Molecular Regulation of Peripheral B Cells and Their Progeny in Immunity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Intrinsic and Extrinsic Mechanisms for B-Cell Lymphoma Development and Progression Studied by Global Gene Expression Profiling
From the Department of Laboratory Medicine Karolinska Institutet, Stockholm, Sweden INTRINSIC AND EXTRINSIC MECHANISMS FOR B-CELL LYMPHOMA DEVELOPMENT AND PROGRESSION STUDIED BY GLOBAL GENE EXPRESSION PROFILING Gustav Arvidsson Stockholm 2019 All previously published papers were reproduced with permission from the publisher. Published by Karolinska Institutet. Printed by Universitetsservice US-AB © Gustav Arvidsson, 2019 ISBN 978-91-7831-518-5 Intrinsic and extrinsic mechanisms for B-cell lymphoma development and progression studied by global gene expression profiling THESIS FOR DOCTORAL DEGREE (Ph.D.) By Gustav Arvidsson Principal Supervisor: Opponent: Professor Anthony Wright Professor Mikael Sigvardsson Karolinska Institutet Lund University Department of Laboratory Medicine Department of Laboratory Medicine Clinical Research Center Division of Molecular Haematology Co-supervisor: Examination Board: Professor Birgitta Sander Professor Lars-Gunnar Larsson Karolinska Institutet Karolinska Institutet Department of Laboratory Medicine Department of Microbiology, Tumor and Cell Division of Pathology Biology Associate Professor Ingrid Glimelius Uppsala University Department of Immunology, Genetics and Pathology Associate Professor Fredrik Öberg Uppsala University Department of Immunology, Genetics and Pathology For E and E ABSTRACT Mantle cell lymphoma (MCL) is a rare hematopoietic malignancy characterized by frequent relapses and poor survival, partly due to minimal residual disease, whereby a subset of malignant cells, harbored in protective niches, survive treatment. In vitro and ex vivo experiments have shown that MCL cells can be rescued from apoptosis through interactions with non-malignant cells such as stromal cells. The present thesis investigates the effect that extrinsic microenvironmental interactions may exert on MCL cells and discuss the presumptive role of these as well as intrinsic mechanisms in the development and progression of lymphomas. -
Childhood Leukemia
Onconurse.com Fact Sheet Childhood Leukemia The word leukemia literally means “white blood.” fungi. WBCs are produced and stored in the bone mar- Leukemia is the term used to describe cancer of the row and are released when needed by the body. If an blood-forming tissues known as bone marrow. This infection is present, the body produces extra WBCs. spongy material fills the long bones in the body and There are two main types of WBCs: produces blood cells. In leukemia, the bone marrow • Lymphocytes. There are two types that interact to factory creates an overabundance of diseased white prevent infection, fight viruses and fungi, and pro- cells that cannot perform their normal function of fight- vide immunity to disease: ing infection. As the bone marrow becomes packed with diseased white cells, production of red cells (which ° T cells attack infected cells, foreign tissue, carry oxygen and nutrients to body tissues) and and cancer cells. platelets (which help form clots to stop bleeding) slows B cells produce antibodies which destroy and stops. This results in a low red blood cell count ° foreign substances. (anemia) and a low platelet count (thrombocytopenia). • Granulocytes. There are four types that are the first Leukemia is a disease of the blood defense against infection: Blood is a vital liquid which supplies oxygen, food, hor- ° Monocytes are cells that contain enzymes that mones, and other necessary chemicals to all of the kill foreign bacteria. body’s cells. It also removes toxins and other waste products from the cells. Blood helps the lymph system ° Neutrophils are the most numerous WBCs to fight infection and carries the cells necessary for and are important in responding to foreign repairing injuries. -
HOXC4 Rabbit Pab
Leader in Biomolecular Solutions for Life Science HOXC4 Rabbit pAb Catalog No.: A13856 Basic Information Background Catalog No. This gene belongs to the homeobox family of genes. The homeobox genes encode a A13856 highly conserved family of transcription factors that play an important role in morphogenesis in all multicellular organisms. Mammals possess four similar homeobox Observed MW gene clusters, HOXA, HOXB, HOXC and HOXD, which are located on different 30kDa chromosomes and consist of 9 to 11 genes arranged in tandem. This gene, HOXC4, is one of several homeobox HOXC genes located in a cluster on chromosome 12. Three Calculated MW genes, HOXC5, HOXC4 and HOXC6, share a 5' non-coding exon. Transcripts may include 29kDa the shared exon spliced to the gene-specific exons, or they may include only the gene- specific exons. Two alternatively spliced variants that encode the same protein have Category been described for HOXC4. Transcript variant one includes the shared exon, and transcript variant two includes only gene-specific exons. Primary antibody Applications WB Cross-Reactivity Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 3221 P09017 Immunogen Recombinant fusion protein containing a sequence corresponding to amino acids 30-130 of human HOXC4 (NP_055435.2). Synonyms HOXC4;HOX3;HOX3E;cp19 Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines, using HOXC4 antibody (A13856) at 1:3000 dilution. -
The REST/NRSF Pathway As a Central Mechanism in CNS Dysfunction
The REST/NRSF Pathway as a Central Mechanism in CNS Dysfunction Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Alix Warburton April 2015 Disclaimer The data in this thesis is a result of my own work. The material collected for this thesis has not been presented, nor is currently being presented, either wholly or in part for any other degree or other qualification. All of the research, unless otherwise stated, was performed in the Department of Physiology and Department of Pharmacology, Institute of Translational Medicine, University of Liverpool. All other parties involved in the research presented here, and the nature of their contribution, are listed in the Acknowledgements section of this thesis. i Acknowledgements First and foremost, I would like to express my upmost gratitude to my primary and secondary supervisors Professor John Quinn (a.k.a Prof. Quinny) and Dr Jill Bubb for all of their support, guidance, wisdom (thank you Jill) and encouragement throughout my PhD; I could not have wished for a better pair. I am also extremely grateful to the BBSRC for funding my PhD project. I would also like to extend my thanks to Dr Graeme Sills for providing samples and assistance with my work on the SANAD epilepsy project, Dr Fabio Miyajima for offering his knowledge and knowhow on many occasions, Dr Gerome Breen for being a bioinformatics wizard and providing support on several projects, Dr Minyan Wang’s lab for their help and hospitality during my 3 month visit to Xi'an Jiaotong-Liverpool University, Dr Roshan Koron for assisting with the breast cancer study, Dr Chris Murgatroyd for his invaluable advice on ChIP and Professor Dan Rujescu’s lab for providing clinical samples and support with statistical analyses on the schizophrenia project. -
Immunodeficiency Patients Differentiation of Common Variable
Defined Blocks in Terminal Plasma Cell Differentiation of Common Variable Immunodeficiency Patients This information is current as Nadine Taubenheim, Marcus von Hornung, Anne Durandy, of September 24, 2021. Klaus Warnatz, Lynn Corcoran, Hans-Hartmut Peter and Hermann Eibel J Immunol 2005; 175:5498-5503; ; doi: 10.4049/jimmunol.175.8.5498 http://www.jimmunol.org/content/175/8/5498 Downloaded from References This article cites 35 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/175/8/5498.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Defined Blocks in Terminal Plasma Cell Differentiation of Common Variable Immunodeficiency Patients1 Nadine Taubenheim,* Marcus von Hornung,* Anne Durandy,† Klaus Warnatz,‡ Lynn Corcoran,§ Hans-Hartmut Peter,‡ and Hermann Eibel2* Common variable immunodeficiency (CVID) is a heterogeneous disorder characterized by defective Ab production and recurrent bacterial infections. -
Horse Gamma Globulin Stabilized in 0.3 Molar Glycine to a Ph of Approximately 6.8
LPD Reference: ATG-SIN-0414/1 Date of Last Revision: 08 September 2014 Country: Singapore Reference document: CDS Version 3.0, effective date: 17-Mar-2014 Reason for change: LPD update in accordance with CDS 3.0 ; 2014-09-08 IR: 1. Remove entire proposed subsection <Renal Transplant Prophylaxis> under ‘Pharmacodynamic Properties - Clinical Studies’ & 2. Relocate paragraph “Clinical trials […] standard supportive care alone” from <Therapeutic Indications> to < Pharmacodynamic Properties - Clinical Studies>, subsection <Aplastic Anemia>. Atgam® lymphocyte immune globulin, anti-thymocyte globulin [equine] sterile solution For Intravenous Use only DESCRIPTION ATGAM Sterile Solution contains lymphocyte immune globulin, anti-thymocyte globulin [equine]. It is the purified, concentrated, and sterile gamma globulin, primarily monomeric IgG, from hyperimmune serum of horses immunized with human thymus lymphocytes. Anti-thymocyte globulin (equine) is a transparent to slightly opalescent aqueous protein solution. It may appear colorless to faintly pink or brown and is nearly odorless. It may develop a slight granular or flaky deposit during storage. (For information about in-line filters, see Infusion Instructions in the POSOLOGY AND METHOD OF ADMINISTRATION.) Before release for clinical use, each lot of anti-thymocyte globulin (equine) is tested to assure its ability to inhibit rosette formation between human peripheral lymphocytes and sheep red blood cells in vitro. In each lot, antibody activity against human red blood cells and platelets is also measured and determined to be within acceptable limits. Only lots that test negative for antihuman serum protein antibody, antiglomerular basement membrane antibody and pyrogens are released. Each milliliter of anti-thymocyte globulin (equine) contains 50 mg of horse gamma globulin stabilized in 0.3 molar glycine to a pH of approximately 6.8. -
B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells
cells Review B Cell Activation and Escape of Tolerance Checkpoints: Recent Insights from Studying Autoreactive B Cells Carlo G. Bonasia 1 , Wayel H. Abdulahad 1,2 , Abraham Rutgers 1, Peter Heeringa 2 and Nicolaas A. Bos 1,* 1 Department of Rheumatology and Clinical Immunology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] (C.G.B.); [email protected] (W.H.A.); [email protected] (A.R.) 2 Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 Groningen, GZ, The Netherlands; [email protected] * Correspondence: [email protected] Abstract: Autoreactive B cells are key drivers of pathogenic processes in autoimmune diseases by the production of autoantibodies, secretion of cytokines, and presentation of autoantigens to T cells. However, the mechanisms that underlie the development of autoreactive B cells are not well understood. Here, we review recent studies leveraging novel techniques to identify and characterize (auto)antigen-specific B cells. The insights gained from such studies pertaining to the mechanisms involved in the escape of tolerance checkpoints and the activation of autoreactive B cells are discussed. Citation: Bonasia, C.G.; Abdulahad, W.H.; Rutgers, A.; Heeringa, P.; Bos, In addition, we briefly highlight potential therapeutic strategies to target and eliminate autoreactive N.A. B Cell Activation and Escape of B cells in autoimmune diseases. Tolerance Checkpoints: Recent Insights from Studying Autoreactive Keywords: autoimmune diseases; B cells; autoreactive B cells; tolerance B Cells. Cells 2021, 10, 1190. https:// doi.org/10.3390/cells10051190 Academic Editor: Juan Pablo de 1. -
Overview of B-Cell Maturation, Activation, Differentiation
Overview of B-Cell Maturation, Activation, Differentiation B-Cell Development Begins in the Bone Marrow and Is Completed in the Periphery Antigen-Independent (Maturation) 1) Pro-B stages B-cell markers 2) Pre B-stages H- an L- chain loci rearrangements surrogate light chain 3) Naïve B-cell functional BCR . B cells are generated in the bone marrow. Takes 1-2 weeks to develop from hematopoietic stem (HSC) cells to mature B cells. Sequence of expression of cell surface receptor and adhesion molecules which allows for differentiation of B cells, proliferation at various stages, and movement within the bone marrow microenvironment. HSC passes through progressively more delimited progenitor-cell stages until it reaches the pro-B cell stage. Pre-B cell is irreversibly committed to the B-cell lineage and the recombination of the immunoglobulin genes expressed on the cell surface Immature B cell (transitional B cell) leaves the bone marrow to complete its maturation in the spleen through further differentiation. Immune system must create a repertoire of receptors capable of recognizing a large array of antigens while at the Source: Internet same time eliminating self-reactive B cells. B-Cell Activation and Differentiation • Exposure to antigen or various polyclonal mitogens activates resting B cells and stimulates their proliferation. • Activated B cells lose expression of sIgD and CD21 and acquire expression of activation antigens. Growth factor receptors, structures involved in cell-cell interaction, molecules that play a role in the localization and binding of activated B cells Two major types: T cell dependent (TD) T cell independent (TI) B-Cell Activation by Thymus-Independent and Dependent Antigens Source: Kuby T cell dependent: Involves protein antigens and CD4+ helper T cells. -
Prospective Isolation of NKX2-1–Expressing Human Lung Progenitors Derived from Pluripotent Stem Cells
The Journal of Clinical Investigation RESEARCH ARTICLE Prospective isolation of NKX2-1–expressing human lung progenitors derived from pluripotent stem cells Finn Hawkins,1,2 Philipp Kramer,3 Anjali Jacob,1,2 Ian Driver,4 Dylan C. Thomas,1 Katherine B. McCauley,1,2 Nicholas Skvir,1 Ana M. Crane,3 Anita A. Kurmann,1,5 Anthony N. Hollenberg,5 Sinead Nguyen,1 Brandon G. Wong,6 Ahmad S. Khalil,6,7 Sarah X.L. Huang,3,8 Susan Guttentag,9 Jason R. Rock,4 John M. Shannon,10 Brian R. Davis,3 and Darrell N. Kotton1,2 2 1Center for Regenerative Medicine, and The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA. 3Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, Texas, USA. 4Department of Anatomy, UCSF, San Francisco, California, USA. 5Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA. 6Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, Massachusetts, USA. 7Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA. 8Columbia Center for Translational Immunology & Columbia Center for Human Development, Columbia University Medical Center, New York, New York, USA. 9Department of Pediatrics, Monroe Carell Jr. Children’s Hospital, Vanderbilt University, Nashville, Tennessee, USA. 10Division of Pulmonary Biology, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA. It has been postulated that during human fetal development, all cells of the lung epithelium derive from embryonic, endodermal, NK2 homeobox 1–expressing (NKX2-1+) precursor cells. -
Effect of Testosterone and Hypoxia on the Expansion of Umbilical Cord Blood CD34+ Cells in Vitro
EXPERIMENTAL AND THERAPEUTIC MEDICINE 14: 4467-4475, 2017 Effect of testosterone and hypoxia on the expansion of umbilical cord blood CD34+ cells in vitro LIPING ZHOU1,2, XIAOWEI ZHANG2, PANPAN ZHOU1, XUE LI1, XUEJING XU1, QING SHI1, DONG LI1 and XIULI JU1 1Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, Shandong 250012; 2Department of Pediatrics, The Sixth People's Hospital of Jinan, Jinan, Shandong 250200, P.R. China Received October 12, 2016; Accepted June 15, 2017 DOI: 10.3892/etm.2017.5026 Abstract. Successfully expanding hematopoietic stem cells Therefore, the results of the current study indicate that a combina- (HSCs) is advantageous for clinical HSC transplantation. The tion of hypoxia and testosterone may be a promising cultivation present study investigated the influence of testosterone on the condition for HSC/hemopoietic progenitor cell expansion ex vivo. proliferation, antigen phenotype and expression of hemato- poiesis-related genes in umbilical cord blood-derived cluster Introduction of differentiation (CD)34+ cells under normoxic or hypoxia conditions. Cord blood (CB) CD34+ cells were separated using Hematopoietic stem cell (HSC) transplantation is a poten- magnetic activated cell sorting. A cytokine cocktail and feeder tially life-saving procedure used to treat a broad spectrum cells were used to stimulate the expansion of CD34+ cells under of disorders, including hematological, immune and genetic normoxic (20% O2) and hypoxic (1% O2) conditions for 7 days diseases (1). It has been demonstrated that bone marrow and testosterone was added accordingly. Cells were identified reconstituting HSCs reside within a small subpopulation using flow cytometry and reconstruction capacity was deter- of bone marrow or blood-derived mononuclear cells that mined using a colony-forming unit (CFU) assay. -
Mediator of DNA Damage Checkpoint 1 (MDC1) Is a Novel Estrogen Receptor Co-Regulator in Invasive 6 Lobular Carcinoma of the Breast 7 8 Evelyn K
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423142; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Running Title: MDC1 co-regulates ER in ILC 2 3 Research article 4 5 Mediator of DNA damage checkpoint 1 (MDC1) is a novel estrogen receptor co-regulator in invasive 6 lobular carcinoma of the breast 7 8 Evelyn K. Bordeaux1+, Joseph L. Sottnik1+, Sanjana Mehrotra1, Sarah E. Ferrara2, Andrew E. Goodspeed2,3, James 9 C. Costello2,3, Matthew J. Sikora1 10 11 +EKB and JLS contributed equally to this project. 12 13 Affiliations 14 1Dept. of Pathology, University of Colorado Anschutz Medical Campus 15 2Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center 16 3Dept. of Pharmacology, University of Colorado Anschutz Medical Campus 17 18 Corresponding author 19 Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, 20 CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: 21 @mjsikora 22 23 Authors' contributions 24 MJS conceived of the project. MJS, EKB, and JLS designed and performed experiments. JLS developed models 25 for the project. EKB, JLS, SM, and AEG contributed to data analysis and interpretation. SEF, AEG, and JCC 26 developed and performed informatics analyses. MJS wrote the draft manuscript; all authors read and revised the 27 manuscript and have read and approved of this version of the manuscript. -
Evaluation of the Effects of Activation Dependent Regulation of Cd40l on Germinal Center Response Using Cd40lδ5 Mouse Model
EVALUATION OF THE EFFECTS OF ACTIVATION DEPENDENT REGULATION OF CD40L ON GERMINAL CENTER RESPONSE USING CD40LΔ5 MOUSE MODEL By BITHA NARAYANAN A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbiology and Molecular Genetics written under the direction of Lori R. Covey and approved by _____________________________________ _____________________________________ _____________________________________ _____________________________________ New Brunswick, New Jersey January 2020 ©[2020] Bitha Narayanan ALL RIGHTS RESERVED ABSTRACT OF THE DISSERTATION ACTIVATION-DEPENDENT POSTTRANSCRIPTIONAL REGULATION OF CD40L IS REQUIRED FOR AN OPTIMAL GERMINAL CENTER (GC) RESPONSE. by BITHA NARAYANAN Dissertation Director Dr. Lori R. Covey The interaction between cognate T and B cells decides the progression of an immune response to a pathogen or self-antigen. Of the multiple signals that synchronize to fine-tune this union, the binding of CD40 on the surface of B cells to CD40L expressed on CD4 T cells is of paramount importance. Ligation of CD40 on antigen- experienced B cells is associated with the initiation and development of germinal centers (GCs) resulting in the subsequent generation of high affinity antibodies and B cell memory. Post-transcriptional regulation of CD40L has been implicated in regulating the activation dependent expression of this protein. Our lab has previously shown a polypyrimidine tract binding protein complex binds to the 3’ UTR of the CD40L mRNA ii and that the deletion of a PTBP1 binding stability element in the same results in a significant decrease in the half-life of the CD40L transcript and subsequently the surface expression at later stages of activation in vitro.