Analysis of DTLS Implementations Using Protocol State Fuzzing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Using Frankencerts for Automated Adversarial Testing of Certificate
Using Frankencerts for Automated Adversarial Testing of Certificate Validation in SSL/TLS Implementations Chad Brubaker ∗ y Suman Janay Baishakhi Rayz Sarfraz Khurshidy Vitaly Shmatikovy ∗Google yThe University of Texas at Austin zUniversity of California, Davis Abstract—Modern network security rests on the Secure Sock- many open-source implementations of SSL/TLS are available ets Layer (SSL) and Transport Layer Security (TLS) protocols. for developers who need to incorporate SSL/TLS into their Distributed systems, mobile and desktop applications, embedded software: OpenSSL, NSS, GnuTLS, CyaSSL, PolarSSL, Ma- devices, and all of secure Web rely on SSL/TLS for protection trixSSL, cryptlib, and several others. Several Web browsers against network attacks. This protection critically depends on include their own, proprietary implementations. whether SSL/TLS clients correctly validate X.509 certificates presented by servers during the SSL/TLS handshake protocol. In this paper, we focus on server authentication, which We design, implement, and apply the first methodology for is the only protection against man-in-the-middle and other large-scale testing of certificate validation logic in SSL/TLS server impersonation attacks, and thus essential for HTTPS implementations. Our first ingredient is “frankencerts,” synthetic and virtually any other application of SSL/TLS. Server authen- certificates that are randomly mutated from parts of real cer- tication in SSL/TLS depends entirely on a single step in the tificates and thus include unusual combinations of extensions handshake protocol. As part of its “Server Hello” message, and constraints. Our second ingredient is differential testing: if the server presents an X.509 certificate with its public key. -
Libressl Presentatie2
Birth of LibreSSL and its current status Frank Timmers Consutant, Snow B.V. Background What is LibreSSL • A fork of OpenSSL 1.0.1g • Being worked on extensively by a number of OpenBSD developers What is OpenSSL • OpenSSL is an open source SSL/TLS crypto library • Currently the de facto standard for many servers and clients • Used for securing http, smtp, imap and many others Alternatives • Netscape Security Services (NSS) • BoringSSL • GnuTLS What is Heartbleed • Heartbleed was a bug leaking of private data (keys) from both client and server • At this moment known as “the worst bug ever” • Heartbeat code for DTLS over UDP • So why was this also included in the TCP code? • Not the reason to create a fork Why did this happen • Nobody looked • Or at least didn’t admit they looked Why did nobody look • The code is horrible • Those who did look, quickly looked away and hoped upstream could deal with it Why was the code so horrible • Buggy re-implementations of standard libc functions like random() and malloc() • Forces all platforms to use these buggy implementations • Nested #ifdef, #ifndefs (up to 17 layers deep) through out the code • Written in “OpenSSL C”, basically their own dialect • Everything on by default Why was it so horrible? crypto_malloc • Never frees memory (Tools like Valgrind, Coverity can’t spot bugs) • Used LIFO recycling (Use after free?) • Included debug malloc by default, logging private data • Included the ability to replace malloc/free at runtime #ifdef trees • #ifdef, #elif, #else trees up to 17 layers deep • Throughout the complete source • Some of which could never be reached • Hard to see what is or not compiled in 1. -
Cipher Support on a Citrix MPX/SDX (N3) Appliance
Cipher support on a Citrix MPX/SDX (N3) appliance The following table lists the support for different ciphers on SSL entities, such as virtual server, frontend, backend, and internal services. On an SDX appliance, if an SSL chip is assigned to a VPX instance, the cipher support of an MPX appliance applies. Otherwise, the normal cipher support of a VPX instance applies. From release 10.5 build 56.22, NetScaler MPX appliances support full hardware optimization for all ciphers. In earlier releases, part of ECDHE/DHE cipher optimization was done in software. Use the 'show hardware' command to identify whether your appliance has N3 chips. > sh hardware Platform: NSMPX-22000 16*CPU+24*IX+12*E1K+2*E1K+4*CVM N3 2200100 Manufactured on: 8/19/2013 CPU: 2900MHZ Host Id: 1006665862 Serial no: ENUK6298FT Encoded serial no: ENUK6298FT Done How to read the table Unless a build number is specified, a cipher suite is supported for all builds in a release. Example • 10.5, 11.0, 11.1, 12.0, 12.1, 13.0: All builds of 10.5, 11.0, 11.1, 12.0, 12.1, 13.0, releases. • 11.1, 12.0, 12.1, 13.0: All builds of 11.1, 12.0, 12.1, 13.0 releases. • 10.5-53.x and later, 11.0, 11.1, 12.0, 12.1, 13.0: Build 53.x and later in release 10.5. All builds of 11.0, 11.1, 12.0, 12.1, 13.0 releases. • NA: not applicable. Ciphersuite Name Hex Wireshark Ciphersuite Name Builds Builds Code Supported Supported (frontend) (backend) TLS1-AES-256-CBC-SHA 0x0035 TLS_RSA_WITH_AES_256_CB 10.5, 11.0, 10.5, 11.0, C_SHA 11.1, 12.0, 11.1, 12.0, 12.1, 13.0 12.1, 13.0 TLS1-AES-128-CBC-SHA 0x002f -
Sizzle: a Standards-Based End-To-End Security Architecture for the Embedded Internet
Sizzle: A Standards-based end-to-end Security Architecture for the Embedded Internet Vipul Gupta, Matthew Millard,∗ Stephen Fung*, Yu Zhu*, Nils Gura, Hans Eberle, Sheueling Chang Shantz Sun Microsystems Laboratories 16 Network Circle, UMPK16 160 Menlo Park, CA 94025 [email protected], [email protected], [email protected] [email protected], {nils.gura, hans.eberle, sheueling.chang}@sun.com Abstract numbers of even simpler, more constrained devices (sen- sors, home appliances, personal medical devices) get con- This paper introduces Sizzle, the first fully-implemented nected to the Internet. The term “embedded Internet” is end-to-end security architecture for highly constrained em- often used to refer to the phase in the Internet’s evolution bedded devices. According to popular perception, public- when it is invisibly and tightly woven into our daily lives. key cryptography is beyond the capabilities of such devices. Embedded devices with sensing and communication capa- We show that elliptic curve cryptography (ECC) not only bilities will enable the application of computing technolo- makes public-key cryptography feasible on these devices, it gies in settings where they are unusual today: habitat mon- allows one to create a complete secure web server stack itoring [26], medical emergency response [31], battlefield including SSL, HTTP and user application that runs effi- management and home automation. ciently within very tight resource constraints. Our small Many of these applications have security requirements. footprint HTTPS stack needs less than 4KB of RAM and For example, health information must only be made avail- interoperates with an ECC-enabled version of the Mozilla able to authorized personnel (authentication) and be pro- web browser. -
Cipher Support on a Citrix ADC VPX Appliance
Cipher support on a Citrix VPX appliance The following table lists the support for different ciphers on SSL entities, such as virtual server, services, and internal services. How to read the table Unless a build number is specified, a cipher suite is supported for all builds in a release. Example • 10.5, 11.0, 11.1, 12.0, 12.1, 13.0: All builds of 10.5, 11.0, 11.1, 12.0, 12.1, 13.0 releases. • 11.1, 12.0, 12.1, 13.0: All builds of 11.1, 12.0, 12.1, 13.0 releases. • 10.5-53.x and later, 11.0, 11.1, 12.0, 12.1, 13.0: Build 53.x and later in release 10.5. All builds of 11.0, 11.1, 12.0, 12.1, 13.0 releases. • NA: not applicable. Cipher Suite Name Hex Wireshark Cipher Suite Name Builds Builds Code Supported Supported (frontend) (backend) TLS1-AES-256-CBC-SHA 0x0035 TLS_RSA_WITH_AES_256_CBC 10.5, 11.0, 10.5, 11.0, _SHA 11.1, 12.0, 11.1, 12.0, 12.1, 13.0 12.1, 13.0 TLS1-AES-128-CBC-SHA 0x002f TLS_RSA_WITH_AES_128_CBC 10.5, 11.0, 10.5, 11.0, _SHA 11.1, 12.0, 11.1, 12.0, 12.1, 13.0 12.1, 13.0 TLS1.2-AES-256-SHA256 0x003d TLS_RSA_WITH_AES_256_CBC 11.0-66.x and 12.0 56.x and _SHA256 later, 11.1, later, 12.1, 12.0, 12.1, 13.0 13.0 TLS1.2-AES-128-SHA256 0x003c TLS_RSA_WITH_AES_128_CBC 11.0-66.x and 12.0 56.x and _SHA256 later, 11.1, later, 12.1, 12.0, 12.1, 13.0 13.0 TLS1.2-AES256-GCM-SHA384 0x009d TLS_RSA_WITH_AES_256_GC 11.0-66.x and 12.0 56.x and M_SHA384 later, 11.1, later, 12.1, 12.0, 12.1, 13.0 13.0 TLS1.2-AES128-GCM-SHA256 0x009c TLS_RSA_WITH_AES_128_GC 11.0-66.x and 12.0 56.x and M_SHA256 later, 11.1, later, 12.1, 12.0, 12.1, 13.0 13.0 TLS1-ECDHE-RSA-AES256-SHA -
Arxiv:1911.09312V2 [Cs.CR] 12 Dec 2019
Revisiting and Evaluating Software Side-channel Vulnerabilities and Countermeasures in Cryptographic Applications Tianwei Zhang Jun Jiang Yinqian Zhang Nanyang Technological University Two Sigma Investments, LP The Ohio State University [email protected] [email protected] [email protected] Abstract—We systematize software side-channel attacks with three questions: (1) What are the common and distinct a focus on vulnerabilities and countermeasures in the cryp- features of various vulnerabilities? (2) What are common tographic implementations. Particularly, we survey past re- mitigation strategies? (3) What is the status quo of cryp- search literature to categorize vulnerable implementations, tographic applications regarding side-channel vulnerabili- and identify common strategies to eliminate them. We then ties? Past work only surveyed attack techniques and media evaluate popular libraries and applications, quantitatively [20–31], without offering unified summaries for software measuring and comparing the vulnerability severity, re- vulnerabilities and countermeasures that are more useful. sponse time and coverage. Based on these characterizations This paper provides a comprehensive characterization and evaluations, we offer some insights for side-channel of side-channel vulnerabilities and countermeasures, as researchers, cryptographic software developers and users. well as evaluations of cryptographic applications related We hope our study can inspire the side-channel research to side-channel attacks. We present this study in three di- community to discover new vulnerabilities, and more im- rections. (1) Systematization of literature: we characterize portantly, to fortify applications against them. the vulnerabilities from past work with regard to the im- plementations; for each vulnerability, we describe the root cause and the technique required to launch a successful 1. -
Secure Industrial Device Connectivity with Low-Overhead TLS
Secure Industrial Device Connectivity with Low-Overhead TLS Tuesday, October 3, 2017 1:10PM-2:10PM Chris Conlon - Engineering Manager, wolfSSL - B.S. from Montana State University (Bozeman, MT) - Software engineer at wolfSSL (7 years) Contact Info: - Email: [email protected] - Twitter: @c_conlon A. – B. – C. – D. – E. F. ● ● ● ○ ● ○ ● ○ ● Original Image Encrypted using ECB mode Modes other than ECB ● ○ ● ○ ● ● ● ● ○ ● ● ● ● ○ ● ○ ○ ○ ○ ● ○ ● ● ● ● ○ ● ● ○ By Original schema: A.J. Han Vinck, University of Duisburg-EssenSVG version: Flugaal - A.J. Han Vinck, Introduction to public key cryptography, p. 16, Public Domain, https://commons.wikimedia.org/w/index.php?curid=17063048 ● ○ ● ○ ■ ■ ■ ● ○ ■ ● ● ● ● ● ○ ● ● ● ● ● ● ● ○ ○ ○ ○ ● “Progressive” is a subjective term ● These slides talk about crypto algorithms that are: ○ New, modern ○ Becoming widely accepted ○ Have been integrated into SSL/TLS with cipher suites ● ChaCha20 ● Poly1305 ● Curve25519 ● Ed25519 Created by Daniel Bernstein a research professor at the University of Illinois, Chicago Chacha20-Poly1305 AEAD used in Google over HTTPS Ed25519 and ChaCha20-Poly1305 AEAD used in Apple’s HomeKit (iOS Security) ● Fast stream cipher ● Based from Salsa20 stream cipher using a different quarter-round process giving it more diffusion ● Can be used for AEAD encryption with Poly1305 ● Was published by Bernstein in 2008 Used by ● Google Chrome ● TinySSH ● Apple HomeKit ● wolfSSL ● To provide authenticity of messages (MAC) ● Extremely fast in comparison to others ● Introduced by a presentation given from Bernstein in 2002 ● Naming scheme from using polynomial-evaluation MAC (Message Authentication Code) over a prime field Z/(2^130 - 5) Used by ● Tor ● Google Chrome ● Apple iOS ● wolfSSL Generic Montgomery curve. Reference 5 Used by ● Tera Term ● GnuPG ● wolfSSL Generic Twisted Edwards Curve. -
Black-Box Security Analysis of State Machine Implementations Joeri De Ruiter
Black-box security analysis of state machine implementations Joeri de Ruiter 18-03-2019 Agenda 1. Why are state machines interesting? 2. How do we know that the state machine is implemented correctly? 3. What can go wrong if the implementation is incorrect? What are state machines? • Almost every protocol includes some kind of state • State machine is a model of the different states and the transitions between them • When receiving a messages, given the current state: • Decide what action to perform • Which message to respond with • Which state to go the next Why are state machines interesting? • State machines play a very important role in security protocols • For example: • Is the user authenticated? • Did we agree on keys? And if so, which keys? • Are we encrypting our traffic? • Every implementation of a protocol has to include the corresponding state machine • Mistakes can lead to serious security issues! State machine example Confirm transaction Verify PIN 0000 Failed Init Failed Verify PIN 1234 OK Verified Confirm transaction OK State machines in specifications • Often specifications do not explicitly contain a state machine • Mainly explained in lots of prose • Focus usually on happy flow • What to do if protocol flow deviates from this? Client Server ClientHello --------> ServerHello Certificate* ServerKeyExchange* CertificateRequest* <-------- ServerHelloDone Certificate* ClientKeyExchange CertificateVerify* [ChangeCipherSpec] Finished --------> [ChangeCipherSpec] <-------- Finished Application Data <-------> Application Data -
Vetting SSL Usage in Applications with SSLINT
2015 IEEE Symposium on Security and Privacy Vetting SSL Usage in Applications with SSLINT Boyuan He1, Vaibhav Rastogi2, Yinzhi Cao3, Yan Chen2, V.N. Venkatakrishnan4, Runqing Yang1, and Zhenrui Zhang1 1Zhejiang University 2Northwestern University 3Columbia University 4University of Illinois, Chicago [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] Abstract—Secure Sockets Layer (SSL) and Transport Layer In particular, we ask the following research question: Is it Security (TLS) protocols have become the security backbone of possible to design scalable techniques that detect incorrect use the Web and Internet today. Many systems including mobile of APIs in applications using SSL/TLS libraries? This question and desktop applications are protected by SSL/TLS protocols against network attacks. However, many vulnerabilities caused poses the following challenges: by incorrect use of SSL/TLS APIs have been uncovered in recent • Defining and representing correct use. Given an SSL years. Such vulnerabilities, many of which are caused due to poor library, how do we model correct use of the API to API design and inexperience of application developers, often lead to confidential data leakage or man-in-the-middle attacks. In this facilitate detection? paper, to guarantee code quality and logic correctness of SSL/TLS • Analysis techniques for incorrect usage in software. applications, we design and implement SSLINT, a scalable, Given a representation of correct usage, how do we de- automated, static analysis system for detecting incorrect use sign techniques for analyzing programs to detect incorrect of SSL/TLS APIs. -
You Really Shouldn't Roll Your Own Crypto: an Empirical Study of Vulnerabilities in Cryptographic Libraries
You Really Shouldn’t Roll Your Own Crypto: An Empirical Study of Vulnerabilities in Cryptographic Libraries Jenny Blessing Michael A. Specter Daniel J. Weitzner MIT MIT MIT Abstract A common aphorism in applied cryptography is that cryp- The security of the Internet rests on a small number of open- tographic code is inherently difficult to secure due to its com- source cryptographic libraries: a vulnerability in any one of plexity; that one should not “roll your own crypto.” In par- them threatens to compromise a significant percentage of web ticular, the maxim that complexity is the enemy of security traffic. Despite this potential for security impact, the character- is a common refrain within the security community. Since istics and causes of vulnerabilities in cryptographic software the phrase was first popularized in 1999 [52], it has been in- are not well understood. In this work, we conduct the first voked in general discussions about software security [32] and comprehensive analysis of cryptographic libraries and the vul- cited repeatedly as part of the encryption debate [26]. Conven- nerabilities affecting them. We collect data from the National tional wisdom holds that the greater the number of features Vulnerability Database, individual project repositories and in a system, the greater the risk that these features and their mailing lists, and other relevant sources for eight widely used interactions with other components contain vulnerabilities. cryptographic libraries. Unfortunately, the security community lacks empirical ev- Among our most interesting findings is that only 27.2% of idence supporting the “complexity is the enemy of security” vulnerabilities in cryptographic libraries are cryptographic argument with respect to cryptographic software. -
Ten Strategies of a World-Class Cybersecurity Operations Center Conveys MITRE’S Expertise on Accumulated Expertise on Enterprise-Grade Computer Network Defense
Bleed rule--remove from file Bleed rule--remove from file MITRE’s accumulated Ten Strategies of a World-Class Cybersecurity Operations Center conveys MITRE’s expertise on accumulated expertise on enterprise-grade computer network defense. It covers ten key qualities enterprise- grade of leading Cybersecurity Operations Centers (CSOCs), ranging from their structure and organization, computer MITRE network to processes that best enable effective and efficient operations, to approaches that extract maximum defense Ten Strategies of a World-Class value from CSOC technology investments. This book offers perspective and context for key decision Cybersecurity Operations Center points in structuring a CSOC and shows how to: • Find the right size and structure for the CSOC team Cybersecurity Operations Center a World-Class of Strategies Ten The MITRE Corporation is • Achieve effective placement within a larger organization that a not-for-profit organization enables CSOC operations that operates federally funded • Attract, retain, and grow the right staff and skills research and development • Prepare the CSOC team, technologies, and processes for agile, centers (FFRDCs). FFRDCs threat-based response are unique organizations that • Architect for large-scale data collection and analysis with a assist the U.S. government with limited budget scientific research and analysis, • Prioritize sensor placement and data feed choices across development and acquisition, enteprise systems, enclaves, networks, and perimeters and systems engineering and integration. We’re proud to have If you manage, work in, or are standing up a CSOC, this book is for you. served the public interest for It is also available on MITRE’s website, www.mitre.org. more than 50 years. -
Xerox® Igen™ 150 Press 3 Party Software License Disclosure
Xerox® iGen™ 150 Press 3rd Party Software License Disclosure October 2013 The following software packages are copyrighted for use in this product according to the license stated. Full terms and conditions of all 3rd party software licenses are available from the About screen under the Help menu on the Press Interface or by accessing the Support & Drivers page located on the http://www.xerox.com website. Adobe Icons and Web Logos, license: Adobe Icons and Web Logos License Apache log4j 1.2.8, Apache log4j 1.2.9, Apache Web Services XML-RPC 1.2.b1, Apache Lucene Java 1.3, Apache Tomcat 4.1.27, license: Apache License 1.1 Apache Axis 1.x 1.4, Apache Jakarta Commons HttpClient 3.0.alpha1, Apache Jakarta Commons Logging 1.0.4, Apache Jakarta Lucene 1.9.1, Apache XML Security Java 1.3.0, saxpath 1.0 FCS, Skin Look And Feel (skinlf) 1.2.8, Spring Framework Utilities 0.7, Apache Web Services Axis 1.2rc3, Apache Xerces Java XML Parser 2.7.1, Apache XML Xalan-Java 2.7.0, Jetty - Java HTTP Servlet Server 4.0.D0, Lucene Snowball, Streaming API for XML (StAX) - JSR-173 20040819, license: Apache License 2.0 Perl 5.8.5, Perl 5.10.0, AppConfig-1.66, Archive-Tar-1.58, Compress::Zlib-2.020, Expect.pm- 1.21, File-NCopy-0.36, File-NFSLock-1.20, Filesys-Df-0.92, Filesys-DiskFree-0.06, HTML- Parser-3.69, HTML-Tagset-3.20, HTML-Template-2.9, IO-Stty-0.02, IO-Tty-1.08, IO-Zlib- 1.09, libxml-perl-0.08, Net-Netmask-1.9015, Net-Telnet-3.03, perl-5.8.3, perlindex-1.605, Pod- Escapes-1.04, Pod-POM-0.25, Pod-Simple-3.13, Proc-ProcessTable-0.45, Socket6-0.23, Stat-