Childhood Leukemia

Total Page:16

File Type:pdf, Size:1020Kb

Childhood Leukemia Onconurse.com Fact Sheet Childhood Leukemia The word leukemia literally means “white blood.” fungi. WBCs are produced and stored in the bone mar- Leukemia is the term used to describe cancer of the row and are released when needed by the body. If an blood-forming tissues known as bone marrow. This infection is present, the body produces extra WBCs. spongy material fills the long bones in the body and There are two main types of WBCs: produces blood cells. In leukemia, the bone marrow • Lymphocytes. There are two types that interact to factory creates an overabundance of diseased white prevent infection, fight viruses and fungi, and pro- cells that cannot perform their normal function of fight- vide immunity to disease: ing infection. As the bone marrow becomes packed with diseased white cells, production of red cells (which ° T cells attack infected cells, foreign tissue, carry oxygen and nutrients to body tissues) and and cancer cells. platelets (which help form clots to stop bleeding) slows B cells produce antibodies which destroy and stops. This results in a low red blood cell count ° foreign substances. (anemia) and a low platelet count (thrombocytopenia). • Granulocytes. There are four types that are the first Leukemia is a disease of the blood defense against infection: Blood is a vital liquid which supplies oxygen, food, hor- ° Monocytes are cells that contain enzymes that mones, and other necessary chemicals to all of the kill foreign bacteria. body’s cells. It also removes toxins and other waste products from the cells. Blood helps the lymph system ° Neutrophils are the most numerous WBCs to fight infection and carries the cells necessary for and are important in responding to foreign repairing injuries. Blood also contains important clotting bacteria. factors. ° Eosinophils respond to allergic reactions as Whole blood is made up of plasma, which is a clear well as foreign bacteria and parasites. fluid, and many other components, each with a specif- ° Basophils are the rarest of the white cells and ic task. The three main elements involved in leukemia play a special role in allergic reactions. are red blood cells, platelets, and white blood cells. The different types of leukemia are cancers of a specif- Red blood cells (erythrocytes or RBCs) contain hemo- ic white blood cell type. For instance, acute lym- globin, a protein that picks up oxygen in the lungs and phoblastic leukemia affects only lymphocytes. transports it throughout the body. RBCs give blood its red color. When leukemia cells in the bone marrow What is a blast? slow down the production of red cells, the child devel- “Blast” is a short name for an immature white blood cell ops anemia. Anemia can cause tiredness, weakness, irri- such as lymphoblast, myeloblast, or monoblast. Nor- tability, pale skin, and headache. mally, less than 5 percent of the cells contained in Platelets (thrombocytes) are tiny, disc-shaped cells that healthy bone marrow at any one time are blasts. Normal help form clots to stop bleeding. Leukemia can dramat- blasts develop into mature, functioning white blood ically slow down the production of platelets, causing cells, and are not usually found in the bloodstream. children to bleed excessively from cuts or in some cases Leukemic blasts remain immature, multiply continuous- from their nose or gums. Children with leukemia can ly, provide no defense against infection, and may be develop large bruises or small red dots (called petechi- present in large numbers in the bloodstream. ae) on their skin. White blood cells (leukocytes or WBCs) destroy foreign How does leukemia begin? substances in the body such as viruses, bacteria, and When a population of abnormal blasts appears in the bone marrow, they multiply rapidly and lose their abil- 1 Onconurse.com Fact Sheet Childhood Leukemia ity to grow up into normal white cells. They begin to merely an association. In cases where one identical twin crowd out the normal cells that usually develop there. has leukemia, the other twin has a 25 percent chance of After accumulating in the bone marrow, leukemic cells developing the disease within one year, but this risk spill over into the blood. Leukemic cells may also cross decreases with an older age at diagnosis and with time. the blood-brain barrier and invade the central nervous It is not known whether this is caused by an inherited system (brain and spinal cord). trait or a simultaneous exposure to the same carcino- gen. Leukemia is not contagious; it cannot be passed When the leukemic blasts begin to fill the marrow, pro- from one person to another. duction of healthy red cells, platelets, and white cells cannot be normally maintained. As the number of nor- Environmental factors mal cells decreases, symptoms appear. Low red cell Exposure to ionizing radiation and certain toxic chemi- counts cause fatigue and pale skin. Low platelet counts cals may predispose individuals to leukemia and other may result in bruising and bleeding problems. If mature problems involving the bone marrow. Many Japanese neutrophils and lymphoblasts are crowded out by the who were exposed to fallout from the atomic bomb blasts, the child will have little or no defense against during World War II and some of the people living near infections. the Chernobyl accident in the Ukraine have developed leukemia. Chronic exposure to benzene has been asso- Who gets leukemia? ciated with leukemia in adults. However, most children Acute leukemia is the most common childhood cancer. are not exposed to large amounts of radiation or indus- Although generally thought of as strictly a childhood trial chemicals. The data so far indicates that there is no disease, many more adults than children develop increased risk of leukemia from exposure to electro- leukemia. Each year in the United States, approximate- magnetic fields. Although scientists are examining asso- ly 25,000 adults and 2,500 children are diagnosed with ciations with many environmental factors, there are no acute leukemia. clear environmental causes of childhood leukemia. Childhood leukemia is most commonly diagnosed at Rates of childhood cancer have increased every year for ages two to seven, with the highest incidence at approx- the last three decades. In response to this and other imately four years of age. In the United States, leukemia threats to children’s health, in 1997 the US formed the is more common in whites than in blacks, and boys Federal Task Force on Protecting Children from Environ- have a slightly higher incidence than girls. Children with mental Health Risks and Safety Risks. Information on genetic diseases such as Down syndrome, Bloom’s syn- this task force can be found on the Internet at drome, or Fanconi’s anemia have a higher risk of devel- http://www.epa.gov/children/six.htm. oping leukemia than the general population. However, most children with these syndromes do not develop The US Environmental Protection Agency (EPA) has a leukemia. Children’s Health Resources branch that maintains pub- lications on children’s health topics, information on hot Although the exact cause of childhood leukemia is a lines, and links to Internet resources at (888) 372-8255 mystery, certain factors are known to increase the risk and on the Internet at http://www.epa.gov/children. of developing the disease. For information about the US government’s electromag- Genetic factors netic field (EMF) research efforts, including public infor- It is known that persons with extra chromosomes mation materials developed by the EMF RAPID pro- (genetic material contained in cells) or certain chromo- gram, refer to the EMF RAPID home page on the somal abnormalities have a greater chance of develop- Internet: http://www.niehs.nih.gov/emfrapid/home.htm. ing leukemia. It is uncertain whether this is a cause or 2 Onconurse.com Fact Sheet Childhood Leukemia Viral factors Children with AML are sometimes diagnosed after Viruses that cause leukemia in cows, cats, chickens, gib- developing a chloroma—a tumor arising from myeloid bons, and mice have been found. A T-cell virus has tissue and containing a pale green pigment. These are been identified which causes a rare type of leukemia- most often found under the skin of the skull. lymphoma in adults; however, no virus has been found To confirm a diagnosis of leukemia, bone marrow is which causes the types of leukemia commonly found in sampled and tested. The bone marrow is examined children. microscopically by a pediatric oncologist and/or a Currently, it is thought that a complex interaction pathologist, a physician who specializes in body tissue among genetic, environmental, immunologic, and pos- analysis. More than 25 percent blasts in the marrow sibly viral factors predisposes individuals to leukemia. confirms the diagnosis of leukemia. A portion of the The most important point for parents to remember is bone marrow (and chloroma biopsy if done) is sent to that at present there is no way to predict or prevent a specialized laboratory that analyzes many other fea- leukemia. Nothing that parents did or did not do caused tures of the leukemic cells to help determine which type or could have prevented the leukemia. of leukemia is present. How is leukemia diagnosed? How is leukemia best treated? A tentative diagnosis is made after a physical examina- At diagnosis, parents are often confused about how to tion of the child and microscopic analysis of a blood find the best doctors and treatment plan for their child. sample. Physical findings may include pale skin; bruis- The best care available in the US and Canada is ing or unusual bleeding; enlarged liver, spleen, or obtained from institutions that are part of the Children’s lymph nodes; ear or other infections (frequently resist- Cancer Group or the Pediatric Oncology Group.
Recommended publications
  • Late Effects Among Long-Term Survivors of Childhood Acute Leukemia in the Netherlands: a Dutch Childhood Leukemia Study Group Report
    0031-3998/95/3805-0802$03.00/0 PEDIATRIC RESEARCH Vol. 38, No.5, 1995 Copyright © 1995 International Pediatric Research Foundation, Inc. Printed in U.S.A. Late Effects among Long-Term Survivors of Childhood Acute Leukemia in The Netherlands: A Dutch Childhood Leukemia Study Group Report A. VAN DER DOES-VAN DEN BERG, G. A. M. DE VAAN, J. F. VAN WEERDEN, K. HAHLEN, M. VAN WEEL-SIPMAN, AND A. J. P. VEERMAN Dutch Childhood Leukemia Study Group,' The Hague, The Netherlands A.8STRAC ' Late events and side effects are reported in 392 children cured urogenital, or gastrointestinal tract diseases or an increased vul­ of leukemia. They originated from 1193 consecutively newly nerability of the musculoskeletal system was found. However, diagnosed children between 1972 and 1982, in first continuous prolonged follow-up is necessary to study the full-scale late complete remission for at least 6 y after diagnosis, and were effects of cytostatic treatment and radiotherapy administered treated according to Dutch Childhood Leukemia Study Group during childhood. (Pediatr Res 38: 802-807, 1995) protocols (70%) or institutional protocols (30%), all including cranial irradiation for CNS prophylaxis. Data on late events (relapses, death in complete remission, and second malignancies) Abbreviations were collected prospectively after treatment; late side effects ALL, acute lymphocytic leukemia were retrospectively collected by a questionnaire, completed by ANLL, acute nonlymphocytic leukemia the responsible pediatrician. The event-free survival of the 6-y CCR, continuous first complete remission survivors at 15 y after diagnosis was 92% (±2%). Eight late DCLSG, Dutch Childhood Leukemia Study Group relapses and nine second malignancies were diagnosed, two EFS, event free survival children died in first complete remission of late toxicity of HR, high risk treatment, and one child died in a car accident.
    [Show full text]
  • Health | Childhood Cancer America's Children and the Environment
    Health | Childhood Cancer Childhood Cancer Cancer is not a single disease, but includes a variety of malignancies in which abnormal cells divide in an uncontrolled manner. These cancer cells can invade nearby tissues and can migrate by way of the blood or lymph systems to other parts of the body.1 The most common childhood cancers are leukemias (cancers of the white blood cells) and cancers of the brain or central nervous system, which together account for more than half of new childhood cancer cases.2 Cancer in childhood is rare compared with cancer in adults, but still causes more deaths than any factor, other than injuries, among children from infancy to age 15 years.2 The annual incidence of childhood cancer has increased slightly over the last 30 years; however, mortality has declined significantly for many cancers due largely to improvements in treatment.2,3 Part of the increase in incidence may be explained by better diagnostic imaging or changing classification of tumors, specifically brain tumors.4 However, the President’s Cancer Panel recently concluded that the causes of the increased incidence of childhood cancers are not fully understood, and cannot be explained solely by the introduction of better diagnostic techniques. The Panel also concluded that genetics cannot account for this rapid change. The proportion of this increase caused by environmental factors has not yet been determined.5 The causes of cancer in children are poorly understood, though in general it is thought that different forms of cancer have different causes. According to scientists at the National Cancer Institute, established risk factors for the development of childhood cancer include family history, specific genetic syndromes (such as Down syndrome), high levels of radiation, and certain pharmaceutical agents used in chemotherapy.4,6 A number of studies suggest that environmental contaminants may play a role in the development of childhood cancers.
    [Show full text]
  • Curing Childhood Leukemia, October 1997
    This article was published in 1997 and has not been updated or revised. CURING CHILDHOOD LEUKEMIA ancer is an insidious disease. The culprit is not bacterial infections, viral infections, and many other a foreign invader, but the altered descendants illnesses. _) of our own cells, which reproduce uncontrol­ The fight against cancer has been more of a war of lably. In this civil war, it is hard to distinguish friend attrition than a series of spectacular, instantaneous vic­ from foe, to tat;get the cancer cells without killing the tories, and the research into childhood leukemia over the healthy cells. Most of our current cancer therapies, last 40 years is no exception. But most of the children who including the cure for childhood leukemia described here, are victims of this disease can now be cured, and the are based on the fact that cancer cells reproduce without drugs that made this possible are the antimetabolite some of the safeguards present in normal cells. If we can drugs that will be described here. The logic behind those interfere with cell reproduction, the cancer cells will be drugs came from a wide array of research that defined hit disproportionately hard and often will not recover. the chemical workings of the cell--research done by scien­ The scientists and physicians who devised the cure for tists who could not know that their findings would even­ childhood leukemia pioneered a rational approach to tually save the lives of up to thirty thousand children in destroying cancer cells, using knowledge about the cell the United States.
    [Show full text]
  • FLT3 Inhibitors in Acute Myeloid Leukemia Mei Wu1, Chuntuan Li2 and Xiongpeng Zhu2*
    Wu et al. Journal of Hematology & Oncology (2018) 11:133 https://doi.org/10.1186/s13045-018-0675-4 REVIEW Open Access FLT3 inhibitors in acute myeloid leukemia Mei Wu1, Chuntuan Li2 and Xiongpeng Zhu2* Abstract FLT3 mutations are one of the most common findings in acute myeloid leukemia (AML). FLT3 inhibitors have been in active clinical development. Midostaurin as the first-in-class FLT3 inhibitor has been approved for treatment of patients with FLT3-mutated AML. In this review, we summarized the preclinical and clinical studies on new FLT3 inhibitors, including sorafenib, lestaurtinib, sunitinib, tandutinib, quizartinib, midostaurin, gilteritinib, crenolanib, cabozantinib, Sel24-B489, G-749, AMG 925, TTT-3002, and FF-10101. New generation FLT3 inhibitors and combination therapies may overcome resistance to first-generation agents. Keywords: FMS-like tyrosine kinase 3 inhibitors, Acute myeloid leukemia, Midostaurin, FLT3 Introduction RAS, MEK, and PI3K/AKT pathways [10], and ultim- Acute myeloid leukemia (AML) remains a highly resist- ately causes suppression of apoptosis and differentiation ant disease to conventional chemotherapy, with a me- of leukemic cells, including dysregulation of leukemic dian survival of only 4 months for relapsed and/or cell proliferation [11]. refractory disease [1]. Molecular profiling by PCR and Multiple FLT3 inhibitors are in clinical trials for treat- next-generation sequencing has revealed a variety of re- ing patients with FLT3/ITD-mutated AML. In this re- current gene mutations [2–4]. New agents are rapidly view, we summarized the preclinical and clinical studies emerging as targeted therapy for high-risk AML [5, 6]. on new FLT3 inhibitors, including sorafenib, lestaurtinib, In 1996, FMS-like tyrosine kinase 3/internal tandem du- sunitinib, tandutinib, quizartinib, midostaurin, gilteriti- plication (FLT3/ITD) was first recognized as a frequently nib, crenolanib, cabozantinib, Sel24-B489, G-749, AMG mutated gene in AML [7].
    [Show full text]
  • A Novel Cytogenetic Aberration Found in Stem Cell Leukemia/Lymphoma Syndrome
    Letters to the Editor 644 normal PB buffy coat DNA (see example in Figure 1b). These marrow (used for MRD evaluation), the actual Quantitative data show that NSA can be variable, dependent on the type of Range for TCRG targets will often be underestimated. sample (bone marrow or peripheral blood) and the time point We conclude that the ESG-MRD-ALL guidelines for inter- during or after therapy. pretation of RQ-PCR data appropriately take into account the We next evaluated to what extent this variation in NSA variation in NSA. The guidelines for prevention of false-positive affected the RQ-PCR data interpretation, applying the guidelines MRD data perform well, with less than 2% false-positive results. for prevention of false-positive MRD results as well as the However, our data also clearly indicate that positive results guidelines for preventing false-negative MRD results. In Figures outside the Quantitative Range should always be judged with 2a-c, the data interpreted according to the guidelines for the caution, particularly for samples taken after cessation of therapy prevention of false-negative MRD results are shown. IGH targets and analyzed with Ig gene targets. Preferably, one should aim with NSA in normal PB buffy coat DNA resulted in false-positive for RQ-PCR assays without any NSA, since this will improve the MRD data in about 10% of samples obtained during therapy reliability of the data interpretation. (Figure 2a). However, in samples obtained after cessation of therapy (after week 104) false-positivity could be observed in up VHJ van der Velden, JM Wijkhuijs and JJM van Dongen Department of Immunology, Erasmus MC, University Medical to 65% of samples.
    [Show full text]
  • Childhood Leukemia Mimicking Arthritis J Am Board Fam Pract: First Published As 10.3122/Jabfm.9.1.56 on 1 January 1996
    Childhood Leukemia Mimicking Arthritis J Am Board Fam Pract: first published as 10.3122/jabfm.9.1.56 on 1 January 1996. Downloaded from Michael Needleman, MD Family physicians frequently care for children included a white cell count of 380011lL, including with vague and varying musculoskeletal com­ a normal differential. A platelet count was plaints. Rarely such complaints represent serious 114,0001IlL, and her sedimentation rate was malignant hematologic processes. Certain clinical 54mmlh. and laboratory clues will help the physician avoid The patient was admitted to the hospital with a delays in making the diagnosis, as occurred in the tentative diagnosis of juvenile rheumatoid arthri­ following case. tis. On consultation, the rheumatologist was im­ mediately suspicious that her problem was an Case Report acute leukemia. A bone marrow biopsy confirmed A 12-year-old girl complained of pain in her right that she had acute lymphoblastic leukemia. upper arm shortly after removal of a cast for a radi­ al fracture. At the initial physical examination she Discussion had some limited range of motion at the shoulder. This case contains distinctive features-disabling Radiographic findings were within normal limits. bone pain and leukopenia-that should alert She was prescribed a nonsteroidal anti-inflamma­ physicians to a nonrheumatic malignant condi­ tory medication and had some initial improve­ tion. 1 Bone pain causing nighttime awakening is a ment. She then returned 1 month later complain­ classic feature of a leukemic process. Leukemic ing of dizziness as well as persistent right arm arthritis occurs in 12 to 65 percent of childhood discomfort. Findings on her physical examination leukemia.2 Classic hematologic findings, such as were unchanged.
    [Show full text]
  • Cell Surface Markers in Acute Lymphoblastic Leukemia* F
    ANNALS OF CLINICAL AND LABORATORY SCIENCE, Vol. 10, No. 3 Copyright © 1980, Institute for Clinical Science, Inc. Cell Surface Markers in Acute Lymphoblastic Leukemia* f G. BENNETT HUMPHREY, M.D., REBECCA BLACKSTOCK, Ph .D., AND JANICE FILLER, M.S. University of Oklahoma, Health Sciences Center, Oklahoma City, OK 73126 ABSTRACT During the last nine years, two important methodologies have been used to characterize the cell surfaces of normal lymphocytes and malignant lym­ phoblasts. Normal mature T-cells have a receptor for sheep erythrocytes (E+) while mature B-cells bear membrane-bound immunoglobulin molecules (slg+). These two findings can be used to divide acute lymphoblastic leukemia of childhood into three major groups; B-cell leukemia (slg+ E -), which is rare (approximately 2 percent) and has the poorest prognosis, T-cell leukemia (slg~, E +) which is more common (10 percent) but also has a poor prognosis and null cell leukemia (slg~, E~) which is the most common (85 percent) and has the best prognosis. By the use of additional immunological methods, subgroups within T-cell leukemia and null cell leukemia have also been proposed. One of the most valuable of these additional methods is the detection of surface antigens. Three of the more commonly detected antigens currently being evaluated are (1) common leukemia antigen (cALL), (2) a normal B Lymphocyte antigen the la antigen (la) which is not generally expressed on most T lympho­ cytes and (3) a normal T lymphocyte antigen (T) not expressed on B lympho­ cytes. Within null cell leukemia, the most commonly identified and proba­ bly the largest subgroup is Ia+, cALL+, T”, E _, slg-.
    [Show full text]
  • Research Article Segmentation of White Blood Cell from Acute Lymphoblastic Leukemia Images Using Dual-Threshold Method
    Hindawi Publishing Corporation Computational and Mathematical Methods in Medicine Volume 2016, Article ID 9514707, 12 pages http://dx.doi.org/10.1155/2016/9514707 Research Article Segmentation of White Blood Cell from Acute Lymphoblastic Leukemia Images Using Dual-Threshold Method Yan Li,1,2 Rui Zhu,1 Lei Mi,1 Yihui Cao,1,2 and Di Yao3 1 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences, Xi’an 710119, China 2University of Chinese Academy of Sciences, 52 Sanlihe Road, Beijing 100864, China 3Shenzhen Vivolight Medical Device and Technology Co., Ltd., Shenzhen 518000, China Correspondence should be addressed to Yan Li; [email protected] Received 30 December 2015; Revised 7 April 2016; Accepted 21 April 2016 Academic Editor: Jayaram K. Udupa Copyright © 2016 Yan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We propose a dual-threshold method based on a strategic combination of RGB and HSV color space for white blood cell (WBC) segmentation. The proposed method consists of three main parts: preprocessing, threshold segmentation, and postprocessing. In the preprocessing part, we get two images for further processing: one contrast-stretched gray image and one H component image from transformed HSV color space. In the threshold segmentationpart,adual-thresholdmethodisproposedforimprovingthe conventional single-threshold approaches and a golden section search method is used for determining the optimal thresholds. For the postprocessing part, mathematical morphology and median filtering are utilized to denoise and remove incomplete WBCs.
    [Show full text]
  • Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview and Implications for Risk Assessment
    EPA/600/R-10/095F July 2012 Lymphohematopoietic Cancers Induced by Chemicals and Other Agents: Overview and Implications for Risk Assessment National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC DISCLAIMER This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ABSTRACT The objective of this report is to provide an overview of the types and mechanisms underlying the lymphohematopoietic cancers induced by chemical agents and radiation in humans, with a primary emphasis on acute myeloid leukemia and some of the known agents that induce this type of cancer. Following a brief discussion of hematopoiesis and leukemogenesis, an overview of the major classes of leukemia-inducing agents―radiation, chemotherapeutic alkylating agents, and topoisomerase II inhibitors―is presented along with information on plausible mechanisms by which these leukemias occur. The last section focuses on how mechanistic information on human leukemia-inducing agents can be used to better inform risk assessment decisions. It is evident that there are different types of leukemia-inducing agents that may act through different mechanisms. Even though most have been concluded by IARC to act through mutagenic or genotoxic mechanisms, leukemia-inducing agents may have different potencies and associated risks, which appear to be significantly influenced by the specific mechanisms involved in leukemogenesis. Identifying the specific types of cancer-causing agents with their associated mechanisms and using this information to inform key steps in the risk assessment process remains an ongoing challenge.
    [Show full text]
  • A Hybrid Deep Learning Architecture for Leukemic B-Lymphoblast Classification
    A Hybrid Deep Learning Architecture for Leukemic B-lymphoblast Classification Sara Hosseinzadeh Kassani Peyman Hosseinzadeh Kassani Michal J. Wesolowski Department of Computer Science Department of Biomedical Engineering Department of Medical Imaging University of Saskatchewan University of Tulane University of Saskatchewan Saskatoon, Canada New Orleans, USA Saskatoon, Canada [email protected] [email protected] [email protected] Kevin A. Schneider Ralph Deters Department of Computer Science Department of Computer Science University of Saskatchewan University of Saskatchewan Saskatoon, Canada Saskatoon, Canada [email protected] [email protected] Abstract—Automatic detection of leukemic B-lymphoblast can- diagnosed and about 1500 patients are expected to die of ALL, cer in microscopic images is very challenging due to the com- including both children and adults, in the United States. The plicated nature of histopathological structures. To tackle this risk of getting ALL is slightly higher in males than females, issue, an automatic and robust diagnostic system is required for early detection and treatment. In this paper, an automated and higher in whites than African-Americans. However, if deep learning-based method is proposed to distinguish between leukemia is diagnosed in its early stages, it is highly curable immature leukemic blasts and normal cells. The proposed deep and increases the survival rate of the patients. Considering learning based hybrid method, which is enriched by different data the large-scale of histopathology images, assessment of the augmentation techniques, is able to extract high-level features images in a conventional way can be laborious, error-prone from input images. Results demonstrate that the proposed model yields better prediction than individual models for Leukemic B- and hugely time-consuming since some images are highly vari- lymphoblast classification with 96.17% overall accuracy, 95.17% able in morphology which is difficult to analyze.
    [Show full text]
  • Cytotoxic T-Lymphocyte Response to Autologous Human Squamous Cell Cancer of the Lung: Epitope Reconstitution with Peptides Extracted from HLA-Aw68'
    [CANCER RESEARCH 54, 2731—2737,May 15, 1994) Cytotoxic T-Lymphocyte Response to Autologous Human Squamous Cell Cancer of the Lung: Epitope Reconstitution with Peptides Extracted from HLA-Aw68' Craig L Slingluff, Jr.,2 Andrea L Cox, John M. Stover, Jr., Marcia M. Moore, Donald F. Hunt, and Victor H. Engeihard Departments ofSurgery (C. L S., J. M. S., M. M. MI, Chemistrj [A. L. C., D. F. H.J, and Mkrobiology [V. H. E.J, University of Virginia, Charlottesville, Virginia 22908 ABSTRACT associated peptides, MHC-unrestricted tumor-specific CTLs have also been described (ii, 12): the peptide backbone of a mucin Cytotoxic T-lymphocytes (Cfls) specific for autologous human squa molecule appears to be the target for some CTLs specific for mom cell cancer of the lung were generated by stimulation of peripheral blood lymphocytes with autologous tumor cells in vitro. The Cl@Lline was carcinomas of the pancreas and of the breast. It is believed that >97% @1J3+,CD8@,CD16andproducedtumornecrosisfactor-a,y-in identification of the peptide epitopes for tumor-specific CTLs will terferon, and granulocyte-macrophage colony-stimulating factor after impact our understanding of the host:tumor relationship and may stimulation with autologous tumor. The CTLs lysed autologous tumor but permit the rational development of novel immunotherapeutic strat failed to recognize autologous or histocompatability leukocyte antigen egies to treat patients with cancer. Although there is evidence of an matched lymphoid cells, K562, or allogeneic tumor cells of several histo immune response to lung cancer, little is known about the target logical types. Antibody-blocking studies suggested that the CTLs re antigens for lung cancer-specific CTLs.
    [Show full text]
  • Non-Hodgkin Lymphoma
    Non-Hodgkin Lymphoma Tom, non-Hodgkin lymphoma survivor Support for this publication provided by Revised 2016 A Message from Louis J. DeGennaro, PhD President and CEO of The Leukemia & Lymphoma Society The Leukemia & Lymphoma Society (LLS) is the world’s largest voluntary health organization dedicated to finding cures for blood cancer patients. Our research grants have funded many of today’s most promising advances; we are the leading source of free blood cancer information, education and support; and we advocate for blood cancer patients and their families, helping to ensure they have access to quality, affordable and coordinated care. Since 1954, we have been a driving force behind nearly every treatment breakthrough for blood cancer patients. We have invested more than $1 billion in research to advance therapies and save lives. Thanks to research and access to better treatments, survival rates for many blood cancer patients have doubled, tripled and even quadrupled. Yet we are far from done. Until there is a cure for cancer, we will continue to work hard—to fund new research, to create new patient programs and services, and to share information and resources about blood cancer. This booklet has information that can help you understand non-Hodgkin lymphoma, prepare your questions, find answers and resources, and communicate better with members of your healthcare team. Our vision is that, one day, all people with non-Hodgkin lymphoma will be cured or will be able to manage their disease so that they can experience a great quality of life. Today, we hope that our sharing of expertise, knowledge and resources will make a difference in your journey.
    [Show full text]