Durham, North Carolina, USA . Introduction . Embryos and Evolution, Heterochrony The field of evolutionary developmental biology provides a framework with which to . Hox Genes elucidate the ‘black box’ that exists between evolution of the genotype and phenotype by . Embryology, Palaeontology, Genes and Limbs focusing the attention of researchers on the way in which genes and developmental processes evolve to give rise to morphological diversity. Introduction and condensation, which deletes earlier ontogenetic stages At the end of the nineteenth and beginning of the twentieth to make room for new features (Gould, 1977). century, the fields of evolutionary and developmental As the field of comparative embryology blossomed biology were inseparable. Evolutionary biologists used during the early twentieth century, a considerable body of comparative embryology to reconstruct ancestors and evidence accumulated that was in conflict with the phyletic relationships, and embryologists in turn used predictions of the biogenetic law. Because ontogeny could evolutionary history to explain many of the processes only change by pushing old features backwards in observed during animal development. This close relation- development (condensation) in order to make room for ship ended after the rise of experimental embryology and new features (terminal addition), the timing of develop- Mendelian genetics at the -
Epigenetics of Floral Homeotic Genes in Relation to Sexual Dimorphism in the 2 Dioecious Plant Mercurialis Annua
bioRxiv preprint doi: https://doi.org/10.1101/481481; this version posted November 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Epigenetics of floral homeotic genes in relation to sexual dimorphism in the 2 dioecious plant Mercurialis annua 3 4 Janardan Khadka1, Narendra Singh Yadav1†, Micha Guy1, Gideon Grafi1* and Avi Golan- 5 Goldhirsh1* 6 1French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein 7 Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion 8 84990, Israel. 9 †Present address: Department of Biological Sciences, University of Lethbridge, AB T1K 10 3M4, Canada. 11 * To whom correspondence should be addressed 12 13 14 Highlights 15 Sex determination in Mercurialis annua is not related to epigenetics of floral homeotic genes 16 but appears to be modulated by an unknown gender-specific regulator(s) that affects hormonal 17 homeostasis. 18 1 bioRxiv preprint doi: https://doi.org/10.1101/481481; this version posted November 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Abstract 20 In plants, dioecy characterizes species carrying male and female flowers on separate plants 21 and occurs in about 6% of angiosperms. To date, the molecular mechanism(s) underlying 22 sexual dimorphism is essentially unknown. The ability of gender-reversal by hormone 23 application suggests that epigenetics might play an important role in sexual dimorphism. -
Phosphorylation, Expression and Function of the Ultrabithorax Protein Family in Drosophila Melanogaster
Development 112, 1077-1093 (1991) 1077 Printed in Great Britain © The Company of Biologists Limited 1991 Phosphorylation, expression and function of the Ultrabithorax protein family in Drosophila melanogaster ELIZABETH R. GAVIS* and DAVID S. HOGNESSt't Department of Biochemistry, Beckman Center, Stanford University School of Medicine, Stanford, California 94305 USA * Present address: Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142 USA t Present address: Department of Developmental Biology, Beckman Center, Stanford University School of Medicine, Stanford, California, 94305 USA $ Author for correspondence Summary Alternative splicing of the Ultrabithorax homeotic gene parallel those for the respective mRNAs, and all transcript generates a family of five proteins (UBX isoforms are similarly phosphorylated throughout em- isoforms) that function as transcription factors. All bryogenesis. Analysis by cotransfection assays of the isoforms contain a homeodomain within a common 99 aa promoter activation and repression functions of mutant C-terminal region (C-constant region) which is joined to UBX proteins with various deletions in the N-constant a common 247 aa N-terminal (N-constant) region by region shows that repression is generally insensitive to different combinations of three small optional elements. deletion and, hence, presumably to phosphorylation. By Unlike the UBX proteins expressed in E. coli, UBX contrast, the activation function is differentially sensitive isoforms expressed in D. melanogaster cells are phos- to the different deletions in a manner indicating the phorylated on serine and threonine residues, located absence of a discrete activating domain and instead, the primarily within a 53 aa region near the middle of the presence of multiple activating sequences spread N-constant region, to form at least five phosphorylated throughout the region. -
Mechanisms of Wnt Signaling in Development
P1: APR/ary P2: ARS/dat QC: ARS/APM T1: ARS August 29, 1998 9:42 Annual Reviews AR066-03 Annu. Rev. Cell Dev. Biol. 1998. 14:59–88 Copyright c 1998 by Annual Reviews. All rights reserved MECHANISMS OF WNT SIGNALING IN DEVELOPMENT Andreas Wodarz Institut f¨ur Genetik, Universit¨at D¨usseldorf, Universit¨atsstrasse 1, 40225 D¨usseldorf, Germany; e-mail: [email protected] Roel Nusse Howard Hughes Medical Institute and Department of Developmental Biology, Stanford University, Stanford, CA 94305-5428; e-mail: [email protected] KEY WORDS: Wnt, wingless, frizzled, catenin, signal transduction ABSTRACT Wnt genes encode a large family of secreted, cysteine-rich proteins that play key roles as intercellular signaling molecules in development. Genetic studies in Drosophila and Caenorhabditis elegans, ectopic gene expression in Xenopus, and gene knockouts in the mouse have demonstrated the involvement of Wnts in pro- cesses as diverse as segmentation, CNS patterning, and control of asymmetric cell divisions. The transduction of Wnt signals between cells proceeds in a complex series of events including post-translational modification and secretion of Wnts, binding to transmembrane receptors, activation of cytoplasmic effectors, and, finally, transcriptional regulation of target genes. Over the past two years our understanding of Wnt signaling has been substantially improved by the identifi- cation of Frizzled proteins as cell surface receptors for Wnts and by the finding that -catenin, a component downstream of the receptor, can translocate to the nucleus and function as a transcriptional activator. Here we review recent data that have started to unravel the mechanisms of Wnt signaling.