Securing SSL Certificate Verification Through Dynamic Linking
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Oldschool E-Mail Setup Eine Freakshow
Oldschool E-mail Setup Eine Freakshow [email protected] Chemnitzer Linuxtage, 2016 (Screenshot GMX vor >15 Jahren: Waybackmachine zu www.gmx.net) (Screenshot GMX heute) (Screenshot Gmail heute) Lösungen? ● Claws ● Mutt ● Eudora ● Netscape Navigator ● Evolution ● Opera M2 ● GMX ● Outlook ● Gnus ● SquirrelMail ● Hotmail ● The Bat! ● Hushmail ● Thunderbird ● KMail ● … Flußgrafik Email Netz MTA MRA MDA MUA MSA MTA Netz Hipster! ● KISS ● YAGNI ● DRY ● NIH ● Divide And Conquer ● Everything is a file ● No vendor lock-in ● Mißtraue Autoritäten – fördere Dezentralisierung Netz Netz Emails Client, den ich Remote verwenden kann Leicht erweiterbar Emails lokal Filter Offenes Format Adressen Netz Netz Abholen Transportformat? Pull Subject 1 Email = 1 File Keine Spuren X-List-ID Mit Hierarchien am Server Beliebige Einfaches Suchen Header Verlässliches Suchen Verarbeitung mit Unix Tools Client, den ich Remote verwenden kann Leicht erweiterbar Emails lokal Filter Offenes Format Adressen Netz Netz Abholen Transportformat? Pull Subject 1 Email = 1 File Keine Spuren X-List-ID Mit Hierarchien am Server Beliebige Einfaches Suchen Header Verlässliches Suchen Verarbeitung mit Unix Tools mbox Maildir mh Client, den ich Remote verwenden kann Leicht erweiterbar Emails lokal Filter Offenes Format Adressen Netz Netz Abholen Transportformat? Pull Subject 1 Email = 1 File Keine Spuren X-List-ID Mit Hierarchien am Server Beliebige Einfaches Suchen Header Verlässliches Suchen Verarbeitung mit Unix Tools mbox Maildir mh tmp 1439306571.1269_0.elvis ~/Post/Technik/Wikitech new 1448267819.5940_0.spencer ... 1457079728.2000_0.spencer:2, cur 1456839383.9873_0.nepomuk:2,SR 1457166567.23654_0.spencer:2,S ... Client, den ich Remote verwenden kann Leicht erweiterbar Filter Adressen Netz Netz Abholen Pull Subject Maildir Keine Spuren X-List-ID am Server Beliebige Header Client, den ich Remote verwenden kann Leicht erweiterbar Filter Adressen Netz Netz Abholen Pull Subject Maildir Keine Spuren X-List-ID am Server Beliebige Header fetchmail getmail mpop .. -
Resurrect Your Old PC
Resurrect your old PCs Resurrect your old PC Nostalgic for your old beige boxes? Don’t let them gather dust! Proprietary OSes force users to upgrade hardware much sooner than necessary: Neil Bothwick highlights some great ways to make your pensioned-off PCs earn their keep. ardware performance is constantly improving, and it is only natural to want the best, so we upgrade our H system from time to time and leave the old ones behind, considering them obsolete. But you don’t usually need the latest and greatest, it was only a few years ago that people were running perfectly usable systems on 500MHz CPUs and drooling over the prospect that a 1GHz CPU might actually be available quite soon. I can imagine someone writing a similar article, ten years from now, about what to do with that slow, old 4GHz eight-core system that is now gathering dust. That’s what we aim to do here, show you how you can put that old hardware to good use instead of consigning it to the scrapheap. So what are we talking about when we say older computers? The sort of spec that was popular around the turn of the century. OK, while that may be true, it does make it seem like we are talking about really old hardware. A typical entry-level machine from six or seven years ago would have had something like an 800MHz processor, Pentium 3 or similar, 128MB of RAM and a 20- 30GB hard disk. The test rig used for testing most of the software we will discuss is actually slightly lower spec, it has a 700MHz Celeron processor, because that’s what I found in the pile of computer gear I never throw away in my loft, right next to my faithful old – but non-functioning – Amiga 4000. -
Design Document
SPEC OSG Mailserver Subcommittee SPECmail2009 Benchmark Architecture White Paper Revision: v1.0 Date: 22 December 2008 Copyright © 2001-2009 Standard Performance Evaluation Corporation. All Rights Reserved. 1. Introduction 1.1 Overview SPECmail2009 is a software benchmark designed to measure a system's ability to act as an enterprise mail server servicing email requests, based on the Internet standard protocols SMTP and IMAP4. The benchmark concentrates on the workload encountered by corporate mail servers, with an overall user count in the range of 150 to 10,000 (or more) users. It models IMAP business users accessing IMAP servers over fast local area networks (LAN) instead of broadband, WAN or dialup access speeds. Two separate metrics measure e-mail servers with and without secure network connections (SSL). SPECmail2009 has been developed by the Standard Performance Evaluation Corporation (SPEC), a non-profit group of computer vendors, system integrators, universities, research organizations, publishers, and consultants. This paper discusses the benchmark principles and architecture, and the rationale behind the key design decisions. It also outlines the workload used in the benchmark, and the general steps needed to run a benchmark. However those aspects are covered in more detail in other documents. 1.2 Organization of this Paper Chapter 2 discusses the basic goals and non-goals of the benchmark. Chapter 3 introduces the two performance metrics for SPECmail2009 – IMAP sessions per hour - and how it relates to the transaction mix imposed on the system under test.. Chapter 4 explains the benchmark workload - how it was derived, how it translates into configuration parameters for the benchmark tool and size calculations for planning a benchmark, and how it relates to the benchmark metric. -
Cyrus Mail Server 2 Table of Contents
Univention Corporate Server Cyrus mail server 2 Table of Contents 1. Introduction ........................................................................................................................ 4 2. Installation ......................................................................................................................... 5 3. Management of the mail server data ....................................................................................... 6 3.1. Management of mail domains ..................................................................................... 6 3.2. Assignment of e-mail addresses to users ........................................................................ 6 3.3. Management of mailing lists ....................................................................................... 7 3.4. Management of mail groups ........................................................................................ 7 3.5. Management of shared IMAP folders ........................................................................... 8 3.6. Mail quota ............................................................................................................... 9 4. Spam detection and filtering ................................................................................................ 10 5. Identification of viruses and malware .................................................................................... 11 6. Identification of Spam sources with DNS-based Blackhole Lists (DNSBL) ................................... -
Symantec White Paper
QUARTERLY REPORT: SYMANTEC ENTERPRISE SECURITY SYMANTEC REPORT: QUARTERLY Symantec Intelligence Quarterly July - September, 2009 Published October 2009 Technical Brief: Symantec Enterprise Security Symantec Intelligence Quarterly July - September, 2009 Contents Introduction . 1 Highlights . 2 Metrics. 2 Meeting the Challenge of Sophisticated Attacks . 8 Timeline of a zero-day event . 8 How secure are security protocols?. 11 Why attackers use packers. 14 Protection and Mitigation . 16 Appendix A—Best Practices . 18 Appendix B—Methodologies. 20 Credits . 24 Symantec Intelligence Quarterly July - September, 2009 Introduction Symantec has established some of the most comprehensive sources of Internet threat data in the world through the Symantec™ Global Intelligence Network. More than 240,000 sensors in over 200 countries monitor attack activity through a combination of Symantec products and services such as Symantec DeepSight™ Threat Management System, Symantec™ Managed Security Services and Norton™ consumer products, as well as additional third-party data sources. Symantec also gathers malicious code intelligence from more than 130 million client, server, and gateway systems that have deployed its antivirus products. Additionally, the Symantec distributed honeypot network collects data from around the globe, capturing previously unseen threats and attacks and providing valuable insight into attacker methods. Spam data is captured through the Symantec probe network, a system of more than 2.5 million decoy email accounts, Symantec MessageLabs™ Intelligence, and other Symantec technologies in more than 86 countries from around the globe. Over 8 billion email messages, as well as over 1 billion Web requests, are scanned per day across 16 data centers. Symantec also gathers phishing information through an extensive antifraud community of enterprises, security vendors, and more than 50 million consumers. -
Ten Strategies of a World-Class Cybersecurity Operations Center Conveys MITRE’S Expertise on Accumulated Expertise on Enterprise-Grade Computer Network Defense
Bleed rule--remove from file Bleed rule--remove from file MITRE’s accumulated Ten Strategies of a World-Class Cybersecurity Operations Center conveys MITRE’s expertise on accumulated expertise on enterprise-grade computer network defense. It covers ten key qualities enterprise- grade of leading Cybersecurity Operations Centers (CSOCs), ranging from their structure and organization, computer MITRE network to processes that best enable effective and efficient operations, to approaches that extract maximum defense Ten Strategies of a World-Class value from CSOC technology investments. This book offers perspective and context for key decision Cybersecurity Operations Center points in structuring a CSOC and shows how to: • Find the right size and structure for the CSOC team Cybersecurity Operations Center a World-Class of Strategies Ten The MITRE Corporation is • Achieve effective placement within a larger organization that a not-for-profit organization enables CSOC operations that operates federally funded • Attract, retain, and grow the right staff and skills research and development • Prepare the CSOC team, technologies, and processes for agile, centers (FFRDCs). FFRDCs threat-based response are unique organizations that • Architect for large-scale data collection and analysis with a assist the U.S. government with limited budget scientific research and analysis, • Prioritize sensor placement and data feed choices across development and acquisition, enteprise systems, enclaves, networks, and perimeters and systems engineering and integration. We’re proud to have If you manage, work in, or are standing up a CSOC, this book is for you. served the public interest for It is also available on MITRE’s website, www.mitre.org. more than 50 years. -
A Systematic Study of Cache Side Channels Across AES Implementations
A Systematic Study of Cache Side Channels across AES Implementations Heiko Mantel1, Alexandra Weber1, and Boris K¨opf 2 1 Computer Science Department, TU Darmstadt, Darmstadt, Germany [email protected], [email protected] 2 IMDEA Software Institute, Madrid, Spain [email protected] Abstract While the AES algorithm is regarded as secure, many imple- mentations of AES are prone to cache side-channel attacks. The lookup tables traditionally used in AES implementations for storing precom- puted results provide speedup for encryption and decryption. How such lookup tables are used is known to affect the vulnerability to side chan- nels, but the concrete effects in actual AES implementations are not yet sufficiently well understood. In this article, we analyze and compare multiple off-the-shelf AES implementations wrt. their vulnerability to cache side-channel attacks. By applying quantitative program analysis techniques in a systematic fashion, we shed light on the influence of im- plementation techniques for AES on cache-side-channel leakage bounds. 1 Introduction The Advanced Encryption Standard (AES) is a widely used symmetric cipher that is approved by the U.S. National Security Agency for security-critical ap- plications [8]. While traditional attacks against AES are considered infeasible as of today, software implementations of AES are known to be highly suscepti- ble to cache side-channel attacks [5, 15, 18, 19, 32]. While such side channels can be avoided by bitsliced implementations [6,23], lookup-table-based implementa- tions, which aim at better performance, are often vulnerable and wide spread. To understand the vulnerability to cache side-channel attacks, recall that the 128bit version of AES relies on 10 rounds of transformations. -
The BEAST Wins Again: Why TLS Keeps Failing to Protect HTTP Antoine Delignat-Lavaud, Inria Paris Joint Work with K
The BEAST Wins Again: Why TLS Keeps Failing to Protect HTTP Antoine Delignat-Lavaud, Inria Paris Joint work with K. Bhargavan, C. Fournet, A. Pionti, P.-Y. Strub INTRODUCTION Introduction Cookie Cutter Virtual Host Confusion Crossing Origin Boundaries Shared Session Cache Shared Reverse Proxies SPDY Connection Pooling Triple Handshake Conclusion Why do we need TLS? 1. Authentication – Must be talking to the right guy 2. Integrity – Our messages cannot be tampered 3. Confidentiality – Messages are only legible to participants 4. Privacy? – Can’t tell who we are and what we talk about Why do we need TLS? 1. Authentication – Must be talking to the right guy Active Attacks 2. Integrity (MitM) – Our messages cannot be tampered 3. Confidentiality – Messages are only legible to participants Passive Attacks 4. Privacy? (Wiretapping) – Can’t tell who we are and what we talk about What websites expect of TLS • Web attacker – Controls malicious websites – User visits honest and malicious sites in parallel – Web/MitB attacks: CSRF, XSS, Redirection… • Network attacker – Captures (passive) and tampers (active) packets What websites expect of TLS • Web attacker – Controls malicious websites – User visits honest and malicious sites in parallel – Web/MitB attacks: CSRF, XSS, Redirection… • Network attacker Strictly stronger – Captures (passive) and tampers (active) packets What websites expect of TLS If a website W served over HTTP is secure against a Web attacker, then serving W over HTTPS makes it secure against a network attacker. What websites expect of TLS If a website W served over HTTP is secure against a Web attacker, then serving W over HTTPS makes it secure against a network attacker. -
Searching for Trust
SEARCHing for Trust Scott Rea1, TBA GOV2, TBA EDU3 1DigiCert Inc, Lindon, UT U.S.A., [email protected] 2Gov Agency, TBA, Australia, [email protected] 3University or Corporation, TBA, Australia, [email protected] ABSTRACT The security of the X.509 “oligarchy” Public Key Infrastructure for browsers and SSL web servers is under scrutiny in response to Certification Authority (CA) compromises which resulted in the circulation of fraudulent certificates. These rogue certificates can and have been used to execute Man-in-the-Middle attacks and gain access to users’ sensitive information. In wake of these events, there has been a call for change to the extent of either securing the current system or altogether replacing it with an alternative design. This panel will review the results of the research paper to be published that will explore the following proposals which have been put forth to replace or improve the CA system with the goal of aiding in the prevention and detection of MITM attacks and improving the trust infrastructure: Convergence, Perspectives, Mutually Endorsed Certification Authority Infrastructure (MECAI), DNS-Based Authentication of Named Entities (DANE), DNS Certification Authority Authorization (CAA) Resource Records, Public Key Pinning, Sovereign Keys, and Certificate Transparency. In the paper, a new metric is described that ranks each proposal according to a set of well-identified criteria and gives readers an idea of the costs and benefits of implementing the proposed system and the potential strengths and weaknesses of the design. The results of the research and the corresponding impacts for eResearchers and Government collaborators will be discussed by the panel. -
Whither Deprecating TCP-MD5? a Light Dose of Reality Vs
Deprecating MD5 for LDP draft-nslag-mpls-deprecate-md5- 00.txt The IETF MPLS and PALS WG Chairs Our Problem • Control plane protocols are often carried over simple transport layers such as UDP or TCP. • Control planes are good targets for attack and their disruption or subversion can have serious operational consequences. • TCP RST attacks against BGP routers were the original motivation for RFC 2385, TCP-MD5. • LDP runs over TCP. • It currently uses TCP MD5 for authentication, which is no longer considered secure (see RFC 5925) • This is frequently pointed out to us when our documents go to the IESG for publication. Small Survey among operators and vendors - I • The survey was totally un-scientific, and just a small number of vendors and operators were asked. Questions could be better formulated. • Operators were asked. • If TCP-AO were available in products, would you use it? • Are you planning to deploy it? • Vendors were asked. • Do you have TCP-AO? • We will consider making a bigger and more scientific survey to send out to “everybody”. Small Survey among operators and vendors - II • Operators answered: • No plan to deploy TCP-AO as long as vendors support their MD-5 implementations. • Very few authenticated LDP sessions. • There is a cost to deploy TCP-AO. • Vendors answered: • No we don’t have TCP-AO in our products. • One vendor said that it will be available later this year. • We will not implement it until we hear from the operators that they need it. What we need • A security suit that: • Is more secure than MD5 when used over the long-lived sessions that support routing. -
PROCEEDINGS of the ICA CONGRESS (Onl the ICA PROCEEDINGS OF
ine) - ISSN 2415-1599 ISSN ine) - PROCEEDINGS OF THE ICA CONGRESS (onl THE ICA PROCEEDINGS OF Page intentionaly left blank 22nd International Congress on Acoustics ICA 2016 PROCEEDINGS Editors: Federico Miyara Ernesto Accolti Vivian Pasch Nilda Vechiatti X Congreso Iberoamericano de Acústica XIV Congreso Argentino de Acústica XXVI Encontro da Sociedade Brasileira de Acústica 22nd International Congress on Acoustics ICA 2016 : Proceedings / Federico Miyara ... [et al.] ; compilado por Federico Miyara ; Ernesto Accolti. - 1a ed . - Gonnet : Asociación de Acústicos Argentinos, 2016. Libro digital, PDF Archivo Digital: descarga y online ISBN 978-987-24713-6-1 1. Acústica. 2. Acústica Arquitectónica. 3. Electroacústica. I. Miyara, Federico II. Miyara, Federico, comp. III. Accolti, Ernesto, comp. CDD 690.22 ISSN 2415-1599 ISBN 978-987-24713-6-1 © Asociación de Acústicos Argentinos Hecho el depósito que marca la ley 11.723 Disclaimer: The material, information, results, opinions, and/or views in this publication, as well as the claim for authorship and originality, are the sole responsibility of the respective author(s) of each paper, not the International Commission for Acoustics, the Federación Iberoamaricana de Acústica, the Asociación de Acústicos Argentinos or any of their employees, members, authorities, or editors. Except for the cases in which it is expressly stated, the papers have not been subject to peer review. The editors have attempted to accomplish a uniform presentation for all papers and the authors have been given the opportunity -
Analysis of DTLS Implementations Using Protocol State Fuzzing
Analysis of DTLS Implementations Using Protocol State Fuzzing Paul Fiterau-Brostean and Bengt Jonsson, Uppsala University; Robert Merget, Ruhr-University Bochum; Joeri de Ruiter, SIDN Labs; Konstantinos Sagonas, Uppsala University; Juraj Somorovsky, Paderborn University https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean This paper is included in the Proceedings of the 29th USENIX Security Symposium. August 12–14, 2020 978-1-939133-17-5 Open access to the Proceedings of the 29th USENIX Security Symposium is sponsored by USENIX. Analysis of DTLS Implementations Using Protocol State Fuzzing Paul Fiterau-Bro¸stean˘ Bengt Jonsson Robert Merget Joeri de Ruiter Uppsala University Uppsala University Ruhr University Bochum SIDN Labs Konstantinos Sagonas Juraj Somorovsky Uppsala University Paderborn University Abstract reach 11.6 billion by 2021 [26]. This will constitute half of all devices connected to the Internet, with the percentage set to Recent years have witnessed an increasing number of proto- grow in subsequent years. Such trends also increase the need cols relying on UDP. Compared to TCP, UDP offers perfor- to ensure that software designed for these devices is properly mance advantages such as simplicity and lower latency. This scrutinized, particularly with regards to its security. has motivated its adoption in Voice over IP, tunneling techno- DTLS is also used as one of the two security protocols in logies, IoT, and novel Web protocols. To protect sensitive data WebRTC, a framework enabling real-time communication. exchange in these scenarios, the DTLS protocol has been de- WebRTC can be used, for example, to implement video con- veloped as a cryptographic variation of TLS.