bioRxiv preprint doi: https://doi.org/10.1101/194456; this version posted September 27, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A synthetic stroma-free germinal center niche using material-surface driven polyvalent signaling efficiently induces antigen-specific humoral immunity ex vivo Kyung-Ho Roh1,3, Hannah K. Wilson1, Pallab Pradhan1, Kevin Bai1, Caitlin D. Bohannon2, Gordon Dale2, Jardin Leleux1, Joshy Jacob2, and Krishnendu Roy1,* 1The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA. 2Division of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA. 3Current Address: Department of Chemical and Materials Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA. *To whom correspondence should be addressed: Krishnendu Roy, PhD Robert A. Milton Chair Director, Center for ImmunoEngineering at Georgia Tech The Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University The Parker H. Petit Institute for Bioengineering & Bioscience, EBB 3018 Georgia Institute of Technology, Atlanta, GA 30332 Ph: 404-385-6166 950 Atlantic Drive NW, Atlanta, GA 30332; telephone: +1-404-385-6166; E-mail:
[email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/194456; this version posted September 27, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract B cells play a major role in the adaptive immune response by producing antigen-specific antibodies against pathogens and imparting immunological memory.