A Flexible Microfluidic System for Single-Cell Transcriptome Profiling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recent Advances in Droplet-Based Microfluidic Technologies
micromachines Review Recent Advances in Droplet-based Microfluidic Technologies for Biochemistry and Molecular Biology 1, 1, 2, Joel Sánchez Barea y , Juhwa Lee y and Dong-Ku Kang * 1 Department of Chemistry, Incheon National University, Incheon 22012, Korea; [email protected] (J.S.B.); [email protected] (J.L.) 2 Department of Chemistry, Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea * Correspondence: [email protected]; Tel.: +82-32-835-8094 These authors contribute equally to this article. y Received: 2 May 2019; Accepted: 18 June 2019; Published: 20 June 2019 Abstract: Recently, droplet-based microfluidic systems have been widely used in various biochemical and molecular biological assays. Since this platform technique allows manipulation of large amounts of data and also provides absolute accuracy in comparison to conventional bioanalytical approaches, over the last decade a range of basic biochemical and molecular biological operations have been transferred to drop-based microfluidic formats. In this review, we introduce recent advances and examples of droplet-based microfluidic techniques that have been applied in biochemistry and molecular biology research including genomics, proteomics and cellomics. Their advantages and weaknesses in various applications are also comprehensively discussed here. The purpose of this review is to provide a new point of view and current status in droplet-based microfluidics to biochemists and molecular biologists. We hope that this review will accelerate communications between researchers who are working in droplet-based microfluidics, biochemistry and molecular biology. Keywords: droplet-based microfluidic; biochemistry; molecular biology; digital PCR; biochip; biosensor; digital quantification; microfluidic; single cell analysis 1. -
Core Transcriptional Regulatory Circuitries in Cancer
Oncogene (2020) 39:6633–6646 https://doi.org/10.1038/s41388-020-01459-w REVIEW ARTICLE Core transcriptional regulatory circuitries in cancer 1 1,2,3 1 2 1,4,5 Ye Chen ● Liang Xu ● Ruby Yu-Tong Lin ● Markus Müschen ● H. Phillip Koeffler Received: 14 June 2020 / Revised: 30 August 2020 / Accepted: 4 September 2020 / Published online: 17 September 2020 © The Author(s) 2020. This article is published with open access Abstract Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type- specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics. 1234567890();,: 1234567890();,: Introduction genes. Till now, one critical goal in biology remains to understand the composition and hierarchy of transcriptional Transcriptional regulation is one of the fundamental mole- regulatory network in each specified cell type/lineage. -
Microglia Emerge from Erythromyeloid Precursors Via Pu.1- and Irf8-Dependent Pathways
ART ic LE S Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways Katrin Kierdorf1,2, Daniel Erny1, Tobias Goldmann1, Victor Sander1, Christian Schulz3,4, Elisa Gomez Perdiguero3,4, Peter Wieghofer1,2, Annette Heinrich5, Pia Riemke6, Christoph Hölscher7,8, Dominik N Müller9, Bruno Luckow10, Thomas Brocker11, Katharina Debowski12, Günter Fritz1, Ghislain Opdenakker13, Andreas Diefenbach14, Knut Biber5,15, Mathias Heikenwalder16, Frederic Geissmann3,4, Frank Rosenbauer6 & Marco Prinz1,17 Microglia are crucial for immune responses in the brain. Although their origin from the yolk sac has been recognized for some time, their precise precursors and the transcription program that is used are not known. We found that mouse microglia were derived from primitive c-kit+ erythromyeloid precursors that were detected in the yolk sac as early as 8 d post conception. + lo − + − + These precursors developed into CD45 c-kit CX3CR1 immature (A1) cells and matured into CD45 c-kit CX3CR1 (A2) cells, as evidenced by the downregulation of CD31 and concomitant upregulation of F4/80 and macrophage colony stimulating factor receptor (MCSF-R). Proliferating A2 cells became microglia and invaded the developing brain using specific matrix metalloproteinases. Notably, microgliogenesis was not only dependent on the transcription factor Pu.1 (also known as Sfpi), but also required Irf8, which was vital for the development of the A2 population, whereas Myb, Id2, Batf3 and Klf4 were not required. Our data provide cellular and molecular insights into the origin and development of microglia. Microglia are the tissue macrophages of the brain and scavenge dying have the ability to give rise to microglia and macrophages in vitro cells, pathogens and molecules using pattern recognition receptors and in vivo under defined conditions. -
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
Roles of the CSE1L-Mediated Nuclear Import Pathway in Epigenetic
Roles of the CSE1L-mediated nuclear import pathway PNAS PLUS in epigenetic silencing Qiang Donga,b,c, Xiang Lia,b,c, Cheng-Zhi Wangb, Shaohua Xuc, Gang Yuanc, Wei Shaoc, Baodong Liud, Yong Zhengb, Hailin Wangd, Xiaoguang Leic,e,f, Zhuqiang Zhangb,1, and Bing Zhua,b,g,1 aGraduate Program, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730 Beijing, China; bNational Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101 Beijing, China; cNational Institute of Biological Sciences, 102206 Beijing, China; dThe State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085 Beijing, China; eBeijing National Laboratory for Molecular Sciences, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; fPeking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China; and gCollege of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China Edited by Arthur D. Riggs, Beckman Research Institute of City of Hope, Duarte, CA, and approved March 21, 2018 (received for review January 17, 2018) Epigenetic silencing can be mediated by various mechanisms, CSE1L, a key player in the nuclear import pathway, as an es- and many regulators remain to be identified. Here, we report a sential factor for maintaining the repression of many methyl- genome-wide siRNA screening to identify regulators essential for ated genes. Mechanistically, CSE1L functions by facilitating maintaining gene repression of a CMV promoter silenced by DNA the nuclear import of certain cargo proteins that are essential methylation. -
The Title of the Dissertation
UNIVERSITY OF CALIFORNIA SAN DIEGO Novel network-based integrated analyses of multi-omics data reveal new insights into CD8+ T cell differentiation and mouse embryogenesis A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioinformatics and Systems Biology by Kai Zhang Committee in charge: Professor Wei Wang, Chair Professor Pavel Arkadjevich Pevzner, Co-Chair Professor Vineet Bafna Professor Cornelis Murre Professor Bing Ren 2018 Copyright Kai Zhang, 2018 All rights reserved. The dissertation of Kai Zhang is approved, and it is accept- able in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California San Diego 2018 iii EPIGRAPH The only true wisdom is in knowing you know nothing. —Socrates iv TABLE OF CONTENTS Signature Page ....................................... iii Epigraph ........................................... iv Table of Contents ...................................... v List of Figures ........................................ viii List of Tables ........................................ ix Acknowledgements ..................................... x Vita ............................................. xi Abstract of the Dissertation ................................. xii Chapter 1 General introduction ............................ 1 1.1 The applications of graph theory in bioinformatics ......... 1 1.2 Leveraging graphs to conduct integrated analyses .......... 4 1.3 References .............................. 6 Chapter 2 Systematic -
An Essential Role for Maternal Control of Nodal Signaling
RESEARCH ARTICLE elife.elifesciences.org An essential role for maternal control of Nodal signaling Pooja Kumari1,2†, Patrick C Gilligan1†, Shimin Lim1,3, Long Duc Tran4, Sylke Winkler5, Robin Philp6‡, Karuna Sampath1,2,3* 1Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore; 2Department of Biological Sciences, National University of Singapore, Singapore, Singapore; 3School of Biological Sciences, Nanyang Technological University, Singapore, Singapore; 4Mechanobiology Institute, National University of Singapore, Singapore, Singapore; 5Department of Cell Biology and Genetics, Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany; 6Bioprocessing Technology Institute, A*STAR, Singapore, Singapore Abstract Growth factor signaling is essential for pattern formation, growth, differentiation, and maintenance of stem cell pluripotency. Nodal-related signaling factors are required for axis formation and germ layer specification from sea urchins to mammals. Maternal transcripts of the zebrafish Nodal factor, Squint (Sqt), are localized to future embryonic dorsal. The mechanisms by which maternal sqt/nodal RNA is localized and regulated have been unclear. Here, we show that maternal control of Nodal signaling via the conserved Y box-binding protein 1 (Ybx1) is essential. We identified Ybx1 via a proteomic screen. Ybx1 recognizes the 3’ untranslated region (UTR) of *For correspondence: karuna@ sqt RNA and prevents premature translation and Sqt/Nodal signaling. Maternal-effect mutations in tll.org.sg zebrafish ybx1 lead to deregulated Nodal signaling, gastrulation failure, and embryonic lethality. Implanted Nodal-coated beads phenocopy ybx1 mutant defects. Thus, Ybx1 prevents ectopic † These authors contributed Nodal activity, revealing a new paradigm in the regulation of Nodal signaling, which is likely to equally to this work be conserved. -
Repurposing of KLF5 Activates a Cell Cycle Signature During the Progression from a Precursor State to Oesophageal Adenocarcinoma DOI: 10.7554/Elife.57189
The University of Manchester Research Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to oesophageal adenocarcinoma DOI: 10.7554/eLife.57189 Document Version Final published version Link to publication record in Manchester Research Explorer Citation for published version (APA): OCCAMS Consortium (2020). Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor state to oesophageal adenocarcinoma. eLife, 9, 1-63. [e57189]. https://doi.org/10.7554/eLife.57189 Published in: eLife Citing this paper Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version. General rights Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Takedown policy If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown Procedures [http://man.ac.uk/04Y6Bo] or contact [email protected] providing relevant details, so we can investigate your claim. Download date:11. Oct. 2021 RESEARCH ARTICLE Repurposing of KLF5 activates a cell cycle signature during the progression from a precursor -
The Transcription Factors C-Myb and GATA-2 Act Independently in The
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 5313-5318, May 1996 Medical Sciences The transcription factors c-myb and GATA-2 act independently in the regulation of normal hematopoiesis PAOLA MELOTrl AND BRUNO CALABRETTA Department of Microbiology and Immunology, Kimmel Cancer Institute, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107 Communicated by Sidney Weinhouse, Thomas Jefferson University, Philadelphia, PA, January 23, 1996 (received for review, October 20, 1995) ABSTRACT The transcription factors c-myb and GATA-2 erythromyeloid differentiation (7). This process appears to are both required for blood cell development in vivo and in rest in the ability of c-myb to activate the expression of vitro. However, very little is known on their mechanism(s) of hematopoiesis-specific targets such as c-kit,flt-3, GATA-1, and action and whether they impact on complementary or over- CD34, but not GATA-2 (7). The induction of c-kit and flt-3 lapping pathways of hematopoietic proliferation and differ- expression and the dependence of c-myb-transfected ES cells entiation. We report here that embryonic stem (ES) cells on the expression of these cytokine receptors for their prolif- transfected with c-myb or GATA-2 cDNAs, individually or in eration (7) strongly suggest that the up-regulation of growth combination, underwent hematopoietic commitment and dif- factor receptor levels is of fundamental importance for the ferentiation in the absence of added hematopoietic growth expansion of progenitor cells. In turn, such a process is factors but that stimulation with c-kit and flt-3 ligands en- probably a requirement for completion of the differentiation hanced colony formation only in the c-myb transfectants. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Interfacing to Biological Systems Using Microfluidics
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2018 Interfacing to Biological Systems Using Microfluidics Peter Golden Shankles University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Shankles, Peter Golden, "Interfacing to Biological Systems Using Microfluidics. " PhD diss., University of Tennessee, 2018. https://trace.tennessee.edu/utk_graddiss/5315 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Peter Golden Shankles entitled "Interfacing to Biological Systems Using Microfluidics." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Energy Science and Engineering. Scott T. Retterer, Major Professor We have read this dissertation and recommend its acceptance: Steven M. Abel, Mitchel J. Doctycz, Jennifer L. Morrell-Falvey Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Interfacing to Biological Systems Using Microfluidics A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Peter Golden Shankles December 2018 Copyright © 2018 by Peter Golden Shankles All rights reserved. -
The DNA Methylation of FOXO3 and TP53 As a Blood Biomarker of Late
Yuan et al. J Transl Med (2020) 18:467 https://doi.org/10.1186/s12967-020-02643-y Journal of Translational Medicine RESEARCH Open Access The DNA methylation of FOXO3 and TP53 as a blood biomarker of late-onset asthma Lin Yuan1,2,3, Leyuan Wang2, Xizi Du2, Ling Qin1,3, Ming Yang4, Kai Zhou2, Mengping Wu2, Yu Yang2, Zhiyuan Zheng1,3, Yang Xiang2, Xiangping Qu2, Huijun Liu2, Xiaoqun Qin2 and Chi Liu1,2,5* Abstract Background: Late-onset asthma (LOA) is beginning to account for an increasing proportion of asthma patients, which is often underdiagnosed in the elderly. Studies on the possible relations between aging-related genes and LOA contribute to the diagnosis and treatment of LOA. Forkhead Box O3 (FOXO3) and TP53 are two classic aging-related genes. DNA methylation varies greatly with age which may play an important role in the pathogenesis of LOA. We supposed that the diferentially methylated sites of FOXO3 and TP53 associated with clinical phenotypes of LOA may be useful biomarkers for the early screening of LOA. Methods: The mRNA expression and DNA methylation of FOXO3 and TP53 in peripheral blood of 43 LOA patients (15 mild LOA, 15 moderate LOA and 13 severe LOA) and 60 healthy controls (HCs) were determined. The association of methylated sites with age was assessed by Cox regression to control the potential confounders. Then, the correlation between diferentially methylated sites (DMSs; p-value < 0.05) and clinical lung function in LOA patients was evalu- ated. Next, candidate DMSs combining with age were evaluated to predict LOA by receiver operating characteristic (ROC) analysis and principal components analysis (PCA).