Basophils Trigger Emphysema Development in a Murine Model of COPD Through IL-4–Mediated Generation of MMP-12–Producing Macrophages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
White Blood Cells and Severe COVID-19: a Mendelian Randomization Study
Journal of Personalized Medicine Article White Blood Cells and Severe COVID-19: A Mendelian Randomization Study Yitang Sun 1 , Jingqi Zhou 1,2 and Kaixiong Ye 1,3,* 1 Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA 30602, USA; [email protected] (Y.S.); [email protected] (J.Z.) 2 School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China 3 Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA * Correspondence: [email protected]; Tel.: +1-706-542-5898; Fax: +1-706-542-3910 Abstract: Increasing evidence shows that white blood cells are associated with the risk of coronavirus disease 2019 (COVID-19), but the direction and causality of this association are not clear. To evaluate the causal associations between various white blood cell traits and the COVID-19 susceptibility and severity, we conducted two-sample bidirectional Mendelian Randomization (MR) analyses with summary statistics from the largest and most recent genome-wide association studies. Our MR results indicated causal protective effects of higher basophil count, basophil percentage of white blood cells, and myeloid white blood cell count on severe COVID-19, with odds ratios (OR) per standard deviation increment of 0.75 (95% CI: 0.60–0.95), 0.70 (95% CI: 0.54–0.92), and 0.85 (95% CI: 0.73–0.98), respectively. Neither COVID-19 severity nor susceptibility was associated with white blood cell traits in our reverse MR results. Genetically predicted high basophil count, basophil percentage of white blood cells, and myeloid white blood cell count are associated with a lower risk of developing severe COVID-19. -
For Inflammatory Bowel Disease
250 NATIONAL INSTITUTE FOR CLINICAL EXCELLENCE INTERVENTIONAL PROCEDURES PROGRAMME Interventional procedures overview of leukapheresis (white cell apheresis) for inflammatory bowel disease Introduction This overview has been prepared to assist members of the Interventional Procedures Advisory Committee (IPAC) in making recommendations about the safety and efficacy of an interventional procedure. It is based on a rapid review of the medical literature and specialist opinion. It should not be regarded as a definitive assessment of the procedure. Date prepared This overview was prepared in August 2004. Procedure names • Leukapheresis • White cell apheresis. • Leukocyte removal therapy. • Selective granulocyte and monocyte adsorption apheresis. • Leukocytapheresis. Specialty society • British Society of Gastroenterology. Description Indications Inflammatory bowel disease. Ulcerative colitis and Crohn’s disease are the most common forms of inflammatory bowel disease. Ulcerative colitis causes inflammation and ulceration of the rectum and sometimes the colon. Symptoms include bloody diarrhoea and rectal bleeding. Crohn’s disease usually causes inflammation and ulceration of the small and large intestines, but it can affect any part of the digestive tract. The main symptoms are abdominal pain, diarrhoea and weight loss. Both of these are chronic conditions, characterised by periods of clinical relapse and remission. The incidence of ulcerative colitis is around 10 to 20 per 100,000 per year in the UK and the incidence of Crohn’s disease is approximately 5 to 10 per 100,000 per year.1 Current treatment and alternatives Conservative treatments include dietary measures, and medications to control inflammation. Immunosuppressants may be used if other medical therapies are ineffective at maintaining remission. Patients with ulcerative colitis that does not respond to medical therapy may be treated with surgery to remove the colon. -
Reference Ranges for Blood Concentrations of Eosinophils And
Journal of Perinatology (2010) 30, 540–545 r 2010 Nature America, Inc. All rights reserved. 0743-8346/10 www.nature.com/jp ORIGINAL ARTICLE Reference ranges for blood concentrations of eosinophils and monocytes during the neonatal period defined from over 63 000 records in a multihospital health-care system RD Christensen1,2, J Jensen1,3, A Maheshwari4 and E Henry1,3 1Intermountain Healthcare Women and Newborns Clinical Program, Ogden, UT, USA; 2McKay-Dee Hospital Center, Ogden, UT, USA; 3Institute for Healthcare Delivery Research, Salt Lake City, UT, USA and 4Divisions of Neonatology and Pediatric Gastroenterology, Departments of Pediatrics, Cell Biology, and Pathology, University of Alabama at Birmingham, Birmingham, AL, USA Introduction Objective: Blood concentrations of eosinophils and monocytes are part Normal values for hematological parameters are not generally of the complete blood count. Reference ranges for these concentrations during available for neonates because blood is not drawn on healthy the neonatal period, established by very large sample sizes and modern neonates to establish normal ranges. Instead, ‘reference ranges’ are methods, are needed for identifying abnormally low or high values. used in neonatal hematology.1–6 These consist of the 5th to 95th Study Design: We constructed reference ranges for eosinophils per ml percentile values assembled from large numbers of neonates with and monocytes per ml among neonates of 22 to 42 weeks of gestation, minimal pathology or with pathology not thought to be relevant to on the day of birth, and also during 28 days after birth. Data were the laboratory parameter under study. Recent examples of their obtained from archived electronic records over an eight and one-half-year usefulness include the following: Reference ranges for erythrocyte period in a multihospital health-care system. -
Generation of Monocyte-Derived Tumor-Associated Macrophages Using
Benner et al. Journal for ImmunoTherapy of Cancer (2019) 7:140 J Immunother Cancer: first published as 10.1186/s40425-019-0622-0 on 28 May 2019. Downloaded from https://doi.org/10.1186/s40425-019-0622-0 RESEARCHARTICLE Open Access Generation of monocyte-derived tumor- associated macrophages using tumor- conditioned media provides a novel method to study tumor-associated macrophages in vitro Brooke Benner1, Luke Scarberry1, Lorena P. Suarez-Kelly2, Megan C. Duggan1, Amanda R. Campbell1, Emily Smith1, Gabriella Lapurga1, Kallie Jiang1, Jonathan P. Butchar1, Susheela Tridandapani1, John Harrison Howard2, Robert A. Baiocchi3, Thomas A. Mace1 and William E. Carson III1,2* Abstract Background: Tumor-associated macrophages (TAM) are expanded and exhibit tumor-promoting properties within the tumor microenvironment. Current methods to study TAM have not been replicated across cancer types and often do not include exogenous growth factors from the tumor, a key factor in TAM differentiation in vivo. Methods: In this study, an in vitro method to generate monocyte- derived TAM using tumor- conditioned media (TCM) and a cytokine cocktail containing IL-4, IL-10, and M-CSF was utilized to study the phenotype, morphology, and function of TAM across multiple cancer types. TCM was generated from two breast cancer cell lines and an Epstein-Barr virus-positive lymphoma cell line. The properties of in vitro generated TAM were compared to in vitro generated M1 and M2- like macrophages and TAM isolated from patients with cancer. Results: TAM generated in this fashion displayed an increase in CD163/CD206 co-expression compared to M2- like http://jitc.bmj.com/ macrophages (87 and 36%, respectively). -
Immune Effector Monocyte–Neutrophil Cooperation Induced by the Primary Tumor Prevents Metastatic Progression of Breast Cancer
Immune effector monocyte–neutrophil cooperation induced by the primary tumor prevents metastatic progression of breast cancer Catharina Hagerlinga,b,1,2, Hugo Gonzaleza,3, Kiarash Salaria,3, Chih-Yang Wanga,4, Charlene Lina, Isabella Roblesa, Merel van Gogha, Annika Dejmekc, Karin Jirströmb, and Zena Werba,d,2 aDepartment of Anatomy, University of California, San Francisco, CA 94143-0452; bDepartment of Clinical Sciences, Division of Clinical Oncology and Pathology, Lund University, SE-221 85 Lund, Sweden; cDepartment of Translational Medicine, Lund University, Malmö SUS, SE-214 21 Malmö, Sweden; and dHelen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94143 Contributed by Zena Werb, August 30, 2019 (sent for review May 3, 2019; reviewed by Yves DeClerck and Mikala Egeblad) Metastatic behavior varies significantly among breast cancers. Mech- patients’ breast cancer tumors and is hence an attractive preclinical anisms explaining why the majorityofbreastcancerpatientsnever model to find novel therapeutic alternatives for metastatic breast develop metastatic outgrowth are largely lacking but could underlie cancer (12). We furthermore validated our PDX-derived findings the development of novel immunotherapeutic target molecules. Here with a large primary breast cancer tissue microarray (TMA), pleural we show interplay between nonmetastatic primary breast cancer effusions from breast cancer patients and an immunocompetent and innate immune response, acting together to control metastatic syngeneic mammary cancer model. Taken together, we reveal in- progression. The primary tumor systemically recruits IFNγ-producing terplay between the primary breast cancer tumor and myeloid im- immune effector monocytes to the lung. IFNγ up-regulates Tmem173/ mune response, acting together to control metastatic progression. -
Basophil/Mast Cell Progenitors in the Spleen Marrow and by Increasing
IL-3 Induces Basophil Expansion In Vivo by Directing Granulocyte-Monocyte Progenitors to Differentiate into Basophil Lineage-Restricted Progenitors in the Bone This information is current as Marrow and by Increasing the Number of of September 26, 2021. Basophil/Mast Cell Progenitors in the Spleen Keitaro Ohmori, Yuchun Luo, Yi Jia, Jun Nishida, Zhengqi Wang, Kevin D. Bunting, Demin Wang and Hua Huang Downloaded from J Immunol 2009; 182:2835-2841; ; doi: 10.4049/jimmunol.0802870 http://www.jimmunol.org/content/182/5/2835 http://www.jimmunol.org/ References This article cites 41 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/182/5/2835.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 26, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology IL-3 Induces Basophil Expansion In Vivo by Directing Granulocyte-Monocyte Progenitors to Differentiate into Basophil Lineage-Restricted Progenitors in the Bone Marrow and by Increasing the Number of Basophil/Mast Cell Progenitors in the Spleen1 Keitaro Ohmori,2* Yuchun Luo,* Yi Jia,* Jun Nishida,* Zhengqi Wang,† Kevin D. -
Understanding the Immune System: How It Works
Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute Understanding the Immune System How It Works U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES NATIONAL INSTITUTES OF HEALTH National Institute of Allergy and Infectious Diseases National Cancer Institute NIH Publication No. 03-5423 September 2003 www.niaid.nih.gov www.nci.nih.gov Contents 1 Introduction 2 Self and Nonself 3 The Structure of the Immune System 7 Immune Cells and Their Products 19 Mounting an Immune Response 24 Immunity: Natural and Acquired 28 Disorders of the Immune System 34 Immunology and Transplants 36 Immunity and Cancer 39 The Immune System and the Nervous System 40 Frontiers in Immunology 45 Summary 47 Glossary Introduction he immune system is a network of Tcells, tissues*, and organs that work together to defend the body against attacks by “foreign” invaders. These are primarily microbes (germs)—tiny, infection-causing Bacteria: organisms such as bacteria, viruses, streptococci parasites, and fungi. Because the human body provides an ideal environment for many microbes, they try to break in. It is the immune system’s job to keep them out or, failing that, to seek out and destroy them. Virus: When the immune system hits the wrong herpes virus target or is crippled, however, it can unleash a torrent of diseases, including allergy, arthritis, or AIDS. The immune system is amazingly complex. It can recognize and remember millions of Parasite: different enemies, and it can produce schistosome secretions and cells to match up with and wipe out each one of them. -
The Term Meaning White Blood Cells Is
The Term Meaning White Blood Cells Is Micro Angelico still desalinate: venatic and unclimbed Elliot originate quite significatively but globes her proximocracoviennes and admeasuring catechetically. politely. Welsh Hazardableis attritional orand pollened, endows Sherwood voicelessly never as statant comb-outs Ira interpenetrates any output! Trophoblast cells are destined to give rise to many of the extraembryonic tissues. Genetic disorders and blood the cells is a permanent hair shaft, great care provider first line reported by lab technician may be included in circulation, the superficial veins. The part of the brain that controls coordinated movement. What Is A Medical Technologist? Inflammation of the liver. MPV is used along with platelet count to diagnose some diseases. After circulating in the bloodstream for about a day, monocytes enter body tissues to become macrophages, which can destroy some germs by surrounding and digesting them. The legacy of this great resource continues as the Merck Veterinary Manual in the US and Canada and the MSD Manual outside of North America. An abnormal increase in the volume of circulating blood. These small cells seem to sound an alarm when infectious agents invade your blood. Comparisons may be useful for a differential diagnosis. Finally, emotional or physical stress can also cause elevated white blood cell counts. The ability of the body to learn to fight specific infections after being exposed to the germs that cause them. However, you may also visit the Cookie Settings at any time to provide controlled consent, and you can withdraw your consent there. Severe pain that occurs suddenly and usually lasts a short while. -
The Role of Eosinophils and Basophils in Allergic Diseases Considering Genetic Findings
The role of eosinophils and basophils in allergic diseases considering genetic findings. Rachel Nadif, Farid Zerimech, Emmanuelle Bouzigon, Regis Matran To cite this version: Rachel Nadif, Farid Zerimech, Emmanuelle Bouzigon, Regis Matran. The role of eosinophils and ba- sophils in allergic diseases considering genetic findings.. Current Opinion in Allergy and Clinical Im- munology, Lippincott, Williams & Wilkins, 2013, 13 (5), pp.507-13. 10.1097/ACI.0b013e328364e9c0. inserm-00880260 HAL Id: inserm-00880260 https://www.hal.inserm.fr/inserm-00880260 Submitted on 3 Oct 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The role of eosinophils and basophils in allergic diseases considering genetic findings Rachel Nadifa,b, Farid Zerimechc,d, Emmanuelle Bouzigone,f, Regis Matranc,d Affiliations: aInserm, Centre for research in Epidemiology and Population Health (CESP), U1018, Respiratory and Environmental Epidemiology Team, F-94807, Villejuif, France bUniv Paris-Sud, UMRS 1018, F-94807, Villejuif, France cCHRU de Lille, F-59000, Lille, France dUniv Lille Nord de France, EA4483, F-59000, Lille, France eUniv Paris Diderot, Sorbonne Paris Cité, Institut Universitaire d’Hématologie, F-75007, Paris, France fInserm, UMR-946, F-75010, Paris, France Correspondence to Rachel Nadif, PhD, Inserm, Centre for research in Epidemiology and Population Health (CESP), U1018, Respiratory and Environmental Epidemiology Team, F-94807, Villejuif, France. -
Neutrophil and Monocyte Adhesion Molecules in Bronchopulmonary
F76 Arch Dis Child Fetal Neonatal Ed: first published as 10.1136/fn.89.1.F76 on 1 January 2004. Downloaded from ORIGINAL ARTICLE Neutrophil and monocyte adhesion molecules in bronchopulmonary dysplasia, and effects of corticosteroids P Ballabh, M Simm, J Kumari, A N Krauss, A Jain, C Califano, M L Lesser, S Cunningham-Rundles ............................................................................................................................... Arch Dis Child Fetal Neonatal Ed 2004;89:F76–F83 Aims: To study a longitudinal change in the expression of adhesion molecules CD11b, CD18, and CD62L on neutrophils and monocytes in very low birth weight babies who develop respiratory distress syndrome, to compare these levels between bronchopulmonary dysplasia (BPD) and non-BPD infants, and to assess the effect of corticosteroid treatment on these adhesion molecules. See end of article for authors’ affiliations Methods: Of 40 eligible neonates, 11 neonates were oxygen dependent at 36 weeks (BPD 36 weeks), 16 ....................... infants were oxygen dependent at 28 days, but not at 36 weeks (BPD d28), and 13 infants did not develop BPD. Seventeen neonates received a six day course of steroid treatment. Expression of CD11b, CD18, and Correspondence to: Dr P Ballabh, Assistant CD62L was measured on neutrophils and monocytes in arterial blood on days 1, 3, 7, 14, 21, and 28, Professor, Division of and before and 2–3 days after initiation of dexamethasone treatment by flow cytometry. Neonatology, Department Results: CD18 expression on neutrophils and monocytes and CD62L on neutrophils, measured as mean of Pediatrics, NICU, 2nd fluorescent intensity, was significantly decreased in BPD neonates compared to non-BPD neonates on days Floor, Main Building, Westchester Medical 1–28. -
Leukocytosis and Natural Killer Cell Function Parallel Neurobehavioral Fatigue Induced by 64 Hours of Sleep Deprivation
Leukocytosis and natural killer cell function parallel neurobehavioral fatigue induced by 64 hours of sleep deprivation. D F Dinges, … , E Icaza, M T Orne J Clin Invest. 1994;93(5):1930-1939. https://doi.org/10.1172/JCI117184. Research Article The hypothesis that sleep deprivation depresses immune function was tested in 20 adults, selected on the basis of their normal blood chemistry, monitored in a laboratory for 7 d, and kept awake for 64 h. At 2200 h each day measurements were taken of total leukocytes (WBC), monocytes, granulocytes, lymphocytes, eosinophils, erythrocytes (RBC), B and T lymphocyte subsets, activated T cells, and natural killer (NK) subpopulations (CD56/CD8 dual-positive cells, CD16- positive cells, CD57-positive cells). Functional tests included NK cytotoxicity, lymphocyte stimulation with mitogens, and DNA analysis of cell cycle. Sleep loss was associated with leukocytosis and increased NK cell activity. At the maximum sleep deprivation, increases were observed in counts of WBC, granulocytes, monocytes, NK activity, and the proportion of lymphocytes in the S phase of the cell cycle. Changes in monocyte counts correlated with changes in other immune parameters. Counts of CD4, CD16, CD56, and CD57 lymphocytes declined after one night without sleep, whereas CD56 and CD57 counts increased after two nights. No changes were observed in other lymphocyte counts, in proliferative responses to mitogens, or in plasma levels of cortisol or adrenocorticotropin hormone. The physiologic leukocytosis and NK activity increases during deprivation were eliminated by recovery sleep in a manner parallel to neurobehavioral function, suggesting that the immune alterations may be associated with biological pressure for sleep. -
Eosinophil-To-Monocyte Ratio Is a Potential Predictor of Prognosis in Acute Ischemic Stroke Patients After Intravenous Thrombolysis
Clinical Interventions in Aging Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Eosinophil-to-Monocyte Ratio is a Potential Predictor of Prognosis in Acute Ischemic Stroke Patients After Intravenous Thrombolysis Yueping Chen1,* Background: Eosinophil and monocyte have been demonstrated separately to be indepen Junli Ren2,3,* dent predictors of acute ischemic stroke (AIS). This study aimed to evaluate the association Naiping Yang2,3,* between eosinophil-to-monocyte ratio (EMR) and 3-month clinical outcome after treatment Honghao Huang2,3 with recombinant tissue plasminogen activator (rt-PA) for AIS patients. Simultaneously, we Xueting Hu2,3 made a simple comparison with other prognostic indicators, such as 24h neutrophil-to- lymphocyte ratio (NLR) and 24h platelet-to-lymphocyte ratio (PLR) to investigate the Fangyue Sun2,3 prognostic value of EMR. Tian Zeng2,3 2,3 Methods and Results: A total of 280 AIS patients receiving intravenous thrombolysis were Xinbo Zhou retrospectively recruited for this study. Complete blood count evaluations for EMR were 2,3 Wenjing Pan conducted on 24 hours admission. The poor outcome at 3-month was defined as the modified 2,3 Jingyu Hu Rankin Scale (mRS) of 3–6 and the mRS score for death was 6. The EMR levels in patients 4 Beibei Gao with AIS were lower than those in the healthy controls and showed a negative correlation 2 Shunkai Zhang with the NIHSS score. At the 3-month follow-up, multivariate logistic regression analysis Guangyong Chen 2 indicated an association among EMR, poor outcome and mortality. In addition, EMR had a higher predictive ability than popular biomarkers like NLR and PLR for 3-month mortality.