Epigenetic Biomarkers in Obesity, Weight Loss and Inflammation: a Role for Circadian Rhythm and Methyl Donors

Total Page:16

File Type:pdf, Size:1020Kb

Epigenetic Biomarkers in Obesity, Weight Loss and Inflammation: a Role for Circadian Rhythm and Methyl Donors Facultad de Farmacia y Nutrición Epigenetic biomarkers in obesity, weight loss and inflammation: a role for circadian rhythm and methyl donors Mirian Samblas García Pamplona, 2018 Facultad de Farmacia y Nutrición Memoria presentada por Dña. Mirian Samblas García para aspirar al grado de Doctor por la Universidad de Navarra. Mirian Samblas García El presente trabajo ha sido realizado bajo nuestra dirección en el Departamento de Ciencias de la Alimentación y Fisiología de la Facultad de Farmacia y Nutrición de la Universidad de Navarra y autorizamos su presentación ante el Tribunal que lo ha de juzgar. Pamplona, 26 de Febrero de 2018 VºBº Director VºBº Co-Director Dr. Fermín I. Milagro Yoldi Prof. J. Alfredo Martínez Hernández Este trabajo ha sido posible gracias a la financiación de diversas entidades: Ministerio de Economía y Competitividad (AGL2013-45554-R), Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituo de Salud Carlos III (ISCIII), Centro de Investigación en Nutrición (Universidad de Navarra). La investigación que ha dado lugar a estos resultados ha sido impulsada por la beca predoctoral 2014-2015 del Centro de Investigación en Nutrición y las becas predoctoral 2015-2018 y de movilidad del Ministerio de Educación, Cultura y Deporte. “Necesitamos especialmente de la imaginación en las ciencias. No todo es matemáticas y no todo es simple lógica, también se trata de un poco de belleza y poesía” Maria Montessori Dedicado a las dos personas que me lo han dado todo, Mi aita Ray, Mi ama Ana Con especial cariño a, Mi hermana, Bea Mi sobrina, Aroa Mi abu, Esther Agradecimientos/Acknowledgements En estas líneas quisiera mostrar mi más sincero agradecimiento a todas aquellas personas e instituciones que han hecho posible la actual tesis. No hay palabras ni espacio suficiente para plasmar todo el apoyo, ayuda, fuerza, ánimo y cariño que se me ha dado, y solo me queda daros las gracias, MUCHAS GRACIAS a cada uno de vosotros. Mis primeras palabras de agradecimiento me gustaría dedicarlas a los directores de la presente tesis el Dr. Fermín Milagro y el Prof. Alfredo Martínez. En primer lugar quisiera expresaros mi agradecimiento por la confianza depositada en mí desde el primer momento y haberme dado la oportunidad de realizar este trabajo. Gracias por haber guiado y dirigido esta tesis. Juntos habéis formado el equilibrio perfecto para guiarme y dirigirme a lo largo de esto años de trabajo. Sé que no siempre ha sido fácil, sin embargo siempre he contado con vuestro tiempo, implicación, paciencia y apoyo. Ha sido un placer poder crecer profesionalmente y personalmente junto a dos grandes investigadores y personas. Os agradezco todo el esfuerzo invertido en mí y sinceramente espero haber cumplido, aunque sea mínimamente, vuestras expectativas. Muchísimas gracias. Quisiera agradecer al Centro de Investigación en Nutrición de la Universidad de Navarra (beca predoctoral) y al Ministerio de Educación, Cultura y Deporte (beca predoctoral y de movilidad) por la financiación recibida durante estos años de tesis doctoral, sin la cual todo esto no hubiera sido posible. Muchísimas gracias a la Universidad de Navarra, en especial a la Facultad de Ciencias, en la que comencé mi formación ya hace 11 años, y a la Facultad de Farmacia y Nutrición por haberme acogido y haberme ofrecido la oportunidad de comenzar mi formación como investigadora. No quisiera dejar de agradecer a todo el personal del Departamento de Ciencias de la Alimentación y Fisiología que han hecho más fácil este camino. A las super técnicos Ana, Verónica, Neira y María que son fundamentales en el departamento. A nuestra gran secretaría Alba, gracias por tener siempre una sonrisa y haberme ayudado en todo lo posible. A los grandes profesores e investigadores, que siempre me han ayudado cada vez que lo necesitaba. A Paula por estar siempre dispuesta a ayudarme. A Jose Ignacio por su humor y su buen rollismo que nos alegra cada día. A Marian y Amelia por hacer más divertidos los ratos del café. A Pedro y Silvia por sus consejos. A Jaione por haberme ayudado a desarrollarme como profesora de prácticas. A Eva, Carlos, Santiago y Xavi gracias por vuestras conversaciones tan provechosas. Además, no quisiera olvidarme de todos aquellos doctorandos (ya doctores) que formaron parte del desarrollo de las intervenciones, ya que sin ser conscientes han hecho posible que yo pueda realizar esta tesis. Y como no, gracias a los voluntarios que han participado en cada uno de los estudios aplicados en el presente trabajo, ya que sin ellos esto no hubiera sido posible. Así mismo, me gustaría agradecer de todo corazón a todos los compañeros y amigos que han hecho el camino junto a mí todos estos años de tesis. Gracias a todos los compañeros con los que compartí mis primeros momentos y ya no están, por haber tenido la oportunidad de haber conocido grandes investigadores y mejores personas. Kike, bioinformático y amigo, gracias por toda tu ayuda y por todos los ratos que pasamos juntos. Amaya y Leire, comenzamos juntas esta aventura y me enorgullece decir que juntas la estamos acabando pero como amigas. Amaya, Leire, Irene y Marcos habéis sido un pedazo de apoyo en todos estos años profesionalmente y personalmente. Sé que os esperan grandes cosas y espero vivirlas junto a vosotros. No puedo expresar con palabras todo el agradecimiento que siento, solo os puedo decir que parte de esta tesis os pertenece. Gracias a Elisa y Ana, mis andaluzas favoritas, por todos los buenos momentos que hemos vivido juntas y porque ¡sois increíbles! Gracias a Jorge, Cris, Ana A., Lidia, Lucía, Amanda y Angy por todas las risas y los buenos momentos que hemos tenido. De verdad, muchas gracias a todos, sois una parte importante de este trabajo. No me puedo olvidar de mis amigas de Brasil. Muchas gracias de coraÇão a Carol y Julia por haberme dado la oportunidad de conoceros no solo profesionalmente si no personalmente. Hemos disfrutado de muchos momentos juntas, aquí en Pamplona y allá en Brasil, pero sé que son aún muchos los que nos quedan por vivir. ¡Muchas gracias! Obrigada! I wish to express my sincere gratitude to Dr. Miguel Constanza for giving me the opportunity to stay and work with your team at the Cambridge University. Thank you to all team for the warm welcome. Many thanks for the kind help to Niamh. Gracias a mis bioamigas por todos estos (11) años, porque aunque cada una estemos casi en una punta del mundo, cuando nos juntamos es cómo si no hubiera pasado el tiempo. En especial a Teresa, Bea y Miriam, sé que os esperan grandes éxitos en la vida y estoy muy orgullosa de vosotras. Muchísimas gracias a mis “Neskatxis” por estar siempre conmigo y preguntarme sobre mi trabajo, sé que os parece confuso pero siempre me escucháis con total atención. No sabéis la suerte que tengo de contar con vosotras y vuestra amistad. Muy en especial a mi amiga Irantzu, por compartir tantos momentos juntas, apoyarme en mis “tesis bajones” y saber sacarme siempre una sonrisa. ¡Maite zaituztet! Maitia, has sido mi mejor apoyo en estos años. Eres parte de esta tesis, no solo porque hayas sido el ilustrador de este trabajo, sino también por haber caminado junto a mí en todo este proceso. Gracias por tu cariño, paciencia y sobre todo compresión, gracias por sacarme miles de carcajadas, gracias por hacerme tan feliz. Y por último, gracias a mi familia. A ti abuela porque siempre has sido la luz de mi vida. Gracias Bea por estar siempre ahí y haberme ayudado toda mi vida. ¡Eres la mejor hermana del mundo! Gracias a Oskar y a ti por todos esos ratos, cenas, risas y conversaciones que me ayudan a desconectar. Pero sobre todo gracias por Aroa, la única que consigue que con solo mirarla se me olviden todas las preocupaciones. Mis últimas palabras de agradecimiento pertenecen a mis padres. Muchísimas gracias ama y aita por todo lo que habéis hecho por mí. Sois lo mejor y más importante de mi vida, sin vuestro apoyo, cariño, consejos, ánimo y amor no hubiera llegado a este momento. Ni en mil vidas os podría agradecer y devolver todo lo que me habéis dado. Os quiero con toda mi alma y corazón, gracias. List of abbreviations 5mC 5-methylcytosine AA Arachidonic acid ABCG1 ATP binding cassette subfamily G member 1 AHA American heart association Alu Transposable element characterized by the action of the Arthrobacter luteus restriction endonuclease ATP Adenosine triphosphate BDNF Brain-derived neurotrophic factor BMAL1 Aryl hydrocarbon receptor nuclear translocator-like protein 1 BMI Body mass index BMI z-score Conversion of BMI values into standard deviation scores BP Blood pressure CAMKK2 Calcium/calmodulin-dependent protein kinase kinase 2 CCL C-C motif chemokine ligand CD40 Cluster of differentiation 40 CD44 CD44 molecule (Indian blood group) cDNA Complementary DNA CGI Cpg islands CLOCK Circadian locomoter output cycles kaput CpG Cytosine linked by a phosphate to guanine CPT1A Carnitine palmitoyltransferase 1A CRY1 Cryptochrome 1 CVD Cardiovascular disease DHA Docosahexanoic acid DHF Dihydrofolate DMR Differentially methylated region DNMT DNA methyltransferase EPA Eicosapentaenoic acid ESRA Estrogen receptor 1 EWAS Epigenome-wide association study FA Fatty acid FHL2 Four and a half LIM domains 2 FOXP3 Forkhead box P3 GAPDH Glyceraldehyde-3-phosphate dehydrogenase GENOI Grupo de estudio Navarro de la obesidad infantil hcy Homocysteine HDL-C High-density lipoprotein cholesterol HFD High fat diet HIF3A Hypoxia-inducible factor 3 alpha HOMA Homeostatic model assessment HR High responders
Recommended publications
  • Homeobox Gene Expression Profile in Human Hematopoietic Multipotent
    Leukemia (2003) 17, 1157–1163 & 2003 Nature Publishing Group All rights reserved 0887-6924/03 $25.00 www.nature.com/leu Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development T Taghon1, K Thys1, M De Smedt1, F Weerkamp2, FJT Staal2, J Plum1 and G Leclercq1 1Department of Clinical Chemistry, Microbiology and Immunology, Ghent University Hospital, Ghent, Belgium; and 2Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands Class I homeobox (HOX) genes comprise a large family of implicated in this transformation proces.14 The HOX-C locus transcription factors that have been implicated in normal and has been primarily implicated in lymphomas.15 malignant hematopoiesis. However, data on their expression or function during T-cell development is limited. Using degener- Hematopoietic cells are derived from stem cells that reside in ated RT-PCR and Affymetrix microarray analysis, we analyzed fetal liver (FL) in the embryo and in the adult bone marrow the expression pattern of this gene family in human multipotent (ABM), which have the unique ability to self-renew and thereby stem cells from fetal liver (FL) and adult bone marrow (ABM), provide a life-long supply of blood cells. T lymphocytes are a and in T-cell progenitors from child thymus. We show that FL specific type of hematopoietic cells that play a major role in the and ABM stem cells are similar in terms of HOX gene immune system. They develop through a well-defined order of expression, but significant differences were observed between differentiation steps in the thymus.16 Several transcription these two cell types and child thymocytes.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Supplemental Materials ZNF281 Enhances Cardiac Reprogramming
    Supplemental Materials ZNF281 enhances cardiac reprogramming by modulating cardiac and inflammatory gene expression Huanyu Zhou, Maria Gabriela Morales, Hisayuki Hashimoto, Matthew E. Dickson, Kunhua Song, Wenduo Ye, Min S. Kim, Hanspeter Niederstrasser, Zhaoning Wang, Beibei Chen, Bruce A. Posner, Rhonda Bassel-Duby and Eric N. Olson Supplemental Table 1; related to Figure 1. Supplemental Table 2; related to Figure 1. Supplemental Table 3; related to the “quantitative mRNA measurement” in Materials and Methods section. Supplemental Table 4; related to the “ChIP-seq, gene ontology and pathway analysis” and “RNA-seq” and gene ontology analysis” in Materials and Methods section. Supplemental Figure S1; related to Figure 1. Supplemental Figure S2; related to Figure 2. Supplemental Figure S3; related to Figure 3. Supplemental Figure S4; related to Figure 4. Supplemental Figure S5; related to Figure 6. Supplemental Table S1. Genes included in human retroviral ORF cDNA library. Gene Gene Gene Gene Gene Gene Gene Gene Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol AATF BMP8A CEBPE CTNNB1 ESR2 GDF3 HOXA5 IL17D ADIPOQ BRPF1 CEBPG CUX1 ESRRA GDF6 HOXA6 IL17F ADNP BRPF3 CERS1 CX3CL1 ETS1 GIN1 HOXA7 IL18 AEBP1 BUD31 CERS2 CXCL10 ETS2 GLIS3 HOXB1 IL19 AFF4 C17ORF77 CERS4 CXCL11 ETV3 GMEB1 HOXB13 IL1A AHR C1QTNF4 CFL2 CXCL12 ETV7 GPBP1 HOXB5 IL1B AIMP1 C21ORF66 CHIA CXCL13 FAM3B GPER HOXB6 IL1F3 ALS2CR8 CBFA2T2 CIR1 CXCL14 FAM3D GPI HOXB7 IL1F5 ALX1 CBFA2T3 CITED1 CXCL16 FASLG GREM1 HOXB9 IL1F6 ARGFX CBFB CITED2 CXCL3 FBLN1 GREM2 HOXC4 IL1F7
    [Show full text]
  • Cell Adhesion and Specificity
    RESEARCH ARTICLE Molecular basis of sidekick-mediated cell- cell adhesion and specificity Kerry M Goodman1†, Masahito Yamagata2,3†, Xiangshu Jin1,4‡, Seetha Mannepalli1, Phinikoula S Katsamba4,5, Go¨ ran Ahlse´ n4,5, Alina P Sergeeva4,5, Barry Honig1,4,5,6,7*, Joshua R Sanes2,3*, Lawrence Shapiro1,5,7* 1Department of Biochemistry and Molecular Biophysics, Columbia University, New York, United States; 2Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States; 3Center for Brain Science, Harvard University, Cambridge, United States; 4Howard Hughes Medical Institute, Columbia University, New York, United States; 5Department of Systems Biology, Columbia University, New York, United States; 6Department of Medicine, Columbia University, New York, United States; 7Zuckerman Mind Brain and Behavior Institute, Columbia University, New York, United States *For correspondence: bh6@cumc. Abstract Sidekick (Sdk) 1 and 2 are related immunoglobulin superfamily cell adhesion proteins columbia.edu (BH); sanesj@mcb. required for appropriate synaptic connections between specific subtypes of retinal neurons. Sdks harvard.edu (JRS); shapiro@ mediate cell-cell adhesion with homophilic specificity that underlies their neuronal targeting convex.hhmi.columbia.edu (LS) function. Here we report crystal structures of Sdk1 and Sdk2 ectodomain regions, revealing similar †These authors contributed homodimers mediated by the four N-terminal immunoglobulin domains (Ig1–4), arranged in a equally to this work horseshoe conformation. These Ig1–4 horseshoes interact in a novel back-to-back orientation in both homodimers through Ig1:Ig2, Ig1:Ig1 and Ig3:Ig4 interactions. Structure-guided mutagenesis Present address: ‡Department results show that this canonical dimer is required for both Sdk-mediated cell aggregation (via trans of Chemistry, Michigan State interactions) and Sdk clustering in isolated cells (via cis interactions).
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • A Flexible Microfluidic System for Single-Cell Transcriptome Profiling
    www.nature.com/scientificreports OPEN A fexible microfuidic system for single‑cell transcriptome profling elucidates phased transcriptional regulators of cell cycle Karen Davey1,7, Daniel Wong2,7, Filip Konopacki2, Eugene Kwa1, Tony Ly3, Heike Fiegler2 & Christopher R. Sibley 1,4,5,6* Single cell transcriptome profling has emerged as a breakthrough technology for the high‑resolution understanding of complex cellular systems. Here we report a fexible, cost‑efective and user‑ friendly droplet‑based microfuidics system, called the Nadia Instrument, that can allow 3′ mRNA capture of ~ 50,000 single cells or individual nuclei in a single run. The precise pressure‑based system demonstrates highly reproducible droplet size, low doublet rates and high mRNA capture efciencies that compare favorably in the feld. Moreover, when combined with the Nadia Innovate, the system can be transformed into an adaptable setup that enables use of diferent bufers and barcoded bead confgurations to facilitate diverse applications. Finally, by 3′ mRNA profling asynchronous human and mouse cells at diferent phases of the cell cycle, we demonstrate the system’s ability to readily distinguish distinct cell populations and infer underlying transcriptional regulatory networks. Notably this provided supportive evidence for multiple transcription factors that had little or no known link to the cell cycle (e.g. DRAP1, ZKSCAN1 and CEBPZ). In summary, the Nadia platform represents a promising and fexible technology for future transcriptomic studies, and other related applications, at cell resolution. Single cell transcriptome profling has recently emerged as a breakthrough technology for understanding how cellular heterogeneity contributes to complex biological systems. Indeed, cultured cells, microorganisms, biopsies, blood and other tissues can be rapidly profled for quantifcation of gene expression at cell resolution.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Cyp24a1 Attenuation Limits Progression of Brafv600e-Induced Papillary Thyroid Cancer Cells and Sensitizes Them to BRAFV600E Inhibitor PLX4720 Minjing Zou1, Essa Y
    Published OnlineFirst February 27, 2017; DOI: 10.1158/0008-5472.CAN-16-2066 Cancer Tumor and Stem Cell Biology Research Cyp24a1 Attenuation Limits Progression of BrafV600E-Induced Papillary Thyroid Cancer Cells and Sensitizes Them to BRAFV600E Inhibitor PLX4720 Minjing Zou1, Essa Y. Baitei1, Huda A. BinEssa1, Futwan A. Al-Mohanna2, Ranjit S. Parhar2,ReneSt-Arnaud3, Shioko Kimura4, Catrin Pritchard5, Ali S. Alzahrani6, Abdullah M. Assiri7, Brian F. Meyer1, and Yufei Shi1 Abstract CYP24A1, the primary inactivating enzyme for vitamin D, is nocompromised nude mice. This phenotype was associated with often overexpressed in human cancers, potentially neutralizing the downregulation of the MAPK, PI3K/Akt, and TGFb signaling path- antitumor effects of calcitriol, the active form of vitamin D. How- ways and a loss of epithelial–mesenchymal transition (EMT) in ever, it is unclear whetherCYP24A1expression serves asa functional BVECyp24a1-null cells, associated with downregulation of genes contributor versus only a biomarker for tumor progression. In this involved in EMT, tumor invasion, and metastasis. While calcitriol study, we investigated the role of CYP24A1 on malignant progres- treatment did not decrease cell proliferation in BVECyp24a1-null cells, sion of a murine model of BrafV600E-induced papillary thyroid it strengthened antitumor responses to the BRAFV600E inhibitor cancer (PTC). Mice harboring wild-type Cyp24a1 (BVECyp24a1-wt) PLX4720 in both BVECyp24a1-null and BVECyp24a1-wt cells. Our find- developed PTC at 5 weeks of age. Mice harboring a homozygous ings offer direct evidence that Cyp24a1 functions as an oncogene in deletion of Cyp24a1 (BVECyp24a1-null) exhibited a 4-fold reduction PTC, where its overexpression activates multiple signaling cascades in tumor growth.
    [Show full text]
  • Expression Pattern of the Class I Homeobox Genes in Ovarian Carcinoma
    J Gynecol Oncol Vol. 21, No. 1:29-37, March 2010 DOI:10.3802/jgo.2010.21.1.29 Original Article Expression pattern of the class I homeobox genes in ovarian carcinoma Jin Hwa Hong1, Jae Kwan Lee1, Joong Jean Park2, Nak Woo Lee1, Kyu Wan Lee1, Jung Yeol Na1 Departments of 1Obstetrics and Gynecology, 2Physiology, Korea University College of Medicine, Seoul, Korea Objective: Although some sporadic reports reveal the link between the homeobox (HOX) genes and ovarian carcinoma, there is no comprehensive analysis of the expression pattern of the class I homeobox genes in ovarian carcinoma that determines the candidate genes involved in ovarian carcinogenesis. Methods: The different patterns of expression of 36 HOX genes were analyzed, including 4 ovarian cancer cell lines and 4 normal ovarian tissues. Using a reverse transcription-polymerase chain reaction (RT-PCR) and quantification analysis, the specific gene that showed a significantly higher expression in ovarian cancer cell lines than in normal ovaries was selected, and western blot analysis was performed adding 7 ovarian cancer tissue specimens. Finally, immunohistochemical and immunocytochemical analyses were performed to compare the pattern of expression of the specific HOX gene between ovarian cancer tissue and normal ovaries. Results: Among 36 genes, 11 genes had a different level of mRNA expression between the cancer cell lines and the normal ovarian tissues. Of the 11 genes, only HOXB4 had a significantly higher level of expression in ovarian cancer cell lines than in normal ovaries (p=0.029). Based on western blot, immunohistochemical, and immunocytochemical analyses, HOXB4 was expressed exclusively in the ovarian cancer cell lines or cancer tissue specimens, but not in the normal ovaries.
    [Show full text]
  • Motor Neuron Columnar Fate Imposed by Sequential Phases of Hox-C Activity
    articles Motor neuron columnar fate imposed by sequential phases of Hox-c activity Jeremy S. Dasen1, Jeh-Ping Liu2 & Thomas M. Jessell1 1Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Center for Neurobiology and Behavior, Columbia University, 701 West 168th Street, New York, New York 10032, USA 2University of Virginia School of Medicine, Department of Neuroscience, Lane Road extended, MR4, Room 5032, Charlottesville, Virginia 22908, USA ........................................................................................................................................................................................................................... The organization of neurons into columns is a prominent feature of central nervous system structure and function. In many regions of the central nervous system the grouping of neurons into columns links cell-body position to axonal trajectory, thus contributing to the establishment of topographic neural maps. This link is prominent in the developing spinal cord, where columnar sets of motor neurons innervate distinct targets in the periphery. We show here that sequential phases of Hox-c protein expression and activity control the columnar differentiation of spinal motor neurons. Hox expression in neural progenitors is established by graded fibroblast growth factor signalling and translated into a distinct motor neuron Hox pattern. Motor neuron columnar fate then emerges through cell autonomous repressor and activator functions of Hox proteins. Hox proteins also direct the expression of genes that establish motor topographic projections, thus implicating Hox proteins as critical determinants of spinal motor neuron identity and organization. Columns are basic units of neuronal organization in the vertebrate neural Hox protein expression, and the establishment of spinal MN central nervous system (CNS)1,2, but the mechanisms that control columnar identity, if any, remains obscure. their assembly remain unclear.
    [Show full text]
  • Gene Networks Activated by Specific Patterns of Action Potentials in Dorsal Root Ganglia Neurons Received: 10 August 2016 Philip R
    www.nature.com/scientificreports OPEN Gene networks activated by specific patterns of action potentials in dorsal root ganglia neurons Received: 10 August 2016 Philip R. Lee1,*, Jonathan E. Cohen1,*, Dumitru A. Iacobas2,3, Sanda Iacobas2 & Accepted: 23 January 2017 R. Douglas Fields1 Published: 03 March 2017 Gene regulatory networks underlie the long-term changes in cell specification, growth of synaptic connections, and adaptation that occur throughout neonatal and postnatal life. Here we show that the transcriptional response in neurons is exquisitely sensitive to the temporal nature of action potential firing patterns. Neurons were electrically stimulated with the same number of action potentials, but with different inter-burst intervals. We found that these subtle alterations in the timing of action potential firing differentially regulates hundreds of genes, across many functional categories, through the activation or repression of distinct transcriptional networks. Our results demonstrate that the transcriptional response in neurons to environmental stimuli, coded in the pattern of action potential firing, can be very sensitive to the temporal nature of action potential delivery rather than the intensity of stimulation or the total number of action potentials delivered. These data identify temporal kinetics of action potential firing as critical components regulating intracellular signalling pathways and gene expression in neurons to extracellular cues during early development and throughout life. Adaptation in the nervous system in response to external stimuli requires synthesis of new gene products in order to elicit long lasting changes in processes such as development, response to injury, learning, and memory1. Information in the environment is coded in the pattern of action-potential firing, therefore gene transcription must be regulated by the pattern of neuronal firing.
    [Show full text]