Antifungal and Cytotoxic Activities of Nannorrhops Ritchiana Roots Extract

Total Page:16

File Type:pdf, Size:1020Kb

Antifungal and Cytotoxic Activities of Nannorrhops Ritchiana Roots Extract Acta Poloniae Pharmaceutica ñ Drug Research, Vol. 71 No. 5 pp. 789ñ793, 2014 ISSN 0001-6837 Polish Pharmaceutical Society ANTIFUNGAL AND CYTOTOXIC ACTIVITIES OF NANNORRHOPS RITCHIANA ROOTS EXTRACT REHANA RASHID1*, FARAH MUKHTAR2 and ABIDA KHAN1 1Department of Chemistry, COMSATS Institute of Information Technology, University Road, Abbottabad, 22060, KPK, Pakistan 2H.E.J. International Center for Chemical & Biological Sciences, University of Karachi, 27750-Karachi, Pakistan Abstract: This study was designed to evaluate the antifungal and cytotoxic activities of the Nannorrhops ritchi- ana (Mazari Palm) 80% methanol extract (NR-M) and its four crude extracts i.e., petroleum ether (NR-A), dichloromethane (NR-B), ethyl acetate (NR-C) and butanol (NR-D). The antifungal activity was determined by agar tube dilution method against nine fungal strains; Aspergillus flavus, Trichophyton longifusis, Trichophyton mentagrophytes, Aspergillus flavus and Microsporum canis were susceptible to the extracts with percentage inhibition of (70ñ80%). Extracts exhibited significant and good antifungal activity against various fungal strains. The results were deduced by comparing with those for miconazole, amphotericin B and ketoconazole as standard drugs. The fractions of methanolic extract were assayed for their brine shrimp cytotoxic activity. They exhibited low toxicity with LC50 values ranging from 285.7 to 4350.75 µg/mL at the concentration of obtained results warrant follow up through bioassay guided isolation of the active principles, future antiinfec- tious research. Keywords: Nannorrhops ritchiana, antifungal activity, brine shrimp, cytotoxic activity Natural products obtained from various being treated with the herbal medicines by the tradi- sources like, plants, animals, and microorganisms tional practitioners and over 350 herbal drugs have are considered to be strong candidates of pharma- been reported. Pakistan flora is rich in variety of rare ceutical drugs since long period of time and they plants and offers a great chance to discover a lead constitute a vast majority of chemotherapeutic molecule, that is a step forward towards the pharma- agents currently in use for various types of infec- ceutical drugs (3). tious diseases provoked by pathogenic bacteria and The compounds resulting from natural prod- fungi, cardiovascular diseases, cancers and many ucts are the most important biochemical tools that others. The interest in using medicinal plantís demonstrate the specific mode of action in various extracts and their isolated components has increased fungal pathogenic diseases, but there is still a great not only in developing countries but also getting urgency of developing new antifungal agents that more popularity in developed countries. According are more efficient, less toxic, having minimum side to World Health Organization, medicinal plants effects (4). Fungal pathogens exist in various forms would be the best source for variety of drugs (1) and some of them cause severe infections of skin, having less toxicity and being more economical. hairs, nails, lungs, ears and joints in humans and Therefore, medicinally important plants should be animals (5) whereas others cause severe infections investigated for better understanding of the chem- of central nervous system (CNS) in humans. At istry and chemical composition of their bioactive present, about 300 metabolites have been reported to constituents, their efficacy and safety (2). be toxic to man and animals (6) and the main toxic Pakistan occupies a unique position among effects are carcinogenicity, genotoxicity, terato- developing countries due to widespread medicinal genicity, hepatotoxicity and immune suppression (7, plants on account of its topology. It is noticeable that 8). The human fungal diseases also include asper- more than 50% of the population in Pakistan is still gillosis, actinomycosis, histoplasmosis and corcid- * Corresponding author: E- mail: [email protected]; phone: 0992-383591-6 Ext. 310; fax: 0992-383441. 789 790 REHANA RASHID et al. iomycosis. The discovery of antifungal drugs is the get crude extract (NR-M) 1.5 kg. Methanol crude need of this era due to their versatility and the sec- extract was dissolved in cold distilled H2O (10 L) ond most important factor is that they showed an and partitioned with petroleum ether (25 L) to afford enhanced degree of resistance to the existing anti- after concentration the fraction NR-A. The aqueous fungal drugs. layer was then extracted with CH2Cl2 (10 L) to Nannorrhops ritchiana (Arecaceae) is the sole obtain fraction NR-B, ethyl acetate (10 L) ñ fraction species of this genus (9). It is native to Southwestern NR-C and butanol (10 L) ñ fraction NR-D, respec- Asia, from Southeast of the Arabian Peninsula to tively. The fractionated extracts were tested for the east through Iran and Afghanistan to Pakistan. It is antifungal activity and based on that planned for fur- widely distributed in the various areas of ther phytochemistry studies. Balochistan province of Pakistan particularly in Harnai, Khuzdar and Barkhan at an altitude of 1600 Antifungal assay in vitro m. It is one of the most versatile palms that can sur- Test organisms vive both in normal and under drastic weather con- Clinical isolates of human pathogens ditions (10). The young leaves of plant with sweet Microsporum canis, Candida albicans, Candida astringent taste have been used as a purgative in glaberata and Aspergillus flavus; animal pathogens, livestock (11). The fruit is edible (12) and used by Tricheophyton mentagrophytes, Fusarium monilifu- local communities for the treatment of diarrhea and mus and plant pathogens Trichophyton longifusis, dysentery (13). In Balochistan (14) it is used against Fusarium solani lycopersici and Fusarium oxyspo- various infectious diseases like gastrointestinal dis- rum lycopersici solanivar were used in this study. order (15). The constituents of plant ash have been quantitatively estimated in relation to biogeochem- Agar tube dilution method istry of the plant, the presence of minerals like cal- Agar tube dilution method (17) was used for the cium, magnesium, iron and nickel in soil and plant evaluation of antifungal activity. Sabouraud dextrose ash opened new avenue for the researchers (16). agar (SDA) was used for the growth of fungus and Therefore, research work is initiated on the roots of stock solution was prepared by dissolving 24 mg of N. ritchiana to investigate antifungal and cytotoxic each extract in 1 mL of sterile DMSO. Acidic medi- activities of various crude extracts. um (pH 5.5ñ5.6), containing high concentration of In search of effective nontoxic oral drugs and glucose or maltose prepared by mixing 32.5 g/500 topical applications, there is dare need of natural mL of distilled water was put in the screw caped sources to be explored and exploited for relief. tubes and autoclaved at 121OC for 15 min. Tubes were then allowed to cool to 50OC and non-solidified SDA was loaded with 66.6 µL of extract, pipetted EXPERIMENTAL from the stock solution and allowed to solidify at room temperature. Then, tubes were inoculated with General 4 mm piece of inoculums and incubated at 27ñ29OC All reagents and solvents used were obtained for 7ñ10 days and relative humidity of incubation from Sigma Aldrich (Shalimar Chemicals supplier, room was maintained at 40ñ50%. After this period, Pakistan). Commercial methanol used for extraction percentage growth inhibition was calculated with was purchased locally. reference to the negative control by the formula: % inhibition = linear growth in test (mm)/ Plant material linear growth in control (mm) ◊ 100 The Nannorrhops ritchiana species was col- Miconazole and amphotericin B were used as lected from Barkhan and Harnai areas in standard drugs, while miconazole, amphotericin B Balochistan, Pakistan. A voucher specimen No. and DMSO were used as positive and negative con- UoB/230 has been deposited in the Herbarium of the trols (18ñ22). Department of Botany, University of Balochistan, Quetta, Pakistan. Brine shrimp lethality assay The brine shrimp lethality test (BST) was per- Preparation of extracts formed to predict the cytotoxic activity in the differ- The air-dried roots (15 kg) of Nannorrhops ent crude extracts of N. ritchiana. The eggs were ritchiana were extracted with 80% aq. MeOH at hatched in artificial sea water as per conventional room temperature for three times. The combined method (23). Shrimp were transferred by pipette to MeOH extracts were evaporated under vacuum to each tube and sea water was added to make total Antifungal and cytotoxic activities of Nannorrhops ritchiana roots extract 791 volume of 5 mL. The test tubes were kept under illu- antifungal activity against Microsporum canis 80%, mination so that the nauplii can easily be counted Trichophyton longifusis 67%, good activity against macroscopically in capillary. The survivors were Tricheophyton mentagrophytes 70%; extract NR-B counted with the help of magnifying glass (◊3), the showed good activity against Trichophyton longifu- brine shrimp (LC50) was determined. sis 70% but moderate activity against Microsporum canis 60%, while extracts NR-C and NR-D exhibit- RESULTS AND DISCUSSION ed medium activity against Trichophyton longifusis 60% and good against Aspergillus flavus 70%, During this study, different fractions obtained respectively. from 80% methanol extract (NR-M) of roots of The brine shrimp lethality assay results pre- Nannorrhops ritchiana plant, petroleum ether (NR- sented in Table 2, show
Recommended publications
  • Low-Maintenance Landscape Plants for South Florida1
    ENH854 Low-Maintenance Landscape Plants for South Florida1 Jody Haynes, John McLaughlin, Laura Vasquez, Adrian Hunsberger2 Introduction regular watering, pruning, or spraying—to remain healthy and to maintain an acceptable aesthetic This publication was developed in response to quality. A low-maintenance plant has low fertilizer requests from participants in the Florida Yards & requirements and few pest and disease problems. In Neighborhoods (FYN) program in Miami-Dade addition, low-maintenance plants suitable for south County for a list of recommended landscape plants Florida must also be adapted to—or at least suitable for south Florida. The resulting list includes tolerate—our poor, alkaline, sand- or limestone-based over 350 low-maintenance plants. The following soils. information is included for each species: common name, scientific name, maximum size, growth rate An additional criterion for the plants on this list (vines only), light preference, salt tolerance, and was that they are not listed as being invasive by the other useful characteristics. Florida Exotic Pest Plant Council (FLEPPC, 2001), or restricted by any federal, state, or local laws Criteria (Burks, 2000). Miami-Dade County does have restrictions for planting certain species within 500 This section will describe the criteria by which feet of native habitats they are known to invade plants were selected. It is important to note, first, that (Miami-Dade County, 2001); caution statements are even the most drought-tolerant plants require provided for these species. watering during the establishment period. Although this period varies among species and site conditions, Both native and non-native species are included some general rules for container-grown plants have herein, with native plants denoted by †.
    [Show full text]
  • 210 Part 319—Foreign Quarantine Notices
    § 318.82–3 7 CFR Ch. III (1–1–03 Edition) The movement of plant pests, means of 319.8–20 Importations by the Department of conveyance, plants, plant products, and Agriculture. other products and articles from Guam 319.8–21 Release of cotton and covers after into or through any other State, Terri- 18 months’ storage. 319.8–22 Ports of entry or export. tory, or District is also regulated by 319.8–23 Treatment. part 330 of this chapter. 319.8–24 Collection and disposal of waste. 319.8–25 Costs and charges. § 318.82–3 Costs. 319.8–26 Material refused entry. All costs incident to the inspection, handling, cleaning, safeguarding, treat- Subpart—Sugarcane ing, or other disposal of products or ar- 319.15 Notice of quarantine. ticles under this subpart, except for the 319.15a Administrative instructions and in- services of an inspector during regu- terpretation relating to entry into Guam larly assigned hours of duty and at the of bagasse and related sugarcane prod- usual places of duty, shall be borne by ucts. the owner. Subpart—Citrus Canker and Other Citrus PART 319—FOREIGN QUARANTINE Diseases NOTICES 319.19 Notice of quarantine. Subpart—Foreign Cotton and Covers Subpart—Corn Diseases QUARANTINE QUARANTINE Sec. 319.24 Notice of quarantine. 319.8 Notice of quarantine. 319.24a Administrative instructions relating 319.8a Administrative instructions relating to entry of corn into Guam. to the entry of cotton and covers into Guam. REGULATIONS GOVERNING ENTRY OF INDIAN CORN OR MAIZE REGULATIONS; GENERAL 319.24–1 Applications for permits for impor- 319.8–1 Definitions.
    [Show full text]
  • On the Agronomy and Botany of Salak(Salacca Zalacca)
    On the agronomy and botany of Salak (Salacca zalacca) CENTRALE LANDBOUWCATALOGUS 0000 0904 4757 Promotoren: Prof. dr. ir. P.C. Struik Hoogleraar ind e gewasfysiologie Prof. dr. ir. M.Flac h Hoogleraar ind etropisch e plantenteelt Samenstelling promotiecommissie: Prof. dr. ir. M.Wesse l (Wageningen Universiteit) Dr. ir. E.W.M. Verheij (Wageningen Universiteit) Prof. dr. ir. L.J.G. van der Maesen (Wageningen Universiteit) Dr. ir. J.S.Siemonsm a (Wageningen Universiteit) , >.'J^' ,'-;'j;> On the agronomy and botany of Salak (Salacca zalacca) SumeruAshar i Proefschrift ter verkrijging van degraa dva n doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. ir. L. Speelman in het openbaar te verdedigen op maandag 2decembe r 2002 des namiddagst e half twee ind e Aula w SumeruAshar i (2002) Onth e agronomy and botany of salak (Salacca zalacca) PhDThesi s Wageningen University - With ref. - With summaries in English,Dutc han d Indonesian ISBN: 90-5808-424-8 Subject heading:agronomy , botany, salak, Salaccazalacca Propositions 1. In East Java, salak has been in cultivation for more than hundred years; it is time that research and extension start to contribute toth e development ofth e crop. This thesis 2. Imperfect pollination is a major cause of low salak yields. The improvement of hand pollination methods shouldtherefor e receive priority. This thesis 3. The pollen source strongly influences the fruit yield of salak, both qualitatively and quantitatively. This thesis 4. Cultural practices in salak production should be improved in such a way that harvesting can be spread more evenly over the year.
    [Show full text]
  • Journal of the International Palm Society Vol. 52(1) Mar. 2008 Essential Palm Palms:Essential Palm Palms 1/22/08 11:34 AM Page 1 the INTERNATIONAL PALM SOCIETY, INC
    Palms Journal of the International Palm Society Vol. 52(1) Mar. 2008 Essential palm Palms:Essential palm Palms 1/22/08 11:34 AM Page 1 THE INTERNATIONAL PALM SOCIETY, INC. The International Palm Society Palms (formerly PRINCIPES) Journal of The International Palm Society Founder: Dent Smith An illustrated, peer-reviewed quarterly devoted to The International Palm Society is a nonprofit corporation information about palms and published in March, engaged in the study of palms. The society is inter- June, September and December by The International national in scope with worldwide membership, and the Palm Society, 810 East 10th St., P.O. Box 1897, formation of regional or local chapters affiliated with the Lawrence, Kansas 66044-8897, USA. international society is encouraged. Please address all inquiries regarding membership or information about Editors: John Dransfield, Herbarium, Royal Botanic the society to The International Palm Society Inc., P.O. Gardens, Kew, Richmond, Surrey, TW9 3AE, United Box 1897, Lawrence, Kansas 66044-8897, USA. e-mail Kingdom, e-mail [email protected], tel. 44- [email protected], fax 785-843-1274. 20-8332-5225, Fax 44-20-8332-5278. Scott Zona, Fairchild Tropical Garden, 11935 Old OFFICERS: Cutler Road, Coral Gables, Miami, Florida 33156 President: Paul Craft, 16745 West Epson Drive, USA, e-mail [email protected], tel. 1-305- Loxahatchee, Florida 33470 USA, e-mail 669-4072, Fax 1-305-665-8032. [email protected], tel. 1-561-514-1837. Associate Editor: Natalie Uhl, 228 Plant Science, Vice-Presidents: John DeMott, 18455 SW 264 St, Cornell University, Ithaca, New York 14853 USA, e- Homestead, Florida 33031 USA, e-mail mail [email protected], tel.
    [Show full text]
  • Seed Geometry in the Arecaceae
    horticulturae Review Seed Geometry in the Arecaceae Diego Gutiérrez del Pozo 1, José Javier Martín-Gómez 2 , Ángel Tocino 3 and Emilio Cervantes 2,* 1 Departamento de Conservación y Manejo de Vida Silvestre (CYMVIS), Universidad Estatal Amazónica (UEA), Carretera Tena a Puyo Km. 44, Napo EC-150950, Ecuador; [email protected] 2 IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain; [email protected] 3 Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1–4, 37008 Salamanca, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923219606 Received: 31 August 2020; Accepted: 2 October 2020; Published: 7 October 2020 Abstract: Fruit and seed shape are important characteristics in taxonomy providing information on ecological, nutritional, and developmental aspects, but their application requires quantification. We propose a method for seed shape quantification based on the comparison of the bi-dimensional images of the seeds with geometric figures. J index is the percent of similarity of a seed image with a figure taken as a model. Models in shape quantification include geometrical figures (circle, ellipse, oval ::: ) and their derivatives, as well as other figures obtained as geometric representations of algebraic equations. The analysis is based on three sources: Published work, images available on the Internet, and seeds collected or stored in our collections. Some of the models here described are applied for the first time in seed morphology, like the superellipses, a group of bidimensional figures that represent well seed shape in species of the Calamoideae and Phoenix canariensis Hort. ex Chabaud.
    [Show full text]
  • Copyright by Jason Paul Schoneman 2010
    Copyright by Jason Paul Schoneman 2010 The Report Committee for Jason Paul Schoneman Certifies that this is the approved version of the following report: Overview of Uses of Palms with an Emphasis on Old World and Australasian Medicinal Uses APPROVED BY SUPERVISING COMMITTEE: Supervisor: Beryl B. Simpson Brian M. Stross Overview of Uses of Palms with an Emphasis on Old World and Australasian Medicinal Uses by Jason Paul Schoneman, B.S. Report Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Master of Arts The University of Texas at Austin May 2010 Dedication This report is dedicated to Dr. Beryl B. Simpson. Her scholarship, support, and strong work ethic have aided and inspired me immensely during my time in this program. Acknowledgements I feel fortunate to have the opportunity to acknowledge the many people who have made my journey towards the completion of this degree a possibility. My advisor Beryl Simpson gave me this opportunity and I will be forever thankful to her for this, as pursuing a career as a plant biologist had been a dream of mine for years. Her unconditional support was instrumental in allowing me to broaden my knowledge of plant systematics and as a foundation for allowing me to develop further my critical thinking and writing abilities. She always guided me in my writing with a great deal of encouragement, compassion, and patience. I will miss our weekly meetings and think back fondly to the many great conversations we had.
    [Show full text]
  • PHYTOCHEMICAL INVESTIGATION and HEPATOPROTECTIVE EVALUATION of NANNORRHOPS RITCHIANA in RATS Dina M
    Dina M. Eskander et al. Int. Res. J. Pharm. 2018, 9 (12) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY www.irjponline.com ISSN 2230 – 8407 Research Article PHYTOCHEMICAL INVESTIGATION AND HEPATOPROTECTIVE EVALUATION OF NANNORRHOPS RITCHIANA IN RATS Dina M. Eskander 1*, Abeer F. Osman 1, Nadia M. Ahmad 2, Abdel-Razik H. Farrag 3, Mahmoud I. Nassar 1 1Department of Natural Compounds Chemistry, National Research Centre, Dokki 12622 Cairo, Egypt 2Medical Biochemistry Department, National Research Centre, Dokki 12622 Cairo, Egypt 3Department of Pathology, National Research Centre, 33 El Bohouth st., Dokki12622, Cairo, Egypt *Corresponding Author Email: [email protected] Article Received on: 15/10/18 Approved for publication: 24/11/18 DOI: 10.7897/2230-8407.0912288 ABSTRACT The aim of this research was to determine the phenolic and flavonoid compounds present in 70% methanol extract of the leaves of Nannorrhops ritchiana using liquid chromatography-tandem mass spectrometry method analysis and to evaluate hepatoprotective activity, not previously studied, for this plant. GC–MS analysis of n-hexane extract of this plant was utilized, to identify the bioactive constituents of long chain hydrocarbons, acids esters, steroids and terpenes. Seven flavonoids and twelve phenolic acids were identified. Five of the flavonoids (Epihesperidin, demethoxycentaureidin7-O- rutinoside, icariin, datiscin, isoschaftoside), and nine of the phenolic acids (Quinic acid, p-hydrobenzoic acid, caftaric acid, caffeoylshikimic acid, malic acid, chlorogenic acid, 2-naphthoxyacetic acid, 3-(2- hydroxyphenyl) propionic acid, D-glucaric), were reported for the first time from this species. Thirty one phytochemical compounds were identified by GC-MS analysis, phytol had the highest peak area of 19.82% and the lowest was stigmasterol showing 0.25%.
    [Show full text]
  • Introduction
    Introduction Following the publication of A Field Guide to cies. This is obviously a large­scale division of the Palms of the Americas (Henderson et al. the area and masks a lot of local variation. How­ 1995), I had in mind a similar volume for the Old ever, I think it is useful for understanding the di­ World. There are, however, many more species versity and distribution of Southern Asian palms. of palms in the Old World, and the area is much Starting from the west, brief descriptions of these larger, including as it does all of Eu rope, Africa, regions and their palms are given. Madagascar, the islands of the Indian Ocean, I also give notes here on the best places to Southern and Southeast Asia, New Guinea, Aus­ see palms in those places with rich palm fl oras. tralia, and the islands of the western Pacifi c. This These notes are based either on my own expe­ is too big an area with too many species for a riences or are taken from articles that have ap­ single field guide. Therefore I decided to work peared in the journal Palms (formerly Principes). first on the Southern Asian palms—the subject of this book. Ira ni an Plateau The region defined in this book as Southern The most westerly area covered by this guide Asia includes all of Afghanistan, Bangladesh, comprises the countries of Afghanistan and Bhutan, Cambodia, China, India (including the Pakistan. The mountainous regions of these Andaman and Nicobar islands), Japan (including countries are part of a larger mountain system the Ryukyu and Bonin islands), Laos, Myanmar, known as the Irani an Plateau (Fig.
    [Show full text]
  • Cultivating Discoveries: Plant Collections and Research
    CULTIVATING DISCOVERIES: PLANT COLLECTIONS AND RESEARCH ontgomery Botanical Center (MBC) is dedicated to MBC is to upgrade its plant collections, increasing quality and Mcultivating scientific plant collections for research, quantity of plants, documentation, and data. conservation, and education. In this mission, MBC fills a role COMPLEMENTARITY of increasing importance. As botanic gardens expand their roles, Complementarity is how Montgomery Botanical accom- MBC is taking a serious look at the profile of plant collections. plishes botany. The off-site researcher is our crucial partner, THE GARDEN IN HISTORY providing cutting-edge research ability and infrastructure while Gardens have been integral since our beginnings—the MBC provides expertly curated live plant collections, with cultivation of plants defines civilization. One of our first cities, copious associated data. Our plant collections are specifically Babylon, was long revered structured to maximize for its splendid gardens. research utility, being exclu- Although beautiful, ancient sively wild-collected and gardens were also functional. population-based. Egyptian technology used Last year, MBC pro- plants of distant provenance vided material to dozens of which required sophisti- universities. Expert scientists cated horticulture and basic often cannot grow palms research. Carefully tended and cycads in their specific medieval monastic gardens climate, but these research were live apothecaries. By the collections thrive at MBC. Renaissance, the garden was Local plant collections well established for millennia. complement each other. Today, these early roles Other curated plant col- (science and ornamentation) lections are near MBC expand and multiply. The including our colleagues at Research, conservation, and aesthetics intersect at Montgomery Botani- modern garden claims many cal.
    [Show full text]
  • Date Palm Pests and Diseases Integrated Management Guide
    Date Palm Pests and Diseases Integrated Management Guide M. El Bouhssini & J.R. Faleiro (Editors) © 2018 International Center for Agriculture Research in the Dry Areas (ICARDA) All rights reserved. ICARDA encourages fair use of this material for non-commercial purposes with proper citation. Suggested Citation El Bouhssini, Mustapha, and Jose Romeno Faleiro. Date Palm Pests and Diseases Integrated Management Guide. Beirut, Lebanon: International Center for Agricultural Research in the Dry Areas (ICARDA), 2018. ISBN13: 978-92-9127-505-2 All responsibility for the information in this publications remains with ICARDA. The use of trade names does not imply endorsement of, or discrimination against, any product by the Center. Maps have been used to support research data, and are not intended to show political boundaries. Address Dalia Building, Second Floor, Bashir El Kasser St, Verdun, Beirut, Lebanon 1108-2010. www.icarda.org Foreword Date palm (Phoenix dactylifera L.) is a major fruit crop in the Middle East and North Africa (MENA). The crop’s tolerance to high temperature, drought, and salinity makes it suitable to the harsh environment in the MENA region. Date palm is currently cultivated in nearly 30 countries on the Asian, African, American, and Australasian continents. There are over 100 million date palms worldwide, of which 60% are in the MENA region. Dates provide rural livelihood security to millions of farmers in the arid regions of the world and are of significance to human nutrition, due to their high content of essential nutrients. The world production of dates has increased from 1.8 million tons in 1962 to over 8.0 million tons at present.
    [Show full text]
  • Insects on Palms
    Insects on Palms i Insects on Palms F.W. Howard, D. Moore, R.M. Giblin-Davis and R.G. Abad CABI Publishing CABI Publishing is a division of CAB International CABI Publishing CABI Publishing CAB International 10 E 40th Street Wallingford Suite 3203 Oxon OX10 8DE New York, NY 10016 UK USA Tel: +44 (0)1491 832111 Tel: +1 (212) 481 7018 Fax: +44 (0)1491 833508 Fax: +1 (212) 686 7993 Email: [email protected] Email: [email protected] Web site: www.cabi.org © CAB International 2001. All rights reserved. No part of this publication may be repro- duced in any form or by any means, electronically, mechanically, by photocopying, recording or otherwise, without the prior permission of the copyright owners. A catalogue record for this book is available from the British Library, London, UK. Library of Congress Cataloging-in-Publication Data Insects on palms / by Forrest W. Howard … [et al.]. p. cm. Includes bibliographical references and index. ISBN 0-85199-326-5 (alk. paper) 1. Palms--Diseases and pests. 2. Insect pests. 3. Insect pests--Control. I. Howard, F. W. SB608.P22 I57 2001 634.9’74--dc21 00-057965 ISBN 0 85199 326 5 Typeset by Columns Design Ltd, Reading Printed and bound in the UK by Biddles Ltd, Guildford and King’s Lynn Contents List of Boxes vii Authors and Contributors viii Acknowledgements x Preface xiii 1 The Animal Class Insecta and the Plant Family Palmae 1 Forrest W. Howard 2 Defoliators of Palms 33 Lepidoptera 34 Forrest W. Howard and Reynaldo G. Abad Coleoptera 81 Forrest W.
    [Show full text]
  • A Survey of Cyanogenesis in Palms (Arecaceae) Carl E
    Biochemical Systematics and Ecology 28 (2000) 219}228 A survey of cyanogenesis in palms (Arecaceae) Carl E. Lewis!,*, Scott Zona",# !L.H. Bailey Hortorium, 462 Mann Library, Cornell University, Ithaca, NY 14853, USA "Fairchild Tropical Garden, 11935 Old Cutler Road, Miami, FL 33156, USA #Department of Biological Sciences, Florida International University, Miami, FL 33199, USA Received 21 December 1998; received in revised form 25 January 1999; accepted 27 May 1999 Abstract We surveyed leaf material of 545 individual palms representing 108 genera and 155 species for cyanogenesis using the Feigl-Anger test. We detected HCN production in only two species of one genus, Drymophloeus. Additional smaller surveys of shoot meristems and roots revealed cyanogenesis only in the shoot meristem of one species of Dypsis. Our results indicate that cyanogenesis is rather rare in the family. ( 2000 Elsevier Science Ltd. All rights reserved. Keywords: Drymophloeus; Dypsis; Arecaceae; Palmae; Palms; Cyanogenesis; Cyanide; HCN 1. Introduction Cyanide production is a widespread phenomenon in plants, with cyanogenic compounds present in many species across the plant kingdom (Hegnauer, 1977). These compounds are often ecologically signi"cant and can be hazardous to human health when they occur in crop plants. Although cyanogenesis has arisen indepen- dently in several lineages, it is a good taxonomic marker for several groups of plants (e.g., Passi#oraceae; Olafsdottir et al., 1989). Cyanogenic plants typically store cyanide in the form of cyanogenic glycosides. These plants release HCN only after tissue damage brings apoplastic {-glucosidases into contact with vacuolar glycosides. Some phenotypically acyanogenic plants * Corresponding author. Tel.: #1-607-255-8916 fax: #1-607-255-7979.
    [Show full text]