A Simulation Study of Alternatives to Ordinary Least Squares

Total Page:16

File Type:pdf, Size:1020Kb

A Simulation Study of Alternatives to Ordinary Least Squares Journal of the American Statistical Association ISSN: 0162-1459 (Print) 1537-274X (Online) Journal homepage: http://www.tandfonline.com/loi/uasa20 A Simulation Study of Alternatives to Ordinary Least Squares A. P. Dempster , Martin Schatzoff & Nanny Wermuth To cite this article: A. P. Dempster , Martin Schatzoff & Nanny Wermuth (1977) A Simulation Study of Alternatives to Ordinary Least Squares, Journal of the American Statistical Association, 72:357, 77-91 To link to this article: http://dx.doi.org/10.1080/01621459.1977.10479910 Published online: 06 Apr 2012. Submit your article to this journal Article views: 42 View related articles Citing articles: 47 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=uasa20 Download by: [University of Michigan] Date: 11 April 2017, At: 09:10 A Simulation Study of Alternatives to Ordinary Least Squares A. P. DEMPSTER, MARTIN SCHATZOFF, and NANNY WERMUTH* Estimated regression coefficients and errors in these estimates are work by Charles Stcin and his colleagues, (e.g., [l, 13, computed for 160 artificial data sets drawn from 160 normal linear 18]), has served to draw attention to the potential weak- models structured according to factorial designs. Ordinary multiple regression (OREG) is compared with 56 alternatives which pull ness of straightforward maximum likelihood estimation some or all estimated regression coefficients some or all the way when more than a very few parameters must be estimated. to zero. Substantial improvements over OREG are exhibited when col- Efron and Morris [4, 5, 6, 7, 8, 91 have recently extended linearity effects are present, noncentrality in the original model is and advocated the Stein approach at great length. Also small, and selected true regression coefficients are small. Ridge re- taking a mainly frequentist point of view, Hoerl and gression emerges as an important tool, while a Bayesian ex- Kennard [ll, 121 introduced and defended ridge regres- tension of variable selection proves valuable when the true regres- sion coefficients vary widely in importance. sion as having good mean squared error properties in practically relevant regions of the parameter space, at KEY WORDS: Least squares; Multiple regression; Ridge regression; least when the independent variables multicorrelate Simulation; Variable selection. strongly. (See [2, 10,171 for various views of ridge regres- 1. INTRODUCTION sion.) From the standpoint of a subjectivist Bayesian theory, posterior mean squared error is substantially We report here summary results of a numerical study reduced if a flat prior distribution can be replaced by a undertaken to compare the properties of a collection of prior distribution which clusters about some prior mean, alternatives to ordinary least squares for multiple linear taken here to be zero. (See [15, 211 for recent Bayesian regression analysis. The approach is a broad-brush ex- discussions of Stein-type and ridge-type estimates.) ploration of the relative performance, from the stand- Alongside the alternative regression methods just points of estimation and prediction, of different tech- cited, the present study includes forward and backward niques over a range of conditions which are syst,ematically selection methods and Bayesian selection procedures varied according to factorial designs. The variable factor proposed in [S]. Thus, we hope to draw attention to the levels include different patterns of true regression coeffi- substantial improvements over ordinary least-squares cients, different amounts of noncent.rality, and different methods which are afforded by a wide variety of alterna- degrees of collinearity or multicollinearity among inde- tive methods. pendent variables. The substantive conclusions from the Our results are empirical results derived from numeri- study are indications of possible drastic improvements cal experiments. Specifically, we created two series of- over least squares, especially through the technique of artificial data sets. The first series, referred to as Experi- ridge regression, and especially when a high degree of ment 1, contains 32 data sets in the form of a Z5 factorial correlation exists among the independent variables. design, while the second series, or Experiment 2, contains We have not attempted to study alternatives to stan- 128 data sets in the form of a quarter replicate of a 2g dard regression analysis which are designed to be robust design. Each data set was drawn from a normal linear against failures of the normal error model. Instead we model with 6 regression coefficients to be estimated and have focused on the recently prominent difficulties with 14 degrees of freedom for error. Each of 57 estimation least squares under the normal model. From a frequentist procedures was applied to each of the 160 data sets, standpoint, it has long been recognized that good mean yielding a set of 6 estimated regression coefficients, which squared error properties do not necessarily follow from were compared to the true regression coefficients in the the celebrated minimum variance unbiasedness proper- simulated models, using mainly the two end-point ties of least squares, since in certain regions of the pa- rameter space the loss from increasing the squared bias criteria SEB (sum of squared errors of betas) and SPE can be overcompensated by reducing variance. Important (sum of squared prediction errors). Basic notation, including precise definitions of SEB and * A.P. Dempster is Professor, Theoretical Statistics, Harvard University, SPE, appears in Appendix A. Further details of the 57 Cambridge, MA 02138. Martin Schatzoff is Manager of Operations Research. IBM Cambridge Scientific Center, Cambridge, MA 02139. Nanny Wermuth is estimation procedures appear in Section 2 and Appendix with the Institute fur Medizinische Statistik. UnivenitBt Maina, Federal Republic of Germany. The first author’s research waa supported in part by National Science Foundation Grant GP-31003X. The second author’s research was supported by @ Journal of the American Statistical Association the IBM Cambridge Scientific Center. The third author’s research wna supported March 1977. Volume 72, Number 357 by the Cambridge Project. Computing facilitien were provided by IBM. Theory and Methods Section 77 78 Journal of the American Statistical Association, March 1977 B, while the design of the study is described in Section 3 more or less clustered about the origin. The two extremes and Appendix C. The analysis of experimental data is in our list of procedures are OREG, or ordinary least presented in Section 4. Further detailed analyses may be squares, which does not shrink, and ZERO which achieves found in Wermuth [19]. total shrinkage by setting all estimated regression coeffi- - The study is broad in some ways, e.g., in its range of cients to zero. Between these extremes the procedures estimation procedures and range of underlying models. differ in the pattern and degree of shrinking. In Section In other ways, the study is narrowly focused, e.g., in its 2.2 we discuss procedures in the classes STEIN and RIDGE restriction to 6 and 14 degrees of freedom and its limita- which shrink each estimate according to a continuous tion to just one replication of each model. In view of the formula, while in Section 2.3 me describe the families latter restriction, it is clear that we are not attempting FSL, BSL, CP, REGF, RREG, and PRI which shrink discretely detailed analysis of the frequency properties of estimators in the sense that selected coefficients are pulled back to under each specified model, and so we are not meeting zero, or nearly to zero. The concepts used to define the objectives of the mathematical statistician who specific variants within the families are described in wishes to calculate such frequency properties. We would Section 2.4. prefer to shed light on the conceptually more difficult task of the data analyst, who knows only his data and 2.2 Continuous Shrinking Methods not the underlying parameters. Our data base enables us Following the notation est,ablished in Appendix A, the to study the actual errors which a data analyst using standard least-squares estimator b = (XTx)-'XTY can be specified rules of estimation would encounter under a generalized to simulated range of data sets which we believe could 8 = (XTX + kQ)"X'Y (2.1) typify certain types of real world experience. Any particular user of regression techniques may where Q is a positive definite symmetric matrix and k is legitimately criticize us for not including the specific a nonnegative scalar. In practice, Q is allowed to depend variant procedures which interest him in the context of only on the design matrix X, while k is generally allowed a specific class of real world situations. For such a reader, to depend on Y as well. we believe that we have provided a concrete illustration The choices Q = XTX and Q = I in (2.1) define the of a type of study which can produce interesting or even classes of estimators which we call STEIN and RIDGE. startling results. Given adequate computational facility, The principal components transformation C defined in whose availability continues to develop rapidly, the study Appendix A simultaneously diagonalizes both XTX and could be repeated holding the design matrix X fixed at 1, and therefore provides a simple representation for the values for a given data set and varying the factors RIDGE estimators. After transforming we deal with and procedures of greatest concern to a particular data &R = Ca,, a = CB, and a = C@ where C is defined by analyst, including of course the shape of the error distribu- (A.5) and (A.6). By transforming (2.1) we see that the tion and appropriate robust procedures, as may be in- components of ib and a are related by dicated either by prior understanding of circumstances or diR = fiai , i = 1, 2, . m -1 p 1 (2.2) by the properties of the given data set.
Recommended publications
  • Ordinary Least Squares 1 Ordinary Least Squares
    Ordinary least squares 1 Ordinary least squares In statistics, ordinary least squares (OLS) or linear least squares is a method for estimating the unknown parameters in a linear regression model. This method minimizes the sum of squared vertical distances between the observed responses in the dataset and the responses predicted by the linear approximation. The resulting estimator can be expressed by a simple formula, especially in the case of a single regressor on the right-hand side. The OLS estimator is consistent when the regressors are exogenous and there is no Okun's law in macroeconomics states that in an economy the GDP growth should multicollinearity, and optimal in the class of depend linearly on the changes in the unemployment rate. Here the ordinary least squares method is used to construct the regression line describing this law. linear unbiased estimators when the errors are homoscedastic and serially uncorrelated. Under these conditions, the method of OLS provides minimum-variance mean-unbiased estimation when the errors have finite variances. Under the additional assumption that the errors be normally distributed, OLS is the maximum likelihood estimator. OLS is used in economics (econometrics) and electrical engineering (control theory and signal processing), among many areas of application. Linear model Suppose the data consists of n observations { y , x } . Each observation includes a scalar response y and a i i i vector of predictors (or regressors) x . In a linear regression model the response variable is a linear function of the i regressors: where β is a p×1 vector of unknown parameters; ε 's are unobserved scalar random variables (errors) which account i for the discrepancy between the actually observed responses y and the "predicted outcomes" x′ β; and ′ denotes i i matrix transpose, so that x′ β is the dot product between the vectors x and β.
    [Show full text]
  • Ordinary Least Squares: the Univariate Case
    Introduction The OLS method The linear causal model A simulation & applications Conclusion and exercises Ordinary Least Squares: the univariate case Clément de Chaisemartin Majeure Economie September 2011 Clément de Chaisemartin Ordinary Least Squares Introduction The OLS method The linear causal model A simulation & applications Conclusion and exercises 1 Introduction 2 The OLS method Objective and principles of OLS Deriving the OLS estimates Do OLS keep their promises ? 3 The linear causal model Assumptions Identification and estimation Limits 4 A simulation & applications OLS do not always yield good estimates... But things can be improved... Empirical applications 5 Conclusion and exercises Clément de Chaisemartin Ordinary Least Squares Introduction The OLS method The linear causal model A simulation & applications Conclusion and exercises Objectives Objective 1 : to make the best possible guess on a variable Y based on X . Find a function of X which yields good predictions for Y . Given cigarette prices, what will be cigarettes sales in September 2010 in France ? Objective 2 : to determine the causal mechanism by which X influences Y . Cetebus paribus type of analysis. Everything else being equal, how a change in X affects Y ? By how much one more year of education increases an individual’s wage ? By how much the hiring of 1 000 more policemen would decrease the crime rate in Paris ? The tool we use = a data set, in which we have the wages and number of years of education of N individuals. Clément de Chaisemartin Ordinary Least Squares Introduction The OLS method The linear causal model A simulation & applications Conclusion and exercises Objective and principles of OLS What we have and what we want For each individual in our data set we observe his wage and his number of years of education.
    [Show full text]
  • Chapter 2: Ordinary Least Squares Regression
    Chapter 2: Ordinary Least Squares In this chapter: 1. Running a simple regression for weight/height example (UE 2.1.4) 2. Contents of the EViews equation window 3. Creating a workfile for the demand for beef example (UE, Table 2.2, p. 45) 4. Importing data from a spreadsheet file named Beef 2.xls 5. Using EViews to estimate a multiple regression model of beef demand (UE 2.2.3) 6. Exercises Ordinary Least Squares (OLS) regression is the core of econometric analysis. While it is important to calculate estimated regression coefficients without the aid of a regression program one time in order to better understand how OLS works (see UE, Table 2.1, p.41), easy access to regression programs makes it unnecessary for everyday analysis.1 In this chapter, we will estimate simple and multivariate regression models in order to pinpoint where the regression statistics discussed throughout the text are found in the EViews program output. Begin by opening the EViews program and opening the workfile named htwt1.wf1 (this is the file of student height and weight that was created and saved in Chapter 1). Running a simple regression for weight/height example (UE 2.1.4): Regression estimation in EViews is performed using the equation object. To create an equation object in EViews, follow these steps: Step 1. Open the EViews workfile named htwt1.wf1 by selecting File/Open/Workfile on the main menu bar and click on the file name. Step 2. Select Objects/New Object/Equation from the workfile menu.2 Step 3.
    [Show full text]
  • Time-Series Regression and Generalized Least Squares in R*
    Time-Series Regression and Generalized Least Squares in R* An Appendix to An R Companion to Applied Regression, third edition John Fox & Sanford Weisberg last revision: 2018-09-26 Abstract Generalized least-squares (GLS) regression extends ordinary least-squares (OLS) estimation of the normal linear model by providing for possibly unequal error variances and for correlations between different errors. A common application of GLS estimation is to time-series regression, in which it is generally implausible to assume that errors are independent. This appendix to Fox and Weisberg (2019) briefly reviews GLS estimation and demonstrates its application to time-series data using the gls() function in the nlme package, which is part of the standard R distribution. 1 Generalized Least Squares In the standard linear model (for example, in Chapter 4 of the R Companion), E(yjX) = Xβ or, equivalently y = Xβ + " where y is the n×1 response vector; X is an n×k +1 model matrix, typically with an initial column of 1s for the regression constant; β is a k + 1 ×1 vector of regression coefficients to estimate; and " is 2 an n×1 vector of errors. Assuming that " ∼ Nn(0; σ In), or at least that the errors are uncorrelated and equally variable, leads to the familiar ordinary-least-squares (OLS) estimator of β, 0 −1 0 bOLS = (X X) X y with covariance matrix 2 0 −1 Var(bOLS) = σ (X X) More generally, we can assume that " ∼ Nn(0; Σ), where the error covariance matrix Σ is sym- metric and positive-definite. Different diagonal entries in Σ error variances that are not necessarily all equal, while nonzero off-diagonal entries correspond to correlated errors.
    [Show full text]
  • Chapter 2 Simple Linear Regression Analysis the Simple
    Chapter 2 Simple Linear Regression Analysis The simple linear regression model We consider the modelling between the dependent and one independent variable. When there is only one independent variable in the linear regression model, the model is generally termed as a simple linear regression model. When there are more than one independent variables in the model, then the linear model is termed as the multiple linear regression model. The linear model Consider a simple linear regression model yX01 where y is termed as the dependent or study variable and X is termed as the independent or explanatory variable. The terms 0 and 1 are the parameters of the model. The parameter 0 is termed as an intercept term, and the parameter 1 is termed as the slope parameter. These parameters are usually called as regression coefficients. The unobservable error component accounts for the failure of data to lie on the straight line and represents the difference between the true and observed realization of y . There can be several reasons for such difference, e.g., the effect of all deleted variables in the model, variables may be qualitative, inherent randomness in the observations etc. We assume that is observed as independent and identically distributed random variable with mean zero and constant variance 2 . Later, we will additionally assume that is normally distributed. The independent variables are viewed as controlled by the experimenter, so it is considered as non-stochastic whereas y is viewed as a random variable with Ey()01 X and Var() y 2 . Sometimes X can also be a random variable.
    [Show full text]
  • Regression Analysis
    Regression Analysis Terminology Independent (Exogenous) Variable – Our X value(s), they are variables that are used to explain our y variable. They are not linearly dependent upon other variables in our model to get their value. X1 is not a function of Y nor is it a linear function of any of the other X variables. 2 Note, this does not exclude X2=X1 as another independent variable as X2 and X1 are not linear combinations of each other. Dependent (Endogenous) Variable – Our Y value, it is the value we are trying to explain as, hypothetically, a function of the other variables. Its value is determined by or dependent upon the values of other variables. Error Term – Our ε, they are the portion of the dependent variable that is random, unexplained by any independent variable. Intercept Term – Our α, from the equation of a line, it is the y-value where the best-fit line intercepts the y-axis. It is the estimated value of the dependent variable given the independent variable(s) has(have) a value of zero. Coefficient(s) – Our β(s), this is the number in front of the independent variable(s) in the model below that relates how much a one unit change in the independent variable is estimated to change the value of the dependent variable. Standard Error – This number is an estimate of the standard deviation of the coefficient. Essentially, it measures the variability in our estimate of the coefficient. Lower standard errors lead to more confidence of the estimate because the lower the standard error, the closer to the estimated coefficient is the true coefficient.
    [Show full text]
  • Testing for Heteroskedastic Mixture of Ordinary Least 5
    TESTING FOR HETEROSKEDASTIC MIXTURE OF ORDINARY LEAST 5. SQUARES ERRORS Chamil W SENARATHNE1 Wei JIANGUO2 Abstract There is no procedure available in the existing literature to test for heteroskedastic mixture of distributions of residuals drawn from ordinary least squares regressions. This is the first paper that designs a simple test procedure for detecting heteroskedastic mixture of ordinary least squares residuals. The assumption that residuals must be drawn from a homoscedastic mixture of distributions is tested in addition to detecting heteroskedasticity. The test procedure has been designed to account for mixture of distributions properties of the regression residuals when the regressor is drawn with reference to an active market. To retain efficiency of the test, an unbiased maximum likelihood estimator for the true (population) variance was drawn from a log-normal normal family. The results show that there are significant disagreements between the heteroskedasticity detection results of the two auxiliary regression models due to the effect of heteroskedastic mixture of residual distributions. Forecasting exercise shows that there is a significant difference between the two auxiliary regression models in market level regressions than non-market level regressions that supports the new model proposed. Monte Carlo simulation results show significant improvements in the model performance for finite samples with less size distortion. The findings of this study encourage future scholars explore possibility of testing heteroskedastic mixture effect of residuals drawn from multiple regressions and test heteroskedastic mixture in other developed and emerging markets under different market conditions (e.g. crisis) to see the generalisatbility of the model. It also encourages developing other types of tests such as F-test that also suits data generating process.
    [Show full text]
  • Spatial Autocorrelation and Red Herrings in Geographical Ecology
    UC Irvine UC Irvine Previously Published Works Title Spatial autocorrelation and red herrings in geographical ecology Permalink https://escholarship.org/uc/item/6jg661wx Journal Global Ecology and Biogeography, 12(1) ISSN 0960-7447 Authors Diniz, JAF Bini, L M Hawkins, Bradford A. Publication Date 2003 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Global Ecology & Biogeography (2003) 12, 53–64 RESEARCH PAPER SpatialBlackwell Science, Ltd autocorrelation and red herrings in geographical ecology JOSÉ ALEXANDRE FELIZOLA DINIZ-FILHO*, LUIS MAURICIO BINI* and BRADFORD A. HAWKINS† *Departamento de Biologia Geral, ICB, Universidade Federal de Goiás, CP 131, 74 001–970, Goiânia, GO, Brazil; and †Department of Ecol- ogy and Evolutionary Biology, University of California, Irvine, CA 92697, U.S.A., E-mail: [email protected]; [email protected] ABSTRACT Results Bird richness is characterized by a quadratic north– south gradient. Spatial correlograms usually had positive Aim Spatial autocorrelation in ecological data can inflate autocorrelation up to c. 1600 km. Including the environmen- Type I errors in statistical analyses. There has also been a tal variables successively in the OLS model reduced spatial recent claim that spatial autocorrelation generates ‘red autocorrelation in the residuals to non-detectable levels, herrings’, such that virtually all past analyses are flawed. We indicating that the variables explained all spatial structure in consider the origins of this phenomenon, the implications of the data. In principle, if residuals are not autocorrelated then spatial autocorrelation for macro-scale patterns of species OLS is a special case of GLS. However, our comparison diversity and set out a clarification of the statistical problems between OLS and GLS models including all environmental generated by its presence.
    [Show full text]
  • Bayesian Inference
    Bayesian Inference Thomas Nichols With thanks Lee Harrison Bayesian segmentation Spatial priors Posterior probability Dynamic Causal and normalisation on activation extent maps (PPMs) Modelling Attention to Motion Paradigm Results SPC V3A V5+ Attention – No attention Büchel & Friston 1997, Cereb. Cortex Büchel et al. 1998, Brain - fixation only - observe static dots + photic V1 - observe moving dots + motion V5 - task on moving dots + attention V5 + parietal cortex Attention to Motion Paradigm Dynamic Causal Models Model 1 (forward): Model 2 (backward): attentional modulation attentional modulation of V1→V5: forward of SPC→V5: backward Photic SPC Attention Photic SPC V1 V1 - fixation only V5 - observe static dots V5 - observe moving dots Motion Motion - task on moving dots Attention Bayesian model selection: Which model is optimal? Responses to Uncertainty Long term memory Short term memory Responses to Uncertainty Paradigm Stimuli sequence of randomly sampled discrete events Model simple computational model of an observers response to uncertainty based on the number of past events (extent of memory) 1 2 3 4 Question which regions are best explained by short / long term memory model? … 1 2 40 trials ? ? Overview • Introductory remarks • Some probability densities/distributions • Probabilistic (generative) models • Bayesian inference • A simple example – Bayesian linear regression • SPM applications – Segmentation – Dynamic causal modeling – Spatial models of fMRI time series Probability distributions and densities k=2 Probability distributions
    [Show full text]
  • Note 4: Statistical Properties of the OLS Estimators
    ECONOMICS 351* -- NOTE 4 M.G. Abbott ECON 351* -- NOTE 4 Statistical Properties of the OLS Coefficient Estimators 1. Introduction ˆ We derived in Note 2 the OLS (Ordinary Least Squares) estimators β j (j = 0, 1) of the regression coefficients βj (j = 0, 1) in the simple linear regression model given by the population regression equation, or PRE Yi = β0 + β1Xi + ui (i = 1, …, N) (1) where ui is an iid random error term. The OLS sample regression equation (SRE) corresponding to PRE (1) is ˆ ˆ Yi = β0 + β1Xi + uˆ i (i = 1, …, N) (2) ˆ ˆ where β0 and β1 are the OLS coefficient estimators given by the formulas ˆ ∑i xi yi β1 = 2 (3) ∑i xi ˆ ˆ β0 = Y − β1X (4) xXii≡−X, yYii≡−Y, X= ∑ iiXN, and YY= ∑ iiN. Why Use the OLS Coefficient Estimators? The reason we use these OLS coefficient estimators is that, under assumptions A1- A8 of the classical linear regression model, they have several desirable statistical properties. This note examines these desirable statistical properties of the OLS ˆ coefficient estimators primarily in terms of the OLS slope coefficient estimator β1 ; ˆ the same properties apply to the intercept coefficient estimator β0 . ECON 351* -- Note 4: Statistical Properties of OLS Estimators ... Page 1 of 12 pages ECONOMICS 351* -- NOTE 4 M.G. Abbott 2. Statistical Properties of the OLS Slope Coefficient Estimator ˆ ¾ PROPERTY 1: Linearity of β1 ˆ The OLS coefficient estimator β1 can be written as a linear function of the sample values of Y, the Yi (i = 1, ..., N).
    [Show full text]
  • R-Squared for Bayesian Regression Models⇤
    R-squared for Bayesian regression models⇤ Andrew Gelman† Ben Goodrich‡ Jonah Gabry‡ Aki Vehtari§ 4 Nov 2018 Abstract The usual definition of R2 (variance of the predicted values divided by the variance of the data) has a problem for Bayesian fits, as the numerator can be larger than the denominator. We propose an alternative definition similar to one that has appeared in the survival analysis literature: the variance of the predicted values divided by the variance of predicted values plus the expected variance of the errors. 1. The problem Consider a regression model of outcomes y and predictors X with predicted values E(y X, ✓), fit | to data (X, y)n,n=1,...,N. Ordinary least squares yields an estimated parameter vector ✓ˆ with predicted valuesy ˆ =E(y X , ✓ˆ) and residual variance V N yˆ , where we are using the notation, n | n n=1 n N 1 V N z = (z z¯)2, for any vector z. n=1 n N 1 n − n=1 − X The proportion of variance explained, N 2 Vn=1 yˆn classical R = N , (1) Vn=1 yn is a commonly used measure of model fit, and there is a long literature on interpreting it, adjusting it for degrees of freedom used in fitting the model, and generalizing it to other settings such as hierarchical models; see, for example, Xu (2003) and Gelman and Pardoe (2006). Two challenges arise in defining R2 in a Bayesian context. The first is the desire to reflect posterior uncertainty in the coefficients, which should remove or at least reduce the overfitting problem of least squares.
    [Show full text]
  • Chapter 11 Autocorrelation
    Chapter 11 Autocorrelation One of the basic assumptions in the linear regression model is that the random error components or disturbances are identically and independently distributed. So in the model y Xu , it is assumed that 2 u ifs 0 Eu(,tts u ) 0 if0s i.e., the correlation between the successive disturbances is zero. 2 In this assumption, when Eu(,tts u ) u , s 0 is violated, i.e., the variance of disturbance term does not remain constant, then the problem of heteroskedasticity arises. When Eu(,tts u ) 0, s 0 is violated, i.e., the variance of disturbance term remains constant though the successive disturbance terms are correlated, then such problem is termed as the problem of autocorrelation. When autocorrelation is present, some or all off-diagonal elements in E(')uu are nonzero. Sometimes the study and explanatory variables have a natural sequence order over time, i.e., the data is collected with respect to time. Such data is termed as time-series data. The disturbance terms in time series data are serially correlated. The autocovariance at lag s is defined as sttsEu( , u ); s 0, 1, 2,... At zero lag, we have constant variance, i.e., 22 0 Eu()t . The autocorrelation coefficient at lag s is defined as Euu()tts s s ;s 0,1,2,... Var() utts Var ( u ) 0 Assume s and s are symmetrical in s , i.e., these coefficients are constant over time and depend only on the length of lag s . The autocorrelation between the successive terms (and)uu21, (and),....uu32 (and)uunn1 gives the autocorrelation of order one, i.e., 1 .
    [Show full text]