Models Where the Least Trimmed Squares and Least Median of Squares Estimators Are Maximum Likelihood
Models where the Least Trimmed Squares and Least Median of Squares estimators are maximum likelihood Vanessa Berenguer-Rico, Søren Johanseny& Bent Nielsenz 1 September 2019 Abstract The Least Trimmed Squares (LTS) and Least Median of Squares (LMS) estimators are popular robust regression estimators. The idea behind the estimators is to …nd, for a given h; a sub-sample of h ‘good’observations among n observations and esti- mate the regression on that sub-sample. We …nd models, based on the normal or the uniform distribution respectively, in which these estimators are maximum likelihood. We provide an asymptotic theory for the location-scale case in those models. The LTS estimator is found to be h1=2 consistent and asymptotically standard normal. The LMS estimator is found to be h consistent and asymptotically Laplace. Keywords: Chebychev estimator, LMS, Uniform distribution, Least squares esti- mator, LTS, Normal distribution, Regression, Robust statistics. 1 Introduction The Least Trimmed Squares (LTS) and the Least Median of Squares (LMS) estimators sug- gested by Rousseeuw (1984) are popular robust regression estimators. They are de…ned as follows. Consider a sample with n observations, where some are ‘good’and some are ‘out- liers’. The user chooses a number h and searches for a sub-sample of h ‘good’observations. The idea is to …nd the sub-sample with the smallest residual sum of squares –for LTS –or the least maximal squared residual –for LMS. In this paper, we …nd models in which these estimators are maximum likelihood. In these models, we …rst draw h ‘good’regression errors from a normal distribution, for LTS, or a uniform distribution, for LMS.
[Show full text]