Recent Advances in Droplet-Based Microfluidic Technologies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Digital Microfluidic Devices: the Role of the Dielectric Layer
Vasco Alexandre Violante Rodrigues Licenciatura em Ciências de Engenharia em Micro e Nanotecnologias Digital Microfluidic devices: the role of the dielectric layer Dissertação para obtenção do Grau de Mestre em Engenharia de Micro e Nanotecnologias Orientador: Professor Doutor Rui Igreja, Dep. Ciência dos Materiais, FCT-UNL Co -orientador: Professor Doutor Hugo Águas, Dep. Ciência dos Materiais, FCT-UNL Júri: Presidente: Prof. Doutor Rodrigo Ferrão de Paiva Martins Arguente: Doutora Rita Maria Mourão Salazar Branquinho Vogal: Prof. Doutor Rui Alberto Garção Barreira do Nascimento Igreja Novembro, 2014 DIGITAL MICROFLUIDICS: THE ROLE OF THE DIELECTRIC LAYER © Vasco Alexandre Violante Rodrigues Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. AGRADECIMENTOS É com enorme satisfação que vejo cumprida mais uma etapa da minha vida, tendo sido esta porventura uma das mais exigentes até ao momento. A conclusão deste trabalho encerra em si um capítulo que começou por ser caracterizado por grande incerteza, tendo eu pertencido ao reduzido grupo de pessoas que ingressou pela primeira vez no Mestrado Integrado em Engenharia de Micro e Nanotecnologias, e é com alegria que pertenço ao grupo ainda mais restrito de pessoas que o conclui agora, cinco anos volvidos. -
Recent Advances in Electrowetting Microdroplet Technologies
Chapter 4 Recent Advances in Electrowetting Microdroplet Technologies Robert W. Barber and David R. Emerson 4.1 Introduction The ability to handle small volumes of liquid, typically from a few picolitres (pL) to a few microlitres (mL), has the potential to improve the performance of complex chemical and biological assays [1–6]. The benefits of miniaturisation are well documented [7–9] and include smaller sample requirements, reduced reagent con- sumption, decreased analysis time, lower power consumption, lower costs per assay and higher levels of throughput and automation. In addition, miniaturisation may offer enhanced functionality that cannot be achieved in conventional macroscale devices, such as the ability to combine sample collection, analyte extraction, preconcentration, filtration and sample analysis onto a single microfluidic chip [10]. Microfluidics-based lab-on-a-chip devices have received considerable attention in recent years, and are expected to revolutionise clinical diagnostics, DNA and protein analysis and many other laboratory procedures involving molecular biology [11–13]. Currently, most lab-on-a-chip devices employ continuous fluid flow through closed microchannels. However, an alternative approach, which is rapidly gaining popularity, is to mani- pulate the liquid in the form of discrete, unit-sized microdroplets—an approach which is often referred to as digital microfluidics [14–18]. The use of droplet-based microfluidics offers many benefits over continuous flow systems; one of the main advantages is that the reaction or assay can be performed sequentially in a similar manner to traditional (macroscale) laboratory techniques. Consequently, a wide range of established chemical and biological protocols can be transferred to the micro-scale without the need to establish continuous flow protocols for the same reaction. -
Detection of Dna Hybridization on a Configurable Digital Microfluidic
DETECTION OF DNA HYBRIDIZATION ON A CONFIGURABLE DIGITAL MICROFLUIDIC BIO- CHIP USING SPR IMAGING Lidija Malic1, Teodor Veres2 and Maryam Tabrizian1 1Biomedical Engineering Department, McGill University, CANADA and 2Industrial Materials Institute, National Research Council, CANADA ABSTRACT This paper presents a configurable digital microfluidic-based surface plasmon resonance (SPR) biochip platform comprising an electrowetting-on-dielectric (EWOD) microfluidic device coupled to SPR imaging (SPRi). We demonstrate its application for dynamic on-chip simultaneous immobilization of different DNA probes in combination with multichannel label-free real-time detection of subse- quent hybridization reactions. The integrated EWOD-SPRi system would enable the development of high-throughput, rapid and ultrasensitive biomolecular detection strategies beyond DNA microarray applications. KEYWORDS: Digital microfluidics, EWOD, SPR imaging, DNA hybridization INTRODUCTION EWOD microfluidics has attracted considerable attention in the past decade and the most recent efforts are directed towards its application in biomedical research [1- 3]. While these studies demonstrate the versatility of EWOD devices, the reported applications involve homogeneous phase reactions [4] and detection methods that require labeled biomolecules [2] or sample extraction from the chip [1]. This in- creases both the time and complexity of the assay. To introduce new applications relying on label-free, real-time surface sensitive detection techniques such as SPRi, it would be advantageous to use droplet-based EWOD actuation for surface specific biomolecule immobilization. However, the need of hydrophobic properties for EWOD actuation renders immobilization of biomolecules such as DNA on the sur- face of the chip impossible [3, 4]. In this paper, we demonstrate for the first time the use of an EWOD microfluidic chip to dynamically immobilize DNA probes in a two-dimensional array, followed by SPRi detection of bioaffinity interactions. -
Interfacing to Biological Systems Using Microfluidics
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2018 Interfacing to Biological Systems Using Microfluidics Peter Golden Shankles University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Shankles, Peter Golden, "Interfacing to Biological Systems Using Microfluidics. " PhD diss., University of Tennessee, 2018. https://trace.tennessee.edu/utk_graddiss/5315 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Peter Golden Shankles entitled "Interfacing to Biological Systems Using Microfluidics." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Energy Science and Engineering. Scott T. Retterer, Major Professor We have read this dissertation and recommend its acceptance: Steven M. Abel, Mitchel J. Doctycz, Jennifer L. Morrell-Falvey Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Interfacing to Biological Systems Using Microfluidics A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Peter Golden Shankles December 2018 Copyright © 2018 by Peter Golden Shankles All rights reserved. -
Demonstration of Automated DNA Assembly on a Digital Microfluidic Device
Rochester Institute of Technology RIT Scholar Works Theses 5-12-2021 Demonstration of Automated DNA Assembly on a Digital Microfluidic Device Hee Tae An [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation An, Hee Tae, "Demonstration of Automated DNA Assembly on a Digital Microfluidic Device" (2021). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NY Demonstration of Automated DNA Assembly on a Digital Microfluidic Device by Hee Tae An A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Microelectronic Engineering Submitted May 12, 2021 DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING KATE GLEASON COLLEGE OF ENGINEERING Approved By: Dr. Michael Schertzer, Associate Professor Date Thesis Advisor, Department of Mechanical Engineering Dr. Karl Hirschman, Professor Date Committee Member, Department of Electrical and Microelectronic Engineering Dr. Ivan Puchades, Assistant Professor Date Committee Member, Department of Electrical and Microelectronic Engineering Dr. Michael Schrlau, Associate Professor Date Committee Member, Department of Mechanical Engineering Dr. Sean Rommel, Director of Microelectronic Engineering/Professor Date Department Representative, Department of Electrical and Microelectronic Engineering Abstract The rapid manufacturing of highly accurate synthetic DNA is crucial for its use as a molec- ular tool, the understanding and engineering of regulatory elements, protein engineering, genetic refactoring, engineered genetic networks and metabolic pathways, and whole-genome syntheses [1,2]. -
Protein Stamping for Maldi Mass Spectrometry Using an Electrowetting-Based Microfluidic Platform
PROTEIN STAMPING FOR MALDI MASS SPECTROMETRY USING AN ELECTROWETTING-BASED MICROFLUIDIC PLATFORM Vijay Srinivasan1, Vamsee Pamula, Phil Paik, and Richard Fair Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708-0291. ABSTRACT MALDI-MS (matrix-assisted laser desorption/ionization mass spectrometry) is one of the most commonly used tech- niques for protein analysis. In conventional systems sample preparation is typically done in well-plates and transferred onto a MALDI target by robotic systems, which are complex, huge, expensive and slow. In this paper, we present a droplet-based microfluidic interface to transfer protein samples from a well-plate format onto a MALDI target for MS analysis. The droplets are actuated using the electrowetting phenomenon, and are immersed in silicone oil which pre- vents non-specific adsorption and enables the manipulation of high concentrations of proteins. Droplet transport and droplet formation were evaluated as a function of protein concentration using bovine serum albumin (BSA) as a test system. Droplet transport was possible for BSA concentrations up to 10mg/mL which is three orders of magnitude higher than previously reported results on handling proteins by electrowetting. Droplet formation from on-chip reser- voirs, using only electrowetting forces and no external pressure assistance, was possible up to concentrations of 0.01mg/mL. An interface between a well-plate format and the electrowetting chip, and a scheme to passively stamp droplets onto a target substrate was then designed and tested by stamping BSA solutions. In two separate experiments 3.6fmoles and 16fmoles of BSA were stamped onto a glass slide using 0.001mg/mL and 0.01mg/mL samples respec- tively. -
Interfacing Microfluidics to LDI-MS by Automatic Robotic Spotting
Microfluid Nanofluid (2010) 8:777–787 DOI 10.1007/s10404-009-0510-x RESEARCH PAPER Interfacing microfluidics to LDI-MS by automatic robotic spotting Chia-Wen Tsao • Song Tao • Chien-Fu Chen • Jikun Liu • Don L. DeVoe Received: 30 July 2009 / Accepted: 23 September 2009 / Published online: 13 October 2009 Ó Springer-Verlag 2009 Abstract We developed a method of interfacing micro- Keywords Mass spectrometry interfacing Á fluidics with mass spectrometry (MS) using a robotic Microfluidics Á Robotic spotting Á LDI-MS spotting system to automate the contact spotting process. We demonstrate that direct and automated spotting of analyte from multichannel microfluidic chips to a custom 1 Introduction microstructured MALDI target plate was a simple, robust, and high-throughput method for interfacing parallel The ability to perform high-throughput bioanalysis in a microchannels using matrix-assisted laser desorption/ioni- single integrated platform is a substantial benefit offered by zation mass spectrometry (MALDI-MS). Using thermo- microfluidics technology. Arrays of multiplexed micro- plastic cyclic olefin copolymer (COC) polymer microfluidic channels allowing large numbers of simultaneous on-chip chips containing eight parallel 100 lm 9 46 lm micro- analyses have been demonstrated in numerous applications channels connected to a single input port, spotting volume including chemical reaction screening (Wang et al. 2006a), repeatability and MALDI-MS signal uniformity are evalu- immunoassays (Wang et al. 2006b), enzymatic processing ated for a panel of sample peptides. The COC microfluidic (Su et al. 2005), biomolecular separations performed by chips were fabricated by hot embossing and solvent bond- zone electrophoresis (Chen et al. 2002; Shen et al. -
A Flexible Microfluidic System for Single-Cell Transcriptome Profiling
www.nature.com/scientificreports OPEN A fexible microfuidic system for single‑cell transcriptome profling elucidates phased transcriptional regulators of cell cycle Karen Davey1,7, Daniel Wong2,7, Filip Konopacki2, Eugene Kwa1, Tony Ly3, Heike Fiegler2 & Christopher R. Sibley 1,4,5,6* Single cell transcriptome profling has emerged as a breakthrough technology for the high‑resolution understanding of complex cellular systems. Here we report a fexible, cost‑efective and user‑ friendly droplet‑based microfuidics system, called the Nadia Instrument, that can allow 3′ mRNA capture of ~ 50,000 single cells or individual nuclei in a single run. The precise pressure‑based system demonstrates highly reproducible droplet size, low doublet rates and high mRNA capture efciencies that compare favorably in the feld. Moreover, when combined with the Nadia Innovate, the system can be transformed into an adaptable setup that enables use of diferent bufers and barcoded bead confgurations to facilitate diverse applications. Finally, by 3′ mRNA profling asynchronous human and mouse cells at diferent phases of the cell cycle, we demonstrate the system’s ability to readily distinguish distinct cell populations and infer underlying transcriptional regulatory networks. Notably this provided supportive evidence for multiple transcription factors that had little or no known link to the cell cycle (e.g. DRAP1, ZKSCAN1 and CEBPZ). In summary, the Nadia platform represents a promising and fexible technology for future transcriptomic studies, and other related applications, at cell resolution. Single cell transcriptome profling has recently emerged as a breakthrough technology for understanding how cellular heterogeneity contributes to complex biological systems. Indeed, cultured cells, microorganisms, biopsies, blood and other tissues can be rapidly profled for quantifcation of gene expression at cell resolution. -
Digital Microfluidics
Microfluid Nanofluid DOI 10.1007/s10404-007-0161-8 REVIEW Digital microfluidics: is a true lab-on-a-chip possible? R. B. Fair Received: 10 February 2007 / Accepted: 14 February 2007 Ó Springer-Verlag 2007 Abstract The suitability of electrowetting-on-dielectric elemental operations, such as transport, mixing, or dis- (EWD) microfluidics for true lab-on-a-chip applications is pensing. These elemental operations are performed on an discussed. The wide diversity in biomedical applications elemental set of components, such as electrode arrays, can be parsed into manageable components and assembled separation columns, or reservoirs. Examples of the incor- into architecture that requires the advantages of being poration of these principles in complex biomedical appli- programmable, reconfigurable, and reusable. This capa- cations are described. bility opens the possibility of handling all of the protocols that a given laboratory application or a class of applications Keywords Lab-on-a-chip Á Digital microfluidics Á would require. And, it provides a path toward realizing the Biomedical applications Á Detection Á Analysis Á true lab-on-a-chip. However, this capability can only be Electrowetting realized with a complete set of elemental fluidic compo- nents that support all of the required fluidic operations. Architectural choices are described along with the reali- 1 Introduction zation of various biomedical fluidic functions implemented in on-chip electrowetting operations. The current status of Historically, microfluidic devices have been designed from this EWD toolkit is discussed. However, the question re- the bottom up, whereby various fluidic components are mains: which applications can be performed on a digital combined together to achieve a device that performs a microfluidic platform? And, are there other advantages particular application. -
(EWOD): Current Perspectives and Applications in Ensuring Food Safety
Volume 28 Issue 4 Article 8 2020 Electrowetting-on-dielectric (EWOD): Current perspectives and applications in ensuring food safety Follow this and additional works at: https://www.jfda-online.com/journal Part of the Food Science Commons, Medicinal Chemistry and Pharmaceutics Commons, Pharmacology Commons, and the Toxicology Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Barman, Snigdha Roy; Khan, Imran; Chatterjee, Subhodeep; Saha, Subhajit; Choi, Dukhyun; Lee, Sangmin; and Lin, Zong-Hong (2020) "Electrowetting-on-dielectric (EWOD): Current perspectives and applications in ensuring food safety," Journal of Food and Drug Analysis: Vol. 28 : Iss. 4 , Article 8. Available at: https://doi.org/10.38212/2224-6614.1239 This Review Article is brought to you for free and open access by Journal of Food and Drug Analysis. It has been accepted for inclusion in Journal of Food and Drug Analysis by an authorized editor of Journal of Food and Drug Analysis. Electrowetting-on-dielectric (EWOD): Current perspectives and applications in ensuring food safety REVIEW ARTICLE Snigdha Roy Barman a, Imran Khan b, Subhodeep Chatterjee c, Subhajit Saha a, Dukhyun Choi d,**, Sangmin Lee e,***, Zong-Hong Lin a,c,d,* a Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan b Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan c Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan d Department of Mechanical Engineering, Kyung Hee University, Yongin, 17104, South Korea e School of Mechanical Engineering, Chung-Ang University, Seoul 06974, South Korea Abstract Digital microfluidic (DMF) platforms have contributed immensely to the development of multifunctional lab-on-chip systems for performing complete sets of biological and analytical assays. -
RNA-Seq and Microfluidic Digital PCR Identification of Transcriptionally Active Spirochetes in Termite Gut Microbial Communities
4-1 RNA-Seq and microfluidic digital PCR identification of transcriptionally active spirochetes in termite gut microbial communities Abstract CO2-reductive acetogenesis in termite hindguts is a bacterial process with significant impact on the nutrition of wood-feeding termites. Acetogenic spirochetes have been identified as key mediators of acetogenesis. Here, we use high-throughput, short transcript sequencing (RNA-Seq) and microfluidic, multiplex digital PCR to identify uncultured termite gut spirochetes transcribing genes for hydrogenase-linked formate dehydrogenase (FDHH) enzymes, which are required for acetogenic metabolism in the spirochete, Treponema primitia. To assess FDHH gene (fdhF) transcription within the gut community of a wood-feeding termite, we sequenced ca. 28,000,000 short transcript reads of gut microbial community RNA using Illumina Solexa technology. RNA-Seq results indicate that fdhF transcription in the gut is dominated by two fdhF genotypes: ZnD2sec and Zn2cys. This finding was independently corroborated with cDNA inventory and qRT-PCR transcription measurements. We, therefore, propose that RNA-Seq mapping of microbial community transcripts is specific and quantitative. Following transcriptional assessments, we performed microfluidic, multiplex digital PCR on single termite gut bacterial cells to discover the identity of uncultured bacteria encoding fdhF 4-2 genotypes ZnD2sec and Zn2cys. We identified the specific 16S rRNA gene ribotype of the bacterium encoding Zn2cys fdhF and report that the bacterium is a spirochete. Phylogenetic analysis reveals that this uncultured spirochete, like T. primitia, possesses genes for acetogenic metabolism – formyl-tetra-hydrofolate synthetase and both selenocysteine and cysteine variants of formate dehydrogenase. Microfluidic results also imply a spirochetal origin for ZnD2sec fdhF, but further gene pair associations are required for verification. -
Microbes and Metagenomics in Human Health an Overview of Recent Publications Featuring Illumina® Technology TABLE of CONTENTS
Microbes and Metagenomics in Human Health An overview of recent publications featuring Illumina® technology TABLE OF CONTENTS 4 Introduction 5 Human Microbiome Gut Microbiome Gut Microbiome and Disease Inflammatory Bowel Disease (IBD) Metabolic Diseases: Diabetes and Obesity Obesity Oral Microbiome Other Human Biomes 25 Viromes and Human Health Viral Populations Viral Zoonotic Reservoirs DNA Viruses RNA Viruses Human Viral Pathogens Phages Virus Vaccine Development 44 Microbial Pathogenesis Important Microorganisms in Human Health Antimicrobial Resistance Bacterial Vaccines 54 Microbial Populations Amplicon Sequencing 16S: Ribosomal RNA Metagenome Sequencing: Whole-Genome Shotgun Metagenomics Eukaryotes Single-Cell Sequencing (SCS) Plasmidome Transcriptome Sequencing 63 Glossary of Terms 64 Bibliography This document highlights recent publications that demonstrate the use of Illumina technologies in immunology research. To learn more about the platforms and assays cited, visit www.illumina.com. An overview of recent publications featuring Illumina technology 3 INTRODUCTION The study of microbes in human health traditionally focused on identifying and 1. Roca I., Akova M., Baquero F., Carlet J., treating pathogens in patients, usually with antibiotics. The rise of antibiotic Cavaleri M., et al. (2015) The global threat of resistance and an increasingly dense—and mobile—global population is forcing a antimicrobial resistance: science for interven- tion. New Microbes New Infect 6: 22-29 1, 2, 3 change in that paradigm. Improvements in high-throughput sequencing, also 2. Shallcross L. J., Howard S. J., Fowler T. and called next-generation sequencing (NGS), allow a holistic approach to managing Davies S. C. (2015) Tackling the threat of anti- microbial resistance: from policy to sustainable microbes in human health.