BULLETIN for the HISTORY of CHEMISTRY Division of the History of Chemistry of the American Chemical Society

Total Page:16

File Type:pdf, Size:1020Kb

BULLETIN for the HISTORY of CHEMISTRY Division of the History of Chemistry of the American Chemical Society BULLETIN FOR THE HISTORY OF CHEMISTRY Division of the History of Chemistry of the American Chemical Society VOLUME 30, Number 2 2005 BULLETIN FOR THE HISTORY OF CHEMISTRY VOLUME 30, CONTENTS NUMBER 1 THE DEEP HISTORY OF CHEMISTRY Joseph B. Lambert, Northwestern University 1 GRANVILLE PERKINS AND LEPROSY CHEMOTHERAPY IN THE PHILIPPINES Ian D. Rae, University of Melbourne 10 KARL ELBS, 1858-1933 E. J. Behrman, Department of Biochemistry, The Ohio State University 19 THE HEART OF STEEL: A METALLURGICAL INTERPRETATION OF IRON IN HOMER Ruth Russo, Whitman College 23 FRIEDLIEB RUNGE AND HIS CAPILLARY DESIGNS Ernst F. Schwenk, Wiesbaden, Germany 30 JOHN HUGHES DAVIES. THE EFFECT OF THE SILENT ELECTRICAL DISCHARGE ON THE AMMONIA SYSTEM John T. Stock, University of Connecticut 35 THE HISTORY OF CHEMICAL EDUCATION AT LAFAYETTE COLLEGE Roger A. Egolf, Pennsylvania State University 41 BOOK REVIEWS 51 NUMBER 2 JOSEPH PRIESTLEY, NATURAL PHILOSOPHER Robert E. Schofield 57 PHLOGISTON THEORY AND CHEMICAL REVOLUTIONS Leslie V. Woodcock, University of Manchester, UK 63 PANTISOCRACY AND PENNSYLVANIA: PLANS OF COLERIDGE AND SOUTHEY AND OF COOPER AND PRIESTLEY J. Edmund White 70 ESTEEM, REGARD, AND RESPECT FOR RATIONALITY: JOSEPH PRIESTLEY’S FEMALE CONNECTIONS Kathleen L. Neeley, University of Kansas and M. Andrea Bashore, Joseph Priestley House 77 PRIESTLEY, JEFFERSON, AND ADAMS: THE ÉMIGRE AND AMERICAN POLITICS Judah B. Ginsberg, American Chemical Society 91 BERNARD COURTOIS (1777-1838), FAMED FOR DISCOVERING IODINE (1811), AND HIS LIFE IN PARIS FROM 1798 Patricia A. Swain 103 THE DECOMPOSITION OF HYDROGEN PEROXIDE BY BLOOD. GEORGE SENTER’S DISCOVERY OF THE ENZYME INVOLVED John T. Stock† and James D. Stuart,* University of Connecticut 113 BOOK REVIEWS 118 AUTHOR INDEX, 1-30 125 SUBJECT INDEX, 1-30 126 The Cover…Copy of oil painting of Joseph Priestley by Ellen Wallace Sharples, William L. Clements Library, University of Michigan Bull. Hist. Chem., VOLUME 30, Number 2 (2005) 57 JOSEPH PRIESTLEY, NATURAL PHILOSOPHER* Robert E. Schofield In this two hundredth anniversary year of his death, we chemistry and the denigration of its major defender (3). are met to celebrate the life and career of Joseph It was the Lavoisians who created the caricature slav- Priestley—and most of us celebrate the wrong man, for ishly adopted for nearly two centuries by chemists and the wrong reasons. We celebrate the pneumatic chem- historians of chemistry. ist who, in a flurry of random experiments made over a period of five years, isolated and partially identified nine Douglas McKie, the popular biographer of new gases, including oxygen—and the man who spent Lavoisier, has summarized their version (4): roughly five times as long perversely fighting the new As an experimenter, Priestley has been represented chemistry based on his own discoveries. This man, as as an amateur and dilettante chemist, capriciously flit- Georges Cuvier was to put it in the éloge written for the ting from one haphazard experiment to another, and despite the scientific absurdity of his method, hav- Académie Nationale des Sciences, was a father of mod- ing the good fortune to make classic discoveries; and ern chemistry but refused to recognize his own daugh- as a theorist, he has been described as ingenuously ter (1). weaving these discoveries into the tattered fabric of Now some small part of that picture is true: Priestley the phlogiston theory, to which he was so blindly devoted that no amount of hostile evidence could con- did isolate and partially describe nine new gases, and vince him of its falsity. .Both these views are inex- that does justify some celebration (2). But the major act; the first entirely so . and the second requires and false part of the picture is the continuing conse- qualification. quence of a scenario created for us by that master of Now the Lavoisians were not entirely to blame. They rhetoric and public relations, Antoine Lavoisier, and his were justly elated at their quite remarkable achievement followers. Their campaign for personal recognition and and dismayed at Priestley’s continued opposition—an the new chemistry required the destruction of the old NOTE FROM THE EDITOR Most of this issue of the Bulletin is devoted to papers presented at the symposium held at the 228th national American Chemical Society meeting in Philadelphia in August, 2004. Organized by Dr. James J. Bohning and Dr. R. A. Olofson and titled “Joseph Priestley, Universal Catalyst: A Bicentennial Celebration of his Life,” the program provided a broad perspective of Priestley the ‘whole man.’ As the symposium partici- pants demonstrated, Priestley was only secondarily a practicing scientist whose concerns and scholarly pursuits spanned the fields of religion, education, social change, and, inevitably, political life. 58 Bull. Hist. Chem., VOLUME 30, Number 2 (2005) opposition, moreover, in the apparent framework of con- denial that there was any essential difference between fusing appeals to contradictory applications of body and spirit (or soul). He was a monist. phlogiston theory. Frederic Holmes has suggested, how- It was not his primary concern to discuss the fun- ever, that Priestley differed from Lavoisier, not because damental nature of matter, but to prove the uniform com- he was defending Georg Stahl’s discredited chemical position of man. He wished to demonstrate that mind, theory of phlogiston, but because he was defending his or the principle of perception and thought, is not a sub- own collection of phlogistic explanations for a number stance distinct from the body, but the result of corporeal of phenomena never considered by Stahl. Holmes was organization. This monistic assumption was, he claimed, certainly on the right track here but could have gone independent of any consideration of the internal struc- much further, as John McEvoy did in declaring (5): ture of matter, “about which we know very little, hav- So long as ‘science’ is viewed in isolation from its ing few data to argue from.” (8) But, like Isaac New- cultural content . will Priestley’s scientific thought ton, who followed his declaration: Hypothesis non fingo, be found wanting. For the order, unity, and aim of with hypotheses on the nature of the aether, Priestley his natural philosophy does not derive from any nar- rowly defined chemical principles or problems . could not resist speculations on the nature of matter. When placed in a wider intellectual context, In fact, Priestley had been intrigued by the ultimate Priestley’s scientific thought takes on a very differ- nature of matter long before he articulated his monism. ent complexion. [He] subjects his scientific His History and Present State of Electricity (1767) was conceptualizations to the dictates and demands of intellectual principles that are far wider in scope than prefaced by the statement (9): eighteenth-century chemistry and that seek to encom- Hitherto philosophy has been chiefly conversant pass the totality of reality . Order informs appar- about the more sensible properties of bodies; elec- ent chaos when this methodology is located in the tricity, together with chymistry, and the doctrine of overall programme of an earnest study of nature that light and colors, seems to be giving us an inlet into promised to reveal the greater glory of God . their internal structure on which all their sensible In short, Priestley was not a scientist nor—you will, I properties depend. trust excuse his lapse—a chemist, something which he Later in the same work, his first scientific publication, several times explicitly denied being (6). Priestley was Priestley wrote (9): a Natural Philosopher, which he defined as an investi- …chymistry and electricity are both conversant about gator of the Wisdom of God in the Works and Laws of the latent and less obvious properties of bodies; and Nature (7). It is well to keep in mind that Priestley was, yet their relation to one another has been little con- by profession, a minister—for an aberrant, Unitarian, sidered . Among other branches of Natural Phi- Christianity, if you will, but nonetheless a calling which losophy, let the doctrine of LIGHT AND COLOURS he thought the most important and most satisfying of be also particularly attended to. It was this that New- any that existed. He chiefly valued his work in natural ton thought would be the key to other, at present oc- cult properties of bodies. philosophy for the discoveries which lent authority to his religious opinions. He perhaps never quite realized It should then come as no surprise that Priestley’s next the extent to which that work informed his religious major scientific book was The History and Present State opinions; or was it vice versa? of Discoveries relating to Vision, Light, and Colours, for short, History of Optics (1772), nor that this work Priestley’s denial of the Trinity was partly based should contain speculations on the nature of matter. on the conviction that primitive Christianity had been These speculations took something of the form of the corrupted by a mixture of Eastern religions (notably elaborate matter theory of the Jugo-Slavian astronomer Hinduism), Platonism, and Gnosticism, all of which held and philosopher, Roger Joseph Boscovich, whose that the body was an imperfect container for Divine Theoria Philosophiae Naturalis of 1758 was to capture Spirit. There was, he thought, no historical justification the imagination of physicists, such as Michael Faraday, for a belief in the existence of the spirit of Christ prior James Clerk Maxwell, and J. J. Thomson into the twen- to the creation of the world. The philosophical justifi- tieth century. Because that theory contained no provi- cation for that belief was based upon the false principle sions for quantification or verification, it has also earned of duality, which held that substances could be divided the scorn of philosophers and historians, for whom into the material and the spiritual, each totally and ab- Priestley’s “Boscovicheanism” is yet another excuse for solutely different from the other.
Recommended publications
  • Chemistry Grade Level 10 Units 1-15
    COPPELL ISD SUBJECT YEAR AT A GLANCE ​ ​ ​ ​​ ​ ​​ ​ ​ ​ ​ ​ ​ GRADE HEMISTRY UNITS C LEVEL 1-15 10 Program Transfer Goals ​ ​ ​ ​ ● Ask questions, recognize and define problems, and propose solutions. ​ ​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Safely and ethically collect, analyze, and evaluate appropriate data. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Utilize, create, and analyze models to understand the world. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Make valid claims and informed decisions based on scientific evidence. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ● Effectively communicate scientific reasoning to a target audience. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ PACING 1st 9 Weeks 2nd 9 Weeks 3rd 9 Weeks 4th 9 Weeks ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit Unit Unit Unit Unit Unit Unit Unit Unit ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 7 8 9 10 11 12 13 14 15 1.5 wks 2 wks 1.5 wks 2 wks 3 wks 5.5 wks ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 1.5 2 2.5 2 wks 2 2 2 wks 1.5 1.5 ​ ​ ​ ​ wks wks wks wks wks wks wks Assurances for a Guaranteed and Viable Curriculum ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Adherence to this scope and sequence affords every member of the learning community clarity on the knowledge and skills ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ on which each learner should demonstrate proficiency. In order to deliver a guaranteed and viable curriculum, our team ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ commits to and ensures the following understandings: ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Shared Accountability: Responding
    [Show full text]
  • A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite)
    minerals Review A Review of Flotation Separation of Mg Carbonates (Dolomite and Magnesite) Darius G. Wonyen 1,†, Varney Kromah 1,†, Borbor Gibson 1,† ID , Solomon Nah 1,† and Saeed Chehreh Chelgani 1,2,* ID 1 Department of Geology and Mining Engineering, Faculty of Engineering, University of Liberia, P.O. Box 9020 Monrovia, Liberia; [email protected] (D.G.W.); [email protected] (Y.K.); [email protected] (B.G.); [email protected] (S.N.) 2 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA * Correspondence: [email protected]; Tel.: +1-41-6830-9356 † These authors contributed equally to the study. Received: 24 July 2018; Accepted: 13 August 2018; Published: 15 August 2018 Abstract: It is well documented that flotation has high economic viability for the beneficiation of valuable minerals when their main ore bodies contain magnesium (Mg) carbonates such as dolomite and magnesite. Flotation separation of Mg carbonates from their associated valuable minerals (AVMs) presents several challenges, and Mg carbonates have high levels of adverse effects on separation efficiency. These complexities can be attributed to various reasons: Mg carbonates are naturally hydrophilic, soluble, and exhibit similar surface characteristics as their AVMs. This study presents a compilation of various parameters, including zeta potential, pH, particle size, reagents (collectors, depressant, and modifiers), and bio-flotation, which were examined in several investigations into separating Mg carbonates from their AVMs by froth flotation. Keywords: dolomite; magnesite; flotation; bio-flotation 1. Introduction Magnesium (Mg) carbonates (salt-type minerals) are typical gangue phases associated with several valuable minerals, and have complicated processing [1,2].
    [Show full text]
  • The Practice of Chemistry Education (Paper)
    CHEMISTRY EDUCATION: THE PRACTICE OF CHEMISTRY EDUCATION RESEARCH AND PRACTICE (PAPER) 2004, Vol. 5, No. 1, pp. 69-87 Concept teaching and learning/ History and philosophy of science (HPS) Juan QUÍLEZ IES José Ballester, Departamento de Física y Química, Valencia (Spain) A HISTORICAL APPROACH TO THE DEVELOPMENT OF CHEMICAL EQUILIBRIUM THROUGH THE EVOLUTION OF THE AFFINITY CONCEPT: SOME EDUCATIONAL SUGGESTIONS Received 20 September 2003; revised 11 February 2004; in final form/accepted 20 February 2004 ABSTRACT: Three basic ideas should be considered when teaching and learning chemical equilibrium: incomplete reaction, reversibility and dynamics. In this study, we concentrate on how these three ideas have eventually defined the chemical equilibrium concept. To this end, we analyse the contexts of scientific inquiry that have allowed the growth of chemical equilibrium from the first ideas of chemical affinity. At the beginning of the 18th century, chemists began the construction of different affinity tables, based on the concept of elective affinities. Berthollet reworked this idea, considering that the amount of the substances involved in a reaction was a key factor accounting for the chemical forces. Guldberg and Waage attempted to measure those forces, formulating the first affinity mathematical equations. Finally, the first ideas providing a molecular interpretation of the macroscopic properties of equilibrium reactions were presented. The historical approach of the first key ideas may serve as a basis for an appropriate sequencing of
    [Show full text]
  • Calcination) 2
    Thermal Treatment of Catalysts Modern Methods in Heterogeneous Catalysis Research Friederike C. Jentoft, October 31, 2003 Outline 1. Terminology (calcination) 2. Sample vs. oven set temperature 3. Self-generated atmosphere & self-steaming of zeolites 4. Combustion 5. Glow phenomenon & zirconia catalysts 6. Crystallization 7. Loss of surface area 8. Effect of additives 9. Solid-solid wetting 10.Reductive treatments & SMSI Steps of Catalyst Preparation v IUPAC defines 3 steps of catalyst preparation 1. Preparation of primary solid, associating all the useful compounds 2. Processing of that primary solid to obtain the catalyst precursor for example by heat treatment 3. Activation of the precursor to give the active catalyst (reduction to metal, formation of sulfides, deammoniation of zeolites) Heat Treatment of Intermediate Solids or Precursors v drying v thermal decomposition of salts (nitrates, ammonium salts) v calcination v product is a "reasonably inert solid" which can be stored easily Annealing v in a general meaning: a heating of a material over a long time span; strain and cracks in a crystalline solid can be removed Origin of the Term "Calcination" v latin "calx" = playstone limestone, (greek chálix) v burning of calcium carbonate (limestone) to calcium oxide (quicklime) -1 CaCO3 → CaO + CO2 ΔH(900°C)=3010 kJ mol v used to construct Giza pyramids (ca. 2800 A.C.), burning of limestone ("Kalkbrennen") mentioned by Cato 184 A.C. v performed in kilns (ovens) at 900°C v addition of air to sustain combustion + cool product Examples for
    [Show full text]
  • The History of the Concept of Element, with Particular Reference to Humphry Davy
    The Physical Sciences Initiative The history of the concept of element, with particular reference to Humphry Davy One of the problems highlighted when the recently implemented chemistry syllabus was being developed was the difficulty caused by starting the teaching of the course with atoms. The new syllabus offers a possible alternative teaching order that starts at the macroscopic level, and deals with elements. If this is done, the history of the idea of elements is dealt with at a very early stage. The concept of element originated with the ancient Greeks, notably Empedocles, who around 450 BC defined elements as the basic building blocks from which all other materials are made. He stated that there were four elements: earth, air, fire and water. Substances were said to change when elements break apart and recombine under the action of the forces of strife and love. Little progress was made in this area until the seventeenth century AD. The fruitless attempts of the alchemists to change base metals such as lead into gold and to find the “elixir of life” held back progress, although much chemical knowledge and expertise was gained. In 1661, 1 The Physical Sciences Initiative The Physical Sciences Initiative Robert Boyle defined an element as a substance that cannot be broken down into simpler materials. He cast doubt on the Greek elements, and provided a criterion for showing that a material was not an element. Robert Boyle Many elements were discovered during the next 100 years, but progress was delayed by the phlogiston hypothesis. According to this hypothesis, when a substance was burned it lost a substance called phlogiston to the air.
    [Show full text]
  • Innovation in Continuous Rectification for Tequila Production
    processes Communication Innovation in Continuous Rectification for Tequila Production Estarrón-Espinosa Mirna, Ruperto-Pérez Mariela, Padilla-de la Rosa José Daniel * and Prado-Ramírez Rogelio * Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Av. Normalistas No. 800, C.P. 44720 Guadalajara, Jalisco, Mexico; [email protected] (E.-E.M.); [email protected] (R.-P.M.) * Correspondence: [email protected] (P.-d.l.R.J.D.); [email protected] (P.-R.R.); Tel.: +33-33455200 (P.-d.l.R.J.D.) Received: 23 March 2019; Accepted: 6 May 2019; Published: 14 May 2019 Abstract: In this study, a new process of continuous horizontal distillation at a pilot level is presented. It was applied for the first time to the rectification of an ordinario fraction obtained industrially. Continuous horizontal distillation is a new process whose design combines the benefits of both distillation columns, in terms of productivity and energy savings (50%), and distillation stills in batch, in terms of the aromatic complexity of the distillate obtained. The horizontal process of continuous distillation was carried out at the pilot level in a manual mode, obtaining five accumulated fractions of distillate that were characterized by gas chromatography (GC-FID). The tequila obtained from the rectification process in this new continuous horizontal distillation process complies with the content of methanol and higher alcohols regulated by the Official Mexican Standard (NOM-006-SCFI-2012). Continuous horizontal distillation of tequila has potential energy savings of 50% compared to the traditional process, besides allowing products with major volatile profiles within the maximum limits established by the regulation for this beverage to be obtained.
    [Show full text]
  • Page2 Sidebar 1.Pdf
    Headquarters & Forge Americas Office [email protected] [email protected] +49 (0) 7161 / 97830 215.242.6806 +49 (0) 7161 / 978321 fax fax 215.701.9725 artisan distilling systems 600 liter whiskey still the fine art of distillery technology Germany’s oldest distillery fabricator, since 1869, combining traditional family craftsmanship with leading eau-de-vie distillery innovations and technologies. Meticulously custom-crafted artisan copper pot still systems for all the great distilling traditions, and efficient continuous plants, grappa distillery in copper and stainless steel, for all capacities and applications: 450 liter artisan pot stills – brandy & vodka vodka, whiskey, eaux-de-vie, brandy, rum, gin, grappa, tequila, aguardientes… 1000 liter artisan vodka system 650 liter system with CADi automation continuous mash stripping column C. CARL Ziegelstraße 21 Americas Office Brewing & Distilling Ing. GmbH D-73033 Göppingen PO Box 4388 Technologies Corp. www.christiancarl.com Germany Philadelphia, PA 19118-8388 www.brewing-distilling.com CARL artisan distillery systems the fine art of distillery technology CARL custom-builds each distillery to order in our family shop near Stuttgart in Swabia, with the attention and care of crafting a finely- tuned instrument. All-the-while, we stay focused on the continued development of our distillery technology. There are always new ideas and realizations, such our the in-house developed CARL CADi distillery automation or our patented aroma bubble plate technologies, Our innovations have fostered CARL’s nearly 140 years of family tradition and experience as Germany’s oldest and most respected distillery fabricator, with thousands of successful commissions worldwide. form and function Our diverse customers, from small farmers to winemakers to brewers to large spirits houses, show great enthusiasm and appreciation for the aesthetics and functionality of a CARL distillery: its design, its form, classic and intuitively easy to understand, clear in conception.
    [Show full text]
  • 1 in Search of Robert Lovell: Poet and Pantisocrat I. Introduction 'At The
    In Search of Robert Lovell: Poet and Pantisocrat I. Introduction ‘At the close of the year 1794, a clever young man, of the Society of Friends, of the name of Robert Lovell, who had married a Miss Fricker, informed me that a few friends of his from Oxford and Cambridge, with himself, were about to sail to America, and, on the banks of the Susquehannah, to form a Social Colony, in which there was to be a community of property, and where all that was selfish was to be proscribed.’1 Thus wrote Bristol publisher Joseph Cottle in his Reminiscences published in 1847. As any serious student of Romanticism knows, the most important of those ‘few friends’ mentioned by Cottle were Robert Southey and Samuel Taylor Coleridge, who were then gathering support for a small-scale transatlantic emigration scheme founded on radical egalitarian or so-called ‘Pantisocratic’ principles. It is chiefly in connection with this utopian venture that the ‘clever young man’ described by Cottle has, until now, typically featured in Romantic criticism, very much in a supporting if not peripheral role. But how much do we know about Robert Lovell? What kind of person was he? Why did Southey, and subsequently Coleridge, embrace him enthusiastically on first acquaintance and later downgrade their estimate of his qualities? What was Lovell’s achievement as a poet, and what was his place in the early history of Romanticism in the South West? In this essay I attempt to answer these questions by re- examining established ‘facts’, gathering fresh evidence, and treating Lovell and his poetry as valid subjects in their own right rather than as a footnote to the budding careers of Coleridge and Southey.
    [Show full text]
  • An Analysis of Electrophilic Aromatic Substitution: a “Complex Approach” PCCP
    Volume 23 Number 9 7 March 2021 Pages 5033–5682 PCCP Physical Chemistry Chemical Physics rsc.li/pccp ISSN 1463-9076 PERSPECTIVE Janez Cerkovnik et al . An analysis of electrophilic aromatic substitution: a “complex approach” PCCP View Article Online PERSPECTIVE View Journal | View Issue An analysis of electrophilic aromatic substitution: a ‘‘complex approach’’† Cite this: Phys. Chem. Chem. Phys., a a b 2021, 23, 5051 Nikola Stamenkovic´, Natasˇa Poklar Ulrih and Janez Cerkovnik * Electrophilic aromatic substitution (EAS) is one of the most widely researched transforms in synthetic organic chemistry. Numerous studies have been carried out to provide an understanding of the nature of its reactivity pattern. There is now a need for a concise and general, but detailed and up-to-date, overview. The basic principles behind EAS are essential to our understanding of what the mechanisms underlying EAS are. To date, textbook overviews of EAS have provided little information about the Received 5th October 2020, mechanistic pathways and chemical species involved. In this review, the aim is to gather and present the Accepted 21st December 2020 up-to-date information relating to reactivity in EAS, with the implication that some of the key concepts DOI: 10.1039/d0cp05245k will be discussed in a scientifically concise manner. In addition, the information presented herein suggests certain new possibilities to advance EAS theory, with particular emphasis on the role of modern Creative Commons Attribution-NonCommercial 3.0 Unported Licence. rsc.li/pccp
    [Show full text]
  • Alchemist's Handbook-First Edition 1960 from One to Ten
    BY THE SAME AUTHOR wqt Drei NoveIlen (German) 1932 The Alchemist's Handbook-First Edition 1960 From One to Ten . .. .. 1966 Alrqtuttaf!i Praxis Spagyrica Philosophica 1966 The Seven Rays of the Q.B.L.-First Edition 1968 Praetische Alchemie irn Zwanzigsten Jahrundert 1970 ~aubhnnk (Practical Alchemy in the 20th Century-German) Der Mensch und die kosmischen Zyklen (German) 1971 (Manual for Practical Laboratory Alchemy) Men and the Cycles of the Universe 1971 Von Eins bis Zehn (From One to Ten-German) 1972 El Hombre y los Ciclos del Universo (Spanish) 1972 by Die Sieben Strahlen der Q.B.L. 1973 (The Seven Rays of the Q.B.L.-German) FRATER ALBERTUS SAMUEL WEISER New York CONTENTS Foreword 6 Preface to the First Edition 10 Preface to the Second Revised Edition 13 Chapter I Introduction to Alchemy 14 Samuel Weiser, Inc. Chapter 11 740 Broadway The Lesser Circulation 24 New York, N.Y. 10003 Chapter III First Published 1960 The Herbal Elixir Revised Edition 1974 Chapter IV Third Printing 1978 Medicinal Uses 43 Chapter V © 1974 Paracelsus Research Society Herbs and Stars 47 Salt Lake City, Utah, U.S.A. Chapter VI Symbols in Alchemy 56 ISBN 0 87728 181 5 Chapter VII Wisdom of the Sages 65 Conclusion 100 Alchemical Manifesto 120 ILLUSTRATIONS On the Way to the Temple 5 Soxhlet Extractor 34 Basement Laboratory 41 Essential Equipment 42 Printed in U.S.A. by Qabalistic Tree of Life 57 NOBLE OFFSET PRINTERS, INC. NEW YORK, N.Y. 10003 Alchemical Signs 58 ORIGINAL OIL PAINTING AT PARACELSUS RESEARCH SOCIETY ..
    [Show full text]
  • Reginald Victor Jones CH FRS (1911-1997)
    Catalogue of the papers and correspondence of Reginald Victor Jones CH FRS (1911-1997) by Alan Hayward NCUACS catalogue no. 95/8/00 R.V. Jones 1 NCUACS 95/8/00 Title: Catalogue of the papers and correspondence of Reginald Victor Jones CH FRS (1911-1997), physicist Compiled by: Alan Hayward Description level: Fonds Date of material: 1928-1998 Extent of material: 230 boxes, ca 5000 items Deposited in: Churchill Archives Centre, Churchill College, Cambridge CB3 0DS Reference code: GB 0014 2000 National Cataloguing Unit for the Archives of Contemporary Scientists, University of Bath. NCUACS catalogue no. 95/8/00 R.V. Jones 2 NCUACS 95/8/00 The work of the National Cataloguing Unit for the Archives of Contemporary Scientists, and the production of this catalogue, are made possible by the support of the Research Support Libraries Programme. R.V. Jones 3 NCUACS 95/8/00 NOT ALL THE MATERIAL IN THIS COLLECTION MAY YET BE AVAILABLE FOR CONSULTATION. ENQUIRIES SHOULD BE ADDRESSED IN THE FIRST INSTANCE TO: THE KEEPER OF THE ARCHIVES CHURCHILL ARCHIVES CENTRE CHURCHILL COLLEGE CAMBRIDGE R.V. Jones 4 NCUACS 95/8/00 LIST OF CONTENTS Items Page GENERAL INTRODUCTION 6 SECTION A BIOGRAPHICAL A.1 - A.302 12 SECTION B SECOND WORLD WAR B.1 - B.613 36 SECTION C UNIVERSITY OF ABERDEEN C.1 - C.282 95 SECTION D RESEARCH TOPICS AND SCIENCE INTERESTS D.1 - D.456 127 SECTION E DEFENCE AND INTELLIGENCE E.1 - E.256 180 SECTION F SCIENCE-RELATED INTERESTS F.1 - F.275 203 SECTION G VISITS AND CONFERENCES G.1 - G.448 238 SECTION H SOCIETIES AND ORGANISATIONS H.1 - H.922 284 SECTION J PUBLICATIONS J.1 - J.824 383 SECTION K LECTURES, SPEECHES AND BROADCASTS K.1 - K.495 450 SECTION L CORRESPONDENCE L.1 - L.140 495 R.V.
    [Show full text]
  • Bulletin De La Sabix, 50 | 2012, « Chimie Et Révolution
    Bulletin de la Sabix Société des amis de la Bibliothèque et de l'Histoire de l'École polytechnique 50 | 2012 Chimie et Révolution. La chimie au lendemain des révolutions De l'après-Lavoisier à Gay-Lussac à l'Ecole polytechnique Édition électronique URL : http://journals.openedition.org/sabix/1038 DOI : 10.4000/sabix.1038 ISSN : 2114-2130 Éditeur Société des amis de la bibliothèque et de l’histoire de l’École polytechnique (SABIX) Édition imprimée Date de publication : 15 mai 2012 ISSN : 0989-30-59 Référence électronique Bulletin de la Sabix, 50 | 2012, « Chimie et Révolution. La chimie au lendemain des révolutions » [En ligne], mis en ligne le 15 mai 2013, consulté le 06 octobre 2020. URL : http://journals.openedition.org/ sabix/1038 ; DOI : https://doi.org/10.4000/sabix.1038 Ce document a été généré automatiquement le 6 octobre 2020. © SABIX 1 SOMMAIRE Préface Andrea Bréard Deux polytechniciens et la chimie Pierre Laszlo L’acido-basicité Des observations aux concepts, les étapes-clés du début du XIXe siècle. Élisabeth Bardez Le binôme Gay-Lussac et Thenard : une longue amitié Gérard Emptoz Deux contributions majeures à la définition de l’espèce chimique : Proust et Chevreul Josette Fournier La contribution de Gay-Lussac dans l’émergence de la chimie organique Sacha Tomic L’importance de la loi de volumes pour le développement de la Chimie Organique Tania Camel Mathieu de Dombasle : un agronome critique de la chimie dans le premier tiers du XIXe siècle Fabien Knittel Vie de l’Association et de la Bibliothèque Visite de la bibliothèque Sainte-Geneviève avec la SABIX Mardi 24 janvier 2012 – telle que vécue par Erik Egnell (57), administrateur de la SABIX Erik Egnell Bulletin de la Sabix, 50 | 2012 2 Préface Andrea Bréard 1 Dans le cadre de l’ « Année Internationale de la Chimie 2011 », un colloque international sur « La chimie au lendemain des révolutions – Gay-Lussac et l’après- Lavoisier » s’est tenu les 29 et 30 septembre 2011 à l’École polytechnique.
    [Show full text]