Lab on a Chip
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Digital Microfluidic Devices: the Role of the Dielectric Layer
Vasco Alexandre Violante Rodrigues Licenciatura em Ciências de Engenharia em Micro e Nanotecnologias Digital Microfluidic devices: the role of the dielectric layer Dissertação para obtenção do Grau de Mestre em Engenharia de Micro e Nanotecnologias Orientador: Professor Doutor Rui Igreja, Dep. Ciência dos Materiais, FCT-UNL Co -orientador: Professor Doutor Hugo Águas, Dep. Ciência dos Materiais, FCT-UNL Júri: Presidente: Prof. Doutor Rodrigo Ferrão de Paiva Martins Arguente: Doutora Rita Maria Mourão Salazar Branquinho Vogal: Prof. Doutor Rui Alberto Garção Barreira do Nascimento Igreja Novembro, 2014 DIGITAL MICROFLUIDICS: THE ROLE OF THE DIELECTRIC LAYER © Vasco Alexandre Violante Rodrigues Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito, perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de exemplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de investigação, não comerciais, desde que seja dado crédito ao autor e editor. AGRADECIMENTOS É com enorme satisfação que vejo cumprida mais uma etapa da minha vida, tendo sido esta porventura uma das mais exigentes até ao momento. A conclusão deste trabalho encerra em si um capítulo que começou por ser caracterizado por grande incerteza, tendo eu pertencido ao reduzido grupo de pessoas que ingressou pela primeira vez no Mestrado Integrado em Engenharia de Micro e Nanotecnologias, e é com alegria que pertenço ao grupo ainda mais restrito de pessoas que o conclui agora, cinco anos volvidos. -
Recent Advances in Electrowetting Microdroplet Technologies
Chapter 4 Recent Advances in Electrowetting Microdroplet Technologies Robert W. Barber and David R. Emerson 4.1 Introduction The ability to handle small volumes of liquid, typically from a few picolitres (pL) to a few microlitres (mL), has the potential to improve the performance of complex chemical and biological assays [1–6]. The benefits of miniaturisation are well documented [7–9] and include smaller sample requirements, reduced reagent con- sumption, decreased analysis time, lower power consumption, lower costs per assay and higher levels of throughput and automation. In addition, miniaturisation may offer enhanced functionality that cannot be achieved in conventional macroscale devices, such as the ability to combine sample collection, analyte extraction, preconcentration, filtration and sample analysis onto a single microfluidic chip [10]. Microfluidics-based lab-on-a-chip devices have received considerable attention in recent years, and are expected to revolutionise clinical diagnostics, DNA and protein analysis and many other laboratory procedures involving molecular biology [11–13]. Currently, most lab-on-a-chip devices employ continuous fluid flow through closed microchannels. However, an alternative approach, which is rapidly gaining popularity, is to mani- pulate the liquid in the form of discrete, unit-sized microdroplets—an approach which is often referred to as digital microfluidics [14–18]. The use of droplet-based microfluidics offers many benefits over continuous flow systems; one of the main advantages is that the reaction or assay can be performed sequentially in a similar manner to traditional (macroscale) laboratory techniques. Consequently, a wide range of established chemical and biological protocols can be transferred to the micro-scale without the need to establish continuous flow protocols for the same reaction. -
Recent Advances in Droplet-Based Microfluidic Technologies
micromachines Review Recent Advances in Droplet-based Microfluidic Technologies for Biochemistry and Molecular Biology 1, 1, 2, Joel Sánchez Barea y , Juhwa Lee y and Dong-Ku Kang * 1 Department of Chemistry, Incheon National University, Incheon 22012, Korea; [email protected] (J.S.B.); [email protected] (J.L.) 2 Department of Chemistry, Research Institute of Basic Sciences, Incheon National University, Incheon 22012, Korea * Correspondence: [email protected]; Tel.: +82-32-835-8094 These authors contribute equally to this article. y Received: 2 May 2019; Accepted: 18 June 2019; Published: 20 June 2019 Abstract: Recently, droplet-based microfluidic systems have been widely used in various biochemical and molecular biological assays. Since this platform technique allows manipulation of large amounts of data and also provides absolute accuracy in comparison to conventional bioanalytical approaches, over the last decade a range of basic biochemical and molecular biological operations have been transferred to drop-based microfluidic formats. In this review, we introduce recent advances and examples of droplet-based microfluidic techniques that have been applied in biochemistry and molecular biology research including genomics, proteomics and cellomics. Their advantages and weaknesses in various applications are also comprehensively discussed here. The purpose of this review is to provide a new point of view and current status in droplet-based microfluidics to biochemists and molecular biologists. We hope that this review will accelerate communications between researchers who are working in droplet-based microfluidics, biochemistry and molecular biology. Keywords: droplet-based microfluidic; biochemistry; molecular biology; digital PCR; biochip; biosensor; digital quantification; microfluidic; single cell analysis 1. -
Detection of Dna Hybridization on a Configurable Digital Microfluidic
DETECTION OF DNA HYBRIDIZATION ON A CONFIGURABLE DIGITAL MICROFLUIDIC BIO- CHIP USING SPR IMAGING Lidija Malic1, Teodor Veres2 and Maryam Tabrizian1 1Biomedical Engineering Department, McGill University, CANADA and 2Industrial Materials Institute, National Research Council, CANADA ABSTRACT This paper presents a configurable digital microfluidic-based surface plasmon resonance (SPR) biochip platform comprising an electrowetting-on-dielectric (EWOD) microfluidic device coupled to SPR imaging (SPRi). We demonstrate its application for dynamic on-chip simultaneous immobilization of different DNA probes in combination with multichannel label-free real-time detection of subse- quent hybridization reactions. The integrated EWOD-SPRi system would enable the development of high-throughput, rapid and ultrasensitive biomolecular detection strategies beyond DNA microarray applications. KEYWORDS: Digital microfluidics, EWOD, SPR imaging, DNA hybridization INTRODUCTION EWOD microfluidics has attracted considerable attention in the past decade and the most recent efforts are directed towards its application in biomedical research [1- 3]. While these studies demonstrate the versatility of EWOD devices, the reported applications involve homogeneous phase reactions [4] and detection methods that require labeled biomolecules [2] or sample extraction from the chip [1]. This in- creases both the time and complexity of the assay. To introduce new applications relying on label-free, real-time surface sensitive detection techniques such as SPRi, it would be advantageous to use droplet-based EWOD actuation for surface specific biomolecule immobilization. However, the need of hydrophobic properties for EWOD actuation renders immobilization of biomolecules such as DNA on the sur- face of the chip impossible [3, 4]. In this paper, we demonstrate for the first time the use of an EWOD microfluidic chip to dynamically immobilize DNA probes in a two-dimensional array, followed by SPRi detection of bioaffinity interactions. -
Demonstration of Automated DNA Assembly on a Digital Microfluidic Device
Rochester Institute of Technology RIT Scholar Works Theses 5-12-2021 Demonstration of Automated DNA Assembly on a Digital Microfluidic Device Hee Tae An [email protected] Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation An, Hee Tae, "Demonstration of Automated DNA Assembly on a Digital Microfluidic Device" (2021). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. ROCHESTER INSTITUTE OF TECHNOLOGY ROCHESTER, NY Demonstration of Automated DNA Assembly on a Digital Microfluidic Device by Hee Tae An A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Microelectronic Engineering Submitted May 12, 2021 DEPARTMENT OF ELECTRICAL AND MICROELECTRONIC ENGINEERING KATE GLEASON COLLEGE OF ENGINEERING Approved By: Dr. Michael Schertzer, Associate Professor Date Thesis Advisor, Department of Mechanical Engineering Dr. Karl Hirschman, Professor Date Committee Member, Department of Electrical and Microelectronic Engineering Dr. Ivan Puchades, Assistant Professor Date Committee Member, Department of Electrical and Microelectronic Engineering Dr. Michael Schrlau, Associate Professor Date Committee Member, Department of Mechanical Engineering Dr. Sean Rommel, Director of Microelectronic Engineering/Professor Date Department Representative, Department of Electrical and Microelectronic Engineering Abstract The rapid manufacturing of highly accurate synthetic DNA is crucial for its use as a molec- ular tool, the understanding and engineering of regulatory elements, protein engineering, genetic refactoring, engineered genetic networks and metabolic pathways, and whole-genome syntheses [1,2]. -
Protein Stamping for Maldi Mass Spectrometry Using an Electrowetting-Based Microfluidic Platform
PROTEIN STAMPING FOR MALDI MASS SPECTROMETRY USING AN ELECTROWETTING-BASED MICROFLUIDIC PLATFORM Vijay Srinivasan1, Vamsee Pamula, Phil Paik, and Richard Fair Department of Electrical and Computer Engineering, Duke University, Durham, NC 27708-0291. ABSTRACT MALDI-MS (matrix-assisted laser desorption/ionization mass spectrometry) is one of the most commonly used tech- niques for protein analysis. In conventional systems sample preparation is typically done in well-plates and transferred onto a MALDI target by robotic systems, which are complex, huge, expensive and slow. In this paper, we present a droplet-based microfluidic interface to transfer protein samples from a well-plate format onto a MALDI target for MS analysis. The droplets are actuated using the electrowetting phenomenon, and are immersed in silicone oil which pre- vents non-specific adsorption and enables the manipulation of high concentrations of proteins. Droplet transport and droplet formation were evaluated as a function of protein concentration using bovine serum albumin (BSA) as a test system. Droplet transport was possible for BSA concentrations up to 10mg/mL which is three orders of magnitude higher than previously reported results on handling proteins by electrowetting. Droplet formation from on-chip reser- voirs, using only electrowetting forces and no external pressure assistance, was possible up to concentrations of 0.01mg/mL. An interface between a well-plate format and the electrowetting chip, and a scheme to passively stamp droplets onto a target substrate was then designed and tested by stamping BSA solutions. In two separate experiments 3.6fmoles and 16fmoles of BSA were stamped onto a glass slide using 0.001mg/mL and 0.01mg/mL samples respec- tively. -
Interfacing Microfluidics to LDI-MS by Automatic Robotic Spotting
Microfluid Nanofluid (2010) 8:777–787 DOI 10.1007/s10404-009-0510-x RESEARCH PAPER Interfacing microfluidics to LDI-MS by automatic robotic spotting Chia-Wen Tsao • Song Tao • Chien-Fu Chen • Jikun Liu • Don L. DeVoe Received: 30 July 2009 / Accepted: 23 September 2009 / Published online: 13 October 2009 Ó Springer-Verlag 2009 Abstract We developed a method of interfacing micro- Keywords Mass spectrometry interfacing Á fluidics with mass spectrometry (MS) using a robotic Microfluidics Á Robotic spotting Á LDI-MS spotting system to automate the contact spotting process. We demonstrate that direct and automated spotting of analyte from multichannel microfluidic chips to a custom 1 Introduction microstructured MALDI target plate was a simple, robust, and high-throughput method for interfacing parallel The ability to perform high-throughput bioanalysis in a microchannels using matrix-assisted laser desorption/ioni- single integrated platform is a substantial benefit offered by zation mass spectrometry (MALDI-MS). Using thermo- microfluidics technology. Arrays of multiplexed micro- plastic cyclic olefin copolymer (COC) polymer microfluidic channels allowing large numbers of simultaneous on-chip chips containing eight parallel 100 lm 9 46 lm micro- analyses have been demonstrated in numerous applications channels connected to a single input port, spotting volume including chemical reaction screening (Wang et al. 2006a), repeatability and MALDI-MS signal uniformity are evalu- immunoassays (Wang et al. 2006b), enzymatic processing ated for a panel of sample peptides. The COC microfluidic (Su et al. 2005), biomolecular separations performed by chips were fabricated by hot embossing and solvent bond- zone electrophoresis (Chen et al. 2002; Shen et al. -
Digital Microfluidics
Microfluid Nanofluid DOI 10.1007/s10404-007-0161-8 REVIEW Digital microfluidics: is a true lab-on-a-chip possible? R. B. Fair Received: 10 February 2007 / Accepted: 14 February 2007 Ó Springer-Verlag 2007 Abstract The suitability of electrowetting-on-dielectric elemental operations, such as transport, mixing, or dis- (EWD) microfluidics for true lab-on-a-chip applications is pensing. These elemental operations are performed on an discussed. The wide diversity in biomedical applications elemental set of components, such as electrode arrays, can be parsed into manageable components and assembled separation columns, or reservoirs. Examples of the incor- into architecture that requires the advantages of being poration of these principles in complex biomedical appli- programmable, reconfigurable, and reusable. This capa- cations are described. bility opens the possibility of handling all of the protocols that a given laboratory application or a class of applications Keywords Lab-on-a-chip Á Digital microfluidics Á would require. And, it provides a path toward realizing the Biomedical applications Á Detection Á Analysis Á true lab-on-a-chip. However, this capability can only be Electrowetting realized with a complete set of elemental fluidic compo- nents that support all of the required fluidic operations. Architectural choices are described along with the reali- 1 Introduction zation of various biomedical fluidic functions implemented in on-chip electrowetting operations. The current status of Historically, microfluidic devices have been designed from this EWD toolkit is discussed. However, the question re- the bottom up, whereby various fluidic components are mains: which applications can be performed on a digital combined together to achieve a device that performs a microfluidic platform? And, are there other advantages particular application. -
(EWOD): Current Perspectives and Applications in Ensuring Food Safety
Volume 28 Issue 4 Article 8 2020 Electrowetting-on-dielectric (EWOD): Current perspectives and applications in ensuring food safety Follow this and additional works at: https://www.jfda-online.com/journal Part of the Food Science Commons, Medicinal Chemistry and Pharmaceutics Commons, Pharmacology Commons, and the Toxicology Commons This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. Recommended Citation Barman, Snigdha Roy; Khan, Imran; Chatterjee, Subhodeep; Saha, Subhajit; Choi, Dukhyun; Lee, Sangmin; and Lin, Zong-Hong (2020) "Electrowetting-on-dielectric (EWOD): Current perspectives and applications in ensuring food safety," Journal of Food and Drug Analysis: Vol. 28 : Iss. 4 , Article 8. Available at: https://doi.org/10.38212/2224-6614.1239 This Review Article is brought to you for free and open access by Journal of Food and Drug Analysis. It has been accepted for inclusion in Journal of Food and Drug Analysis by an authorized editor of Journal of Food and Drug Analysis. Electrowetting-on-dielectric (EWOD): Current perspectives and applications in ensuring food safety REVIEW ARTICLE Snigdha Roy Barman a, Imran Khan b, Subhodeep Chatterjee c, Subhajit Saha a, Dukhyun Choi d,**, Sangmin Lee e,***, Zong-Hong Lin a,c,d,* a Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan b Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu 30013, Taiwan c Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan d Department of Mechanical Engineering, Kyung Hee University, Yongin, 17104, South Korea e School of Mechanical Engineering, Chung-Ang University, Seoul 06974, South Korea Abstract Digital microfluidic (DMF) platforms have contributed immensely to the development of multifunctional lab-on-chip systems for performing complete sets of biological and analytical assays. -
Lab on a Chip
Lab on a Chip View Article Online CRITICAL REVIEW View Journal | View Issue Entrepreneurship†‡ Ali K. Yetisen,*a Lisa R. Volpatti,b Ahmet F. Coskun,c Sangyeon Cho,ad Cite this: Lab Chip,2015,15,3638 Ehsan Kamrani,a Haider Butt,e Ali Khademhosseinidfgh and Seok Hyun Yun*ad High-tech businesses are the driving force behind global knowledge-based economies. Academic institu- tions have positioned themselves to serve the high-tech industry through consulting, licensing, and univer- sity spinoffs. The awareness of commercialization strategies and building an entrepreneurial culture can help academics to efficiently transfer their inventions to the market to achieve the maximum value. Here, the concept of high-tech entrepreneurship is discussed from lab to market in technology-intensive sectors such as nanotechnology, photonics, and biotechnology, specifically in the context of lab-on-a-chip Received 26th May 2015, devices. This article provides strategies for choosing a commercialization approach, financing a startup, Accepted 22nd July 2015 marketing a product, and planning an exit. Common reasons for startup company failures are discussed and guidelines to overcome these challenges are suggested. The discussion is supplemented with case DOI: 10.1039/c5lc00577a studies of successful and failed companies. Identifying a market need, assembling a motivated manage- www.rsc.org/loc ment team, managing resources, and obtaining experienced mentors lead to a successful exit. 1. The university entrepreneur channels for global integration and technology transfer through multinational corporations. Knowledge spillovers The era of global entrepreneurship offers worldwide trade, from academic institutions to private industry are major driv- – international capital and investment, intercontinental supply ing force behind economic growth and increase in welfare.1 3 chains, migration of talent, and expansion of knowledge- Increasing investment in research is an incentive for universi- based economies. -
The Royal Society of Chemistry Turns Its Focus on Researchers with Better Search and Measurement Tools
The Royal Society of Chemistry turns its focus on researchers with better search and measurement tools The Royal Society of Chemistry offers a publishing platform providing access to over a million chemical science articles, book chapters and abstracts. Like many publishers of high quality peer-reviewed content, they are under pressure from their community to innovate quickly and harness digital technology in new ways that add value, simplicity and easier access to the research workflow. About Will Russell is responsible for some of the new technical developments • pubs.rsc.org at the Royal Society of Chemistry. “Although we do a lot of in-house • rsc.org development, we need to understand where developments can be • Location: Cambridge UK with improved by working with partners,” he says. “I really believe in the additional editorial teams in Beijing, benefit of strategic technology partnerships with an external partner. China, Bangalore India and There is the speed of getting a key utility to the market and this offers Washington D.C. USA us a tremendous business advantage.” • Scientific publisher of high-impact journals and books “We have journals going back to 1841,” he says. “We started migrating People print content online in the late 1990s. Our biggest challenge now is how • Will Russell we will deliver content in the future in the most useful way for the Business Relationship Manager researcher.” Goals Will pinpoints a way forward. “There are new opportunities presented • Embrace new technology to remain by open science and alternative metrics, and increasing importance competitive against innovative attached to data and open data,” he says. -
Chemistry Subject Ejournal Packages
Chemistry subject eJournal packages Subject Included journals No. of journals Analyst; Biomaterials Science; Food & Function; Journal of Materials Chemistry B; Lab on a Chip; Metallomics; Molecular Omics; Biological chemistry Molecular Systems Design & Engineering; Photochemical & Photobiological Sciences; Toxicology Research 10 Catalysis Science & Technology; Dalton Transactions; Energy & Environmental Science; Green Chemistry; Organic & Biomolecular Chemistry; Catalysis science Photochemical & Photobiological Sciences; Physical Chemistry Chemical Physics; Reaction Chemistry & Engineering 8 Lab on a Chip; MedChemComm; Metallomics; Molecular Omics; Natural Product Reports; Organic & Biomolecular Chemistry; Photochemical Biochemistry & Photobiological Sciences; Toxicology Research 8 CrystEngComm; Energy & Environmental Science; Green Chemistry; Journal of Materials Chemistry A; Molecular Systems Design & Energy Engineering; Physical Chemistry Chemical Physics; Journal of Materials Chemistry 7 Energy & Environmental Science; Environmental Science: Nano; Environmental Science: Processes & Impacts; Environmental Science: Environmental Science Water Research & Technology; Green Chemistry; Journal of Materials Chemistry A & C; Photochemical & Photobiological Sciences; Reaction 8 Chemistry & Engineering Food science Analyst; Analytical Methods; Food & Function; Lap on a Chip 4 Catalysis Science & Technology; CrystEngComm; Dalton Transactions; Inorganic Chemistry Frontiers; Metallomics; Photochemical & Inorganic chemistry Photobiological Sciences;