Dielectric Strength Behaviour and Mechanical Properties of Transparent Insulation Materials Suitable to Optical Monitoring of Partial Discharges

Total Page:16

File Type:pdf, Size:1020Kb

Dielectric Strength Behaviour and Mechanical Properties of Transparent Insulation Materials Suitable to Optical Monitoring of Partial Discharges Dielectric strength behaviour and mechanical properties of transparent insulation materials suitable to optical monitoring of partial discharges Von der Fakultät für Elektrotechnik und Informatik der Gottfried Wilhelm Leibniz Universität Hannover zur Erlangung des akademischen Grades Doktor-Ingenieur - Dr.-Ing. - genehmigte Dissertation von Master of Engineering (M. Eng.) Chaiyaporn Lothongkam geboren am 14.05.1972 in Bangkok, Thailand 2014 Referent: Prof. Dr.-Ing. Ernst Gockenbach Korreferent: Prof. Dr.-Ing. habil. Lutz Hofmann (Vorsitz) Prof. Dr.-Ing. Ronald Plath, TU Berlin Gutachter: Dr.-Ing. Wolfgang R. Habel, BAM Berlin (Teilgebiet Mess- und Versuchstechnik) Tag der Promotion: 25. Juli 2014 Dielectric strength behaviour and mechanical properties of transparent insulation materials suitable to optical monitoring of partial discharges Key words: silicone rubber, dielectric strength, tensile strength, elongation at break, Weibull distribution, dielectric breakdown test, IEC 60243-1, fluorescent silicone rubber Abstract A novel optical detection method for partial discharge in HV/EHV cable terminations has been proposed. Optical sensor fibres integrated into the HV equipment provide high sensitivity as well as immunity to electromagnetic interference and enable therefore on-line monitoring in electromagnetically noisy environment. The availability of optically transparent silicone rubbers that meet strict dielectric and mechanical criteria is a crucial prerequisite for the implementation of this method. The optically transparent silicone rubbers can be applied for the fabrication of a modern rubber stress cone as well as for the development of a new optical sensing element sensitive to PD activities. In this thesis, AC dielectric strength behaviour and mechanical properties of three types of commercially available silicone rubbers were investigated. One of the characterized silicone rubbers was a translucent type whereas the two others were optically transparent types, however with different chemical curing reactions. The measurements of tensile strength and elongation at break were carried out according to the ISO 37 standard. For investigation of the dielectric strength ̿ΐ behaviour of the virgin and modified silicone rubbers, a new methodology was developed. It is, at the same time, highly reliable and efficient, saves time and reduces material consumption in comparison to previously reported methodologies. The key component of this methodology is a specifically developed test facility. Furthermore, the methodology comprises determinations for easy preparation and handling of high-quality test specimens. This test method provides various advantages over other methods that have previously been used for measurement of the fundamental quantity ̿ΐ value of silicone rubbers. Both technical and economic demands are satisfied. The new facility also enables cost-effective routine tests in material research laboratories. The high quality of the obtained test results was verified by statistical analysis based on the 2-parameter Weibull distribution function. The investigations revealed that the virgin translucent silicone rubber has a large elastic region with an acceptable plastic deformation and also provides an AC 50 Hz dielectric strength of approximately 24 kV/mm for 0.5 mm thickness. These values enable considering the tested translucent silicone as replacement material for an opaque elastomer that is currently used for a rubber stress cone of HV cable accessories. Unfortunately, its optical transmittance is poor compared to optically clear transparent silicone rubbers. On the other hand, the mechanical properties of virgin transparent silicone rubbers do not comply with those demanded from push-on stress cones. In particular, their elongation at break is considered too low for that application. However they provide the AC dielectric strength values in either 28 kV/mm or 29 kV/mm for 0.5 mm thickness, which are higher than those of the translucent type. Moreover, it was found that the post-curing process does not provide i a positive impact on the ultimate elongation of silicone rubbers. Hence, the elongation at break of virgin transparent silicone rubbers must be improved before they can be used as insulating material for a rubber stress cone. In addition, the influence of mechanical tensile stress on the dielectric strength of the virgin translucent silicone rubber was investigated. The results show that mechanical tensile stress does not negatively influence on dielectric strength of such silicone rubber, so it can be well-operated under combined electrical and mechanical stresses. Beside the improvement of optical PD detection performance in the translucent silicone insulation materials, the influence of fluorescent dye’s modification was investigated. The results indicate that the commercially available fluorescent dyes of 0.02 wt. % mixed into the translucent silicone polymer do not negatively influence on the ̿ΐ value of such silicone material. So an optically compatible silicone rubber is perfectly suitable for the fabrication of novel fluorescent silicone optical fibres, which can be integrated into the modified transparent rubber stress cones of HV cable terminations. The final outcomes of this investigation are experimentally substantiated recommendations for future revision of IEC 60243-1, especially the chapter dealing with the determination of AC dielectric strength of silicone rubbers. Recommendations and suggestions for further investigations are addressed in the final chapter of this thesis. ii Dielektrische Festigkeit und mechanische Eigenschaften trans- parenter Isolierstoffe, tauglich für das optische Monitoring von Teilentladungen Schlagworte: Silikonelastomer, dielektrische Festigkeit, Reißdehnung, Weibull-Verteilung, Durchschlagtest, IEC 60243-1, fluoreszierendes Silikonelastomer Kurzfassung Eine neue Methode zur optischen Detektion von Teilentladungen in Hoch- und Höchstspannungs-Kabelgarnituren wird vorgeschlagen. Optische Fasern, integriert in die Hochspannungseinrichtung, können hochempfindlich messen und sind gegenüber elektro- magnetischen Feldern immun. Sie ermöglichen somit ein Online-Monitoring in Bereichen hoher elektromagnetischer Felder. Diese optische Detektionsmethode kann in transparenten Silikonelastomer-Isolierstoffen, die sowohl dielektrische als auch mechanische Anforde- rungen erfüllen und für moderne Feldsteuerteile zum Einsatz kommen, zur Früherkennung von Teilentladungen genutzt werden. In dieser Arbeit werden das dielektrische Festigkeitsverhalten und die mechanischen Eigenschaften dreier kommerziell verfügbarer Silikonelastomere unter Wechselspannungs- beanspruchung untersucht. Ein Silikonmaterial war transluzent, zwei andere waren transparent, jedoch mit unterschiedlichen Vernetzungsbedingungen. Die Messung der Reißdehnung bzw. Zugfestigkeit erfolgte gemäß Standard ISO 37. Zur Untersuchung der dielektrischen Festigkeit ̿ΐ der unmodifizierten und modifizierten Silikonelastomere wurde eine neue Untersuchungsmethodik entwickelt. Gegenüber bisherigen Methodiken erlaubt dieses Prüfverfahren Untersuchungen mit geringem Materialverbrauch bei minimalem Zeitaufwand und ist gleichermaßen zuverlässig und effizient. Kernstück dieses Untersuchungsverfahrens ist eine speziell entwickelte Prüfeinrichtung. Darüber hinaus ermöglicht diese Prüfmethode eine einfache Präparation und Handhabung hochwertiger Prüflinge. Diese sowohl technischen als auch ökonomischen Vorteile können bei der Bestimmung des für Silikonelastomere wichtigen Wertes der elektrischen Festigkeit ̿ΐ ausgenutzt werden. Wegen der kostensparenden Prüfmethodik kann diese Prüfeinrichtung auch vorteilhaft für statistische Untersuchungen in Laboratorien eingesetzt werden. Die Untersuchungsergebnisse werden mittels Weibull-Verteilung statistisch analysiert und bewertet. Die Untersuchungen zeigten, dass das transluzente unmodifizierte Silikonelastomer einen großen Elastizitätsbereich mit akzeptabler plastischer Deformation besitzt; für Prüflinge mit einer Dicke von 0,5 mm wurde für 50 Hz Wechselspannung eine dielektrische Festigkeit von annähernd 24 kV/mm gemessen. Diese Festigkeitseigenschaften des transluzenten Silikonelastomers lässt die Schlussfolgerung zu, dass dieses Material die gegenwärtig für Feldsteuerteile in Hochspannungsgarnituren genutzten lichtundurchlässigen Elastomere ersetzen können. Die Lichtdurchlässigkeit des transluzenten Materials ist allerdings gering im Vergleich zu optisch klaren (transparenten) Silikonelastomeren. Andererseits erfüllen die mechanischen Eigenschaften der unmodifizierten transparenten Silikonelastomere nicht die Anforderungen, die an Aufschiebe-Feldsteuerteile gestellt werden; ihre Reißdehnung wird als zu gering eingeschätzt. Sie erreichen jedoch einen Wert iii für die Wechselspannungsfestigkeit von 28 kV/mm bzw. 29 kV/mm (0,5 mm Probendicke), der höher ist, als der für den transluzenten Typ. Es wurde des Weiteren herausgefunden, dass ein Nachvernetzen der Silikonelastomere keinen positiven Einfluss auf ihre Reißdehnung hat. Aus diesem Grund muss die Reißdehnung unmodifizierter transparenter Silikonelastomere verbessert werden, bevor sie als Isoliermaterial in Feldsteuerteilen verwendet werden können. Zusätzlich wurde auch in der Arbeit der Einfluss der Dehnungsbeanspruchung auf die dielektrische Festigkeit unmodifizierter transluzenter Silikonelastomere untersucht. Es konnte gezeigt werden, dass eine Dehnungsbeanspruchung derartiger Silikonelastomere die dielektrische Festigkeit nicht
Recommended publications
  • W Series Impulse Voltage Test System
    W SERIES IMPULSE VOLTAGE TEST SYSTEM Impulse Voltage Test System is used to generate impulse APPLICATION voltages from 100 KV to 2400 KV simulating lightning strokes The basic system is used to test any high voltage and switching surges with energies up to 240 KJ. equipment like The KVTEK make impulse voltage test systems are modular in ØPower Transformers construction, flexible and cover testing applications according to IEC, ANSI/IEEE and other national standards. ØDistribution Transformers The basic system can be upgraded in various ways to allow ØCable (Type Tests) optimizing the impulse test system for tests on different high ØSurge Arresters (impulse current tests) voltage equipments. ØMotor / Generators The system operation is user friendly and incorporates all the ØInsulators necessary features of Impulse Voltage Test. ØBushings ØGIS ØInstrument Transformers ØResearch & Development and Universities FEATURES ØLow internal inductance ØEasy and quick reconfiguration to suit different testing needs ØUser friendly operation through computer and microprocessor controlled hardware. ØEquipped with resistors for performing lightening full, lightening chopped and switching impulse tests on wide range of loads. ØAutomatic grounding device and security grounding system (available as an option). ØAlarm annunciation to display all fault conditions. ØFiltered clear air constantly supplied through the sphere gaps while the system is running. ØReliable and fail safe triggering circuitry. KVTEK POWER SYSTEMS PRIVATE LIMITED STRUCTURE CHARACTERISTICS CHARGING RECTIFIER ØAll the coupling sphere gaps are mounted in an insulated D100-0.05 (100 kV, 50 mA) OR D100-0.15 DC (100 kV, 150 mA) tube and every level of sphere gaps is equipped with spark Charging Power Supply comprises of: observation panel.
    [Show full text]
  • Installation Instructions to Ensure Proper Compres Installing Units with Any of the Optional Accessories Sor and Blower Operation
    INSTALLATION Litho U.S.A. 2003 INSTRUCTIONS LGC090S, LCC090S (7.5 Ton) WARNING LGA090H, LCA090H (7.5 Ton) Improper installation, adjustment, alteration, ser (8.5 Ton) vice or maintenance can cause property damage, LGA102H, LCA102H personal injury or loss of life. Installation and ser vice must be performed by a qualified installer, serĆ LGC102S, LCC102S (8.5 Ton) vice agency or the gas supplier LGA120H, LCA120H (10 Ton) Table Of Contents LGC120S, LCC120S (10 Ton) Dimensions. 1 LGC150S, LCC150S (12.5 Ton) Parts Arrangements. 2 L SERIES PACKAGED UNITS Shipping and Packing List. 3 504,785M General. 3 6/2003 Supersedes 504,563M Requirements. 3 Unit Support. 3 Electrical Connections. 7 Duct Connections. 4 Blower Operation and Adjustments. 9 Rigging Unit For Lifting. 4 Cooling Start−Up. 13 Condensate Drains. 4 Gas Heat Start−Up. 17 Gas Piping. 5 Heating Operation and Adjustments. 18 Pressure Test Gas Piping. 5 Electric Heat Start−Up. 19 High Altitude Derate. 6 Humiditrol® Start−Up and Operation. 20 Factory−Installed Options. 6 Service. 22 RETAIN THESE INSTRUCTIONS FOR FUTURE REFERENCE LCA SHOWN 06/03 504,785M *2P0603* *P504785M* LGA/LGC/LCA/LCC090, 102, 120, & 150 DIMENSIONS − LGA/LGC HEAT SECTION SHOWN *Reheat coils are factory−installed in Humiditrol units only. OPTIONAL OUTDOOR CONDENSER COIL AIR HOOD INTAKE AIR CONDENSER (Factory or COIL FAN (2) Field Installed) AA4 (102) 4 (102) BB 28 28 (711) (711) BOTTOM 51/2 20 61/4 20 SUPPLY AIR (140) (508) (159) (508) OPENING CONDENSER EVAPORATOR COIL COIL EE INTAKE BOTTOM AIR RETURN AIR CENTER BLOWER
    [Show full text]
  • FINDER Relays 7P Series
    7P Series - Surge Protection Device (SPD) Features 7P.21.8.275.1020 7P.22.8.275.1020 SPD Type 2 Surge arrester range - single phase systems • Surge arrester suitable for 230V system/ applications • Protects equipment against overvoltage caused by lightning strikes or switching transients 7P.21.8.275.1020 Varistor protection L - N 7P.22.8.275.1020 Varistor protection L - N + spark-gap protection N - PE • SPD Type 2 (1 varistor + 1 spark-gap) • SPD Type 2 (1 varistor) Spark-gap protection N - PE avoids earth • Combination of replaceable varistor and • Replaceable varistor module leakage current encapsulated spark gap modules • Visual and remote signalling of varistor status • Visual indication of Varistor status - • Visual and remote signalling of varistor status Healthy/Replace • Remote signalling contact of Varistor status Connector (07P.01) included • Replaceable modules • Complies with EN 61643-11 07P.01 07P.01 • 35 mm rail (EN 60715) mounting 12 11 14 12 11 14 7P.21 / 7P.22 Screw terminal L / N () L PE (L / N) N For outline drawing see page 6 SPD specification L-N N-PE Nominal voltage UN 230 V AC 230 V AC — Maximum continuous operating voltage UC 275 V AC / 350 V DC 275 V AC / 350 V DC 255 V AC Nominal discharge current (8/20 μs) In 20 kA 20 kA 20 kA Maximum discharge current (8/20 μs) Imax 40 kA 40 kA 40 kA Voltage protection level at 5kA UP5 0.9 kV 0.9 kV — Voltage protection level at In UP 1.2 kV 1.2 kV 1.5 kV Response time tA 25 ns 25 ns 100 ns Short-circuit proof at maximum overcurrent protection 35 kArms 35 kArms — Maximum overcurrent
    [Show full text]
  • The Basics of Surge Protection the Basics of Surge
    The basics of surge protection From the generation of surge voltages right through to a comprehensive protection concept In dialog with customers and partners worldwide Phoenix Contact is a global market leader in the field of electrical engineering, electronics, and automation. Founded in 1923, the family-owned company now employs around 14,000 people worldwide. A sales network with over 50 sales subsidiaries and 30 additional global sales partners guarantees customer proximity directly on site, anywhere in the world. Our range of services consists of products associated with a wide variety of electrotechnical applications. This includes numerous connection technologies for device manufacturers and machine building, components for modern control cabinets, and tailor-made solutions for many applications and industries, such as the automotive industry, wind energy, solar energy, the process industry or applications in the field Iceland Finland Norway Sweden Estonia Latvia of water supply, power transmission and Denmark Lithuania Ireland Belarus Netherlands Poland United Kingdom Blomberg, Germany Russia Canada Belgium distribution, and the transportation Luxembourg Czech Republic France Austria Slovakia Ukraine Kazakhstan Switzerland Hungary Slovenia Croatia Romania South Korea USA Bosnia and Serbia Spain Italy Herzegovina infrastructure. Kosovo Bulgaria Georgia Japan Montenegro Portugal Azerbaijan Macedonia Turkey China Greece Tunisia Lebanon Iraq Morocco Cyprus Pakistan Taiwan Israel Kuwait Bangladesh Mexico Algeria Jordan Bahrain India
    [Show full text]
  • Protection Characteristics of Spark Gaps
    fz <?rz>7orz> /fur-- *9- Protection characteristics of spark gaps Marja-Leena Pykala Veikko Palva 27 deceived ' ccq 2315 S3 OSTl Report Helsinki University of Technology High Voltage Institute Espoo, Finland 1997 DISCLAIMER Portions of this document may be illegible electronic image products. Images are produced from the best available original document. Report TWH ; Helsinki University of Technology High Voltage Institute ^*gh Voltage Itvs^ Protection characteristics of spark gaps Marja-Leena Pykala Veikko Palva ISSN 1237-895X ISBN 951-22-3438-6 January 27, 1997 Espoo, Finland 2 (24 ) Preface The High Voltage Institute of Helsinki University of Technology (HUT) has operated as the National Standards Laboratory of High Voltage Measurements since October 1995. Research is largely concentrated on high voltage measurement and metrology. This project concentrated on practical issues: distribution transformers and protective spark gaps. The project was supervised by the following expert group: Jarmo Elovaara from IVO Power Engineering Oy, Juha Sotikov from Finnish Electricity Association and Esa Virtanen from ABB Transmit Oy as well as Martti Aro, Matti Karttunen and Veikko Palva from Helsinki University of Technology. Abstract Distribution transformers in rural networks have to cope with transient overvoltages, even with those caused by the direct lightning strokes on the lines. In Finland, the 24 kV network conditions, such as wooden pole lines, high soil resistivity and isolated neutral network, lead into fast transient overvoltages. The distribution transformers (< 200 kVA) have been protected and a major part is still protected using protective spark gaps. The protection characteristics of different spark gap types were studied widely using improved measuring techniques.
    [Show full text]
  • Residual Resistance Simulation of an Air Spark Gap Switch
    Residual resistance simulation of an air spark gap switch. V. V. Tikhomirov, S.E. Siahlo∗ February 27, 2015 Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11, 220030 Minsk, Belarus Abstract The numerical simulation of an air spark gap has been carried within two theoretical models. The kinetic one [1] allowed us to calculate time dependencies for the residual resistance (0.2 - 0.4 Ohm for our selection of a circuit parameters), the spark gap channel width, the electron number density, the mobility, the conductivity, the ionization degree, the magnetic field in the discharge channel, the channel inductance and the electron drift velocity. Simulating a real circuit and taking into account a spark gap residual resistance demonstrates good agreement of both models with the experimental data, while that without taking into account this resistance overestimates the maximal current in the circuit by approximately 5%. 1 Introduction The high-voltage spark gap switches are essential elements of the circuits containing magneto- cumulative generators, capacitive and inductive energy storages, electro-explosive circuit break- ers etc. Very frequently spark gaps affect sufficiently the operation of the circuits and one cannot satisfactorily describe main elements functioning in the absence of a quantitative model of the processes occurring in the spark gaps. This article is devoted to the comparison of two such models considering a real circuit, where the influence of a high-voltage spark gap results in a decrease of the maximal current for about 5%. We review in detail the model [1] based on the time dependent method for the electron number density simulation in the air spark gap channel using an anisotropic solution of the kinetic equation [2].
    [Show full text]
  • I-N + Silicon Structures
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Electrical & Computer Engineering, Department P. F. (Paul Frazer) Williams Publications of May 1993 Inhibition of surface-related electrical breakdown of long p+-i-n+ silicon structures F. E. Peterkin University of Nebraska - Lincoln P. F. Williams University of Nebraska - Lincoln, [email protected] B. J. Hankla University of Nebraska - Lincoln L. L. Buresh University of Nebraska - Lincoln S. A. Woodward University of Nebraska - Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/elecengwilliams Part of the Electrical and Computer Engineering Commons Peterkin, F. E.; Williams, P. F.; Hankla, B. J.; Buresh, L. L.; and Woodward, S. A., "Inhibition of surface-related electrical breakdown of long p+-i-n+ silicon structures" (1993). P. F. (Paul Frazer) Williams Publications. 6. https://digitalcommons.unl.edu/elecengwilliams/6 This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in P. F. (Paul Frazer) Williams Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. inhibition of surface-related electricall breakdown of long p+-i-n+ silicon structures F. E. Peterkin, P. F. Williams, B. J. Hankla, L. L. Buresh, and S. A. Woodward Department of Electrical Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68.588-05Il (Received 22 January 1992; acceptedfor publication 10 February 1993) Semiconductors such as silicon and GaAs appear attractive for use in high voltage devices becauseof their high bulk dielectric strength. Typically, however, such devicesfail at a voltage well below that expecteddue to a poorly understood,surface-related breakdown process.In this letter we present empirical results which show that such breakdown of long silicon pf-i-n+ devicescan be inhibited by the application of weak visible or near-infrared illumination.
    [Show full text]
  • Two-Electrode Spark Gap Preamble
    Two-Electrode Spark Gap Preamble INTRODUCTION PRINCIPLES OF OPERATION The range of two-electrode spark gaps offered by e2v A simple two-electrode spark gap is shown in Fig. 1. At low technologies comprises hermetically sealed gas-filled switches voltages the gap is an insulator. As the voltage increases, the available with DC breakdown voltages from 400 V to 50 kV. few free electrons (present in the gap as a result of cosmic Two-electrode spark gap applications include voltage surge radiation and other ionising effects) are accelerated to higher protection, lightning protection, single-shot pulse generators, velocities, until they are able to ionise atoms of the gas filling. high energy switches and turbine engine ignition circuits. This leads to an avalanche effect as the additional electrons produce further ionisation and as the current builds up, the PRINCIPAL FEATURES voltage falls (see Fig. 2). There is a range of current over which emission from the cathode takes the form of a glow discharge * No Standby Power Consumption and the voltage is almost constant. * Consistent Breakdown Voltage * High Current Capability GAS FILLING MAIN ELECTRODE GAP 4169B * Fast Switching * Rugged and Reliable over Temperature Range * Lightweight TWO-ELECTRODE SPARK GAP SELECTION When considering the choice of spark gap, the following factors should be taken into account: * Application * Peak Current and Waveform * Coulombs per Shot INSULATOR * Maximum Repetition Rate * Main Gap Voltage Fig. 1. Basic structure of a typical 2-electrode spark gap * Environmental Conditions A further increase in current produces cathode heating by ion The e2v technologies two-electrode spark gap preamble should bombardment, leading to the formation of emission sites and be read in conjunction with the relevant product data sheet to another voltage drop across the gap.
    [Show full text]
  • PS/6772 It Should Be Noted Here That If, for Any Reason, This Feedback
    14 ins-SI/Note MAE/68~5 5.10.1968 K66 KICKLJ PROJECT C. Carter Introduction This note describes the supplies and associated equipment used to power the FK66 Kicker Magnet. A pulse forming network consisting of two low loss 16 coaxial cables in parallel is charged from a H.V. power supply. At the desired maximum voltage the stored energy in the cables is switched into the magnet which is also matched by a triggered spark gap. As the magnet is a balanced four terminal network? both positive and negative supplies are needed, as are the associated pairs of cables and spark gaps. A change—over switch selects the direction of ‘kick'. A choice of 3 bunch or 6 bunch ejection required two pairs of charging cables (termed the ‘short' and 'long' cables), and thus four individual power supplies (Fig. 1). General description 2 The four similar power supplies are all housed in an oil filled tank. The control element in each is a ML8495 tube, which is held normally off by a rectifier A.C. voltage obtained from a power oscillator. A ramp function generator modulates this oscillator to turn the tube on, which charges the cables (Figs. 2 and 3). A voltage divider chain on the output is used for measurement and also as a reference point for comparison with the applied ramp function. PS/6772 It should be noted here that if, for any reason, this feedback 100p is broken9 control of the series tube ML8495 will be lost resulting in full output voltage on the cables.
    [Show full text]
  • Electromechanically Triggered Spark Gap Switch
    Europaisches Patentamt European Patent Office © Publication number 0 300 599 A1 Office europeen des brevets EUROPEAN PATENT APPLICATION © Application number: 88304521.3521.3 © Int. CI.4: H01T 2/02 @ Date of filing: 18.05.88 © Priority: 20.07.87 CA 542475 © Applicant: NORANDA INC. P.O. Box 45 Suite 4500 Commerce Court @ Date of publication of application: West 25.01.89 Bulletin 89/04 Toronto Ontario, M5L 1B6(CA) © Designated Contracting States: © Inventor: Kitzinger, Frank AT BE DE FR GB SE 1420 Crescent Street, 904 Montreal Quebec H3G 2B7(CA) © Representative: Thomas, Roger Tamlyn et al D. Young & Co. 10 Staple Inn London WC1V 7RD(GB) © Electromechanically triggered spark gap switch. © A spark gap switch is disclosed. The spark gap switch comprises an anode and a cathode having facing surfaces separated by a predetermined gap, a trigger electrode located in the vicinity of such gap, and a piezoelectric generator connected between the trigger electrode and the cathode for triggering the spark gap switch. O) If} a. LLI Xerox Copy Centre 1 EP 0 300 599 A1 2 ELECTROMECHANICALLY TRIGGERED SPARK GAP SWITCH This invention relates to an electromechanically The spark gap switch, in accordance with the triggered spark gap switch suitable for switching present invention, comprises an anode and a cath- high voltage, high current electric power. ode having facing surfaces separated by a pre- Spark gaps were the earliest switching means determined gap, a trigger electrode located in the for high voltage capacitor discharges. In its sim- 5 vicinity of such gap, and a piezoelectric generator plest form, a spark gap switch consists of two connected between the trigger electrode and the metal electrodes axially spaced apart.
    [Show full text]
  • Design of a Resonant Soft Switching Power Supply for Stabilized Dc
    DESIGN OF A RESONANT SOFT SWITCHING POWER SUPPLY FOR STABILIZED DC IMPULSE DELIVERY by Andrew H. Seltzman A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Electrical Engineering) at the UNIVERSITY OF WISCONSIN-MADISON 2012 APPROVED By Adviser Signature: ______________________________________ Adviser Title:_________________________________________ Date:__________________ i Abstract This thesis addresses the issues involved in the design and construction of a multi- phase resonant switching power supply for delivery of a high voltage, high current stabilized DC impulse. Such a power supply may be used in place a pulse forming network (PFN) to drive a high power klystron amplifier, which typically requires voltages near -100kV at 10s of amps of current. Unlike an LC PFN, a switchmode power supply (SMPS) allows greater control over pulse duration while still allowing generation of longer duration pulses on the order of 10ms with constant output voltage by use of feedback regulation. Specifically, the thesis documents the results from the design of a loosely coupled boost transformer with a parallel LC resonator on the secondary, a microcontroller based control system for feedback stabilization and techniques of harmonic mitigation to reduce switching noise on the output waveform. iii Acknowledgements I would like to thank Giri Venkataramanan, Paul Nonn, Bob Ganch, Jason Kauffold and Jay Anderson for assisting with this project. I would also like to thank the UW Madison Department of Physics, and Los Alamos National Lab (LANL) for providing support for this research. iv Table of Contents Abstract ............................................................................................. i Acknowledgements ......................................................................... iii Table of Contents ............................................................................ iv List of Figures ................................................................................
    [Show full text]
  • Proposed Automatic Spark Gap Adjustment System for a Tabletop Micro Edm
    Ananthan D Thampi Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 8, Issue 6 (Part -I) June 2018, pp 37-42 RESEARCH ARTICLE OPEN ACCESS Proposed Automatic Spark Gap Adjustment System for a Tabletop Micro Edm Ananthan D Thampi1,Prof. Sureshkumar V B2, Lislin Luka3 1,3M.Tech Student-Manufacturing and Automation,2Assistant Professor, Department of Mechanical Engineering, College of Engineering,Trivandrum,Kerala,India Corresponding Auther: Ananthan D Thampi ABSTRACT:EDM is an electro-thermal non-traditional machining process.This technology is increasingly used due to the requirement of high precision, complex shapes and high surface finish.After conducting a literature review on the various notable works in the field of Electro discharge machining,it was noted that the importance of micro EDM is increasing day by day. This work is mainly focused to review and propose a cost effective automatic spark gap adjustment system for a tabletop micro EDM experimental setup. Keywords:Non-traditional machining, Micro EDM,Spark gap controller, automation. ----------------------------------------------------------------------------------------------------------------------------- ---------- Date of Submission: 25-05-2018 Date of acceptance:10-06-2018 ----------------------------------------------------------------------------------------------------------------------------- ---------- I. INTRODUCTION The parameters like voltage, spark gap, capacitance The demand for miniature components are were considered and the output obtained was MRR. increasing every day. Micro EDM is a very The results shows that voltage is a major promising machining operation to meet the contributor for MRR whereas spark gap is a minor requirements in the production field due to the high contributor than capacitance. [2] precision, surface finish and simplicity. This metal Muralidhara et al. developed a directly cutting process is mainly used for hard metals or coupled piezoactuated tool feed mechanism those materials which are very difficult to cut with prototype.
    [Show full text]