<<

Second Edition Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Volume I Introduction and Hydrocarbons Volume II Halogenated Hydrocarbons Volume III HANDBOOK OF HANDBOOK Oxygen Containing Compounds Volume IV Nitrogen and Sulfur Containing Compounds and Pesticides

© 2006 by Taylor & Francis Group, LLC Second Edition Physical-Chemical Properties and Environmental Fate for Organic Chemicals Volume I Introduction and Hydrocarbons Volume II Halogenated Hydrocarbons Volume III Oxygen Containing Compounds

HANDBOOK OF HANDBOOK Volume IV Nitrogen and Sulfur Containing Compounds and Pesticides

Donald Mackay Wan Ying Shiu Kuo-Ching Ma Sum Chi Lee

Boca Raton London New York

A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc.

© 2006 by Taylor & Francis Group, LLC Published in 2006 by CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2006 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10987654321 International Standard Book Number-10: 1-56670-687-4 (Hardcover) International Standard Book Number-13: 978-1-56670-687-2 (Hardcover) Library of Congress Card Number 2005051402 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Handbook of physical-chemical properties and environmental fate for organic chemicals.--2nd ed. / by Donald Mackay ... [et al.]. p. cm. Rev. ed. of: Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals / Donald Mackay, Wan Ying Shiu, and Kuo Ching Ma. c1992-c1997. Includes bibliographical references and index. ISBN 1-56670-687-4 (set : acid-free paper) 1. Organic compounds--Environmental aspects--Handbooks, manuals, etc. 2. Environmental chemistry--Handbooks, manuals, etc. I. Mackay, Donald, 1936- II. Mackay, Donald, 1936- Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals.

TD196.O73M32 2005 628.5'2--dc22 2005051402

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at Taylor & Francis Group is the Academic Division of T&F Informa plc. http://www.crcpress.com

© 2006 by Taylor & Francis Group, LLC Preface

This handbook is a compilation of environmentally relevant physical-chemical data for similarly structured groups of chemical substances. These data control the fate of chemicals as they are transported and transformed in the multimedia environment of air, water, soils, sediments, and their resident biota. These fate processes determine the exposure experienced by humans and other organisms and ultimately the risk of adverse effects. The task of assessing chemical fate locally, regionally, and globally is complicated by the large (and increasing) number of chemicals of potential concern; by uncertainties in their physical-chemical properties; and by lack of knowledge of prevailing environmental conditions such as temperature, pH, and deposition rates of solid matter from the atmosphere to water, or from water to bottom sediments. Further, reported values of properties such as solubility are often in conflict. Some are measured accurately, some approximately, and some are estimated by various correlation schemes from molecular structures. In some cases, units or chemical identity are wrongly reported. The user of such data thus has the difficult task of selecting the “best” or “right” values. There is justifiable concern that the resulting deductions of environmental fate may be in substantial error. For example, the potential for evaporation may be greatly underestimated if an erroneously low vapor pressure is selected. To assist the environmental scientist and engineer in such assessments, this handbook contains compilations of physical-chemical property data for over 1000 chemicals. It has long been recognized that within homologous series, properties vary systematically with molecular size, thus providing guidance about the properties of one substance from those of its homologs. Where practical, plots of these systematic property variations can be used to check the reported data and provide an opportunity for interpolation and even modest extrapolation to estimate unmeasured properties of other substances. Most handbooks treat chemicals only on an individual basis and do not contain this feature of chemical- to-chemical comparison, which can be valuable for identifying errors and estimating properties. This most recent edition includes about 1250 compounds and contains about 30 percent additional physical-chemical property data. There is a more complete coverage of PCBs, PCDDs, PCDFs, and other halogenated hydrocarbons, especially brominated and fluorinated substances that are of more recent environmental concern. Values of the physical-chemical properties are generally reported in the literature at a standard temperature of 20 or 25¡C. However, environmental temperatures vary considerably, and thus reliable data are required on the temperature dependence of these properties for fate calculations. A valuable enhancement to this edition is the inclusion of extensive measured temperature-dependent data for the first time. The data focus on water solubility, vapor pressure, and Henry’s law constant but include octanol/water and octanol/air partition coefficients where available. They are provided in the form of data tables and correlation equations as well as graphs. We also demonstrate in Chapter 1 how the data may be taken a stage further and used to estimate likely environmental partitioning tendencies, i.e., how the chemical is likely to become distributed between the various media that comprise our biosphere. The results are presented numerically and pictorially to provide a visual impression of likely environmental behavior. This will be of interest to those assessing environmental fate by confirming the general fate characteristics or behavior profile. It is, of course, only possible here to assess fate in a “typical” or “generic” or “evaluative” environment. No claim is made that a chemical will behave in this manner in all situations, but this assessment should reveal the broad characteristics of behavior. These evaluative fate assessments are generated using simple fugacity models that flow naturally from the compilations of data on physical-chemical properties of relevant chemicals. Illustrations of estimated environmental fate are given in Chapter 1 using Levels I, II, and III mass balance models. These and other models are available for downloading gratis from the website of the Canadian Environmental Modelling Centre at Trent University (www.trent.ca/cemc). It is hoped that this new edition of the handbook will be of value to environmental scientists and engineers and to students and teachers of environmental science. Its aim is to contribute to better assessments of chemical fate in our multimedia environment by serving as a reference source for environmentally relevant physical-chemical property data of classes of chemicals and by illustrating the likely behavior of these chemicals as they migrate throughout our biosphere.

© 2006 by Taylor & Francis Group, LLC Acknowledgments

We would never have completed the volumes for the first and second editions of the handbook and the CD-ROMs without the enormous amount of help and support that we received from our colleagues, publishers, editors, friends, and family. We are long overdue in expressing our appreciation. We would like first to extend deepest thanks to these individuals: Dr. Warren Stiver, Rebecca Lun, Deborah Tam, Dr. Alice Bobra, Dr. Frank Wania, Ying D. Lei, Dr. Hayley Hung, Dr. Antonio Di Guardo, Qiang Kang, Kitty Ma, Edmund Wong, Jenny Ma, and Dr. Tom Harner. During their past and present affiliations with the Department of Chemical Engineering and Applied Chemistry and/or the Institute of Environment Studies at the University of Toronto, they have provided us with many insightful ideas, constructive reviews, relevant property data, computer know-how, and encouragement, which have resulted in substantial improvements to each consecutive volume and edition through the last fifteen years. Much credit goes to the team of professionals at CRC Press/Taylor & Francis Group who worked on this second edition. Especially important were Dr. Fiona Macdonald, Publisher, Chemistry; Dr. Janice Shackleton, Input Supervisor; Patrica Roberson, Project Coordinator; Elise Oranges and Jay Margolis, Project Editors; and Marcela Peres, Production Assistant. We are indebted to Brian Lewis, Vivian Collier, Kathy Feinstein, Dr. David Packer, and Randi Cohen for their interest and help in taking our idea of the handbook to fruition. We also would like to thank Professor Doug Reeve, Chair of the Department of Chemical Engineering and Applied Chemistry at the University of Toronto, as well as the administrative staff for providing the resources and assistance for our efforts. We are grateful to the University of Toronto and Trent University for providing facilities, to the Natural Sciences and Engineering Research Council of Canada and the consortium of chemical companies that support the Canadian Environmental Modelling Centre for funding of the second edition. It is a pleasure to acknowledge the invaluable contributions of Eva Webster and Ness Mackay.

© 2006 by Taylor & Francis Group, LLC Biographies

Donald Mackay, born and educated in Scotland, received his degrees in Chemical Engineering from the University of Glasgow. After working in the petrochemical industry he joined the University of Toronto, where he taught for 28 years in the Department of Chemical Engineering and Applied Chemistry and in the Institute for Environmental Studies. In 1995 he moved to Trent University to found the Canadian Environmental Modelling Centre. Professor Mackay’s primary research is the study of organic environmental contaminants, their properties, sources, fates, effects, and control, and particularly understanding and modeling their behavior with the aid of the fugacity concept. His work has focused especially on the Great Lakes Basin; on cold northern climates; and on modeling bioaccumulation and chemical fate at local, regional, continental and global scales. His awards include the SETAC Founders Award, the Honda Prize for Eco-Technology, the Order of Ontario, and the Order of Canada. He has served on the editorial boards of several journals and is a member of SETAC, the American Chemical Society, and the International Association of Great Lakes Research.

Wan-Ying Shiu is a Senior Research Associate in the Department of Chemical Engineering and Applied Chemistry, and the Institute for Environmental Studies, University of Toronto. She received her Ph.D. in Physical Chemistry from the Department of Chemistry, University of Toronto, M.Sc. in Physical Chemistry from St. Francis Xavier University, and B.Sc. in Chemistry from Hong Kong Baptist College. Her research interest is in the area of physical-chemical properties and thermodynamics for organic chemicals of environmental concern.

Kuo-Ching Ma obtained his Ph.D. from Florida State University, M.Sc. from The University of Saskatchewan, and B.Sc. from The National Taiwan University, all in Physical Chemistry. After working many years in the aerospace, battery research, fine chemicals, and metal finishing industries in Canada as a Research Scientist, Technical Supervisor/ Director, he is now dedicating his time and interests to environmental research.

Sum Chi Lee received her B.A.Sc. and M.A.Sc. in Chemical Engineering from the University of Toronto. She has conducted environmental research at various government organizations and the University of Toronto. Her research activities have included establishing the physical-chemical properties of organochlorines and understanding the sources, trends, and behavior of persistent organic pollutants in the atmosphere of the Canadian Arctic. Ms. Lee also possesses experience in technology commercialization. She was involved in the successful commer- cialization of a proprietary technology that transformed recycled material into environmentally sound products for the building material industry. She went on to pursue her MBA degree, which she earned from York University’s Schulich School of Business. She continues her career, combining her engineering and business experiences with her interest in the environmental field.

© 2006 by Taylor & Francis Group, LLC Contents

Volume I Chapter 1 Introduction ...... 1 Chapter 2 Aliphatic and Cyclic Hydrocarbons ...... 61 Chapter 3 Mononuclear Aromatic Hydrocarbons...... 405 Chapter 4 Polynuclear Aromatic Hydrocarbons (PAHs) and Related Aromatic Hydrocarbons ...... 617

Volume II Chapter 5 Halogenated Aliphatic Hydrocarbons ...... 921 Chapter 6 Chlorobenzenes and Other Halogenated Mononuclear Aromatics ...... 1257 Chapter 7 Polychlorinated Biphenyls (PCBs)...... 1479 Chapter 8 Chlorinated Dibenzo-p-dioxins ...... 2063 Chapter 9 Chlorinated Dibenzofurans...... 2167

Volume III Chapter 10 ...... 2259 Chapter 11 Alcohols ...... 2473 Chapter 12 Aldehydes and Ketones ...... 2583 Chapter 13 Carboxylic Acids ...... 2687 Chapter 14 Phenolic Compounds ...... 2779 Chapter 15 Esters ...... 3023

Volume IV Chapter 16 Nitrogen and Sulfur Compounds ...... 3195 Chapter 17 Herbicides...... 3457 Chapter 18 Insecticides ...... 3711 Chapter 19 Fungicides...... 4023

Appendix 1 ...... 4133 Appendix 2 ...... 4137 Appendix 3 ...... 4161

© 2006 by Taylor & Francis Group, LLC 10 Ethers

CONTENTS 10.1 List of Chemicals and Data Compilations ...... 2262 10.1.1 Aliphatic ethers ...... 2262 10.1.1.1 Dimethyl (Methyl ether) ...... 2262 10.1.1.2 (Ethyl ether) ...... 2266 10.1.1.3 Methyl t-butyl ether (MTBE) ...... 2271 10.1.1.4 Di-n-propyl ether ...... 2276 10.1.1.5 Di-isopropyl ether ...... 2280 10.1.1.6 Butyl ethyl ether ...... 2285 10.1.1.7 Di-n-butyl ether ...... 2289 10.1.1.8 1,2-Propylene oxide ...... 2293 10.1.1.9 Furan ...... 2297 10.1.1.10 2-Methylfuran ...... 2301 10.1.1.11 Tetrahydrofuran ...... 2303 10.1.1.12 Tetrahydropyran ...... 2307 10.1.1.13 1,4-Dioxane ...... 2309 10.1.2 Halogenated ethers ...... 2313 10.1.2.1 Epichlorohydrin ...... 2313 10.1.2.2 Chloromethyl methyl ether ...... 2315 10.1.2.3 Bis(chloromethyl)ether ...... 2317 10.1.2.4 Bis(2-chloroethyl)ether ...... 2319 10.1.2.5 Bis(2-chloroisopropyl)ether ...... 2322 10.1.2.6 2-Chloroethyl vinyl ether ...... 2325 10.1.2.7 Bis(2-chloroethoxy)methane ...... 2327 10.1.3 Aromatic ethers ...... 2329 10.1.3.1 (Methoxybenzene) ...... 2329 10.1.3.2 2-Chloroanisole ...... 2334 10.1.3.3 3-Chloroanisole ...... 2335 10.1.3.4 4-Chloroanisole ...... 2336 10.1.3.5 2,3-Dichloroanisole ...... 2337 10.1.3.6 2,6-Dichloroanisole ...... 2338 10.1.3.7 2,3,4-Trichloroanisole ...... 2339 10.1.3.8 2,4,6-Trichloroanisole ...... 2340 10.1.3.9 2,3,4,5-Tetrachloroanisole ...... 2341 10.1.3.10 2,3,5,6-Tetrachloroanisole ...... 2342 10.1.3.11 Veratrole (1,2-Dimethoxybenzene) ...... 2343 10.1.3.12 4,5-Dichloroveratrole ...... 2345 10.1.3.13 3,4,5-Trichloroveratrole ...... 2346 10.1.3.14 Tetrachloroveratrole ...... 2347 10.1.3.15 Phenetole ...... 2348 10.1.3.16 Benzyl ethyl ether ...... 2351

2259

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2260 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.3.17 Styrene oxide ...... 2353 10.1.3.18 Diphenyl ether ...... 2355 10.1.4 Polychlorinated diphenyl ethers (PCDEs) ...... 2359 10.1.4.1 2-Chlorodiphenyl ether (PCDE-1) ...... 2359 10.1.4.2 4-Chlorodiphenyl ether ...... 2360 10.1.4.3 2,4-Dichlorodiphenyl ether (PCDE-8) ...... 2362 10.1.4.4 2,6-Dichlorodiphenyl ether (PCDE-10) ...... 2363 10.1.4.5 2,4,4′-Trichlorodiphenyl ether (PCDE-28) ...... 2364 10.1.4.6 2,4,5-Trichlorodiphenyl ether (PCDE-29) ...... 2365 10.1.4.7 2,4′,5-Trichlorodiphenyl ether (PCDE-31) ...... 2367 10.1.4.8 2,2′,4,4′-Tetrachlorodiphenyl ether (PCDE-47) ...... 2368 10.1.4.9 2,3′,4,4′-Tetrachlorodiphenyl ether (PCDE-66) ...... 2369 10.1.4.10 2,4,4′,5-Tetrachlorodiphenyl ether (PCDE-74) ...... 2370 10.1.4.11 3,3′,4,4′-Tetrachlorodiphenyl ether (PCDE-77) ...... 2371 10.1.4.12 2,2′,3,4,4′-Pentachlorodiphenyl ether (PCDE-85) ...... 2373 10.1.4.13 2,2′,4,4′,5-Pentachlorodiphenyl ether (PCDE-99) ...... 2374 10.1.4.14 2,2′,4,4′,6-Pentachlorodiphenyl ether (PCDE-100) ...... 2376 10.1.4.15 2,2′,4,5,5′-Pentachlorodiphenyl ether (PCDE-101) ...... 2378 10.1.4.16 2,3,3′,4,4′-Pentachlorodiphenyl ether (PCDE-105) ...... 2379 10.1.4.17 3,3′,4,4′,5-Pentachlorodiphenyl ether (PCDE-126) ...... 2380 10.1.4.18 2,2′,3,3′,4,4′-Hexachlorodiphenyl ether (PCDE-128) ...... 2381 10.1.4.19 2,2′,3,4,4′,5-Hexachlorodiphenyl ether (PCDE-137) ...... 2382 10.1.4.20 2,2′,3,4,4′,5′-Hexachlorodiphenyl ether (PCDE-138) ...... 2384 10.1.4.21 2,2′,3,4,4′,6′-Hexachlorodiphenyl ether (PCDE-140) ...... 2385 10.1.4.22 2,2′,4,4′,5,5′-Hexachlorodiphenyl ether (PCDE-153) ...... 2386 10.1.4.23 2,2′,4,4′,5,6′-Hexachlorodiphenyl ether (PCDE-154) ...... 2388 10.1.4.24 2,3′,4,4′,5,5′-Hexachlorodiphenyl ether (PCDE-167) ...... 2390 10.1.4.25 2,2′,3,4,4′,5,5′-Heptachlorodiphenyl ether (PCDE-180) ...... 2392 10.1.4.26 2,2′,3,4,4′,5,6′-Heptachlorodiphenyl ether (PCDE-182) ...... 2394 10.1.4.27 2,2′,3,4,4′,6,6′-Heptachlorodiphenyl ether (PCDE-184) ...... 2395 10.1.4.28 2,2′,3,3′,4,4′,5,5′-Octachlorodiphenyl ether (PCDE-194) ...... 2396 10.1.4.29 2,2′,3,3′,4,4′,5,6′-Octachlorodiphenyl ether (PCDE-196) ...... 2397 10.1.4.30 2,2′,3,3′,4,4′,6,6′-Octachlorodiphenyl ether (PCDE-197) ...... 2398 10.1.4.31 2,2′,3,3′,4,4′,5,5′,6-Nonachlorodiphenyl ether (PCDE-206) ...... 2399 10.1.4.32 Decachlorodiphenyl ether (PCDE-209) ...... 2400 10.1.5 Brominated diphenyl ethers ...... 2401 10.1.5.1 2-Bromodiphenyl ether (BDE-1) ...... 2401 10.1.5.2 3-Bromodiphenyl ether (BDE-2) ...... 2402 10.1.5.3 4-Bromodiphenyl ether (BDE-3) ...... 2403 10.1.5.4 2,4-Dibromodiphenyl ether (BDE-7) ...... 2405 10.1.5.5 2,4′-Dibromodiphenyl ether (BDE-9) ...... 2406 10.1.5.6 2,6-Dibromodiphenyl ether (BDE-10) ...... 2407 10.1.5.7 3,4-Dibromodiphenyl ether (BDE-12) ...... 2408 10.1.5.8 3,4′-Dibromodiphenyl ether (BDE-13) ...... 2409 10.1.5.9 4,4′-Dibromodiphenyl ether (BDE-15) ...... 2410 10.1.5.10 2,2′,4-Tribromodiphenyl ether (BDE-17) ...... 2412 10.1.5.11 2,4,4′-Tribromodiphenyl ether (BDE-28) ...... 2414 10.1.5.12 2,4,6-Tribromodiphenyl ether (BDE-30) ...... 2417 10.1.5.13 2,4′,6-Tribromodiphenyl ether (BDE-32) ...... 2418 10.1.5.14 2′,3,4-Tribromodiphenyl ether (BDE-33) ...... 2419 10.1.5.15 3,3′,4-Tribromodiphenyl ether (BDE-35) ...... 2420 10.1.5.16 3,4,4′-Tribromodiphenyl ether (BDE-37) ...... 2421 10.1.5.17 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47) ...... 2422 10.1.5.18 2,3′,4,4′-Tetrabromodiphenyl ether (BDE-66) ...... 2425 10.1.5.19 2,3′,4,6-Tetrabromodiphenyl ether (BDE-69) ...... 2427

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2261

10.1.5.20 3,3′,4,4′-Tetrabromodiphenyl ether (BDE-77) ...... 2428 10.1.5.21 2,2′,3,3′,4-Pentabromodiphenyl ether (BDE-82) ...... 2430 10.1.5.22 2,2′,3,4,4′-Pentabromodiphenyl ether (BDE-85) ...... 2431 10.1.5.23 2,2′,4,4′,5-Pentabromodiphenyl ether (BDE-99) ...... 2433 10.1.5.24 2,2′,4,4′,6-Pentabromodiphenyl ether (BDE-100) ...... 2436 10.1.5.25 2,3,4,4′,6-Pentabromodiphenyl ether (BDE-115) ...... 2439 10.1.5.26 3,3′,4,4′,5-Pentabromodiphenyl ether (BDE-126) ...... 2440 10.1.5.27 2,3,3′,4,4′,5′-Hexabromodiphenyl ether (BDE-138) ...... 2442 10.1.5.28. 2,2′,4,4′,5,5′-Hexabromodiphenyl ether (BDE-153) ...... 2443 10.1.5.29 2,2′,4,4′,5,6′-Hexabromodiphenyl ether (BDE-154) ...... 2446 10.1.5.30 2,3,3′,4,4′,5-Hexabromodiphenyl ether (BDE-156) ...... 2448 10.1.5.31 2,2′,3,4,5,5′,6-Heptabromodiphenyl ether (BDE-183) ...... 2450 10.1.5.32 2′,3,3′,4,4′,5,6-Heptabromodiphenyl ether (BDE-190) ...... 2452 10.1.5.33 Decabromodiphenyl ether (BDE-209) ...... 2453 10.2 Summary Tables and QSPR Plots ...... 2455 10.3 References ...... 2463

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2262 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1 LIST OF CHEMICALS AND DATA COMPILATIONS

10.1.1 ALIPHATIC ETHERS 10.1.1.1 Dimethyl ether (Methyl ether)

O

Common Name: Dimethyl ether Synonym: methyl ether, oxapropane, oxybismethane Chemical Name: dimethyl ether, methyl ether, CAS Registry No: 115-10-6

Molecular Formula:C2H6O, CH3OCH3 Molecular Weight: 46.068 Melting Point (°C): –138.5 (Stull 1947; Stephenson & Malanowski 1987) –141.5 (Riddick et al. 1986; Lide 2003) Boiling Point (°C): –24.75 (Ambrose et al. 1976) –23.60 (Stephenson & Malanowski 1987) –24.8 (Lide 2003) Density (g/cm3 at 20°C): 0.6689 (Riddick et al. 1986) 0.6612 (25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 68.87 (20°C, calculated-density) 60.9 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 4.941 (Riddick et al. 1986; Chickos et al. 1999) ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated): 71000 (Seidell 1941; Lange 1971) 35.3% (24°C, selected, Riddick et al. 1986) 65200 (literature data compilation, Yaws et al. 1990)

47480 (calculated-VM, Wang et al. 1992)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 100847* (–24.91°C, static method-manometer, measured range –78.22 to –24.91°C, Kennedy et al. 1941) 678090* (calculated-Antoine eq. regression, temp range –115.7 to –23.7°C, Stull 1947) log (P/mmHg) = [–0.2185 × 5409.8/(T/K)] + 7.585479; temp range –115.7 to 125.2°C (Antoine eq., Weast 1972–73) 593300 (Ambrose et al. 1976, Riddick et al. 1986) log (P/kPa) = 6.0823 – 882.52/{(T/K) + 31.90} (Antoine eq., Ambrose et al. 1976) log (P/mmHg) = 6.97603 – 889.3645/(241.96 + t/°C); temp range –71 to –25°C (Antoine eq., Dean 1985, 1992) log (P/kPa) = 5.44136 – 1025.56/(256.05 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 575530, 593340 (calculated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.44136 – 1025.56/(–17.1 + T/K); temp range 183–265 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.30358 – 982.46/(–20.894 + T/K), temp range not specified (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.36332 – 995.747/(–19.864 + T/K); temp range 180–249 K (Antoine eq.-III, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2263

log (PL/kPa) = 6.09354 – 880.813/(–33.007 + T/K); temp range 241–303 K (Antoine eq.-IV, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.28318 – 987.484/(–16.813 + T/K); temp range 293–360 K (Antoine eq.-V, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.48877 – 1971.127/(122.787 + T/K); temp range 349–400 K (Antoine eq.-VI, Stephenson & Malanowski 1987) 374000* (10°C, vapor-liquid equilibrium, measured range 203.15–395 K, Noles & Zollweg 1992) log (P/mmHg) = 20.2699 – 1.5914 × 103/(T/K) – 4.653·log (T/K) – 1.3178 × 10–10·(T/K) + 2.5623 × 10–6·(T/K)2; temp range 132–400 K (vapor pressure eq., Yaws et al. 1994) 510000* (20.5°C, vapor-liquid equilibrium, measured range 0.51–120.12°C, Jónasson et al. 1995) 589100 (25.02°C, vapor-liquid equilibrium, measured range 283.12–313.22 K, Bobbo et al. 2000) 596210* (25.022°C, static-pressure sensor, measured range 233–399 K, data fitted to Wagner type eq., Wu et al. 2004)

Henry’s Law Constant (Pa m3/mol at 25°C):

101.0 (calculated-1/KAW, CW/CA, reported as exptl., Hine & Mookerjee 1975) 49.5, 105.7 (calculated-group contribution, calculated-bond contribution method, Hine & Mookerjee 1975)

Octanol/Water Partition Coefficient, log KOW: 0.10 (shake flask-GC, Leo et al. 1975; Hansch & Leo 1987) 0.10 (recommended, Sangster 1989) 0.10 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

1.37 (calculated-Soct and vapor pressure P, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression see reference: –14 3 –1 –1 kO(3P) = 5.7 × 10 cm molecule s for the reaction with O(3P) at room temp. (Gaffney & Levine 1979) –12 3 –1 –1 kOH* = 3.50 × 10 cm molecule s at 298.9 K, measured range 298–505 K (flash photolysis-resonance fluorescence, Perry et al. 1977) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 2.4 × 10 cm molecule s , kOH(obs.) = 2.98 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985) ≤ –15 3 –1 –1 kNO3 3.0 × 10 cm molecule s at 298 ± 2 K (flash photolysis-visible absorption, Wallington et al. 1986; quoted, Sabljic & Güsten 1990; Atkinson 1991) –12 3 –1 –1 kOH* = 2.95 × 10 cm molecule s at 295 K, measured range 295–442 K (Tully & Droege 1987) –15 3 –1 –1 kNO3 = 2.92 × 10 cm molecule s at room temp. (Sabljic & Güsten 1990) –12 3 –1 –1 –12 3 –1 –1 kOH(exptl) = 2.98 × 10 cm molecule s , kOH(calc) = 1.98 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –13 3 –1 –1 kOH* = (24.9 ± 2.2) × 10 cm molecule s at 296 K, measured range 240–440 K (flash photolysis- resonance fluorescence, Wallington et al. 1988b) –12 3 –1 –1 –12 3 –1 –1 kOH = 2.49 × 10 cm molecule s ; k(soln) = 1.7 × 10 cm molecule s for reaction with OH radical in aqueous solution (Wallington et al. 1988a) –12 3 –1 –1 kOH* = 2.98 × 10 cm molecule s at 298 K (recommended, Atkinson 1989, 1990) –12 3 –1 –1 –12 kOH = (2.35 ± 0.24) × 10 cm molecule s by pulse radiolysis-UV spectroscopy; kOH = (3.19 ± 0.7) × 10 cm3 molecule–1 s–1 by relative rate method, at 298 ± 2 K (Nelson et al. 1990) –12 3 –1 –1 kOH* = 2.95 × 10 cm molecule s at 295 K, measured range 295–650 K (laser photolysis-laser induced fluorescence technique, Arif et al. 1997)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2264 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

–12 3 –1 –1 kOH* = 2.86 × 10 cm molecule s at 298 K, measured range 263–351 K (relative rate method, DeMore & Bayes 1999) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from air for the reaction with OH radical (USEPA 1974; quoted, Darnall et al. 1976); calculated lifetimes of 4.1 d and 180 d for reactions with OH radical, NO3 radical, respectively (Atkinson .2000)

TABLE 10.1.1.1.1 Reported vapor pressures of dimethyl ether at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4) log P = A – B/(T/K) + C·log (T/K) – D·(T/K) (5) 1.

Kennedy et al. 1941 Stull 1947 Jónasson et al. 1995 Wu et al. 2004

static method-manometer summary of literature data static-pressure gauge quartz pressure sensors

t/°C P/Pa t/°C P/Pa t/°C P/Pa T/K P/Pa –78.22 4684 –115.7 133.3 0.51 270000 233.128 54610 –70.66 8121 –101.1 666.6 3.07 300000 238.126 68490 –65.25 11706 –93.3 1333 4.97 330000 243.157 85570 –60.03 16315 –85.2 2666 15.01 430000 248.152 105590 –55.14 21910 –76.2 5333 20.50 510000 253.152 129.42 –49.90 29585 –70.4 7999 27.11 630000 258.160 157530 –45.10 38334 –62.7 13332 33.39 750000 263.160 190440 –40.02 49810 –50.0 26664 44.39 990000 268.161 228480 –35.10 63401 –37.8 53329 50.25 1160000 273.153 272170 –27.67 89362 –23.7 101325 63.94 1590000 278.145 321870 –24.91 100847 76.67 2080000 283.160 378660 mp/°C –138.5 89.25 2680000 288.174 444570 mp/°C –141.5 103.77 3500000 293.161 515530 bp/°C –24.82 120.12 4720000 298.172 596210 Noles & Zollweg 1992 303.160 687370 eq. 5 P/mmHg vapor-liquid equilibrium 305.160 726260 A 23.686185 t/°C P/Pa 308.158 787070 B 1691.8056 10 37400 313.156 897590 C –6.04560 50 114900 316.154 968550 D 0.00195754 90 273800 318.158 1018910 temp range 195–284.34 K 99.95 328400 323.149 1152350 109.85 357000 328.149 1298230 121.85 488200 333.157 1457500 more to 400.378 5355800 data fitted to Wagner eq.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2265

Dimethyl ether: vapor pressure vs. 1/T 8.0

7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0 Kennedy et al. 1941 Noles & Zollweg 1992 1.0 Jónasson et al. 1995 Wu et al. 2004 b.p. = -24.8°C m.p. = -141.5 °C Stull 1947 0.0 0.0014 0.0022 0.003 0.0038 0.0046 0.0054 0.0062 0.007 0.0078 0.0086 1/(T/K) FIGURE 10.1.1.1.1 Logarithm of vapor pressure versus reciprocal temperature for dimethyl ether.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2266 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.1.2 Diethyl ether (Ethyl ether)

O

Common Name: Diethyl ether Synonym: ether, ethyl ether, ethoxyethane, ethyl oxide, 3-oxapentane, 1,1′-oxybisethane, sulfuric ether Chemical Name: ether, diethyl ether, ethoxyethane, ethyl oxide, 3-oxapentane, 1,1′-oxybisethane CAS Registry No: 60-29-7

Molecular Formula: C4H10O, CH3CH2OCH2CH3 Molecular Weight: 74.121 Melting Point (°C): –116.2 (Lide 2003) Boiling Point (°C): 34.5 (Stephenson & Malanowski 1987; Lide 2003) Density (g/cm3 at 20°C): 0.7136. 0.7078 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 103.9 (20°C, calculated-density) 106.1 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 5.439 (quoted, Riddick et al. 1986) 7.19 (exptl., Chickos et al. 1999) ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 60270* (thermostatic volumetric method, measured range –3.83 to 30°C, Hill 1923) 60400* (volumetric method, measured range 10–30°C, Kablukov & Malischeva 1925) 60300* (volumetric method, measured range 10–25°C, Bennett & Phillip 1928) 69000 (Seidell 1941; Lange 1971) 60400 (selected, Riddick et al. 1986) 60900 (literature data compilation, Yaws et al. 1990)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 58335* (19.871°C, manometer, measured range –60.799–19.871°C, Taylor & Smith) 74690* (calculated-Antoine eq. regression, temp range –74 to 35.6°C, Stull 1947) 323835* (71.11°C, static method-Bourdon, measured range 71.11–187.78°C, Kobe et al. 1956) log (P/mmHg) = [–0.2185 × 6946.2/(T/K)] + 7.56659; temp range –74.3 to 183.3°C (Antoine eq., Weast 1972–73) 58920 (20°C, Verschueren 1983) 63340* (21.82°C, ebulliometry, measured range 250–467 K, Ambrose et al. 1972; quoted, Boublik et al. 1984) log (P/kPa) = 6.05115 – 1062.409/[(T/K) – 44.967]; temp range 250–329 K (ebulliometry, Antoine eq., Ambrose et al. 1972) 71620 (Ambrose et al. 1976) 71240, 71610 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.04972 – 1066.052/(220.003 + t/°C); temp range –70.0 to 19.87°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.0492 – 1061.391/(228.06 + t/°C); temp range –23.1 to 55.434°C (Antoine eq. from reported exptl. data of Ambrose et al. 1972, Boublik et al. 1984) log (P/mmHg) = 6.92032 – 1064.07/(228.8 + t/°C); temp range –61 to 20°C (Antoine eq., Dean 1985, 1992) 71620 (selected, Riddick et al. 1986)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2267

log (P/kPa) = 6.05115 – 1062.409/(228.183 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 71620, 71604 (calculated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.02962 – 1051.432/(–44.967 + T/K); temp range 286–329 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.05115 – 1062.409/(–44.967 + T/K); temp range 250–329 K (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.30714 – 1236.75/(–20.11 + T/K); temp range 307–457 K (Antoine eq.-III, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.05933 – 1067.576/(–44.217 + T/K); temp range 305–360 K (Antoine eq.-IV, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.37811 – 1276.822/(–14.869 + T/K); temp range 417–467 K (Antoine eq.-V, Stephenson & Malanowski 1987) log (P/mmHg) = 41.7519 – 2.741 × 103/(T/K) – 12.27·log (T/K) – 3.1948 × 10–10·(T/K) + 5.9802 × 10–6·(T/K)2; temp range 157–467 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence):

130 (calculated-1/KAW, CW/CA, reported as exptl., Hine & Mookerjee 1975) 90.0 (calculated-group contribution method, Hine & Mookerjee 1975) 237 (calculated-bond contribution method, Hine & Mookerjee 1975) 87.9 (calculated-P/C using Riddick et al. 1986 data) 86.8 (23°C, batch air stripping-IR, Nielsen et al. 1994) 95.05 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001)

log KAW = 5.953 – 2158/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 0.83 (20°C, shake flask-CR, Collander 1951) 1.03 (Hansch et al. 1968) 0.89 (shake flask-GC, both phases, Hansch et al. 1975) 0.77 (shake flask, Log P Database, Hansch & Leo 1987) 0.89 (recommended, Sangster 1989) 0.89 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA at 25°C: 2.19 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression see reference: –11 3 –1 –1 –11 3 –1 –1 kOH(calc) = 1.43 × 10 cm molecule s , kOH(obs.) = 1.34 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –12 3 –1 –1 kOH* = 13.4 × 10 cm molecule s at 295 K, measured range 295–442 K (Tully & Droege 1987) –11 3 –1 –1 –11 3 –1 –1 kOH(exptl) = 1.34 × 10 cm molecule s , kOH(calc) = 1.06 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –12 3 –1 –1 kOH* = (13.6 ± 0.9) × 10 cm molecule s at 296 K, measured range 240–440 K (flash photolysis- resonance fluorescence, Wallington et al. 1988b) –11 3 –1 –1 –12 3 –1 –1 kOH = 1.36 × 10 cm molecule s ; k(soln) = 6.0 × 10 cm molecule s for reaction with OH radical in aqueous solution (Wallington et al. 1988a) –11 3 –1 –1 kOH = 1.20 × 10 cm molecule s at 294 K (relative rate method, Bennett & Keer 1989) –11 3 –1 –1 kOH* = 1.33 × 10 cm molecule s 298 K (recommended, Atkinson 1989, 1990)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2268 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

–12 3 –1 –1 –12 kOH = (11.3 ± 0.10) × 10 cm molecule s by pulse radiolysis-UV spectroscopy; kOH = (12.8 ± 0.6) × 10 cm3 molecule–1 s–1 by relative rate method, at 298 ± 2 K (Nelson et al. 1990) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from the air for the reaction with OH radical (USEPA 1974; quoted, Darnall et al. 1976);

calculated lifetimes of 11 h and 17 d for reactions with OH radical, NO3 radical, respectively (Atkinson 2000).

TABLE 10.1.1.2.1 Reported aqueous solubilities of diethyl ether at various temperatures

Hill 1923 Kablukov & Malischeva 1925 Bennett & Phillip 1928

volumetric method volumetric method volumetric method

t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 –3.83 127520 10 90100 10 91000 0 116680 15 78700 15 79500 10 90400 20 68800 20 68700 15 79130 25 60400 25 60300 20 68960 30 53400 25 60270 30 53400

Diethyl ether: solubility vs. 1/T -2.0 Hill 1923 Kablukov & Malischeva 1925 -2.5 Bennett & Phillip 1928 Seidell 1941 -3.0

-3.5

x nl x -4.0

-4.5

-5.0

-5.5

-6.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K) FIGURE 10.1.1.2.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for diethyl ether.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2269

TABLE 10.1.1.2.2 Reported vapor pressures of diethyl ether at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Taylor & Smith 1922 Stull 1947 Kobe et al. 1956 Ambrose et al. 1972

manometer summary of literature data static method-Bourdon gauge ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa –60.799 527 –20.4 133.3 71.11 323835 –23.104 7430 –55.748 791 –3.0 666.6 76.67 372065 –19.889 8933 –50.873 1169 5.5 1333 82.22 427186 –16.744 10619 –45.998 1683 14.3 2666 87.78 496087 –13.492 12664 –41.125 2370 24.5 5333 93.33 564988 –10.135 15090 –36.231 3302 31.0 7999 98.89 647669 –6.929 17753 –31.329 4537 39.8 13332 104.44 730351 –2.762 21778 –26.421 6107 52.7 26664 110.00 826812 0.828 25813 –21.502 8174 68.0 53329 115.56 923273 4.912 31134 –16.578 10755 82.9 101325 121.11 1040405 8.914 37179 –11.637 13971 126.67 1157537 13.137 44534 –6.698 17966 mp/°C 25.3 132.22 1288449 17.785 53941 0.009 24815 137.78 1426251 21.821 63.343 4.975 31161 143.33 1584723 26.115 74719 9.937 38746 148.89 1743195 30.764 88.801 14.093 47749 154.44 1929288 34.321 100931 19.871 58335 160.00 2122151 35.064 103618 165.56 2287513 39.222 119720 171.11 2542447 42.978 135889 176.67 2797381 47.470 157395 182.22 3059204 51.765 180321 187.78 3341699 55.434 201878 eq. 3 P/kPa A 6.05115 B 1062.409 C –44.967

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2270 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Diethyl ether: vapor pressure vs. 1/T 8.0 Taylor & Smith 1922 Kobe et al. 1956 7.0 Ambrose et al. 1972 Stull 1947 6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 34.5 °C m.p. = -116.2 °C 0.0 0.002 0.0028 0.0036 0.0044 0.0052 0.006 0.0068 1/(T/K) FIGURE 10.1.1.2.2 Logarithm of vapor pressure versus reciprocal temperature for diethyl ether.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2271

10.1.1.3 Methyl t-butyl ether (MTBE)

O

Common Name: Methyl t-butyl ether Synonym: MTBE, 3-oxa-3,3-dimethylbutane, 2-methoxy-2-methyl-propane Chemical Name: methyl tert-butyl ether CAS Registry No: 1634-04-4

Molecular Formula: C5H12O, CH3-O-C(CH3)3 Molecular Weight: 88.148 Melting Point (°C): –108.6 (Lide 2003) Boiling Point (°C): 55.0 (Lide 2003) Density (g/cm3 at 20°C): 0.7578 (Bennett & Phillip 1928) 0.7404 (Windholz 1983; Budavari 1989) Molar Volume (cm3/mol): 119.1 (20°C, calculated-density) 127.5 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 7.60 (exptl., Chickos et al. 1999) Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 51600* (thermostatic volumetric method, measured range 0–25°C, Bennett & Phillip 1928) 48000 (Windholz 1983; Budavari 1989) 52100 (literature data compilation, Yaws et al. 1990) 42000* (19.8°C, shake flask-GC/TC, measured range 0–48.6°C, Stephenson 1992) 62100, 35500 (5, 20°C, shake flask-GC, Fischer et al. 2004)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 31156* (23.243°C, comparative ebulliometry, measured range 288–351 K, Ambrose et al. 1976) log (P/kPa) = 6.09379 – 1173.036/{(T/K) + 41.366}; temp range 288–351 K (Antoine equation, comparative ebulliometry, Ambrose et al. 1976) 32660 (Windholz 1983; Budavari 1989) 33545 (calculated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.09111 – 1171.54/(–41.542 + T/K); temp range 287–351 K (Antoine eq., Stephenson & Malanowski 1987) 37417* (27.806°C, static method, measured range 301–411 K, Krähenbühl & Gmehling 1994) log (P/kPa) = 6.070343 – 1158.923/(T/K) – 43.20; temp range 301–411 K (Antoine eq., static method, Krähen- bühl & Gmehling 1994 log (P/mmHg) = 4.7409 – 1.9493 × 103/(T/K) + 3.077·log (T/K) – 1.4463 × 10–2·(T/K) + 1.0039 × 10–5·(T/K)2; temp range 165–497 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equation. Additional data at other temperatures designated * are compiled at the end of this section):

59.46 (calculated as 1/KAW, CW/CA, reported as exptl., Hine & Mookerjee 1975) 142.6, 305 (calculated-group contribution, calculated-bond contribution method, Hine & Mookerjee 1975) 53.54*, 121 (25, 30°C, static headspace-GC, Robbins et al. 1993) 63.2 (EPICS-static headspace method-GC/FID, Miller & Stuart 2000)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2272 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

137.6* (solid-phase microextraction-GC, measured range 15–40°C, Bierwagen & Keller 2001)

ln KAW = 6.6475 – 2901.4/(T/K); temp range 15–40°C (SPME-GC, Bierwagen & Keller 2001) 41.2 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001)

log KAW = 9.070 – 3178/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 72.4* (equilibrium concentration ratio-GC, measured range 3–25°C, Fischer et al. 2004)

Octanol/Water Partition Coefficient, log KOW: 1.06 (Hansch et al. 1968; Kier & Hall 1976) 1.30 (calculated-fragment const., Hansch & Leo 1979) 0.94 (shake flask-GC, Funasaki et al. 1985) 0.94 (recommended, Sangster 1989) 0.94 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constant, k, and Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression see reference: –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 1.8 × 10 cm molecule s , kOH(obs.) = 2.64 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985) –12 3 –1 –1 –12 3 –1 –1 kOH(exptl) = 2.64 × 10 cm molecule s , kOH(calc) = 1.4 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –12 3 –1 –1 kOH* = (3.09 ± 0.15) × 10 cm molecule s at 298 K, measured range 240–440 K (flash photolysis- resonance fluorescence, Wallington et al. 1988c) –12 3 –1 –1 –12 3 –1 –1 kOH = 3.09 × 10 cm molecule s ; k(soln) = 2.7 × 10 cm molecule s for reaction with OH radical in aqueous solution (Wallington et al. 1988b) –12 3 –1 –1 kOH* = 2.83 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) –12 3 –1 –1 kOH = (2.44 – 3.09) × 10 cm molecule s at 295–298 K (Atkinson 1989) –12 3 –1 –1 kOH* = 2.98 × 10 cm molecule s at 293 K, measured range 293–750 K (laser photolysis-laser induced fluorescence technique, Arif et al. 1997) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from air for the reaction with OH radical (USEPA 1974; quoted, Darnall et al. 1976);

calculated lifetimes of 3.9 d and 72 d for reactions with OH radical, NO3 radical, respectively (Atkinson 2000).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2273

TABLE 10.1.1.3.1 Reported aqueous solubilities of methyl tert-butyl ether (MTBE) at various temperatures

Bennett & Phillip 1928 Stephenson 1992 Fischer et al. 2004

volumetric method shake flask-GC/TC shake flask-GC

t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 0 91200 0 83000 5 62100 10 73000 9.7 51000 20 35500 15 65500 19.8 42000 20 58300 29.6 31000 25 51600 39.3 25000 48.6 19000

Methyl t-butyl ether (MTBE): solubility vs. 1/T -3.0 Stephenson 1992 Fischer et al. 2004 -3.5 Bennett & Phillip 1928

-4.0

-4.5 x nl -5.0

-5.5

-6.0

-6.5

-7.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K) FIGURE 10.1.1.3.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for methyl t-butyl ether (MTBE).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2274 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 10.1.1.3.2 Reported vapor pressures of methyl tert-butyl ether (MTBE) at various temperatures

Ambrose et al. 1976 Krähenbühl & Gmehling 1994

comparative ebulliometry static method*

t/°C P/Pa t/°C P/Pa T/K P/Pa T/K P/Pa 14.847 21805 73.873 180280 300.956 37417 342.570 158286 18.83 25843 77.828 201818 304.397 42944 342.592 158403 23.243 31156 25 33530 307.896 49188 342.652 158669 27.518 37194 312.707 58733 32.143 44576 log P = A – B/(C + t/°C) 318.586 72841 *complete list see ref. 37.16 53942 P/mmHg 323.663 86748 41.525 63351 A 6.09379 323.666 86855 44.835 71313 B 1173.036 328.498 102046 51.182 88805 C –41.366 328.528 102133 55.028 100933 bp 328.30 K333.387 119445 55.826 103610 333.386 119444 60.318 119700 coefficients of 338.224 138873 64.376 135835 also given in text 338.229 138893 69.193 157164 338.232 138905

Methyl t-butyl ether (MTBE): vapor pressure vs. 1/T 8.0 Ambrose et al. 1976 7.0 Krähenbühl & Gmehling 1994

6.0

5.0 /Pa) S 4.0

log(P 3.0

2.0

1.0 b.p. = 55 °C 0.0 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 0.004 1/(T/K) FIGURE 10.1.1.3.2 Logarithm of vapor pressure versus reciprocal temperature for methyl t-butyl ether (MTBE).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2275

TABLE 10.1.1.3.3 Reported Henry’s law constants of methyl tert-butyl ether (MTBE) at various temperatures and temperature dependence equations

ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a)

ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a)

ln (kH/atm) = A – B/(T/K) (3) ln [H/(Pa m3/mol)] = A – B/(T/K) (4) ln [H/(atm·m3/mol)] = A – B/(T/K) (4a) 2 KAW = A – B·(T/K) + C·(T/K) (5)

Robbins 1993 Bierwagen & Keller 2001 Fischer et al. 2004

static headspace-GC SPME-GC equilibrium concn ratio-GC

t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) 25 53.5 15 93.2 3 20.9 30 120.6 25 137.6 5 25.9 40 223.9 30 179.2 10 27.5 45 367.8 40 222.0 15 42.4 50 413.4 20 54.6

eq. 1a KAW 25 72.4 eq. 1 H/(atm m3/mol) A 6.6475 A 18.4 B 3178 B 7666

Methyl t-butyl ether (MTBE): Henry's law constant vs. 1/T 8.0

7.0

)lom/ 6.0 3 m .

aP(/H nl aP(/H 5.0

4.0

3.0 Robbins 1993 Fisher et al. 1994 Bierwagen & Keller 2001 2.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K) FIGURE 10.1.1.3.3 Logarithm of Henry’s law constant versus reciprocal temperature for methyl t-butyl ether (MTBE).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2276 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.1.4 Di-n-propyl ether

O

Common Name: Di-n-propyl ether Synonym: 4-oxaheptane, 1,1′-oxibispropane, 1-propoxypropane, propyl ether Chemical Name: di-n-propyl ether, propyl ether, 4-oxaheptane CAS Registry No: 111-43-3

Molecular Formula: C6H14O, (n-C3H7)2O Molecular Weight: 102.174 Melting Point (°C): –114.8 (Lide 2003) Boiling Point (°C): 90.08 (Riddick et al. 1986; Lide 2003) Density (g/cm3 at 20°C): 0.7466, 0.7419 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 136.9 (20°C, calculated-density) 151.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 10.78 (quoted, Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 4900* (thermostatic volumetric method, measured range 0–25°C, Bennett & Phillip 1928) 2500* (synthetic method, measured range 0–25°C, Bennett & Phillip 1928) 3000 (Seidell 1941; Lange 1971) 2508 (selected, Hine & Mookerjee 1975) 4900 (selected, Riddick et al. 1986) 3820 (literature data compilation, Yaws et al. 1990)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 9072* (calculated-Antoine eq. regression, temp range –43.3 to 89.5°C, Stull 1947) 16358* (39.703°C, comparative ebulliometry, measured range 39.703–98.183°C, Meyer & Hotz 1973) log (P/mmHg) = [–0.2185 × 8229.6/(T/K)] + 7.863332; temp range –43.3 to 89.5°C (Antoine eq., Weast 1972–73) 9041* (26.59°C, ebulliometry, measured range 26.59–88.65°C, Cidlinski & Polak 1969; quoted, Boublik et al. 1984) log (P/cmHg) = 5.894812 – 1227.468/(215.7007 + t/°C); temp range 39.7–98.2°C (comparative ebulliometry, Meyer & Hotz 1973) 7621* (23.174°C, ebulliometry, measured range 292.974–387.883 K, Ambrose et al. 1976) log (P/kPa) = 6.03075 – 1233.148/{(T/K) + 56.708}; temp range 293–388 K (Antoine eq., ebulliometry, Ambrose et al. 1976) 8378, 8320 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.06887 – 1254.429/(218.781 + t/°C); temp range 26.59–88.65°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.01902 – 1227.068/(215.654 + t/°C); temp range 39.7–86.18°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/mmHg) = 6.9476 – 1256.5/(219.0 + t/°C); temp range 26–89°C (Antoine eq., Dean 1985, 1992) 8334 (selected, Riddick et al. 1986) log (P/kPa) = 6.03075 – 1133.748/(216.442 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 8334 (calculated-Antoine eq., Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2277

log (PL/kPa) = 6.019715 – 1227.468/(–57.449 + T/K); temp range 312–371 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.0361 – 1236.828/(–56.358 + T/K); temp range 292–389 K (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.50879 – 1579.466/(–12.142 + T/K); temp range 385–467 K (Antoine eq.-III, Stephenson & Malanowski 1987)

log (PL/kPa) = 8.20381 – 3494.323/(209.259 + T/K); temp range 465–510 K (Antoine eq.-IV, Stephenson & Malanowski 1987) log (P/mmHg) = 44.0232 – 3.282 × 103/(T/K) – 12.792·log (T/K) + 1.2682 × 10–10·(T/K) + 4.8776 × 10–6·(T/K)2; temp range 150–531 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C):

350.1 (calculated as 1/KAW, CW/CA, reported as exptl., Hine & Mookerjee 1975) 175.5, 594.6 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 223.3 (computer value, Yaws et al. 1991)

Octanol/Water Partition Coefficient, log KOW: 2.03 (shake flask, Hansch et al. 1968; Leo et al. 1971) 2.03 (recommended, Sangster 1989) 2.03 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA at 25°C: 2.97 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression see reference: –11 3 –1 –1 kOH = 1.68 × 10 cm molecule s at 296 K (relative rate, Lloyd et al. 1976) –11 3 –1 –1 –11 3 –1 –1 kOH(calc) = 2.05 × 10 cm molecule s , kOH(obs.) = 1.68 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985) –11 3 –1 –1 –11 3 –1 –1 kOH(calc) = 1.57 × 10 cm molecule s , kOH(exptl) = 1.68 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –12 3 –1 –1 kOH* = (18.0 ± 2.2) × 10 cm molecule s at 296 K, measured range 240–440 K (flash photolysis- resonance fluorescence, Wallington et al. 1988c) –11 3 –1 –1 kOH = 1.53 × 10 cm molecule s at 294 ± 2 K (relative rate method, Bennett & Kerr 1989) –11 3 –1 –1 kOH* = 1.72 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) –12 3 –1 –1 –12 kOH = (19.9 ± 1.7) × 10 cm molecule s by pulse radiolysis-UV spectroscopy; kOH = (20.3 ± 1.8) × 10 cm3 molecule–1 s–1 by relative rate method, at 298 ± 2 K (Nelson et al. 1990) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from air) for the reaction with OH radical (Darnall et al. 1976).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2278 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 10.1.1.4.1 Reported aqueous solubilities of di-n-propyl ether at various temperatures

Bennett & Phillip 1928

volumetric method synthetic method

t/°C S/g·m–3 t/°C S/g·m–3 0 10500 0 5800 10 7100 10 4100 15 6100 15 3800 20 5400 20 3000 25 4900 25 2500

Di- n -propyl ether: vapor pressure vs. 1/T 8.0 Meyer & Hotz 1973 Cidlinsky & Polak 1969 7.0 Ambrose et al. 1976 Stull 1947 6.0

5.0 ) a P / P a )

S 4.0 P ( g o l o g ( P

3.0

2.0

1.0 b.p. = 90.08 °C m.p. = -114.8 °C 0.0 0.002 0.0028 0.0036 0.0044 0.0052 0.006 0.0068 1/(T/K)

FIGURE 10.1.1.4.1 Logarithm of vapor pressure versus reciprocal temperature for di-n-propyl ether.

TABLE 10.1.1.4.2 Reported vapor pressures of di-n-propyl ether at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4) 2 log P = A = [1 – TB/T)] (5) where log A= = (a + bT + CT )

Stull 1947 Meyer & Hotz 1973 Cidlinsky & Polak 1969 Ambrose et al. 1976

summary of literature data comparative ebulliometry Boublik et al. 1984 comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa –43.3 133.3 39.703 16358 26.59 9041 19.824 6442 –22.3 666.6 45.857 21223 31.42 11344 23174 7621 –11.8 1333 51.773 26.953 36.48 14271 26.887 9130 0 2666 57.749 33962 40.83 17252 30.501 10829 13.2 5333 63.263 41649 45.08 20.662 34.27 12873 21.6 7999 69.298 51617 46 21463 38.124 15283 33 13332 75.199 63121 50.47 25724 41.833 17938

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2279

TABLE 10.1.1.4.2 (Continued)

Stull 1947 Meyer & Hotz 1973 Cidlinsky & Polak 1969 Ambrose et al. 1976

summary of literature data comparative ebulliometry Boublik et al. 1984 comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 50.3 26664 77.936 69101 52.94 28338 46.698 21992 69.5 53329 81.601 77811 55.89 31760 50.87 26026 89.5 101325 84.221 84548 60.7 38035 55.827 31341 91.016 104174 65.98 46095 60.296 37380 mp/°C –112 98.183 128564 68.76 50822 65.228 44739 71.44 55747 70.661 54144 bp/°C 340.096 73.77 60355 75.383 63545 76.27 65592 60.404 74921 constants for Antoine eq. 80.49 76152 85.849 89008 eq. 2 P/cmHg 82.13 79460 90.007 101105 A 5.894812 85.77 83202 95.743 119879 B 1227.468 87.34 93648 100.145 136045 C 215.707 88.65 97250 105.407 157559 temp range: 39.7–58.2°C 110.436 180476 eq. 2 P/kPa 114.733 202031 constants for Cox eq. A 6.06887 25 8334 eq. 5 P/atm B 1254.429 a 0.866715 C 216.781 eq. 2 P/kPa –b × 103 0.812825 bp/°C 89.952 A 6.03075 b × 106 0.809693 B 1233.748

TB/K 364.2462 C –56.708 coefficients of Chebyshev eq. also given in text

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2280 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.1.5 Di-isopropyl ether

O

Common Name: Di-isopropyl ether Synonym: diisopropyloxyde, isopropyl ether, 2-isopropoxypropane, 2,2′-oxybispropane, 3-oxa-2,4-dimethylpentane, IPE, DIPE Chemical Name: diisopropyl ether, isopropyl ether, 2-isopropoxypropane, 2,2′-oxybispropane, 3-oxa-2,4-dimethyl- pentane CAS Registry No: 108-20-3

Molecular Formula: C6H14O, [(CH3)2CH]2O Molecular Weight: 102.174 Melting Point (°C): –85.4 (Lide 2003) Boiling Point (°C): 68.4 (Lide 2003) Density (g/cm3 at 20°C): 0.7360 (Bennett & Phillip 1928) 0.7239, 0.7185 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 140.0 (20°C, calculated-density) 151.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 12.033 (quoted, Riddick et al. 1986) 12.05 (exptl., Chickos et al. 1999) ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 2040 (selected, Hine & Mookerjee 1975) 9000 (20°C, Verschueren 1983) 12000 (20°C, selected, Riddick et al. 1986) 11200 (literature data compilation, Yaws et al. 1990) 7900*, 5400 (20°C, 31°C, shake flask-GC/TC, measured range 0–61°C. Stephenson 1992)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 21410* (calculated-Antoine eq. regression, temp range –57 to 67.5°C, Stull 1947) log (P/mmHg) = 7.09712 – 1257.6/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 20093* (temp range 0–60°C, Nicolini & Laffitte 1949) 21532* (26.8°C, ebulliometry, measured range 13.5–70.6°C, Flom et al. 1951) 20194* (25.29°C, ebulliometry, measured range 23.5–67.21°C, Cidlinsky & Polak 1969; quoted, Boublik et al. 1984) log (P/mmHg) = [–0.2185 × 7777.3/(T/K)] + 7.904664; temp range –57 to 67.5°C (Antoine eq., Weast 1972–73) 17778* (22.489°C, ebulliometry, measured 284.779–365.122 K, Ambrose et al. 1976) log (P/kPa) = 5.97678 – 1143.073/{(T/K) + 53.810}; temp range 284–365 K (Antoine eq., ebulliometry, Ambrose et al. 1976) 19954, 20120 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 5.78384 – 1050.657/(209.511 + t/°C); temp range 0–60°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 5.97081 – 1137.408/(218.516 + t/°C); temp range 23.5–67.21°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/mmHg) = 6.8495 – 1139.34/(218.7 + t/°C); temp range 23–67°C (Antoine eq., Dean 1985, 1992)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2281

19880 (selected, Riddick et al. 1986) log (P/kPa) = 5.97678 – 1143.073/(219.340 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 19950, 19890 (calculated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 5.966496 – 1135.034/(–54.92 + T/K); temp range 296–342 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 5.97661 – 1142.985/(–53.82 + T/K); temp range 284–365 K (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.26597 – 1334.298/(–28.271 + T/K); temp range 360–440 K (Antoine eq.-III, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.13537 – 2140.415/(80.78 + T/K); temp range 436–500 K (Antoine eq.-IV, Stephenson & Malanowski 1987) 19862, 10850 (quoted, calculated-solvatochromic parameters and UNIFAC, Banerjee et al. 1990) log (P/mmHg) = 35.9552 – 2.0276 × 103/(T/K) –2.8551·log (T/K) + 2.7662 × 10–4·(T/K) – 9.9111 × 10–14·(T/K)2; temp range 188–500 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated):

1010 (calculated as 1/KAW, CW/CA, reported as exptl., Hine & Mookerjee 1975) 483.3, 594.6 (calculated-group contribution calculated-bond contribution, Hine & Mookerjee 1975) 175.6 (computer value, Yaws et al. 1991) 208.8 (23°C, batch air stripping-IR, Nielsen et al. 1994) 212.4 (exponential saturator EXPSAT technique, Dohnal & Hovorka 1999) 231 (EPICS-static headspace method-GC/FID, Miller & Stuart 2000)

Octanol/Water Partition Coefficient, log KOW: 1.52 (shake flask-GC, Funasaki et al. 1985) 1.56 (calculated-fragment const., Hansch & Leo 1979) 1.52 (recommended, Sangster 1989) 1.52 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 2.66 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression see reference: –11 3 –1 –1 kOH =(1.07±0.20)×10 cm molecule s by pulse radiolysis-UV spectroscopy, kOH = (1.13 ± 0.20) × 10–11 cm3 molecule–1 s–1 at 298 ± 2 K by relative rate technique (Nelson et al. 1990) –11 3 –1 –1 kOH* = (1.08 ± 0.09) × 10 cm molecule s at 296 K, measured range 240–400 K (absolute rate, flash photolysis-resonance fluorescence, Wallington et al.1993) –11 3 –1 –1 –11 3 –1 –1 kOH = (9.9 ± 0.2) × 10 cm molecule s and (1.07 ± 0.6 × 10 cm molecule s at 298 K (relative rate method, Wallington et al.1993) –12 3 –1 –1 kOH = 9.8 × 10 cm molecule s at 298 K using both relative (at 295 K) and absolute techniques over 240–440 K (FT-IR spectroscopy, Wallington et al. 1993) –12 kOH = 2.2 × 10 exp[(445 ± 1450)/(T/K)]; temp range 240–440 K (Arrhenius eq., FT-IR, Wallington et al. 1993) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 33.3 × 10 cm mol s , kOH(exptl) = 10.2 × 10 cm mol s at 298 K (SAR structure- activity relationship, Kwok & Atkinson 1995) Hydrolysis:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2282 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from air for the reaction with OH radical (USEPA 1974; quoted, Darnall et al. 1976).

TABLE 10.1.1.5.1 Reported aqueous solubilities of di-isopropyl ether at various temperatures

Stephenson 1992

shake flask-GC/TC

t/°C S/g·m–3 0 22800 9.7 10200 20 7900 31 5400 40.8 4100 50.7 2800 61 2200

Diisopropyl ether: solubility vs. 1/T -4.0 Stephenson 1992 Bennett & Phillip 1928 -4.5

-5.0

-5.5

x nl x -6.0

-6.5

-7.0

-7.5

-8.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K) FIGURE 10.1.1.5.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for di-isopropyl ether.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2283

TABLE 10.1.1.5.2 Reported vapor pressures of di-isopropyl ether at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Nicolini & Laffitte 1949 Cidlinsky & Polak 1969 Ambrose et al. 1976

summary of literature data in Boublik et al. 1984 comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa –57.0 133.3 0 5906 23.5 18654 11.629 10662 –37.4 666.6 5 7693 25.29 20194 15.253 12712 –27.4 1333 10 9932 27.42 22177 18.945 15122 –16.7 2666 15 12679 32 26963 22.489 17778 –4.50 5333 20 16092 34.22 29591 27.115 21812 3.4 7999 25 20093 36.93 32980 31.087 25839 13.7 13332 30 24891 41.17 39005 35.626 31160 30 26664 35 31651 44.08 43639 40.08 37199 48.2 53329 40 37530 46.7 48085 44.778 44561 67.5 101325 45 45329 48.57 51514 49.953 53861 50 54382 50.96 56204 54.454 63367 mp/°C –60.0 55 64821 54.52 63829 59.24 74743 60 76727 56.12 67372 64.423 88818 58.17 72427 68.397 100951 Flom et al. 1951 60.68 78891 69.209 103576 dynamic-ebulliometry 63.21 89995 73.855 119720 t/°C P/Pa 64.66 89995 78.057 135878 13.5 11466 65.75 93316 83.078 157382 26.8 21532 67.21 97.734 87.857 180219 35.1 30491 bp/°C 68.339 91.972 201847 42.4 40423 25 19880 47.9 50356 eq. 2 P/kPa 53 60062 A 5.97081 Antoine 56.7 68541 B 1137.408 eq. 2 P/kPa 59.8 76354 C 218.516 A 5.97678 63 85380 B 1143.073 66.3 95859 C –53.810 69.5 104205 bp/K 341.66 70.6 109471 coefficients of Chebyshev also given in text.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2284 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Diisopropyl ether: vapor pressure vs. 1/T 8.0 experimental data Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 68.4 °C m.p. = -85.4 °C 0.0 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 0.005 0.0054 0.0058 1/(T/K) FIGURE 10.1.1.5.2 Logarithm of vapor pressure versus reciprocal temperature for di-isopropyl ether.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2285

10.1.1.6 Butyl ethyl ether

O

Common Name: Butyl ethyl ether Synonym: butyl ethyl ether, 1-ethoxybutane, n-butylethyl ether, 3-oxaheptane Chemical Name: butylethyl ether, 1-ethoxybutane, n-butylethyl ether CAS Registry No: 628-81-9

Molecular Formula: C6H14O, C4H9OCH2CH3 Molecular Weight: 102.174 Melting Point (°C): –124 (Lide 2003) Boiling Point (°C): 92.3 (Lide 2003) Density (g/cm3 at 20°C): 0.7495, 0.7448 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 136.3 (20°C, calculated-density) 150.5 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 6500* (20°C, shake flask-GC/TC, measured range 0–90.7°C, Stephenson 1992)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 303164* (126.67°C, static-Bourdon gauge, measured range 126.67–237.78°C, Kobe et al. 1956) 13912* (38.18°C, ebulliometry, measured range 38.18–91.38°C, Cidlinsky & Polak 1969; quoted, Boublik et al. 1984) log (P/kPa) = 6.06257 – 1252.485/{(T/K) + 56.685} (Antoine eq., Ambrose et al. 1976) 9090 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.06565 – 1234.258/(226.668 + t/°C); temp range 38.18–91.38°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/mmHg) = 6.9444 – 1256.4/(216.9 + t/°C); temp range 38–92°C (Antoine eq., Dean 1985, 1992) 7461 (quoted, Riddick et al. 1986) log (P/kPa) = 6.06257 – 1252.485/(216.465 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 7510 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.062575 – 1252.485/(–56.685 + T/K); temp range 311–365 K (Antoine eq., Stephenson & Malanowski 1987) log (P/mmHg) = 8.5224 – 2.4667 × 103/(T/K) + 1.0513·log (T/K) – 1.4047 × 10–2·(T/K) + 9.2664 × 10–6·(T/K)2; temp range 170–531 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C): 136 (calculated-P/C from selected data) 241 (EPICS-static headspace method-GC/FID, Miller & Stuart 2000)

Octanol/Water Partition Coefficient, log KOW: 2.03 (shake flask-GC, Hansch & Anderson 1967) 2.03 (recommended, Sangster 1989) 2.03 (recommended, Hansch et al. 1995)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2286 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Octanol/Air Partition Coefficient, log KOA: 3.89 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –11 3 –1 –1 kOH = 2.28 × 10 cm molecule s at 298 K (flash photolysis-resonance fluorescence, Wallington et al. 1988c) –11 3 –1 –1 kOH = 1.34 × 10 cm molecule s at 294 ± 2 K (relative rate, Bennett & Kerr 1989) –12 3 –1 –1 kOH = (13.4 – 22.8) × 10 cm molecule s at 294–298 K (review, Atkinson 1989) –12 3 –1 –1 kOH = (18.7 ± 0.7) × 10 cm molecule s at 298 ± 2 K (pulse radiolysis-UV spectroscopy, Nelson et al. 1990) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from air for the reaction with OH radical (US EPA 1974; quoted, Darnall et al. 1976).

TABLE 10.1.1.6.1 Reported aqueous solubilities of butyl ethyl ether at various temperatures

Stephenson 1992

shake flask-GC/TC

t/°C S/g·m–3 0 10900 9.3 8300 20 6500 31.2 5300 39.7 5800 50.8 4600 60.2 5100 70.2 3900 80.2 4300 90.7 4000

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2287

Butyl ethyl ether: solubility vs. 1/T -5.0 Stephenson 1992 -5.5

-6.0

-6.5

x nl x -7.0

-7.5

-8.0

-8.5

-9.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 10.1.1.6.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for butyl ethyl ether.

TABLE 10.1.1.6.2 Reported vapor pressures of butyl ethyl ether at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Kobe et al. 1956 Cidlinsky & Polak 1969

static-Bourdon gauge in Boublik et al. 1984

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 126.67 303164 204.44 1329789 38.18 13912 79.64 67966 132.22 344505 210 1453811 42.31 16695 82.25 74080 137.78 385846 215.56 1591613 44 17950 85.08 81073 143.33 434076 221.11 1736305 49.04 22146 86.71 85441 148.89 489197 226.67 1894778 52.27 25259 89.73 92885 154.44 544318 232.22 2959149 55.1 28420 91.38 98581 160 613219 237.78 2232392 58.73 32451 165.56 675230 61.25 35696 bp/°C 92.267 171.11 744131 63.22 38339 Antoine 176.67 826812 65.85 42271 eq. 2 P/kPa 182.22 909493 68.51 46517 A 6.06565 187.78 1005955 71.66 51925 B 1254.258 193.33 1102416 73.74 55807 C 216.668 198.89 1212658 77.12 62513

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2288 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Butyl ethyl ether: vapor pressure vs. 1/T 8.0 Kobe et al. 1956 Cidlinsky & Polak 1969 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 92.3 °C 0.0 0.0016 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 10.1.1.6.2 Logarithm of vapor pressure versus reciprocal temperature for butyl ethyl ether.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2289

10.1.1.7 Di-n-butyl ether

O Common Name: Di-n-butyl ether Synonym: 1-butoxybutane, butyl ether, dibutyl ether, n-butyl ether, 5-oxanonane, 1,1′-oxybisbutane Chemical Name: butyl ether, dibutyl ether, di-n-butyl ether, n-butyl ether, 5-oxanonane, 1,1′-oxybisbutane CAS Registry No: 142-96-1

Molecular Formula: C8H18O, (n-C4H9)2O Molecular Weight: 130.228 Melting Point (°C): –95.2 (Riddick et al. 1986; Lide 2003) Boiling Point (°C): 140.28 (Lide 2003) Density (g/cm3 at 20°C): 0.76889, 0.76461 (20°C, 25°C, Dreisbach & Martin 1949) 0.7684. 0.7641 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 170.0 (calculated-density, Wang et al. 1992) 196.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): < 100 (17°C, synthetic method, Bennett & Phillip 1928) 300 (20°C, Verschueren 1983; Riddick et al. 1986) 230* (19.9°C, shake flask-GC/TC, measured range 0–90.6°C, Stephenson 1992)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 7605* (66.84°C, ebulliometry, measured range 67–142°C, Dreisbach & Shrader 1949) log (P/mmHg) = 7.31540 – 1648.4/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 80612* (237.78°C, static method-Bourdon gauge, measured range 238–293°C, Kobe et al. 1956) 19529* (89.14°C, ebulliometry, measured range 89.14–140°C, Cidlinsky & Polak 1969) log (P/kPa) = 5.93018 – 1302.768/(T/K– 81/481); temp range 89–140°C (Cidlinsky & Polak 1969) log (P/kPa) = 5.93018 – 1302.768/{(T/K) – 81.481} (Antoine eq., ebulliometry, Ambrose et al. 1976) 640 (20°C, Verschueren 1983) 825, 874 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.151 – 1458.718/(141.982 + t/°C); temp range 66.8–141.97°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 5.92274 – 1298.256/(191.144 + t/°C); temp range 89.14–140.06°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/mmHg) = 6.7963 – 1297.3/(191.03 + t/°C); temp range 89–140°C (Antoine eq., Dean 1985, 1992) 898 (select, Riddick et al. 1986) log (P/kPa) = 5.930185 – 1302.768/(191.669 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986)

log (PL/kPa) = 6.4403 – 1648.4/(–42.15 + T/K); temp range 339–415 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.0537 – 1398.8/(–69.55 + T/K); temp range 336–415 K (Antoine eq., Stephenson & Malanowski 1987) log (P/mmHg) = 12.9321 – 3.0416 × 103/(T/K) + 0.42929·log (T/K) – 1.237 × 10–2·(T/K) + 7.5943 × 10–6·(T/K)2; temp range 178–581 K (vapor pressure eq., Yaws 1994)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2290 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Henry’s Law Constant (Pa m3/mol at 25°C):

608.5 (calculated-1/KAW, CW/CA, reported as exptl., Hine & Mookerjee 1975) 350, 1362 (calculated-group contribution calculated-bond contribution, Hine & Mookerjee 1975)

Octanol/Water Partition Coefficient, log KOW: 3.08 (calculated-f const., Hansch & Leo 1979) 3.21 (shake flask-GC, Funasaki et al. 1984) 3.21 (recommended, Sangster 1989) 3.21 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 3.89 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –12 3 –1 –1 kOH = (27.8 ± 3.6) × 10 cm molecule s at 296 K (flash photolysis-resonance fluorescence, Wallington et al. 1988a) –12 3 –1 –1 kOH = 17 × 10 cm molecule s at 294 ± 2 K (relative rate method, Bennett & Kerr 1989) –12 3 –1 –1 kOH = (17.0 – 27.8) × 10 cm molecule s at 294–298 K (review, Atkinson 1989) –12 3 –1 –1 –12 kOH = (27.2 ± 0.2) × 10 cm molecule s by pulse radiolysis-UV spectroscopy; kOH = (28.8 ± 1.2) × 10 cm3 molecule–1 s–1 by relative rate method, at 298 ± 2 K (Nelson et al. 1990) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from air for the reaction with OH radical (USEPA 1974; quoted, Darnall et al. 1976).

TABLE 10.1.1.7.1 Reported aqueous solubilities of di-n-butyl ether at various temperatures

Stephenson 1992

shake flask-GC/TC

t/°C S/g·m–3 0 400 9.3 320 19.9 230 30.9 230 40.3 200 50.3 220 61.3 120 70.5 150 80.7 90 90.5 100

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2291

Di-n -butyl ether: solubility vs. 1/T -8.0 Cox & Cretcher 1926 Stephenson 1992 -8.5

-9.0

-9.5

x nl x -10.0

-10.5

-11.0

-11.5

-12.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 10.1.1.7.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for di-n-butyl ether.

TABLE 10.1.1.7.2 Reported vapor pressures of di-n-butyl ether at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Dreisbach & Shrader 1949 Kobe et al. 1956 Cidlinsky & Polak 1969

ebulliometry static method-Bourdon gauge in Boublik et al. 1984

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 66.84 7605 237.78 806142 89.14 19529 129.67 75155 73.6 10114 243.33 895713 94.57 23957 132.04 80429 85.75 16500 248.89 978394 106.43 36288 134.24 85661 112.28 42066 254.44 1061075 110.54 41580 136.13 90298 127.73 67661 260 1143757 113.28 45509 137.72 94456 141.97 101325 265.56 1247108 114.85 47781 140.06 100666 271.11 1357350 118.2 53253 276.67 1474481 121.05 58118 bp/°C 140.295 282.22 1598503 123.18 62051 eq. 2 P/kPa 287.78 1729415 123.41 62509 A 5.92274 293.33 1874107 125.27 66052 B 1298.256 127.67 70427 C 191.144

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2292 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Di-n -butyl ether: vapor pressure vs. 1/T 8.0 Kobe et al. 1956 Dreisbach & Shrader 1949 7.0 Cidlinsky & Polak 1969

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 140.28 °C 0.0 0.0016 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 10.1.1.7.2 Logarithm of vapor pressure versus reciprocal temperature for di-n-butyl ether.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2293

10.1.1.8 1,2-Propylene oxide

O

Common Name: 1,2-Propylene oxide Synonym: 1,2-epoxypropane, methyloxirane, propylene oxide Chemical Name: 1,2-propylene oxide, 1,2-epoxypropane, propylene oxide CAS Registry No: 75-56-9

Molecular Formula: C3H6O Molecular Weight: 58.079 Melting Point (°C): –111.9 (Lide 2003) Boiling Point (°C): 35 (Lide 2003) Density (g/cm3 at 20°C): 0.859 (0°C, Verschueren 1983) Molar Volume (cm3/mol): 69.7 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 6.57, 6.53 (exptl., Chickos et al. 1999) Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated): 476000 (US EPA 1981; quoted, Howard 1989) 405000, 650000 (20°C, 30°C, Verschueren 1983) 259000 (literature data compilation, Yaws et al. 1990) 139320 (calculated-group contribution method,Kühne et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 74520* (calculated-Antoine eq. regression, temp range –75 to 34.5°C, Stull 1947) 530538* (87.78°C, static method, measured range 88–204°C, Kobe et al. 1956) 51969* (17.05°C, ebulliometry, measured range –24.17 to 34.75°C (McDonald et al. 1959) log (P/mmHg) = 6.96997 – 1065.27/(226.283 + t/°C); temp range –24.17 to 34.75°C (ebulliometry, McDonald et al. 1959) 70112* (interpolated-Antoine eq., static method, measured range 19.0–71.8°C Bott & Sadler 1966) log (P/mmHg) = 7.658 – 1472/(T/K); temp range 19.0–71.8°C (Antoine eq., static method, Bott & Sadler 1966) log (P/mmHg) = [–0.2185 × 7295.8/(T/K)] + 8.093473; temp range –75 to 34.5°C (Antoine eq., Weast 1972–73) log (P/mmHg) = 7.06492 – 1113.6/(232.0 + t/°C); temp range –35 to 130°C (Antoine eq., Dean 1985, 1992) 59300, 75900 (20, 25°C, Riddick et al. 1986) log (P/kPa) = 6.09487 – 1065.27/(226.283 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 71700 (calculated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.09487 – 1065.27/(–46.867 + T/K); temp range 225–308 K (Antoine eq., Stephenson & Malanowski 1987) log (P/mmHg) = 38.5381 – 2.631 × 103/(T/K) – 11.104·log (T/K) + 4.2178 × 10–10·(T/K) + 5.5025 × 10–6·(T/K)2; temp range 161–482 K (vapor pressure eq., Yaws 1994) log (P/kPa) = 6.14068 – 1086.37/[(T/K) – 44.556]; temp range not specified (Antoine eq., Horstmann et al. 2004)

Henry’s Law Constant (Pa m3/mol at 25°C): 8.653 (calculated-P/C, Howard 1989)

Octanol/Water Partition Coefficient, log KOW: 0.03 (shake flask, Hansch & Leo 1985, 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2294 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

0.03 (recommended, Sangster 1989) 0.03 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF: –0.20, –0.40 (calculated, Howard 1989)

Sorption Partition Coefficient, log KOC: 0.623 (estimated-S, Lyman et al. 1982; quoted, Howard 1989) 1.477 (calculated-QSAR, Sabljic 1984; quoted, Howard 1989)

Environmental Fate Rate Constants, k, and Half-Lives,:

Volatilization: t½(calc) ~ 3 and 18 d from a representative or natural river and oligotrophic lake, respectively (USEPA 1986; quoted, Howard 1989). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –13 3 –1 –1 –13 3 –1 –1 kOH(exptl) = 5.2 × 10 cm molecule s , kOH(calc) = 4.5 × 10 cm molecule s for gas phase reactions; k = 2.4 × 108 cm3 mol–1 s–1 for the reaction with photochemically produced OH radical in water at room temp. (Güesten et al. 1981; quoted, Howard 1989)

photooxidation t½ = 19.3 d can be calculated for the gas phase reaction with OH radical in air by using Güesten 1981 data and assuming an average OH radical concn. of 8 × 105 molecules/cm3 (GEMS 1986; quoted, Howard 1989) –12 3 –1 –1 kOH = (1.11 ± 0.75) × 10 cm molecule ·s with reference to n-butane for the gas phase reaction with OH radical in air at (23.1 ± 1.1)°C with an atmospheric lifetime of 10 d for an average concentration of 1×106 molecules/cm3 of OH radical (Edney et al. 1986) –13 3 –1 –1 –13 3 –1 –1 kOH(calc) = 5.4 × 10 cm molecule s ; kOH(exptl) = 5.2 × 10 cm molecule s at room temp. (SAR, Atkinson 1987) –13 3 –1 –1 kOH = (4.95 ± 0.52) × 10 cm molecule s at 296 K (flash photolysis-resonance fluorescence, Wallington et al. 1988a) –13 3 –1 –1 –13 3 –1 –1 kOH = 4.95 × 10 cm molecule s ; k(soln) = 4.2 × 10 cm molecule s for reaction with OH radical in aqueous solution (Wallington et al. 1988b)

Hydrolysis: estimated t½ ~ 11.6 d in fresh water at pH 7 to 9 and t½ = 6.6 d at pH 5 (Howard 1989). Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from air for the reaction with OH radical (USEPA 1974; quoted, Darnall et al. 1976); atmospheric lifetime of 10 d (Edney et al. 1986);

t½ = 19.3 d, based on estimated photooxidation half-life in air by using Güesten et al. 1981 data and assuming an average OH radical concn. of 8 × 105 molecules/cm3 (GEMS 1986; quoted, Howard 1989).

Surface water: calculated t½ = 9.15 yr in natural water by using Güesten et al. 1981 data and assuming an average OH radical concentration of 1 × 10–17 M in natural water (Howard 1989). Ground water: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2295

TABLE 10.1.1.8.1 Reported vapor pressures of 1,2-propylene oxide at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Kobe et al. 1956 McDonald et al. 1959 Bott & Sadler 1966

summary of lit. data static-Bourdon gauge ebulliometry static method-manometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa –75.0 133 87.78 530538 –24.7 6665 19 55462 –57.8 666.6 93.33 599439 –13.66 12170 27 76527 –49.0 1333 98.89 675230 0.77 25345 36.3 107457 –39.8 2666 104.44 771691 17.05 51969 40.8 126656 –28.4 5333 110 868153 33.11 97379 46.8 154253 –21.3 7999 115.56 978394 34.75 103298 50.2 168652 –12.0 13332 121.11 1102416 54 193583 2.1 26664 126.67 1226438 59.2 225847 17.8 53329 132.22 1378020 eq. 2 P/mmHg 64.7 265844 34.5 101325 137.78 1536492 A 6.96997 71.8 320373 143.33 1701855 B 1065.27 mp/°C –112.1 148.89 1880997 C 233.386 eq. 1 P/mmHg 154.44 2073920 A 7.658 160 2273733 mp/°C –112.13 B 1472 165.56 2506996 171.11 2762930 176.67 3017864 182.22 3300358 187.78 3589742 193.33 3906687 198.89 4251192 204.44 4602587

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2296 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

1,2-Propylene oxide: vapor pressure vs. 1/T 8.0 Kobe et al. 1956 McDonald et al. 1959 7.0 Bott & Sadler 1966 Stull 1947 6.0

5.0 /Pa) S 4.0

log(P 3.0

2.0

1.0 b.p. = 35 °C m.p. = -111.9 °C 0.0 0.0018 0.0026 0.0034 0.0042 0.005 0.0058 0.0066 1/(T/K) FIGURE 10.1.1.8.1 Logarithm of vapor pressure versus reciprocal temperature for 1,2-propylene oxide.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2297

10.1.1.9 Furan

O Common Name: Furan Synonym: 1,4-epoxy-1,3-butadiene, divinylene oxide, furfuran, oxole, tetrole Chemical Name: 1,4-epoxy-1,3-butadiene, divinylene oxide, furan CAS Registry No: 110-00-9

Molecular Formula: C4H4O Molecular Weight: 68.074 Melting Point (°C): –85.61 (Lide 2003) Boiling Point (°C): 31.5 (Lide 2003) Density (g/cm3 at 20°C): 0.9378 (Dreisbach 1955; Riddick et al. 1986) 0.9514 (Weast 1982–83) Molar Volume (cm3/mol): 72.6 (20°C, calculated-density) 73.5 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 3.803 (Riddick et al. 1986) 2.05, 3.80 (exptl., Chickos et al. 1999) ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 10070 (literature average, Valvani et al. 1981) 10000 (Verschueren 1983) 10000 (Riddick et al. 1986) 9900 (literature data compilation, Yaws et al. 1990) 26500 (calculated-group contribution method, Kühne et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 70109* (21.614°C, comparative ebulliometry, measured range 2,552–61.43°C, Guthrie et al. 1952) log (P/mmHg) = 6.97523 – 1060.851/(t/°C + 227.740); temp range 2.5–61.43°C (Antoine eq., comparative ebul- liometry, Guthrie et al. 1952) 79980 (calculated from determined data, Dreisbach 1955) log (P/mmHg) = 6.97523 – 1060.851/(227.740 + t/°C); temp range –35 to 90°C (Antoine eq. for liquid state, Dreisbach 1955) 627000* (93.33°C, static-Bourdon gauge, measured range 93.33–210°C, Kobe et al. 1956) log (P/mmHg) = [1– 304.367/(T/K)] × 10^{0.858337 – 8.56435 × 10–4·(T/K) + 9.32123 × 10–7·(T/K)2}; temp range 340.95–463.65 K (Cox eq., Chao et al. 1983) 70110 (21.61°C, quoted, Boublik et al. 1984) 79930 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.10017 – 1060.871/(227.742 + t/°C); temp range: 2.552–61.43°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/mmHg) = 6.97527 – 1060.87/(227.74 + t/°C); temp range: 2–61°C (Antoine eq., Dean 1985, 1992) 84530 (selected, Riddick et al. 1986) log (P/kPa) = 6.10013 – 1060.851/(227.74 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 79930 (calculated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.10013 – 1060.851/(–45.41 + T/K); temp range 238–363 K (Antoine eq., Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2298 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (P/mmHg) = 24.9555 – 2.1624 × 103/(T/K) –6.1066·log (T/K) – 2.4185 × 10–10·(T/K) + 2.0858 × 10–6·(T/K)2; temp range 188–490 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C): 575.5 (calculated-P/C using Riddick et al. 1986 data) 545.8 (computed-vapor liquid equilibrium (VLE) data, Yaws et al. 1991)

Octanol/Water Partition Coefficient, log KOW: 1.34 (Hansch & Leo 1979;) 1.13 (estimated-HPLC, Garst 1984) 1.14, 1.35 (estimated-MO, π substituent consts., Bodor et al. 1989) 1.34 (recommended, Sangster 1989) 1.34 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 1.50, 1.46; 1.48 (Captina silt loam, McLaurin sandy loam; weighted mean, batch equilibrium-sorption isotherm, Walton et al. 1992)

Environmental Fate Rate Constant, k, and Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression see reference: k = 1.4 × 108 M–1 s–1 oxidation rate by singlet oxygen in water (Mill 1980; quoted, Mill & Mabey 1985) –11 3 –1 –1 τ –18 kOH = (4.01 ± 0.30) × 10 cm molecule s with a atmospheric lifetime ~ 7 h, kO3 = (2.42 ± 0.28) × 10 3 –1 –1 –11 3 –1 –1 3 cm molecule s at 298 ± 2 K; and kO(3P) ~ 1.0 × 10 cm molecule s for the reaction with O( P) atom at 298 K (relative rate method, Atkinson et al. 1983) –11 3 –1 –1 kOH = (3.98 ± 0.35) × 10 cm molecule s at 22 ± 2°C (relative rate method, Tuazon et al. 1984) –11 3 –1 –1 kOH* = (40.8, 43.1) × 10 cm molecule s at 297 K, measured range 254–424 K (FP-RF flash photolysis- resonance fluorescence, Wine & Thompson 1984) –18 3 –1 –1 –1 –1 3 –1 –1 kO3 = 2.4 × 10 cm molecule s with a loss rate of 0.15 d , kOH = 4.0 × 10 cm molecule s with a –1 –12 3 –1 –1 –1 loss rate of 3.5 d , and kNO3 = 1.4 × 10 cm molecule s with a loss rate of 29 d at room temp. (review, Atkinson & Carter 1984) –18 3 –1 –1 –1 –1 3 –1 –1 kO3 = 2.4 × 10 cm molecule s with a loss rate of 0.15 d , kOH = 4.0 × 10 cm molecule s with a –1 –12 3 –1 –1 –1 loss rate of 1.7 d , and kNO3 = 1.4 × 10 cm molecule s with a loss rate of 29 d at room temp. (review, Atkinson 1985) –12 3 –1 –1 kNO3 = (1.4 ± 0.2) × 10 cm molecule s at 295 ± 2 K (relative rate method, Atkinson et al. 1985) –18 3 –1 –1 τ –1 3 kO3 = 2.4 × 10 cm molecule s with a calculated tropospheric lifetime = 6.7 d, kOH = 4.0 × 10 cm –1 –1 τ –12 3 –1 –1 molecule s with a calculated = 6.9 h, and kNO3 = 1.4 × 10 cm molecule s with a calculated τ = 50 min at room temp. (Atkinson et al. 1985) –11 3 –1 –1 kOH = 4.07 × 10 cm molecule s (Atkinson 1987,1988; quoted, Müller & Klein 1991) –11 3 –1 –1 –12 3 –1 –1 kOH = 4.046 × 10 cm molecule s at 298 K, kNO3 = 1.439 × 10 cm molecule s at 295 K (Atkinson 1986 and Atkinson et al. 1988, Sabljic & Güsten 1990; Atkinson 1991) –12 3 –1 –1 kNO3 = 1.44 × 10 cm molecule s at 296 K (relative rate method, Atkinson et al. 1988, Atkinson 1991) –11 3 –1 –1 kOH* = 4.05 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2299

Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from air for the reaction with OH radical (USEPA 1974; quoted, Darnall et al. 1976);

calculated atmospheric lifetimes: 6.7 d due to reaction with O3 in 24-h, 6.9 h due to reaction with OH radical in daytime and 50 min with NO3 radical at room temp. (Atkinson et al. 1985). 8 –1 –1 Surface water: t½ = 1.0 h, estimated from oxidation rate by singlet oxygen of 1.4 × 10 M s (Mill 1980; quoted, Mill & Mabey 1985). Ground water: Sediment: Soil: Biota:

TABLE 10.1.1.9.1 Reported vapor pressures of furan at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Guthrie et al. 1952 Kobe et al. 1956

comparative ebulliometry static-Bourdon gauge

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 2.552 31160 56.329 232087 93.33 627000 154.44 2156601 7.267 38547 61.43 270110 98.89 709680 160 2370194 12.018 47359 104.44 806142 165.56 1597568 16.797 57803 bp/°C 31.36 110 909493 171.11 2838721 ∆ –1 21.614 70109 HV/(kJ mol ) = 27.09 115.56 1019735 176.67 3107435 26.469 84525 at bp 121.11 1150647 182.22 3389929 31.357 101325 126.67 1295339 187.78 3686204 36.279 120790 eq. 2 P/mmHg 132.22 1440031 193.33 3996258 41.241 143268 A 6.97523 137.78 1605393 198.89 4326983 46.232 169052 B 1060.851 143.33 1770756 204.44 4671488 51.265 198530 C 227.74 149.89 1956788 210 5009103

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2300 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Furan: vapor pressure vs. 1/T 8.0 Guthrie et al. 1952 Kobe et al. 1956 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 31.5 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 10.1.1.9.1 Logarithm of vapor pressure versus reciprocal temperature for furan.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2301

10.1.1.10 2-Methylfuran

O

Common Name: 2-Methylfuran Synonym: silvan, sylvan Chemical Name: 2-methylfuran CAS Registry No: 534-22-5

Molecular Formula: C5H6O Molecular Weight: 82.101 Melting Point (°C): –91.3 (Lide 2003) Boiling Point (°C): 64.7 (Lide 2003) Density (g/cm3 at 20°C): 0.913 (Verschueren 1983) Molar Volume (cm3/mol): 89.9 (20°C, calculated-density) 95.7 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 8.66 (exptl., Chickos et al. 1999) Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 3000 (20°C, Verschueren 1983)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 358285* (110°C, static-Bourdon gauge, measured range 110–254.44°C, Kobe et al. 1956) 86126* (60.3°C, isoteniscope/manometry, measured range 60.3–100.3°C, Eon et al. 1971) log (P/mmHg) = [1– 338.704/(T/K)] × 10^{0.871223 – 7.95690 × 10–4·(T/K) + 7.81737 × 10–7·(T/K)2}; temp range 333.45–527.61 K (Cox eq., Chao et al. 1983) 18930, 29990 (20°C, 30°C, quoted, Verschueren 1983) 23090 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.81244 – 1641.052/(276.164 + t/°C); temp range 60.3–100.3°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 23250 (calculated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 5.95585 – 1107.3/(–56.88 + T/K); temp range 251–338 K (Antoine eq., Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 518 (20°C, calculated-P/C using Verschueren 1983 data)

Octanol/Water Partition Coefficient, log KOW: 1.85 (shake flask, Log P Database, Hansch & Leo 1987) 1.85 (recommended, Sangster 1989) 1.85 (recommended, Hansch et al. 1995)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2302 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from air for the reaction with OH radical (Darnall et al. 1976).

TABLE 10.1.1.10.1 Reported vapor pressures of 2-methylfuran at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Kobe et al. 1956 Eon et al. 1971

static-Bourdon gauge isoteniscope/manometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 110 358285 160 1088636 210 2521777 60.3 86126 115.56 413406 165.56 1205768 215.56 2749150 70.3 119057 121.11 468527 171.11 1329789 221.11 2990303 80.3 161720 126.67 537428 176.67 1467591 226.67 3231457 90.3 215982 132.22 606329 182.22 1612283 232.22 3493281 100.3 283977 137.78 689010 187.78 1770756 237.78 3768885 143.33 778581 193.33 1943008 243.33 4065159 ∆ –1 149.89 888823 198.89 2122151 248.89 4382104 HV/(kJ mol ) = 30.79 154.44 978394 204.44 2321964 254.44 4719719

2-Methylfuran: vapor pressure vs. 1/T 8.0 Kobe et al. 1956 Eon et al. 1971 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 64.7 °C 0.0 0.0018 0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 1/(T/K) FIGURE 10.1.1.10.1 Logarithm of vapor pressure versus reciprocal temperature for methylfuran.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2303

10.1.1.11 Tetrahydrofuran

O Common Name: Tetrahydrofuran Synonym: 1,4-epoxybutane, diethylene oxide, oxacyclopentane, tetramethylene oxide Chemical Name: 1,4-epoxybutane, diethylene oxide, oxacyclopentane, tetrahydrofuran, tetramethylene oxide CAS Registry No: 109-99-9

Molecular Formula: C4H8O Molecular Weight: 72.106 Melting Point (°C): –108.44 (Lide 2003) Boiling Point (°C): 65 (Lide 2003) Density (g/cm3 at 20°C): 0.8880 (Verschueren 1983) 0.8892 (Riddick et al. 1986) Molar Volume (cm3/mol): 81.1 (20°C, calculated-density) 88.3 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 8.535 (quoted, Riddick et al. 1986) 8.54 (exptl., Chickos et al. 1999) ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): miscible (Verschueren 1983; Riddick et al. 1986)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations Additional data at other temperatures designated * are compiled at the end of this section): 23465* (dynamic-ebulliometry, measured 15–65°C, Flom et al. 1951) 434076* (121.11°C, static-Bourdon gauge, measured range 121.11–265.56°C, Kobe et al. 1956) 19920* (23.139°C, measured range 23.2–99.7°C, Scott et al. 1970) 21646* (measured range 0.35–35°C, Koizumi & Ouchi 1970; quoted, Boublik et al. 1984) log (P/mmHg) = [1– 339.244/(T/K)] × 10^{0.830424 – 6.81525 × 10–4·(T/K) + 6.84786 × 10–7·(T/K)2}; temp range 253.15–540.15 K (Cox eq., Chao et al. 1983) 17530, 26340 (20°C, 30°C, quoted, Verschueren 1983) 21610, 21630 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.59372 – 1446.15/(249.982 + t/°C); temp range 0.35–35°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.12023 – 1202.394/(226.267 + t/°C); temp range 23.139–99.7°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/mmHg) = 6.97231 – 540.5/(260.10 + t/°C); temp range not specified (Antoine eq., Dean 1985, 1992) 19920, 21600, 26870 (23.139, 25, 30°C, Riddick et al. 1986) log (P/kPa) = 6.79696 – 1157.06/(t/°C + 206.75), temp range: 90–140°C, (Antoine eq., Riddick et al. 1986) 21620, 21900 (calculated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 5.92617 – 1101.47/(–57/95 + T/K); temp range 273–339 K (Antoine eq.-I, Stephenson & Mal- anowski 1987)

log (PL/kPa) = 6.12052 – 1202.561/(–46.863 + T/K); temp range 296–373 K (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.63507 – 1626.656/(15.041 + T/K); temp range 399–479 K (Antoine eq.-III, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2304 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (PL/kPa) = 6.73137 – 1702.922/(23.613 + T/K); temp range 467–541 K (Antoine eq.-IV, Stephenson & Malanowski 1987) log (P/mmHg) = 34.870 – 2.7523 × 103/(T/K) – 9.5958·log (T/K) + 1.9889 × 10–10·(T/K) + 3.5465 × 10–6·(T/K)2; temp range 165–540 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C):

7.15 (calculated-1/KAW, CW/CA, reported as exptl., Hine & Mookerjee 1975) 10.33, 142.6 (calculated-group contribution calculated-bond contribution method, Hine & Mookerjee 1975)

Octanol Water Partition Coefficient, log KOW: 0.46 (calculated-f const., Hansch & Leo 1979) 0.22 (shake flask-GC, Funasaki et al. 1985) 0.46 (shake flask, Log P Database, Hansch & Leo 1987) 0.46 (recommended, Sangster 1989) 0.46 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 2.86 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 1.37, 1.26; 1.33 (Captina silt loam, McLaurin sandy loam; weighted mean, batch equilibrium-sorption isotherm, Walton et al. 1992)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –11 3 –1 –1 kOH = (1.59 – 1.63) × 10 cm molecule s at 298 K (FP-RF flash photolysis-resonance fluorescence, Ravishankara & Davis 1978) –11 3 –1 –1 –11 3 –1 –1 kOH(calc) = 1.66 × 10 cm molecule s , kOH(obs.) = 1.5 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –11 3 –1 –1 –11 3 –1 –1 kOH(exptl) = 1.50 × 10 cm ·molecule s , kOH(calc) = 1.28 × 10 cm molecule s at room temp. (Atkinson 1986, 1987; quoted, Sabljic & Güsten 1990) –11 3 –1 –1 kOH(calc) = 1.28 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987, 1988; quoted, Müller & Klein 1991) –15 3 –1 –1 kNO3 = 4.875 × 10 cm molecule s at 296 ± 2 K (Atkinson et al. 1988; quoted, Sabljic & Güsten 1990; Atkinson 1991) –12 3 –1 –1 kNO3 = 4.88 × 10 cm molecule s at 296 K (relative rate method, Atkinson et al. 1988, Atkinson 1991) –11 3 –1 –1 kOH = 1.78 × 10 cm ·molecule s at 296 K (RP-RF method, Wallington et al. 1988b) –11 3 –1 –1 3 –1 –1 kOH = 1.61 × 10 cm ·molecule s cm molecule s at 298 K (recommended, Atkinson 1989) –12 3 –1 –1 –12 3 –1 –1 kOH* = 18.0 × 10 cm molecule s by relative rate method; kOH = 16.7 × 10 cm molecule s by pulse laser photolysis-laser induced fluorescence and atmospheric lifetime calculated to be 16 h at 298 ± 2 K; measured range 263–372 K (Moriarty et al. 2003) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives: Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from air for the reaction with OH radical (USEPA 1974; quoted, Darnall et al. 1976). Surface water: Ground water:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2305

Sediment:

Soil: disappearance t½ = 5.7 d was calculated from measured first-order rate constant (Anderson et al. 1991). Biota:

TABLE 10.1.1.11.1 Reported vapor pressures of tetrahydrofuran at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Flom et al. 1951 Kobe et al. 1956 Koizumi & Ouchi 1970 Scott 1970

dynamic-ebulliometry static-Bourdon gauge in Boublik et al. 1984 comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 15 15199 121.11 434076 0.35 567 23.139 19920 25 23465 126.67 509867 10 10732 28.362 25007 35 35064 132.22 578768 15 13687 33.62 31160 45 51329 137.78 661450 20 17240 38.917 38547 55 73327 143.33 744131 25 21646 44.251 47359 65 101325 148.89 833702 30 26842 49.62 57803 154.44 909493 35 35031 55.029 70109 bp/°C 66.1 160 1005955 60.475 84525 165.56 1116196 65.965 101325 171.11 1233328 71.489 120.789 176.67 1364240 77.054 143.268 182.22 1502042 82.659 169052 187.78 1653624 88.3 198530 193.33 1777646 93.98 232087 198.89 1984349 99.7 270110 204.44 2156601 210 2349524 mp/°C 215.56 2549337 21.11 2769820 226.67 3004084 232.22 3252127 237.78 3507061 243.33 3782655 248.89 4078939 254.44 4388994 260 4705938 265.56 5050443

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2306 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Tetrahydrofuran: vapor pressure vs. 1/T 8.0 Flom et al. 1951 Kobe et al. 1956 7.0 Scott 1970 Koizumi & Ouchi 1970 6.0

5.0 /Pa) S 4.0

log(P 3.0

2.0

1.0 b.p. = 65 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 10.1.1.11.1 Logarithm of vapor pressure versus reciprocal temperature for tetrahydrofuran.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2307

10.1.1.12 Tetrahydropyran

O Common Name: Tetrahydropyran Synonym: pentamethylene oxide, oxacyclohexane Chemical Name: 1,5-epoxypentane, pentamethylene oxide, oxacyclohexane, tetrahydro-2H-pyran CAS Registry No: 142-68-7

Molecular Formula: C5H10O Molecular Weight: 86.132 Melting Point (°C): –49.1 (Lide 2003) Boiling Point (°C): 88.0 (Riddick et al. 1986; Stephenson & Malanowski 1987; Lide 2003) Density (g/cm3 at 20°C): 0.8814, 0.8772 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 97.7 (20°C, calculated-density) 107.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 80200 (selected, Riddick et al. 1986) 85700*, 68800 (19.9°C, 31°C, shake flask-GC/TC, measured range 0–81.3°C, Stephenson 1992)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 9536 (interpolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.01171 – 1249.062/(–49.943 + T/K); temp range 273–362 K (Antoine eq., Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa m3/mol at 25°C):

12.71 (calculated-1/KAW, CW/CA, reported as exptl., Hine & Mookerjee 1975) 13.94, 215.9 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975)

Octanol/Water Partition Coefficient, log KOW: 0.64 (shake flask-GC, Funasaki et al. 1985) 0.82 (recommended, Sangster 1989) 1.00 (recommended, Sangster 1993) 0.95 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 3.22 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2308 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

–12 3 –1 –1 kOH ~ 13.8 × 10 cm molecule s for the gas-phase reactions with OH radical at 298 K (Atkinson 1989) –12 3 –1 –1 –12 3 –1 –1 kOH* = 11.5 × 10 cm molecule s by relative rate method; kOH = 12.3 × 10 cm molecule s by pulse laser photolysis-laser induced fluorescence and atmospheric lifetime calculated to be 28 h at 298 ± 2 K, measured range 263–372 K (Moriarty et al. 2003). Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from air for the reaction with OH radical (Darnall et al. 1976); photodecomposition t½ = 3.4 h under simulated atmospheric conditions, with NO (Dilling et al. 1976).

TABLE 10.1.1.12.1 Reported aqueous solubilities of tetrahydropyran at various temperatures

Stephenson 1992

shake flask-GC/TC

t/°C S/g·m–3 0 12900 9.4 10030 19.9 8670 31 6880 39.6 6040 50.5 5160 60.7 4620 71.3 4500 81.3 4290

Tetrahydropyran: solubility vs. 1/T -4.0 Stephenson 1992 -4.5

-5.0

-5.5

x nl x -6.0

-6.5

-7.0

-7.5

-8.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 10.1.1.12.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for tetrahydropyran.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2309

10.1.1.13 1,4-Dioxane

O

O

Common Name: 1,4-Dioxane Synonym: 1,4-diethylenedioxide, glycolethyleneether, p-dioxane Chemical Name: 1,4-dioxane CAS Registry No: 123-91-1

Molecular Formula: C4H8O2 Molecular Weight: 88.106 Melting Point (°C): 11.85 (Lide 2003) Boiling Point (°C): 101.5 (Lide 2003) Density (g/cm3 at 20°C): 1.03318, 1.02766 (20°C, 25°C, Hovorka et al. 1936) 1.0336, 1.0280 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 85.2 (20°C, calculated-density) 92.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 12.46 (quoted, Riddick et al. 1986) 12.84 (exptl., Chickos et al. 1999) ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): miscible (Verschueren 1983; Riddick et al. 1986; Howard 1990) miscible (Yaws et al. 1990)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations, *data at other temperatures are tabulated at end of this section): 4920* (static method, measured range 10–80°C, Hovorka et al. 1936) log (P/mmHg) = 8.0588 – 1933.8/(T/K); temp range 10–80°C (Antoine eq., static method, Hovorka et al. 1936) log (P/mmHg) = 7.8642 – 1866.7/(T/K); temp range ~ 10–110°C (Antoine eq., differential manometer, Gallaugher & Hibbert 1937) 4986* (static-Hg manometer, measured range 20–105°C, Crenshaw et al. 1938; quoted, Vinson & Martin 1963) log (P/mmHg) = –2316.26/(T/K) – 2.77251·log (T/K) + 16.2007): temp range 20–105°C (Hg manometer, Crenshaw et al. 1938) 5333* (summary of literature data, Stull 1947) 406516* (154.44°C, static-Bourdon gauge, measured range 154.44–310°C, Kobe et al. 1956) log (P/mmHg) = [–0.2185 × 8546.2/(T/K)] + 7.864110; temp range –35.8 to 101°C (Antoine eq., isomer not specified, Weast 1972–73) 5065 (Boublik et al. 1984) 4932 (quoted, Verschueren 1983) log (P/kPa) = 6.66014 – 1556.983/(240.366 + t/°C); temp range 20–105°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.56891 – 1550.445/(240.459 + t/°C); temp range 20–125°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 4950, 6135 (25, 30°C, Riddick et al. 1986) log (P/kPa) = 6.9891 – 1866.7/(T/K), temp range not specified (Antoine eq., Riddick et al. 1986) 4915 (calculated-Antoine eq., Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2310 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (PL/kPa) = 6.40318 – 1457.97/(–42.888 + T/K); temp range 285–375 K (Antoine eq., Stephenson & Malanowski 1987) 5060, 6092 (quoted, calculated-solvatochromic parameters and UNIFAC, Banerjee et al. 1990) log (P/mmHg) = 20.5761 – 2.4658 × 103/(T/K) – 4.3645·log (T/K) – 2.7053 × 10–10·(T/K) + 8.5235 × 10–6 (T/K)2; temp range 285–587 K (vapor pressure eq., Yaws 1994) Henry’s Law Constant (Pa m3/mol at 25°C or as indicated):

0.495 (calculated as 1/KAW, CW/CA, reported as exptl., Hine & Mookerjee 1975; quoted, Howard 1990) 0.431, 1.564 (calculated-group contribution, calculated-bond contribution method Hine & Mookerjee 1975) 0.698 (computer value, Yaws et al. 1991) 1.609. 4.314, 6.925, 10.19 (dioxane, 40, 60, 70, 80°C, equilibrium headspace-GC, Kolb et al. 1992)

ln (1/KAW) = – 7.940 + 4798/(T/K), temp range 40–80°C (equilibrium headspace-GC, Kolb et al. 1992) 0.496 (quoted from Howard 1989–1991, Capel & Larson 1995)

Octanol/Water Partition Coefficient, log KOW: –0.42, 0.01 (observed, calculated-f const., Chou & Jurs 1979) –0.42 (quoted, Verschueren 1983; quoted, Pinal et al. 1990) –0.27 (Hansch & Leo 1985; quoted, Howard 1990; Capel & Larson 1995) –0.27 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 3.17 (head-space GC, Abraham et al. 2001) Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

1.23 (soil, estimated-KOW, Lyman et al. 1982)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: estimated Henry’ law constant suggests that volatilization for 1,4-dioxane from water and moist soil should be slow; however, it has a moderate vapor pressure, so volatilization from dry soil is possible (Howard 1990). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation t½ = 67 d to 9.1 yr in water, based on measured rates for the reaction with hydroxyl radical in water (Anbar & Neta 1967; Dorfman & Adams 1973; quoted, Howard et al. 1991)

photooxidation t½ = 8.1–81 h in air, based on measured rate constant for the reaction of 1,3,5-trioxane with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991)

photooxidation t½ = 6.69–9.6 h in the atmosphere, based on estimated reaction rate with photochemically produced hydroxyl radicals (Howard 1990) –12 3 –1 –1 kOH = 10.9 × 10 cm molecule s at 298 K (Atkinson 1989) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 38.6 × 10 cm mol s , kOH(exptl) = 10.9 × 10 cm mol s at 298 K (SAR structure- activity relationship, Kwok & Atkinson 1995) –12 3 –1 –1 –12 3 –1 –1 kOH* = 9.5 × 10 cm molecule s by relative rate method; kOH = 12.2 × 10 cm molecule s by pulse laser photolysis-laser induced fluorescence and atmospheric lifetime calculated to be 25 h at 298 ± 2 K; measured range 263–372 K (Moriarty et al. 2003) Hydrolysis:

Biodegradation: aqueous aerobic t½ = 672–4320 h, based on unacclimated aerobic aqueous screening test data with confirmed resistance to biodegradation (Sasaki 1978; Kawasaki 1980; quoted, Howard et al. 1991); aqueous

anaerobic t½ = 2688–17280 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991) t½(aerobic) = 28 d, t½(anaerobic) = 110 d in natural waters (Capel & Larson 1995) Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives: Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from air for the reaction with OH radical (USEPA 1974; quoted, Darnall et al. 1976);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2311

t½ = 8.1–81 h, based on estimated photooxidation half-life in air (Atkinson 1987; quoted, Howard et al. 1991); t½ = 6.69–9.6 h in the atmosphere, based on estimated reaction rate with photochemically produced hydroxyl radical (Howard 1990).

Surface water: t½ = 672–4320 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Ground water: t½ = 1344–8640 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 672–4320 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

TABLE 10.1.1.13.1 Reported vapor pressures of 1,4-dioxane at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Hovorka et al. 1936 Crenshaw et al. 1938 Stull 1947 Kobe et al. 1956

static method ebulliometry-Hg manometer summary of literature data static method-Bourdon gauge

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 10 2266 20 3853 –35.8 133.3 154.44 406516 20 3746 25 4986 –12.8 666.6 160 461637 25 4920 30 6386 –1.20 1333 165.56 523648 30 6346 40 10239 12 2666 171.11 585659 40 10212 50 15905 25.2 5333 176.67 654560 50 15972 60 23985 33.8 7999 182.22 730351 60 24171 70 35224 45.1 13332 187.78 806142 70 35583 80 50503 62.3 26664 193.33 902603 80 51036 90 70821 81.8 53329 198.89 992174 100 97350 101.1 101325 204.44 1095526 eq. 1 P/mmHg 105 113351 210 1205768 A 8.0588 mp/°C 10 215.56 1322899 B 1933.8 bp/°C 101.26 221.11 1440031 226.67 1577833 eq. 4 P/mmHg 232.22 1722525 A 16.2007 237.78 1874107 B 2316.26 243.33 2039470 C 2.77251 248.89 2211722 254.44 2397755 260 2597568 265.56 2797381 271.11 3052314 276.67 3259017 282.22 3507061 287.78 3755105 293.33 4037599 298.89 4333873 204.44 4595697 310 4933312

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2312 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

1,4-Dioxane: vapor pressure vs. 1/T 8.0 Hovorka et al. 1936 Crenshaw et al. 1938 7.0 Kobe et al. 1956 Stull 1947 6.0

5.0 /Pa) S 4.0

log(P 3.0

2.0

1.0 b.p. = 101.5 °C m.p. = 11.85 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 1/(T/K) FIGURE 10.1.1.13.1 Logarithm of vapor pressure versus reciprocal temperature for dioxane.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2313

10.1.2 HALOGENATED ETHERS 10.1.2.1 Epichlorohydrin

O Cl

Common Name: Epichlorohydrin Synonym: 1-chloro-2,3-epoxypropane, (chloromethyl)oxirane, α-epichlorohydrin, γ-chloropropylene oxide Chemical Name: epichlorohydrin, 1-chloro-2,3-epoxypropane, α-epichlorohydrin, γ-chloropropylene oxide CAS Registry No: 106-89-8

Molecular Formula: C3H5OCl Molecular Weight: 92.524 Melting Point (°C): –57.2 (Riddick et al. 1986; Howard 1989) –26 (Lide 2003) Boiling Point (°C): 118 (Lide 2003) Density (g/cm3 at 20°C): 1.1807, 1.1746 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 78.4 (20°C, calculated-density) 90.9 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 65800 (20°C, selected, Riddick et al. 1986) 65800 (20°C, Krijgsheld & Van der Gen 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 2400 (selected, Riddick et al. 1986) log (P/kPa) = 6.5958 – 1587.9/(230 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 2192 (Daubert & Danner 1985)

log (PL/kPa) = 6.5958 – 1587.9/(–43.15 + T/K); temp range 328–388 K (Antoine eq., Stephenson & Malanowski 1987) log (P/mmHg) = 24.764 – 2.8846 × 103/(T/K) – 5.6252·log (T/K) – 1.1011 × 10–10·(T/K) + 5.3331 × 10–7·(T/K)2; temp range 216–610 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C): 3.375 (calculated-P/C using Riddick et al. 1986 data)

Octanol/Water Partition Coefficient, log KOW: 0.30 (Krijgsheld & Van der Gen 1986) 0.45 (shake flask-GC, Deneer et al. 1988) 0.45 (recommended, Sangster 1993) 0.45 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF: 0.66 (estimated, Santodonato et al. 1980; quoted, Howard 1989)

Sorption Partition Coefficient, log KOC: 2.09 (soil, calculated-S, Lyman et al. 1982; quoted, Howard 1989)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2314 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Volatilization: evaporation t½ ~ 29 h for a model river 1 m deep with a 1 m/s current and 3 m/s wind (Lyman et al. 1982; quoted, Howard 1989). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation t½ ~ 4.0 d, based on estimation for the photooxidation with hydroxyl radical in air (Cupitt 1980; quoted, Howard 1989) –13 3 –1 –1 –13 3 –1 –1 kOH(calc) = 9.9 × 10 cm molecule s , kOH(obs.) = 4.4 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985) ≥ –13 3 –1 –1 kOH 5.5 × 10 cm molecule s with reference to n-butane for the gas phase reaction with OH radical at 23.3 ± 0.9°C with an atmospheric lifetime of < 21 d for an average OH radical concentration of 1 × 106 molecules/cm3 (Edney et al. 1986) –13 3 –1 –1 –13 3 –1 –1 kOH(exptl) = 4.4 × 10 cm molecule s , kOH(calc) = 6.6 × 10 cm molecule s at room temp. (SAR, Atkinson 1987) ≤ –1 –1 kO3(aq.) 0.003 M s for direct reaction with ozone in water at pH 4.1 and 22°C, with t½ -130 d at pH 7 (Yao & Haag 1991). Hydrolysis: half-life of 8.2 d in distilled water to hydrolyze to 1-chloropropan-2,3-diol at 20°C and pH 5–9 (Mabey & Mill 1978; quoted, Howard 1989; Howard et al. 1991).

Biodegradation: aqueous aerobic t½ = 168–672 h, based on estimated unacclimated aqueous aerobic biodegra- dation screening test data (Bridie et al. 1979; Sasaki 1978; quoted, Howard et al. 1991); aqueous anaerobic

t½ = 672–2688 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Air: photodecomposition t½ = 16.0 h under simulated atmospheric conditions, with NO (Dilling et al. 1976); t½ ~ 4.0 d, based on estimation for the photooxidation with hydroxyl radical in air (Cupitt 1980; quoted, Howard 1989);

t½ = 146–1458 h, based on measured rate constant for the reaction with hydroxyl radical in air (Atkinson 1985; quoted, Howard et al. 1991); atmospheric lifetime < 21 d due to reactions with OH radical (Edney et al. 1986).

Surface water: evaporation t½ = 29 h for a model river 1 m deep with a 1 m/s current and 3 m/s wind (Lyman et al. 1982; quoted, Howard 1989);

t½ = 168–672 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991); measured rate constant k ≤0.003 M–1 s–1 for direct reaction with ozone in water at pH 4.1 and 22°C, with

t½ – 130 d at pH 7 (Yao & Haag 1991). Ground water: 336–1344 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 168–672 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2315

10.1.2.2 Chloromethyl methyl ether

Cl O

Common Name: Chloromethyl methyl ether Synonym: chloromethyl ether, chloromethoxymethane, CMME, monochlorodimethyl ether Chemical Name: chloromethyl methyl ether CAS Registry No: 107-30-2

Molecular Formula: C2H5ClO, ClCH2-O-CH3 Molecular Weight: 80.513 Melting Point (°C): –103.5 (Verschueren 1983; Dean 1985; Stephenson & Malanowski 1987; Lide 2003) Boiling Point (°C): 59.5 (Lide 2003) Density (g/cm3 at 20°C): 1.0703 (Dean 1985) 1.0605 (Budavari 1989) Molar Volume (cm3/mol): 75.2 (20°C, calculated-density) 81.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): decomposes (Verschueren 1983)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 24900 (calculated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.259 – 1240/(–43.15 + T/K); temp range 290–332 K (Antoine eq., Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa m3/mol):

Octanol/Water Partition Coefficient, log KOW: Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis:

Oxidation: photooxidation t½ = 22.7–227 h, based on estimated rate constant for the reaction with hydroxyl radical (Atkinson 1987; quoted, Howard et al. 1991). –1 Hydrolysis: k = 21 h at pH 7 and 25°C with a calculated t½ = 2.0 min (Van Duuren et al. 1972; quoted, Ellington 1989);

t½ = 0.0108–0.033 h, based on measured hydrolysis rate constant for bis(chloromethyl) ether (Tou et al. 1974; quoted, Howard et al. 1991) and chloromethyl methyl ether (Ellington et al. 1987; quoted, Ellington 1989; Howard et al. 1991);

hydrolyzed very fast in aqueous solutions with t½ < 1.0 s (Verschueren 1983). Biodegradation: aqueous aerobic t½ = 168–672 h, based on estimated unacclimated aqueous aerobic biodegra- dation half-life (Howard et al. 1991);

aqueous anaerobic t½ = 672–2688 h, based on estimated unacclimated aqueous aerobic biodegradation half- life (Howard et al. 1991).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2316 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Air: t½ = 22.7–227 h, based on estimated rate constant for the reaction with hydroxyl radical (Atkinson 1987; quoted, Howard et al. 1991).

Surface water: t½ = 0.0108–0.033 h, based on measured hydrolysis rate constant for bis(chloromethyl) ether (Tou et al. 1974; quoted, Howard et al. 1991) and chloromethyl methyl ether (Ellington et al. 1987; quoted, Ellington 1989; Howard et al. 1991).

Ground water: t½ = 0.0108–0.033 h, based on measured hydrolysis rate constant for bis(chloromethyl) ether (Tou et al. 1974; quoted, Howard et al. 1991) and chloromethyl methyl ether (Ellington et al. 1987; quoted, Ellington 1989; Howard et al. 1991). Sediment:

Soil: t½ = 0.0108–0.033 h, based on measured hydrolysis rate constant for bis(chloromethyl) ether (Tou et al. 1974; quoted, Howard et al. 1991) and chloromethyl methyl ether (Ellington et al. 1987; quoted, Ellington 1989; Howard et al. 1991). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2317

10.1.2.3 Bis(chloromethyl)ether

Cl O Cl

Common Name: Bis(chloromethyl)ether Synonym: BCME, Bis-CME, chloro(chloromethoxy)methane, dichloromethylether, (dichloro-dimethyl)ether, sym- dichloromethyl ether, oxybis(chloromethane) Chemical Name: chloromethyl ether, sym-dichloromethyl ether CAS Registry No: 542-88-1

Molecular Formula: C2H4Cl2O, ClCH2-O-CH2Cl Molecular Weight: 114.958 Melting Point (°C): –41.5 (Weast 1977; Weast 1982–83; Verschueren 1983; Howard 1989; Lide 2003) Boiling Point (°C): 106 (Lide 2003) Density (g/cm3 at 20°C): 1.328 (15°C, Weast 1982–83) 1.315 (Verschueren 1983) Molar Volume (cm3/mol): 102.7 (calculated-Le Bas method at normal boiling point) 87.4 (calculated-density, Stephenson & Malanowski 1987) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 22000 (calculated as per Moriguchi 1975 using Quayle 1953 data, Callahan et al. 1979)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 3999 (22°C, Dreisbach 1952) log (P/mmHg) = –3.4945 – 2.2305 × 103/(T/K) + 6.774·log (T/K) – 1.7332 × 10–2·(T/K) + 9.5511 × 10–6·(T/K)2; temp range 232–579 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 21.27 (calculated-P/C, Mabey et al. 1982) 21.27 (20–25°C and low ionic strength, Pankow & Rosen 1988; Pankow 1990) 213.18 (quoted from WERL Treatability Data, Ryan et al. 1988)

Octanol/Water Partition Coefficient, log KOW: –0.38 (calculated, Radding et al. 1977) 2.40 (calculated, Mabey et al. 1982)

Bioconcentration Factor, log BCF: 1.041 (bluegill sunfish, Veith et al. 1980)

Sorption Partition Coefficient, log KOC:

1.20 (sediment-water, calculated-KOW, Mabey et al. 1982)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis: Oxidation: k << 360 M–1 h–1 for singlet oxygen and k = 3.0 M–1 h–1 for peroxy radical (Mabey et al. 1982)

photooxidation t½ = 0.196–1.96 h, based on estimated rate constant for reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2318 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Hydrolysis: hydrolyzed very fast in aqueous solution with half-life in the order of 10 s when extrapolated to pure water (Hammond & Alexander 1972; quoted, Verschueren 1983); –1 rate constant k = 0.018 s with t½ = 38 s (Tou et al. 1974; quoted, Callahan et al. 1979; Howard et al. 1991); hydrolysis t½ = 10–38 s and will rapidly disappear from any aquatic system (Fishbein 1979; quoted, Howard 1989); k = 65 h–1 at pH 7.0 at 20°C (quoted, Mabey et al. 1982).

Biodegradation: aqueous aerobic t½ = 168–672 h, based on scientific judgement; aqueous anaerobic t½ = 672–2688 h, based on unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Air: t½ = 0.196–1.96 h, based on estimated rate constant for reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991).

Surface water: t½ = 0.0106–0.106 h, based on estimated hydrolysis half-life in water (Howard et al. 1991). Ground water: t½ = 0.0106–0.106 h, based on estimated hydrolysis in water (Howard et al. 1991). Sediment:

Soil: t½ < 10 d, via volatilization subject to plant uptake from the soil (Ryan et al. 1988); t½ = 0.0106–0.106 h, based on estimated hydrolysis half-life in water (Howard et al. 1991). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2319

10.1.2.4 Bis(2-chloroethyl)ether

O Cl Cl

Common Name: Bis(2-chloroethyl)ether Synonym: 2-chloroethyl ether, 1,1′-oxybis(2-chloroethane), bis(β-chloroethyl)ether, Chlorex, 1-chloro-2-(β-chloro- ethoxy)-ethane, β,β′-dichloroethyl ether, 2,2′-dichloroethyl ether, di(2-chloroethyl)ether, di(chloroethyl)ether, dichloro- diethyl ether, sym-dichlorodiethyl ether Chemical Name: 2-chloroethyl ether, bis(β-chloroethyl)ether, 1-chloro-2-(β-chloroethoxy)-ethane CAS Registry No: 111-44-4

Molecular Formula: C4H8Cl2O, ClCH2CH2-O-CH2CH2Cl Molecular Weight: 143.012 Melting Point (°C): –51.9 (Lide 2003) Boiling Point (°C): 178.5 (Lide 2003) Density (g/cm3 at 20°C): 1.2200 (Verschueren 1983) 1.2192 (Dean 1985; Riddick et al. 1986) Molar Volume (cm3/mol): 117.3 (20°C, calculated-density) 147.9 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 8.66 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 10200 (20°C, Du Pont 1966; Verschueren 1983) 17195 (shake flask-LSC, Veith et al. 1980) 10200 (20°C, Riddick et al. 1986) 10400*, 10300 (20°C, 31°C, shake flask-GC/TC, measured range 0–91.7°C, Stephenson 1992)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 156.2 (Antoine eq. regression, temp range 23.5–178.5°C, Stull 1947) 94.64, 186 (20, 25°C, Verschueren 1977,1983) 207 (selected, Riddick et al. 1986) log (P/kPa) = 7.2289 – 2359.6/(T/K), temp range not specified (Antoine eq., Riddick et al. 1986) 143.6 (interpolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.7637 – 1948.62/(–41.974 + T/K): temp range 297–452 K (Antoine eq., Stephenson & Malanowski 1987) 857.1 (calculated-solvatochromic parameters and UNIFAC, Banerjee et al. 1990)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 28.97 (calculated-P/C, Lyman et al. 1982; Howard 1989) 1.320 (20°C, calculated-P/C, Mabey et al. 1982)

Octanol/Water Partition Coefficient, log KOW: 1.58 (calculated, Leo et al. 1971) 1.12 (shake flask-LSC, Veith et al. 1980) 1.29 (shake flask, Hansch & Leo 1985) 1.29 (recommended, Sangster 1993) 1.29 (recommended, Hansch et al. 1995)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2320 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Bioconcentration Factor, log BCF: 1.041 (bluegill sunfish, Barrows et al. 1980) 1.040 (bluegill sunfish, LSC-14C, Veith et al. 1980; Veith & Kosian 1983)

0.964 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 1.15 (calculated, Sabljic 1987)

Sorption Partition Coefficient, log KOC: 1.38 (soil, calculated-S, Lyman et al. 1982)

1.14 (sediment-water, calculated-KOW, Mabey et al. 1982)

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Volatilization: calculated t½ = 5.78 d (as per Mackay & Wolkoff 1973 by Durkin et al. 1975); t½ = 3.5, 4.4 and 180.5 d for the streams, rivers and lakes, respectively, were estimated using Henry’s law constant (Lyman et al. 1982; quoted, Howard 1989). Photolysis:

Oxidation: photooxidation t½ = 4.0 h, based on an estimated half-life for ethyl ether in the smog chamber (Altshuller et al. 1962 and Laity et al. 1973; quoted, Callahan et al. 1979); k << 360 M–1·h–1 for the reaction with singlet oxygen and k = 24.0 M–1 h–1 for the reaction with peroxy radical (Mabey et al. 1982);

photooxidation t½ = 9.65–96.5 h, based on estimated rate constant for the reaction with OH radical in air (Atkinson 1987; quoted, Howard et al. 1991).

Hydrolysis: t½ = 40.0 d was estimated at pH 7 from ethyl chloride data in water at an unspecified temperature (Brown et al. 1975; quoted, Howard 1989);

t½ = 0.5–2.0 yr, based on data from chlorinated ethanes and propanes (Dilling et al. 1975; quoted, Callahan et al. 1979);

first-order hydrolysis t½ = 22 yr, based on neutral hydrolysis rate constant at 20°C which was extrapolated from data for hydrolysis of dioxane at 100°C (Mabey et al. 1982; quoted, Howard et al. 1991); –5 –1 k = 2.6 × 10 h at pH 7 and 25°C with a calculated t½ = 3.0 yr (Ellington et al. 1987; quoted, Ellington 1989). Biodegradation: aqueous aerobic t½ = 672–4320 h, based on river die-away test data (Ludzack & Ettinger 1963 and Doljido 1979; quoted, Howard et al. 1991); aqueous anaerobic t½ = 2688–17280 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biotransformation: k = 3 × 10–9 mL cell–1 h–1 for the bacterial transformation in water (Mabey et al. 1982).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Air: atmospheric t½ = 13.44 h was estimated for the reaction with OH radical (GEMS 1986; quoted, Howard 1989);

photooxidation t½ = 9.65–96.5 h, based on estimated rate constant for the reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991).

Surface water: t½ = 672–4320 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Ground water: t½ = 1344–8640 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 672–4320 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Biota: t½ > 4.0 d but less than 7.0 d in fish tissues (Barrows et al. 1980).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2321

TABLE 10.1.2.4.1 Reported aqueous solubilities of bis(2-chloroethyl) ether at various temperatures

Stephenson 1992

shake flask-GC/TC

t/°C S/g·m–3 0 11400 9.6 10900 20 10400 31 10300 40 10500 50.1 11100 60.7 11100 70.6 12800 80.9 13600 91.7 15100

Bis(2-chloroethyl) ether: solubility vs. 1/T -4.0 Stephenson 1992 Du Pont 1966 -4.5 Veith et al. 1980

-5.0

-5.5

x nl x -6.0

-6.5

-7.0

-7.5

-8.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 10.1.2.4.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for bis(2-chloroethyl)ether.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2322 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.2.5 Bis(2-chloroisopropyl)ether

O Cl Cl

Common Name: Bis(2-chloroisopropyl)ether Synonym: bis(2-chloro-1-methylethyl)ether, dichlorodiisopropyl ether, dichloroisopropyl ether, 2,2′-dichloroisopropyl ether, 2,2′-oxybis(1-chloropropane) Chemical Name: bis(2-chloroisopropyl)ether, dichlorodiisopropyl ether, dichloroisopropyl ether CAS Registry No: 108-60-1

Molecular Formula: C6H12Cl2O, ClCH2CH(CH3)-O-CH(CH3)CH2Cl Molecular Weight: 171.064 Melting Point (°C): –97 (Weast 1977; Verschueren 1983) Boiling Point (°C): 187 (Lide 2003) Density (g/cm3 at 20°C): 1.1100 (Verschueren 1983) 1.1122 (Dean 1985) Molar Volume (cm3/mol): 154.1 (20°C, calculated-density) 193.4 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other tempertures designated * are compiled at the end of this section): 1700* (room. temp., Verschueren 1977,1983) 2450*, 2370 (19.1°C, 31.0°C, shake flask-GC, measured range 9.5–91.4°C, Stephenson 1992)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 103.95 (Antoine eq. regression, temp range 24.7–180°C, Stull 1947) 113.31 (20°C, Verschueren 1977,1983) 112.30 (28.85°C, Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.68233 – 1856.14/(–58.793 + T/K); temp range 302–456 K (Antoine eq., Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 11.14 (20°C, calculated-P/C, Mabey et al. 1982) 11.40 (calculated-P/C from Verschueren 1977/83 data) 116.5 (quoted from WERL Treatability Data, Ryan et al. 1988)

Octanol/Water Partition Coefficient, log KOW: 2.58 (calculated, Leo et al. 1971) 2.10 (calculated, Mabey et al. 1982) 2.48 (HPLC-RT correlation, Kawamoto & Urano 1989) 2.48 (recommended, Sangster 1993)

Bioconcentration Factor, log BCF:

1.544 (microorganisms-water, calculated-KOW, Mabey et al. 1982)

Sorption Partition Coefficient, log KOC:

1.785 (sediment-water, calculated-KOW, Mabey et al. 1982)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2323

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Volatilization: calculated t½ = 1.37 d (calculated as per Mackay & Wolkoff 1973, Durkin et al. 1975; quoted, Callahan et al. 1979). Photolysis:

Oxidation: photooxidation t½ = 4.0 h, based on estimated half-life for ethyl ether in a smog chamber (Altshuller et al. 1962 and Laity et al. 1973; quoted, Callahan et al. 1979); k << 360 M–1 h–1 for the reaction with singlet oxygen and k = 2.0 M–1 h–1 for the reaction with peroxy radical (Mabey et al. 1982).

Hydrolysis: t½ = 0.5–2.0 yr, based on data from chlorinated ethanes and propanes (Dilling et al. 1975; quoted, Callahan et al. 1979); k = 4 × 10–6 h–1 at pH 7.0 and 25°C (Mabey et al. 1982).

Biodegradation: aqueous aerobic t½ = 432–4320 h, based on river die-away test data (Kleopfer & Fairless 1972; quoted, Howard et al. 1991) and aerobic soil column study data (Kincannon & Lin 1985; quoted, Howard

et al. 1991); aqueous anaerobic t½ = 1728–17280 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biotransformation: k = 1 × 10–10 mL cell–1 h–1 for bacterial transformation in water (Mabey et al. 1982).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Air: t½ = 4.61–46.1 h, based on photooxidation half-life in air (Howard et al. 1991). Surface water: estimated t½ = 3.1 d for surface waters in case of a first order reduction process may be assumed (Zoeteman et al. 1980)

t½ = 432–4320 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Ground water: t½ = 864–8640 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 432–4320 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

TABLE 10.1.2.5.1 Reported aqueous solubilities of bis(2-chloroisopropyl) ether at various temperatures

Stephenson 1992

shake flask-GC/TC

t/°C S/g·m–3 9.5 4090 19.1 2450 31 2370 40.3 2180 51.1 1820 60.6 2090 80.7 2650 91.4 2410

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2324 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Bis (2-Chloroisopropyl) ether: solubility vs. 1/T -8.0 Stephenson 1992 -8.5

-9.0

-9.5

x nl x -10.0

-10.5

-11.0

-11.5

-12.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 10.1.2.5.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for bis(2-chlor- oisopropyl)ether.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2325

10.1.2.6 2-Chloroethyl vinyl ether

Cl O Common Name: 2-Chloroethyl vinyl ether Synonym: (2-chloroethoxy)-ethene, β-chloroethyl vinyl ether, vinyl 2-chloroethyl ether Chemical Name: β-chloroethyl vinyl ether, 2-chloroethyl vinyl ether, vinyl 2-chloroethyl ether CAS Registry No: 110-75-8

Molecular Formula: C4H7Cl2O, ClCH2CH2-O-CH=CH2 Molecular Weight: 106.551 Melting Point (°C): –70 (Lide 2003) Boiling Point (°C): 108 (Weast 1977; Weast 1982–83; Lide 2003) Density (g/cm3 at 20°C): 1.0475 (Weast 1982–83) 1.0480 (Dean 1985) Molar Volume (cm3/mol): 101.7 (20°C, calculated-density) 119.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 15000 (calculated as per Moriguchi 1975, Callahan et al.) 6000 (Dean 1985)

Vapor Pressure (Pa at 25°C or as indicated): 3566 (20°C, calculated, Dreisbach 1952)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 0.0253 (20–25°C, calculated-P/C, Mabey et al. 1982) 25.33 (20–25°C and low ionic strength, Pankow & Rosen 1988; Pankow 1990) 24.79 (quoted from WERL Treatability Data, Ryan et al. 1988)

Octanol/Water Partition Coefficient, log KOW: 1.28 (calculated as per Leo et al. 1971, Callahan et al. 1979) 1.14 (calculated, Mabey et al. 1982)

Bioconcentration Factor, log BCF:

0.672 (microorganisms-water, calculated-KOW, Mabey et al. 1982)

Sorption Partition Coefficient, log KOC:

0.820 (sediment-water, calculated-KOW, Mabey et al. 1982)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis:

Oxidation: photooxidation t½ = 30 min, based on half-life estimated for 2-methyl-2-butene from smog chamber data (Altshuller et al. 1962 and Laity et al. 1973; quoted, Callahan et al. 1979); k = 1 × 1010 M–1·h–1 for singlet oxygen and k = 34 M–1 h–1 for peroxy radical (Mabey et al. 1982). –10 –1 Hydrolysis: k = 4.4 × 10 s , minimum rate at pH 7 and 25°C in pure water with a maximum t½ = 0.48 yr (Jones & Wood 1964; quoted, Callahan et al. 1979); k ~ 4 × 10–6 h–1 at pH 7.0 and 25°C with reference to that of bis(2-chloroethyl)ether (Mabey et al. 1982).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2326 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Biodegradation: Biotransformation: k = 1 × 10–10 mL cell–1 h–1 for bacterial transformation to water (Mabey et al. 1982).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Soil: t½ < 10 d, via volatilization subject to plant uptake from the soil (Ryan et al. 1988).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2327

10.1.2.7 Bis(2-chloroethoxy)methane

O O Cl Cl Common Name: Bis(2-chloroethoxy)methane Synonym: bis(β-chloroethyl)formal, β, β-dichlorodiethyl formal, dichlorodiethyl methylal Chemical Name: bis(2-chloroethoxy)methane CAS Registry No: 111-91-1

Molecular Formula: C5H10Cl2O2, ClCH2CH2-O-CH2-O-CH2CH2Cl Molecular Weight: 173.037 Melting Point (°C): Boiling Point (°C): 215 (Lide 2003) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): 180.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 81000 (calculated as per Moriguchi 1975, Callahan et al. 1979;)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 21.58 (Antoine eq. regression, temp range 53–215°C, Stull 1947) < 13.3 (calculated as per Dreisbach 1952 using data of Webb et al. 1962, Callahan et al. 1979) 21.5 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 7.54778 – 2641.33/(–11.518 + T/K); temp range 326–486 K (Antoine eq., Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 0.0284 (20–25°C, calculated-P/C, Mabey et al. 1982) 0.0273 (quoted from WERL Treatability Data, Ryan et al. 1988)

Octanol/Water Partition Coefficient, log KOW: 1.260 (calculated as per Leo et al. 1971, Callahan et al. 1979; Ryan et al. 1988) 1.029 (calculated, Mabey et al. 1982)

Bioconcentration Factor, log BCF:

0.568 (microorganisms-water, calculated-KOW, Mabey et al. 1982)

Sorption Partition Coefficient, log KOC:

0.716 (sediment-water, calculated-KOW, Mabey et al. 1982)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis: Oxidation: k << 360 M–1 h–1 for singlet oxygen and k = 52 M–1 h–1 for peroxy radical (Mabey et al. 1982). Hydrolysis: minimum rate k = 2.53 × 10–6 L mol–1 s–1 for acid-catalyzed hydrolysis of the acetal linkage at 25°C (Kankaanperä 1969; quoted, Callahan et al. 1979; Mabey et al. 1982);

t½ = 0.5–2.0 yr, based on data of Dilling et al. 1975 on chlorinated ethanes and propanes (quoted, Callahan et al. 1979); estimated rate constant k ~ 4 × 10–6 h–1 at pH 7.0 and 25°C by analogy to bis(2-chloroethyl)ether (Mabey et al. 1982).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2328 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Soil: t½ > 50 d, via volatilization subject to plant uptake from the soil (Ryan et al. 1988).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2329

10.1.3 AROMATIC ETHERS 10.1.3.1 Anisole (Methoxybenzene)

O

Common Name: Anisole Synonym: methoxybenzene Chemical Name: anisole, methoxybenzene, methyl phenyl ether CAS Registry No: 100-66-3

Molecular Formula: C7H8O, C6H5OCH3 Molecular Weight: 108.138 Melting Point (°C): –37.13 (Lide 2003) Boiling Point (°C): 153.7 (Lide 2003) Density (g/cm3 at 20°C): 0.99402, 0.98932 (20°C, 25°C, Dreisbach & Martin 1949) 0.9940, 0.9893 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 108.8 (20°C, calculated-density) 127.3 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 1514 (shake flask-UV, McGowan et al. 1966) 1536 (shake flask-UV, Vesala 1974) 2030*, 1860 (20°C, 29.7°C, shake flask-GC/TC, measured range 0–90.7°C, Stephenson 1992)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 497* (calculated-Antoine eq. regression, temp range 5.4–155.5°C, Stull 1947) log (P/mmHg) = 7.35950 – 1718.7/(230 + t/°C) (Antoine eq., temp range 73–154°C, Dreisbach & Martin 1949) 6287* (73.34°C, ebulliometry, measured range 73.34–153.75°C, Dreisbach & Shrader 1949) 26547* (109.876°C, ebulliometry, measured range 109.876–164.114°C, Collerson et al. 1965) log (P/mmHg) = 7.05236 – 1489.756/(203.543 + t/°C); temp range 109.876–164.114°C (Antoine eq., ebullio- metric measurements, Collerson et al. 1965) log (P/mmHg) = 22.84299 – 3033.20/(T/K) – 4.88720·log (T/K); temp range 109.876–164.114°C (Krichhoff eq., ebulliometric measurements, Collerson et al. 1965) log (P/mmHg) = [–0.2185 × 10440.9/(T/K)] + 8.221443; temp range 5.4–155.5°C (Antoine eq., Weast 1972–73) 472* (“recomputed” reported data, ebulliometry, measured range 383–437 K, Ambrose et al. 1976) log (P/kPa) = 6.17595 – 1489.502/(T/K – 69.577); temp range 383–437 K (Antoine eq., ebulliometry, Ambrose et al. 1976) log (P/mmHg) = [1 – 426.827/(T/K)] × 10^{0.942238 – 10.2065 × 10–4·(T/K) + 10.6819 × 10–7·(T/K)2}; temp range 346.49–415.52 K (Cox eq., Chao et al. 1983) log (P/kPa) = 6.23361 – 1529.735/(208.062 + t/°C); temp range 73.3–153.75°C (Antoine eq. derived from exptl data of Dreisbach & Shrader 1949, Boublik et al. 1984) log (P/kPa) = 6.17900 – 1490.93/(203.675 + t/°C); temp range 109.9–164.1°C (Antoine eq. derived from reported exptl data of. Collerson et al. 1965, Boublik et al. 1984)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2330 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (P/mmHg) = 7.05269 – 1489.99/(203.57 + t/°C); temp range 110–164°C (Antoine eq., Dean 1985, 1992) 472 (selected, Riddick et al. 1986) log (P/kPa) = 6.17595 – 1489.502/(203.573 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986)

log (PL/kPa) = 6.17622 – 1489.957/(–69.525 + T/K); temp range 382–437 K (Antoine eq., Stephenson & Malanowski 1987) 204, 383 (quoted, calculated-solvatochromic parameters and UNIFAC, Banerjee et al. 1990) log (P/mbar) = 7.11773 – 1451.742/[(T/K) –73.252]; temp range 382–429 K (vapor-liquid equilibrium (VLE)- Fischer still, Reich & Sanhueza 1993) log (P/mmHg) = –8.1053 – 2.5386 × 103/(T/K) + 9.0289·log (T/K) – 2.0426 × 10–2·(T/K) + 1.0536 × 10–5·(T/K)2; temp range 236–642 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C):

430.8 (exptl. 1/KAW = CW/CA, Hine & Mookerjee 1975) 430.8, 358.3 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975)

Octanol/Water Partition Coefficient, log KOW: 2.11 (shake flask-UV, Fujita et al. 1964) 2.04 (shake flask-UV, Rogers & Cammarata 1969) 2.10 (HPLC-RT correlation, Mirrlees et al. 1976) 2.08 (Hansch & Leo 1979) 2.24 (HPLC-k′ correlation, Haky & Young 1984) 2.16 (HPLC-RT correlation, Ge et al. 1987) 2.15 (HPLC-RT correlation, Minick et al. 1988) 2.01 (RP-HPLC-RT correlation, ODS column with masking agent, Bechalany et al. 1989) 2.11 (recommended, Sangster 1989, 1993) 2.17 (dual-mode centrifugal partition chromatography, Gluck 1990) 1.67, 1.79 (shake flask-UV/VIS spec.: 25, 60°C, Kramer & Henze 1990) 2.11 (recommended, Hansch et al. 1995) 2.41, 2.31, 2.58, 2.55 (HPLC-k′ correlation, different combinations of stationary and mobile phases under isocratic conditions, Makovsakya et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 4.01 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF: 1.34 (Isnard & Lambert 1988)

Sorption Partition Coefficient, log KOC: 6.50 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: –2 –1 Photolysis: rate constant k = 1.054 × 10 h with H2O2 under photolysis at 25°C in F-113 solution and with HO- in the gas (Dilling et al. 1988)

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –11 3 –1 –1 kOH = (1.57 ± 0.24) × 10 cm molecule s at 299 K, measured range 299–435 K (overall rate constant, flash photolysis-resonance fluorescence technique, Perry et al. 1977) –11 3 –1 –1 kOH = 1.57 × 10 cm molecule s at 298 K (Atkinson 1985; quoted, Sabljic & Güsten 1990) –17 3 –1 –1 kNO3 = 9.0 × 10 cm molecule s at 298 ± 2 K (re-evaluated value, Atkinson et al. 1987) –12 3 –1 –1 kOH = 1.35 × 10 cm molecule s in air, extrapolated from lit. data to 25°C (Dilling et al. 1988) –16 3 –1 –1 kNO3 = 2.08 × 10 cm molecule s at 298 K (Atkinson et al. 1988; quoted, Sabljic & Güsten 1990) –12 3 –1 –1 kOH = (14.1 – 19.6) × 10 cm molecule s at room temp. to 299.9 K (Atkinson 1989) Hydrolysis: Biodegradation:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2331

Biotransformation: degradation k = 2.86 × 10–17 mol cell–1 h–1 in pure culture system (Banerjee et al. 1984).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from air for the reaction with OH radical (USEPA 1974; quoted, Darnall et al. 1976).

TABLE 10.1.3.1.1 Reported aqueous solubilities of anisole at various temperatures

Stephenson 1992

shake flask-GC/TC

t/°C S/g·m–3 0 10.2 2370 20 2030 29.7 1860 39.9 1840 50.2 1990 60.2 2550 70.2 2530 81.2 2940 90.7 3520

Anisole: solubility vs. 1/T -6.0 Stephenson 1992 McGowan et al. 1966 -6.5 Vesala 1974

-7.0

-7.5

x nl x -8.0

-8.5

-9.0

-9.5

-10.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 10.1.3.1.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for anisole.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2332 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 10.1.3.1.2 Reported vapor pressures of anisole at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Dreisbach & Shrader 1949 Collerson et al. 1965 Ambrose et al. 1976

summary of literature data ebulliometry ebulliometry comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 5.4 133.3 73.34 6287 109.876 26547 109.88 26547 30 666.6 81.31 8851 116.255 33024 116.261 33024 42.2 1333 84.55 10114 122.045 39966 122.053 39966 55.8 2666 99.89 16500 126.854 46587 126.864 46587 70.7 5333 123.77 42066 131.266 55425 131.279 53424 80.1 7999 139.37 67661 136.078 59950 135.092 59950 93 13332 153.75 101325 138.64 66614 138.655 66614 112.3 26664 141.919 73266 141.936 73266 133.8 53329 145.003 79992 145.021 79992 155.5 101325 Antoine eq. given by 147.89 86731 147.91 86732 Dreisbach & Martin 1949 150.429 93021 150.45 93021 mp/°C –37.3 Eq. 2 P/mmHg 153.143 100135 153.164 100137 A 7.3595 155.554 106819 155.576 106820 B 1718.7 157.81 113382 157.834 113381 C 230 160.009 120086 160.033 120084 162.087 126698 162.113 126697 bp/°C 153.75 164.114 133429 164.141 133427 mp/°C –37.38 25 472 bp/°C 153.598 Antoine eq. Antoine eq. eq. 2 P/kPa eq. 2 P/mmHg A 6.17595 A 705236 B 1489.502 B 1489.756 C –69.577 C 203.543 Kirchhoff eq. Coefficients of Chebyshev eq. are eq. 4 P/mmHg also given in text. A 22.842 99 B 3033.2 C 4.8872 ∆ –1 HV/(kJ mol ) = 39.04

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2333

Anisole: vapor pressure vs. 1/T 8.0 Dreisbach & Shrader 1949 Collerson et al. 1965 7.0 Ambrose et al. 1976 Stull 1947

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 153.7 °C m.p. = -37.13 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 1/(T/K) FIGURE 10.1.3.1.2 Logarithm of vapor pressure versus reciprocal temperature for anisole.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2334 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.3.2 2-Chloroanisole

O Cl

Common Name: 2-Chloroanisole Synonym: 1-chloro-2-methoxybenzene Chemical Name: 2-chloroanisole CAS Registry No: 766-51-8

Molecular Formula:C7H7ClO, C6H4Cl(OCH3) Molecular Weight: 142.583 Melting Point (°C): liquid –26.8 (Stephenson & Malanowski 1987; Lide 2003) Boiling Point (°C): 198.5 (Lide 2003) Density (g/cm3 at 20°C): 1.1911 (Lide 2003) Molar Volume (cm3/mol): 119.7 (20°C, calculated-density) 148.2 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0 Water Solubility (g/m3 or mg/L at 25°C): 490 (shake flask-HPLC/UV, Lun et al. 1995) ′ 766 (liquid SL, RP-HPLC-k correlation, using chlorobenzenes as reference compound standard, Pfeifer et al. 2001) Vapor Pressure (Pa at 25°C and the reported temperature dependence equations): 6287 (115.13°C, ebulliometry, measured range 115.13–186.19°C, Dreisbach & Shrader 1949) log (P/mmHg) = 7.54073 – 2012.4/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) log (P/kPa) = 6.25236 – 1660.008/(189.207 + t/°C), temp range 115.13–186.19°C (Antoine eq. derived from exptl data of Dreisbach & Shrader 1949, Boublik et al. 1984)

0.0594 (PL, extrapolated-Antoine eq., Stephenson & Malanowski 1987) log (PL/kPa) = 6.66563 – 2012.4/(–43.15 + T/K), temp range 388–460 K, (Antoine eq., Stephenson & Malanowski 1987)

0.0302 (liquid PL, GC-RT correlation, Pfeifer et al. 2001)

Henry’s Law Constant (Pa m3/mol at 25°C):

9.50 (calculated-PL/CL, Pfeifer et al. 2001)

Octanol/Water Partition Coefficient, log KOW: 2.68 (shake flask-UV, Nakagawa et al. 1992) 2.50 (shake flask-HPLC/UV both phases, Lun et al. 1995) 2.72 (RP-HPLC-k′ correlation, Pfeifer et al. 2001)

Octanol/Air Partition Coefficient, log KOA:

3.13 (calculated-KOW/KAW, Pfeifer et al. 2001)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2335

10.1.3.3 3-Chloroanisole

O

Cl

Common Name: 3-Chloroanisole Synonym: Chemical Name: CAS Registry No: 2845-89-8

Molecular Formula:C7H7ClO, C6H4Cl(OCH3) Molecular Weight: 142.583 Melting Point (°C): liquid Boiling Point (°C): 193.5 (Lide 2003) Density (g/cm3): Molar Volume (cm3/mol): 148.2 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 235 (shake flask-HPLC/UV, Lun et al. 1995) ′ 231 (liquid SL, RP-HPLC-k correlation, using chlorobenzenes as reference compound standard, Pfeifer et al. 2001)

Vapor Pressure (Pa at 25°C):

0.0282 (liquid PL, GC-RT correlation, Pfeifer et al. 2001)

Henry’s Law Constant (Pa m3/mol at 25°C):

21.4 (calculated-PL/CL, Pfeifer et al. 2001)

Octanol/Water Partition Coefficient, log KOW: 2.60 (shake flask-HPLC/UV both phases, Lun et al. 1995) 3.09 (RP-HPLC-k′ correlation, Pfeifer et al. 2001)

Octanol/Air Partition Coefficient, log KOA:

3.15 (calculated-KOW/KAW, Pfeifer et al. 2001)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2336 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.3.4 4-Chloroanisole

O

Cl

Common Name: 4-Chloroanisole Synonym: 1-chloro-4-methoxy-benzene Chemical Name: 4-chloroanisole CAS Registry No: 623-12-1

Molecular Formula: C7H7ClO, C6H4Cl(OCH3) Molecular Weight: 142.583 Melting Point (°C): < –18 (Lide 2003) Boiling Point (°C): 197.5 (Lide 2003) Density (g/cm3 at 20°C): 1.201 (Lide 2003) Molar Volume (cm3/mol): 118.7 (20°C, calculated-density) 148.2 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0 Water Solubility (g/m3 or mg/L at 25°C): 237 (shake flask-HPLC/UV, Lun et al. 1995) ′ 312 (liquid SL, RP-HPLC-k correlation, using chlorobenzenes as reference compound standard, Pfeifer et al. 2001) Vapor Pressure (Pa at 25°C):

0.0324 (liquid PL, GC-RT correlation, Pfeifer et al. 2001) Henry’s Law Constant (Pa m3/mol at 25°C):

18.2 (calculated-PL/CL, Pfeifer et al. 2001)

Octanol/Water Partition Coefficient, log KOW: 2.78 (23°C, shake flask-LSC, Banerjee et al. 1980) 2.78 (recommended, Sangster 1993) 2.70 (shake flask-HPLC/UV both phases, Lun et al. 1995) 3.00 (RP-HPLC-k′ correlation, Pfeifer et al. 2001)

Octanol/Air Partition Coefficient, log KOA:

3.13 (calculated-KOW/KAW, Pfeifer et al. 2001)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Biodegradation: degradation rate constants k = 2.29 × 10–18 mol cell–1 h–1 from pure culture studies (Banerjee et al. 1984).

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2337

10.1.3.5 2,3-Dichloroanisole

O Cl

Cl

Common Name: 2,3-Dichloroanisole Synonym: Chemical Name: CAS Registry No: 1984-59-4

Molecular Formula: C7H6Cl2O, C6H3Cl2(OCH3) Molecular Weight: 177.028 Melting Point (°C): 32 (Lun et al. 1995; Lide 2003) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 169.1 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.854 (mp at 32°C)

Water Solubility (g/m3 or mg/L at 25°C): 86.9 (shake flask-GC/ECD, Lun et al. 1995) ′ 140.6 (supercooled liquid SL, RP-HPLC-k correlation, using chlorobenzenes as reference compound standard, Pfeifer et al. 2001)

Vapor Pressure (Pa at 25°C):

0.0468 (supercooled liquid PL, GC-RT correlation, Pfeifer et al. 2001)

Henry’s Law Constant (Pa m3/mol at 25°C):

44.1 (calculated-PL/CL, Pfeifer et al. 2001)

Octanol/Water Partition Coefficient, log KOW: 3.24 (shake flask-HPLC/UV both phases, Lun et al. 1995) 3.30 (RP-HPLC-k′ correlation, Pfeifer et al. 2001)

Octanol/Air Partition Coefficient, log KOA:

3.05 (calculated-KOW/KAW, Pfeifer et al. 2001)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC: τ Environmental Fate Rate Constants, k, and Half-Lives, t½, or Lifetimes, :

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2338 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.3.6 2,6-Dichloroanisole

O Cl Cl

Common Name: 2,6-Dichloroanisole Synonym: Chemical Name: CAS Registry No: 1984-65-2

Molecular Formula: C7H6Cl2O, C6H3Cl2(OCH3) Molecular Weight: 177.028 Melting Point (°C): 10 (Lide 2003) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 169.1 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 13.12 (shake flask-GC/ECD, Lun et al. 1995) ′ 21.8 (liquid SL, RP-HPLC-k correlation, using chlorobenzenes as reference compound standard, Pfeifer et al. 2001)

Vapor Pressure (Pa at 25°C):

0.0110 (liquid PL, GC-RT correlation, Pfeifer et al. 2001)

Henry’s Law Constant (Pa m3/mol at 25°C):

113.7 (calculated-PL/CL, Pfeifer et al. 2001)

Octanol/Water Partition Coefficient, log KOW: 2.96 (reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 3.14 (shake flask-HPLC/UV both phases, Lun et al. 1995) 3.10 (RP-HPLC-k′ correlation, Pfeifer et al. 2001)

Octanol/Air Partition Coefficient, log KOA:

2.53 (calculated-KOW/KAW, Pfeifer et al. 2001)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2339

10.1.3.7 2,3,4-Trichloroanisole

O Cl

Cl Cl Common Name: 2,3,4-Trichloroanisole Synonym: Chemical Name: CAS Registry No: 54135-80-7

Molecular Formula: C7H5Cl3O, C6H2Cl3(OCH3) Molecular Weight: 211.473 Melting Point (°C): 70 (Lun et al. 1995) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 190.0 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.362 (mp at 70°C)

Water Solubility (g/m3 or mg/L at 25°C): 10.8 (shake flask-GC/ECD, Lun et al. 1995) ′ 22.1 (supercooled liquid SL, RP-HPLC-k correlation, using chlorobenzenes as reference compound standard, Pfeifer et al. 2001)

Vapor Pressure (Pa at 25°C):

0.263 (supercooled liquid PL, GC-RT correlation, Pfeifer et al. 2001)

Henry’s Law Constant (Pa m3/mol at 25°C):

74.7 (calculated-PL/CL, Pfeifer et al. 2001)

Octanol/Water Partition Coefficient, log KOW: 3.74 (RP-HPLC-capacity factor correlation, Opperhuizen & Voors 1987) 4.03 (shake flask-GC/ECD, both phases, Lun et al. 1995) 3.92 (RP-HPLC-k′ correlation, Pfeifer et al. 2001)

Octanol/Air Partition Coefficient, log KOA:

3.44 (calculated-KOW/KAW, Pfeifer et al. 2001)

Bioconcentration Factor, log BCF or log KB:

3.09 (guppy, concn ratio of Cfish/Cwater, Opperhuizen & Voors 1987)

Sorption Partition Coefficient, log KOC: τ Environmental Fate Rate Constants, k, and Half-Lives, t½, or Lifetimes, :

Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): –1 –1 –1 k1 = 1450 mL g d ; k2 = 1.9 d (guppy, continuous flow aqueous saturation system, Opperhuizen & Voors 1987)

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2340 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.3.8 2,4,6-Trichloroanisole

O Cl Cl

Cl

Common Name: 2,4,6-Trichloroanisole Synonym: Chemical Name: CAS Registry No: 87-40-1

Molecular Formula: C7H5Cl3O, C6H2Cl3(OCH3) Molecular Weight: 211.473 Melting Point (°C): 61.5 (Lide 2003) Boiling Point (°C): 241 (Lide 2003) Density (g/cm3): Molar Volume (cm3/mol): 190.0 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.438 (mp at 61.5°C) Water Solubility (g/m3 or mg/L at 25°C): 13.2 (shake flask-GC/ECD, Lun et al. 1995) ′ 14.6 (supercooled liquid SL, RP-HPLC-k correlation, using chlorobenzenes as reference compound standard, Pfeifer et al. 2001) Vapor Pressure (Pa at 25°C): 2.065 (GC-RT correlation, Watanabe & Tatsukawa 1989)

0.0724 (supercooled liquid PL, GC-RT correlation, Pfeifer et al. 2001) Henry’s Law Constant (Pa m3/mol at 25°C):

218.7 (calculated-PL/CL, Pfeifer et al. 2001)

Octanol/Water Partition Coefficient, log KOW: 5.20 (HPLC-relative retention time correlation, Neilson et al. 1984) 4.11 (RP-HPLC-capacity factor correlation, Opperhuizen & Voors 1987) 3.96 (reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 4.02 (shake flask-GC/ECD, both phases, Lun et al. 1995) 4.05 (RP-HPLC-k′ correlation, Pfeifer et al. 2001)

Octanol/Air Partition Coefficient, log KOA:

3.10 (calculated-KOW/KAW, Pfeifer et al. 2001)

Bioconcentration Factor, log BCF or log KB: 3.90 (zebra fish, Neilson et al. 1984)

2.86 (guppy, concn ratio of Cfish/Cwater, Opperhuizen & Voors 1987)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): –1 –1 –1 k1 = 1600 mL g d ; k2 = 2.5 d (guppy, continuous flow aqueous saturation system, Opperhuizen & Voors 1987)

Half-Lives in the Environment:

Biota: biological t½ < 1 d for all trichloro congeners (guppy, Opperhuizen & Voors 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2341

10.1.3.9 2,3,4,5-Tetrachloroanisole

O Cl

Cl Cl Cl

Common Name: 2,3,4,5-Tetrachloroanisole Synonym: Chemical Name: CAS Registry No: 938-86-3

Molecular Formula: C7H4Cl4O, C6HCl4(OCH3) Molecular Weight: 245.918 Melting Point (°C): 88 (Lun et al. 1995) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 210.9 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.241 (mp at 88°C) Water Solubility (g/m3 or mg/L at 25°C): 1.35 (shake flask-GC/ECD, Lun et al. 1995) ′ 2.76 (supercooled liquid SL, RP-HPLC-k correlation, using chlorobenzenes as reference compound standard, Pfeifer et al. 2001)

Vapor Pressure (Pa at 25°C):

1.202 (supercooled liquid PL, GC-RT correlation, Pfeifer et al. 2001) Henry’s Law Constant (Pa m3/mol at 25°C):

153.0 (calculated-PL/CL, Pfeifer et al. 2001)

Octanol/Water Partition Coefficient, log KOW: 4.51 (RP-HPLC-capacity factor correlation, Opperhuizen & Voors 1987) 4.50 (shake flask-GC/ECD, both phases, Lun et al. 1995) 4.57 (RP-HPLC-k′ correlation, Pfeifer et al. 2001)

Octanol/Air Partition Coefficient, log KOA:

3.78 (calculated-KOW/KAW, Pfeifer et al. 2001)

Bioconcentration Factor, log BCF or log KB:

3.67 (guppy, concn ratio of Cfish/Cwater, Opperhuizen & Voors 1987)

Sorption Partition Coefficient, log KOC: τ Environmental Fate Rate Constants, k, and Half-Lives, t½, or Lifetimes, :

Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): –1 –1 –1 k1 = 940 mL g d ; k2 = 0.42 d (guppy, continuous flow aqueous saturation system, Opperhuizen & Voors 1987)

Half-Lives in the Environment:

Biota: biological t½ ~ 1–4 d for all tetrachloro congeners (guppy, Opperhuizen & Voors 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2342 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.3.10 2,3,5,6-Tetrachloroanisole

O Cl Cl

Cl Cl

Common Name: 2,3,5,6-Tetrachloroanisole Synonym: Chemical Name: CAS Registry No: 6936-40-9

Molecular Formula: C7H4Cl4O, C6HCl4(OCH3) Molecular Weight: 245.918 Melting Point (°C): 84 (Lun et al. 1995) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 210.9 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.264 (mp at 84°C)

Water Solubility (g/m3 or mg/L at 25°C): 1.82 (shake flask-GC/ECD, Lun et al. 1995) ′ 3.64 (supercooled liquid SL, RP-HPLC-k correlation, using chlorobenzene as reference compound stan- dard, Pfeifer et al. 2001)

Vapor Pressure (Pa at 25°C):

0.427 (supercooled liquid PL, GC-RT correlation, Pfeifer et al. 2001)

Henry’s Law Constant (Pa m3/mol at 25°C):

318.4 (calculated-PL/CL, Pfeifer et al. 2001)

Octanol/Water Partition Coefficient, log KOW: 4.68 (RP-HPLC-capacity factor correlation, Opperhuizen & Voors 1987) 4.40 (shake flask-GC/ECD, both phases, Lun et al. 1995) 4.52 (RP-HPLC-k′ correlation, Pfeifer et al. 2001)

Octanol/Air Partition Coefficient, log KOA:

3.41 (calculated-KOW/KAW, Pfeifer et al. 2001)

Bioconcentration Factor, log BCF or log KB:

3.69 (guppy, concn ratio of Cfish/Cwater, Opperhuizen & Voors 1987)

Sorption Partition Coefficient, log KOC: τ Environmental Fate Rate Constants, k, and Half-Lives, t½, or Lifetimes, :

Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): –1 –1 –1 k1 = 1480 mL g d ; k2 = 0.44 d (guppy, continuous flow aqueous saturation system, Opperhuizen & Voors 1987)

Half-Lives in the Environment:

Biota: biological t½ ~ 1–4 d for all tetrachloro congeners (guppy, Opperhuizen & Voors 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2343

10.1.3.11 Veratrole (1,2-Dimethoxybenzene)

O O

Common Name: Veratrole Synonym: 1,2-dimethoxybenzene Chemical Name: 1,2-dimethoxybenzene CAS Registry No: 91-16-7

Molecular Formula: C8H10O2, C6H4(OCH3)2 Molecular Weight: 138.164 Melting Point (°C): 22 (Stephenson & Malanowski 1987) 22.5 (Lide 2003) Boiling Point (°C): 206.7 (Stephenson & Malanowksi 1987) 206 (Lide 2003) Density (g/cm3): Molar Volume (cm3/mol): 127.1 (calculated-density) 158.6 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 7160*, 7060 (19.9, 31°C, shake flask-GC, measured range 19.9–91.8°C, Stephenson 1992) 6690 (shake flask-HPLC/UV, Lun et al. 1995)

Vapor Pressure (Pa at 25°C):

log (PL/kPa) = 8.705 – 3492/(T/K), temp range not specified (Antoine eq., Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 1.79 (Log P Database, Hansch & Leo 1987, quoted, Sangster 1993) 1.79 (HPLC-RT correlation, average value, Ritter et al. 1994) 1.60 (recommended, Hansch et al. 1995) 2.18 (shake flask-HPLC/UV both phases, Lun et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2344 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 10.1.3.11.1 Reported aqueous solubilities of veratrole at various temperatures

Stephenson 1992

shake flask-GC/TC

t/°C S/g·m–3 19.9 7160 31 7060 41.1 7230 50.6 7580 60.2 7940 70.6 8770 80.7 9700 91.8 10730

Veratrole: solubility vs. 1/T -4.0 Stephenson 1992 Lun et al. 1995 -4.5

-5.0

-5.5

x nl x -6.0

-6.5

-7.0

-7.5

-8.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 10.1.3.11.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for veratrole.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2345

10.1.3.12 4,5-Dichloroveratrole

O O

Cl Cl Common Name: 4,5-dichloroveratrole Synonym: Chemical Name: CAS Registry No: 2772-46-5

Molecular Formula: C8H8Cl2O2, C6H2Cl2(OCH3)2 Molecular Weight: 207.054 Melting Point (°C): 83 (Lun et al. 1995) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 200.4 (Le-Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.27 (mp at 83°C)

Water Solubility (g/m3 or mg/L at 25°C): 71.9 (shake flask-HPLC/UV, Lun et al. 1995) 72.6 (shake flask-GC/ECD, Lun et al. 1995)

Vapor Pressure (Pa at 25°C):

Henry’s Law Constant (Pa m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 3.11 (shake flask-GC/ECD, both phases, Lun et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2346 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.3.13 3,4,5-Trichloroveratrole

O O

Cl Cl Cl Common Name: 3,4,5-trichloroveratrole Synonym: Chemical Name: CAS Registry No: 16766-29-3

Molecular Formula: C8H7Cl3O2, C6HCl3(OCH3)2 Molecular Weight: 241.499 Melting Point (°C): 66 (Lun et al. 1995) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 221.3 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.396 (mp at 66°C)

Water Solubility (g/m3 or mg/L at 25°C): 2.50 (shake flask-GC, Neilson et al. 1984) 10.3 (shake flask-GC/ECD, Lun et al. 1995)

Vapor Pressure (Pa at 25°C):

Henry’s Law Constant (Pa m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 4.60, 5.25 (HPLC-RT correlation, calculated-solubility, Neilson et al. 1984) 4.01 (shake flask-GC/ECD, both phases, Lun et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB: 3.50, 3.30 (zebra fish, calculated, Neilson et al. 1984)

Sorption Partition Coefficient, log KOC: –1 3.20 (sediment, KP = 1.6 ml·(kg of organic C) , batch sorption equilibrium, Remberger et al. 1986)

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2347

10.1.3.14 Tetrachloroveratrole

O Cl O

Cl Cl Cl Common Name: Tetrachloroveratrole Synonym: 1,2,3,4-tetrachloro-5,6-dimethoxybenzene Chemical Name: tetrachloroveratrole CAS Registry No: 944-61-6

Molecular Formula: C8H6Cl4O2, C6Cl4(OCH3)2 Molecular Weight: 275.944 Melting Point (°C): 90 (Lun et al. 1995) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 242.2 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.23 (mp at 90°C)

Water Solubility (g/m3 or mg/L at 25°C): 0.70 (shake flask-GC, Neilson et al. 1984) 1.59 (shake flask-GC/ECD, Lun et al. 1995)

Vapor Pressure (Pa at 25°C):

Henry’s Law Constant (Pa m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 5.80, 5.90 (HPLC-RT correlation, calculated-solubility, Neilson et al. 1984) 4.70 (Sarrikoski et al. 1986) 5.90 (Part et al. 1992, quoted, Sangster 1993) 4.86 (shake flask-GC/ECD both phases, Lun et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB: 4.40, 4.50 (zebra fish, calculated, Neilson et al. 1984)

Sorption Partition Coefficient, log KOC: –1 3.45 (sediment, KP = 2.8 ml·(kg of organic C) , batch sorption equilibrium, Remberger et al. 1986)

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2348 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.3.15 Phenetole

O

Common Name: Phenetole Synonym: ethoxybenzene, ethyl phenyl ether Chemical Name: ethoxybenzene, ethyl phenyl ether CAS Registry No: 103-73-1

Molecular Formula: C8H10O, C6H5-O-C2H5 Molecular Weight: 122.164 Melting Point (°C): –29.52 (Riddick et al. 1986) –33.00 (Stephenson & Malanowski 1987) –29.43 (Lide 2003) Boiling Point (°C): 169.84 (Riddick et al. 1986) 172.00 (Stephenson & Malanowski 1987) 169.81 (Lide 2003) Density (g/cm3 at 20°C): 0.9651, 0.9605 (20°C, 25°C, Dreisbach & Martin 1949; Riddick et al. 1986) Molar Volume (cm3/mol): 126.6 (20°C, calculated-density) 150.3 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 1160 (residual volume, Booth & Everson 1948) 550 (shake flask-AS, McGowan et al. 1966) 569 (shake flask-UV, Vesala 1974)

1114 (calculated-KOW, Valvani et al. 1981) 1200 (selected, Riddick et al. 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (18°C, compiled and evaluated data, temp range 18–172°C, Stull 1947) log (P/mmHg) = 7.40281 – 1808.8/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 7605* (91.89°C, ebulliometry, measured range 91.89–170°C, Dreisbach & Shrader 1949) 20441* (117.43°C, ebulliometry, measured range 117.43–180.608°C, Collerson et al. 1965) log (P/mmHg) = 7.01980 – 1507.267/(194.357 + t/°C); temp range 117.43–180.608°C (Antoine eq., ebulliomet- ric measurements, Collerson et al. 1965) log (P/mmHg) = 24.97404 – 3295.20/(T/K) – 5.53743·log (T/K); temp range 117.43–180.608°C (Krichhoff eq., ebulliometric measurements, Collerson et al. 1965) 204* (comparative ebulliometry-extrapolated, measured range 117.438–180.642°C, Ambrose et al. 1976) log (P/kPa) = 6.14658 – 1509.276/{(T/K) – 78.502}; temp range 391–454 K (Antoine eq., Ambrose et al. 1976) log (P/kPa) = 6.17151 – 1529.38/(197.132 + t/°C); temp range 91.89–170°C (Antoine eq. derived from exptl data of Dreisbach & Martin 1949, Boublik et al. 1984) log (P/kPa) = 6.14656 – 1508.583/(194.512 + t/°C); temp range 117.4–180.68°C (Antoine eq. derived reported exptl data of Collerson et al. 1965, Boublik et al. 1984) 204 (selected, Riddick et al. 1986) log (P/kPa) = 6.14658 – 1509.276/(194.648 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2349

log (PL/kPa) = 6.14524 – 1508.326/(–78.613 + T/K); temp range 390–454 K (Antoine eq., Stephenson & Malanowski 1987) log (P/mmHg) = –8.3543 – 2.7728 × 103/(T/K) + 9.4482·log (T/K) – 2.1842 × 10–2·(T/K) + 1.1038 × 10–5·(T/K)2; temp range 244–647 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C): 44.5 (calculated-P/C from selected data)

Octanol/Water Partition Coefficient, log KOW: 2.51 (shake flask, Hansch & Leo 1979; 1987) 2.68 (HPLC-k′ correlation, Haky & Young 1984) 2.51 (recommended, Sangster 1993) 2.51 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

TABLE 10.1.3.15.1 Reported vapor pressures of phenetole at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Dreisbach & Shrader 1949 Collerson et al. 1965 Ambrose et al. 1976

summary of literature data ebulliometry ebulliometry comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 18.1 133.3 91.89 7605 117.432 20441 117.438 20441 43.7 666.6 95.6 8850 124.908 26526 124.918 26526 56.4 1333 98.84 10114 131.478 33024 131.49 33024 70.3 2666 111.56 16500 137.43 39978 137.445 39978 86.6 5333 139.17 42066 142.338 46566 142.355 46566 95.4 7999 155.16 67661 146.908 53454 146.927 53453 108.4 13332 170 101325 150.795 59940 150.816 59940 127.9 26664 154.432 66655 154.455 66570 149.8 53329 157.829 73278 157.853 73277 172 101325 Antoine eq. given by 160.982 79972 161.008 79972 Dreisbach & Martin 1949 163.972 86762 163.999 86762 mp/°C –30.2 eq. 2 P/mmHg 166.622 93152 166.65 93152 A 7.40281 169.315 100033 169.344 100033 B 1808.8 171.821 106789 171.852 106788 C 230 174.19 113487 174.221 113486 176.407 120058 176.439 120057 bp/°C 170 178.511 126572 178.544 126571 mp/°C –29.52 180.608 133334 180.642 133334 25 204

(Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2350 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 10.1.3.15.1 (Continued)

Stull 1947 Dreisbach & Shrader 1949 Collerson et al. 1965 Ambrose et al. 1976

summary of literature data ebulliometry ebulliometry comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa bp/°C 169.806 Antoine eq. Antoine eq. eq. 2 P/mmHg eq. 2 P/kPa A 7.0198 A 6.14658 B 1507.267 B 1509.276 C 194.357 C –78.502 Kirchhoff eq. eq. 4 P/mmHg Coefficients of Chebyshev eq. A 24.97404 also given in text. B 3295.2 C 5.53743 ∆ –1 HV/(kJ mol ) = 40.71

Phenetole: vapor pressure vs. 1/T 8.0 Dreisbach & Shrader 1949 Collerson et al. 1965 7.0 Ambrose et al. 1976 Stull 1947

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 169.81 °C m.p. = -29.43 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 1/(T/K) FIGURE 10.1.3.15.1 Logarithm of vapor pressure versus reciprocal temperature for phenetole.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2351

10.1.3.16 Benzyl ethyl ether

O

Common Name: Benzyl ethyl ether Synonym: (ethoxymethyl)benzene, α-ethoxytoluene Chemical Name: benzyl ethyl ether, (ethoxymethyl)benzene, α-ethoxytoluene CAS Registry No: 539-30-0

Molecular Formula: C9H12O, C6H5CH2-O-C2H5 Molecular Weight: 136.190 Melting Point (°C): Boiling Point (°C): 185.6 (Lide 2003) Density (g/cm3 at 20°C): 0.9490 (Weast 1982–83) 0.9478 (Dean 1985) Molar Volume (cm3/mol): 143.5 (20°C, calculated-density) 172.5 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C):

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 135* (calculated-Antoine eq. regression, Stull 1947) 100 (selected, Riddick et al. 1986) log (P/kPa) = 6.6496 – 1927.21/(230 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 135 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.92406 – 2133.29/(–24.38 + T/K); temp range 299–460 K (Antoine eq., Stephenson & Malanowski 1987) log (P/mmHg) = 27.6421 – 3.4249 × 103/(T/K) –6.5804·log (T/K) + 9.3417 × 10–10·(T/K) + 1.0547 × 10–6·(T/K)2; temp range 309–660 K (vapor pressure eq., Yaws 1994) 95.44* (25.35°C, transpiration method, measured range 278.3–313.7 K, Krasnykh et al. 2002) ln (P/Pa) = (305.859/R) – [79968.084/R(T/K)] – (88.80/R)·ln[(T/K)/298.15]; temp range 278–313.7 K (transpi- ration method, Krasnykh et al. 2002)

Henry’s Law Constant (Pa m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 2.64 (calculated-f const. as per Rekker 1977, Hanai et al. 1981) 2.16 (Wang et al. 1987) 2.16 (recommended, Sangster 1993)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from air for the reaction with OH radical (Darnall et al. 1976).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2352 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 10.1.3.16.1 Reported vapor pressures of benzyl ethyl ether at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4) Stull 1947 Krasnykh et al. 2002

summary of lit. data transpiration method

t/°C P/Pa T/K P/Pa T/K P/Pa 26 133 278.3 19.44 298.6 95.44 52 666.6 278.7 19.59 300.1 105.16 65 1333 283.8 30.11 302.3 117.65 79.6 2666 285.1 35.31 303.2 128.09 95.4 5333 288.8 44.78 303.6 135.21 105.5 7999 290.2 52.97 307.4 177.63 118.9 13332 292.6 61.54 308.4 188.48 139.6 26664 293.7 65.53 310.2 223.55 161.5 53329 295.2 77.81 312.2 244.83 185 101325 297.3 88.33 313.7 259.37

Benzyl ethyl ether: vapor pressure vs. 1/T 8.0 Krasnykh et al. 2002 Stull 1947 7.0

6.0

5.0 /Pa) S 4.0

log(P 3.0

2.0

1.0 b.p. = 186 °C 0.0 0.002 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 10.1.3.16.1 Logarithm of vapor pressure versus reciprocal temperature for benzyl ethyl ether.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2353

10.1.3.17 Styrene oxide

O

Common Name: Styrene oxide Synonym: (1,2-epoxyethyl)benzene, phenylepoxyethane Chemical Name: (1,2-epoxyethyl)benzene, phenylepoxyethane, styrene oxide CAS Registry No: 96-09-3

Molecular Formula: C8H8O Molecular Weight: 120.149 Melting Point (°C): –35.6 (Weast 1982–83; Lide 2003) Boiling Point (°C): 194.1 (Weast 1982–83; Lide 2003) Density (g/cm3 at 20°C): 1.0523 (16°C, Weast 1982–83; Dean 1985) 1.0500 (Verschueren 1983) Molar Volume (cm3/mol): 114.4 (20°C, calculated-density) 136.1 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0 Water Solubility (g/m3 or mg/L at 25°C): 2800 (quoted, Verschueren 1983) 3020; 4570 (quoted exptl.; calculated-group contribution method, Kühne et al. 1995)

Vapor Pressure (Pa at 25°C): 40.0 (Verschueren 1983)

Henry’s Law Constant (Pa m3/mol):

Octanol/Water Partition Coefficient, log KOW: 1.84 (shake flask-HPLC, Pratesi et al. 1979) 1.51 (shake flask-GC, Serrentino et al. 1983) 1.61 (shake flask, Log P Database, Hansch & Leo 1987) 1.43 (Deneer et al. 1988) 1.61 (recommended, Sangster 1989, 1993) 1.51 (pH 7.5, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis:

Oxidation: t½ = 12.3–123 h, based on estimated photooxidation rate constant with hydroxyl radical (Atkinson 1987; quoted, Howard et al. 1991). Hydrolysis: rate constants k = (434 ± 12) × 10–8 s–1 at pH 7.25 and k = (1690 ± 620) × 10–8 s–1 at pH 7.3 in

sediment pores both at 25°C for water containing 0.1% w/w CH2O as sterilant with 1-phenyl-1,2-ethanediol as major hydrolyzed product (Haag & Mill 1988);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2354 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

t½ = 0.00385–27.5 h, based on an estimation from measured first-order rate constants at 25°C, the hydrolysis half-lives at pH 5, 7 and 9 are 0.00385, 21.4 and 27.5 h (Haag & Mill 1988; quoted, Howard et al. 1991).

Biodegradation: aqueous aerobic t½ = 24–168 h, based on biological screening test data (Schmidt-Bleek et al. 1982; quoted, Howard et al. 1991); aqueous anaerobic t½ = 96–672 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from air for the reaction with OH radical (US EPA 1974; quoted, Darnall et al. 1976);

t½ = 12.3–123 h, based on estimated photooxidation rate constant with hydroxyl radical (Atkinson 1987; quoted, Howard et al. 1991).

Surface water: t½ = 0.00385–27.5 h, based on an estimation from measured first-order rate constants at 25°C (Haag & Mill 1988; quoted, Howard et al. 1991).

Ground water: t½ = 0.00385–27.5 h, based on an estimation from measured first-order rate constants at 25°C (Haag & Mill 1988; quoted, Howard et al. 1991). Sediment:

Soil: t½ = 0.00385–27.5 h, based on an estimation from measured first-order rate constants at 25°C (Haag & Mill 1988; quoted, Howard et al. 1991). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2355

10.1.3.18 Diphenyl ether

O

Common Name: Diphenyl ether Synonym: phenyl ether, diphenyl oxide, phenyl ether, 1,1′-oxybisbenzene, phenoxybenzene Chemical Name: diphenyl ether, diphenyloxide, phenylether, phenoxybenzene CAS Registry No: 101-84-8

Molecular Formula: C12H10O, (C6H5)2O Molecular Weight: 170.206 Melting Point (°C): 26.87 (Lide 2003) Boiling Point (°C): 258 (Lide 2003) Density (g/cm3 at 20°C): 1.0748 (Weast 1982–83) Molar Volume (cm3/mol): 158.6 (20°C, calculated-density) 166.6 (Ruelle & Kesselring 1997) 195.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 17.217 (quoted, Riddick et al. 1986) 16.16 (Ruelle & Kesselring 1997) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.923 (mp 28.5°C)

Water Solubility (g/m3 or mg/L at 25°C): 4000 (shake flask-residue-volume, Booth & Everson 1948) 18.7 (shake flask-UV, Vesala 1974) 18.0 (shake flask-HPLC, Banerjee et al. 1980; Pearlman et al. 1984) 21.0 (Verschueren 1983) 18, 3900 (quoted values, Riddick et al. 1986)

46.88 (supercooled liquid SL, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (66.1°C, summary of literature data, temp range 66.1–258.5°C, Stull 1947) 10.01* (40°C, dynamic method, measured range 40–60°C, Bent & Francel 1948) log (P/mmHg) = 9.6842 – 3351.9/(t/°C + 273.1); measured range 40–60°C (dynamic method-gas saturation, Bent & Francel 1948) log (P/mmHg) = 7.65339 – 2330.5/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 26555* (204.213°C, ebulliometry, measured range 204.2–270.9°C, Collerson et al. 1965) log (P/mmHg) = 7.06376 – 1261.455/(221.982 + t/°C); temp range 204.2–270.9°C (Antoine eq., ebulliometric measurements, Collerson et al. 1965) log (P/mmHg) = 19.48322 – 2328.0/(T/K) – 3.92657·log (T/K); temp range 204.2–270.9°C (Krichhoff eq., ebul- liometric measurements, Collerson et al. 1965) log (P/mmHg) = [–0.2185 × 12325.5/(T/K)] + 7.955679; temp range 66.1–258.5°C (Antoine eq., Weast 1972–73) 3.0* (“recomputed” reported data, temp range 204.257–271°C, Ambrose et al. 1976) log (P/kPa) = 6.13913 – 1802.984/{(T/K) – 95.013}; temp range 477–544 K (Antoine eq., Ambrose et al. 1976) 2.67 (Verschueren 1983) 1.82 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 7.01104 – 1799.712/(177.744 + t/°C); temp range 204–270°C (Antoine eq. from reported exptl. data, Boublik et al. 1984)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2356 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (P/kPa) = 6.13606 – 1799.811/(177.756 + t/°C); temp range 204.2–271°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/mmHg) = 7.01104 – 1799.71/(177.74 + t/°C); temp range: 204–271°C (Antoine eq., Dean 1985, 1992) 2.84 (selected, Riddick et al. 1986) log (P/kPa) = 6.13913 – 19\02.984/(178.137 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 2.93 (calculated-Antoine eq., Stephenson & Malanowski 1987) log (P/kPa) = 8.7109 – 3351.9/(T/K); temp range 313–333K (Antoine eq., liquid, Stephenson & Malanowski 1987) log (P/kPa) = 6.1553 – 1800.743/(T/K – 95.275); temp range 477–544K (Antoine eq., liquid, Stephenson & Malanowski 1987) log (P/mmHg) = –26.9635 – 2.5909 × 103/(T/K) + 16.42·log (T/K) – 2.4334 × 10–2·(T/K) + 1.0244 × 10–5· (T/K)2; temp range 300–763 K (vapor pressure eq., Yaws 1994)

2.40 (PL, GC-RI correlation, Kurz & Ballschmiter 1999)

Henry’s Law Constant (Pa m3/mol at 25°C): 25.1 (calculated-P/C using selected data) 8.71 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 4.21, 4.36 (shake flask values, Leo et al. 1971) 4.20 (shake flask-GC, Chiou et al. 1977) 4.25 (calculated-fragment const., Rekker 1977) 4.26 (Hansch & Leo 1979) 4.08 (shake flask-HPLC, Banerjee et al. 1980) 3.79 (estimated-HPLC/MS correlation, Burkhard et al. 1985) 4.24 (calculated-f const., Burkhard et al. 1985) 3.87 (HPLC-RT correlation, Eadsforth 1986) 4.28 (shake flask, Log P Database, Hansch & Leo 1987) 4.21 (recommended, Sangster 1989, 1993) 3.949, 4.014 (shake flask method, Brooke et al. 1990) 4.21 (recommended, Hansch et al. 1995) 3.97 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KOA:

6.42 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF: 2.29 (rainbow trout, calculated, Veith et al. 1979)

2.29; 2.89 (quoted exptl., calculated-KOW, Mackay 1982)

Sorption Partition Coefficient, log KOC: 3.29; 3.41 (soil, quoted exptl.; calculated-MCI χ, Meylan et al. 1992)

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives: –1 –1 k1 = 5.5 h , k2 = 0.0275 h (trout, Hawker & Connell 1985) 1/k2 = 36 h (trout, Hawker & Connell 1988) –1 k2 = 0.676 h (fish, quoted, Thomann 1989)

Half-Lives in the Environment:

Air: disappearance t½ < 0.24 h from air for the reaction with OH radical (USEPA 1974; quoted, Darnall et al. 1976).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2357

TABLE 10.1.3.18.1 Reported vapor pressures of diphenyl ether at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Bent & Francel 1948 Collerson et al. 1965 Ambrose et al. 1976

summary of lit. data dynamic method ebulliometry comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 66.1 133.3 40 10.01 204.13 26555 204.257 26555 97.8 666.6 50 21.96 212.102 33073 212.15 33074 114 1333 60 43.97 219.226 40022 219.276 40022 130.8 2666 225.105 46611 225.157 46611 150 5333 eq. 2 P/mmHg 230.561 53482 230.616 53481 162 7999 A 9.5842 235.186 59915 235.242 59915 178.8 13332 B 3351.9 239.618 66654 239.676 66654 203 26664 C 273.1 243.667 73327 243.726 73327 230.7 53329 250.991 86741 247.473 79956 ∆ 258.5 101325 HV = 64.02 kJ/mol 254.089 92971 251.052 86740 257.458 100143 254.152 92971 mp/°C 27 260.469 106906 257.522 100144 263.29 113569 260.534 106906 268.939 120124 263.355 113568 Dreisbach & Shrader 1949 268.416 126525 266.005 120124 ebulliometry 270.949 133333 268.482 126525 No data 271.015 133332 bp/°C 257.997 25 3 Antoine eq. given by Antoine eq. Dreisbach & Martin 1949 eq. 2 P/mmHg bp 531.21 K eq. 2 P/mmHg A 7.01188 Antoine equation: A 7.65339 B 1800.415 eq. 3 P/kPa B 2330.5 C 177.826 A 6.12913 C 230 Kirchhoff eq. B 1802.984 eq. 4 P/mmHg C –95.013 bp/°C 258.31 A 24.66548 mp/°C 26.9 B 3897.5 Coefficients of Chebyshev eq. C 5.30117 also given in text. ∆ HV = 48.62 kJ/mol

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2358 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Diphenyl ether: vapor pressure vs. 1/T 8.0 Bent & Francel 1948 Collerson et al. 1965 Ambrose et al. 1976 7.0 Stull 1947

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 258 °C m.p. = 26.87 °C 0.0 0.0016 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 10.1.3.18.1 Logarithm of vapor pressure versus reciprocal temperature for diphenyl ether.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2359

10.1.4 POLYCHLORINATED DIPHENYL ETHERS (PCDES) 10.1.4.1 2-Chlorodiphenyl ether (PCDE-1)

Cl

O

Common Name: 2-Chlorodiphenyl ether Synonym: 2-CDPE, PCDE-1, 2-chlorobiphenyl ether Chemical Name: 2-chlorodiphenyl ether CAS Registry No: 2689-07-8

Molecular Formula: C12H9ClO Molecular Weight: 204.652 Melting Point (°C): 45 (Ruelle & Kesselring 1997) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 216.5 (calculated-Le Bas method at normal boiling point) 179.5 (Ruelle & Kesselring 1997) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.634 (mp at 45°C) Water Solubility (g/m3 or mg/L at 25°C): 3.40; 4.80 (quoted exptl.; calculated-molar volume and MP, Ruelle & Kesselring 1997) 3.40 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999) Vapor Pressure (Pa at 25°C):

0.537 (PL, GC-RI correlation, Kurz & Ballschmiter 1999) Henry’s Law Constant (Pa·m3/mol): 32.36 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 4.45 (HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KOA:

6.33 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: –1 –8 –1 Photolysis: photolysis rate kP = 0.0035 d with a half-life of 200 d in summer sunlight; kP(exptl) = 3.4 × 10 s –9 –1 with t½ = 240 h, kP(calc) = 3.1 × 10 s in winter sunlight, at 40° L in surface waters (Dulin et al. 1986) Half-Lives in the Environment: Air:

Surface water: photolysis t½ = 200 d in summer sunlight and t½ = 240 d in winter sunlight at 40° L in surface waters (Dulin et al. 1986) Ground water: Sediment: Soil:

Biota: t½ = 4–63 d in trout Cl1-DPEs to Cl4-DPEs (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2360 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.2 4-Chlorodiphenyl ether

OCl

Common Name: 4-Chlorodiphenyl ether Synonym: 4-chlorophenyl phenyl ether, 1-chloro-4-phenoxybenzene, p-chlorophenyl phenyl ether, 4-chlorodiphenyl ether, monochlorodiphenyl oxide Chemical Name: 4-chlorophenyl phenyl ether, 4-chlorodiphenyl ether CAS Registry No: 7005-72-3

Molecular Formula: C12H9ClO Molecular Weight: 204.652 Melting Point (°C): –6.0 (Callahan et al. 1979) –8.0 (Mabey et al. 1982) Boiling Point (°C): 284.5 (Weast 1982–83; Lide 2003) Density (g/cm3 at 20°C): 1.2026 (15°C, Weast 1982–83; Lide 2003) Molar Volume (cm3/mol): 216.5 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 3.30 (Branson 1977; quoted, Callahan et al. 1979; Mabey et al. 1982) 59.04 (Isnard & Lambert 1988,1989)

Vapor Pressure (Pa at 25°C): 0.360 (calculated, Branson 1977; quoted, Callahan et al. 1979; Mabey et al. 1982)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 22.19 (calculated-P/C, Mabey et al. 1982) 22.29 (20–25°C and low ionic strength, quoted, Pankow & Rosen 1988; Pankow 1990) 24.79 (quoted from WERL Treatability Data, Ryan et al. 1988)

Octanol/Water Partition Coefficient, log KOW: 4.08 (Branson 1977; quoted, Callahan et al. 1979; Ryan et al. 1988; Isnard & Lambert 1988,1989) 5.079 (calculated, Mabey et al. 1982)

Bioconcentration Factor, log BCF: 2.867 (rainbow trout muscle, Branson 1977; quoted, Callahan et al. 1979)

4.255 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 2.87 (quoted, Isnard & Lambert 1988)

Sorption Partition Coefficient, log KOC:

4.763 (sediment-water, calculated-KOW, Mabey et al. 1982)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: –1 –8 –1 Photolysis: photolysis rate kP = 0.19 d with t½ = 3.6 d in summer sunlight; kP(exptl) < 2.0 × 10 s with –8 –1 t½ > 400 h, kP(calc) = 3.7 × 10 s in winter sunlight, both at 40° L in surface waters (Dulin et al. 1986) Oxidation: k << 360 M–1 h–1 for singlet oxygen and k << 1.0 M–1 h–1 for peroxy radical (Mabey et al. 1982) Hydrolysis:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2361

Biodegradation: t½ = 4.0 h, measured only in activated sludge (Branson 1978; quoted, Callahan et al. 1979). Biotransformation: estimated rate constant k = 1 × 10–7 mL cell–1 h–1 for bacterial transformation in water (Mabey et al. 1982).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives: Half-Lives in the Environment:

Surface water: photolysis t½ = 3.6 d summer sunlight and t½ > 400 d in winter sunlight at 40° L surface waters (Dulin et al. 1986)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2362 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.3 2,4-Dichlorodiphenyl ether (PCDE-8)

Cl

O Cl

Common Name: 2,4-Dichlorodiphenyl ether Synonym: 2,4-DCDPE, PCDE-8 Chemical Name: CAS Registry No: 51892-26-3

Molecular Formula: C12H8Cl2O Molecular Weight: 239.097 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 237.4 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 5.605 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C):

0.123 (PL, GC-RT correlation, Kurz & Ballschmiter 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C): 5.25 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 5.62 (Oliver & Niimi 1984) 4.93 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KOA:

7.60 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB: 3.97 (rainbow trout, Oliver & Niimi 1984)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constant, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: t½ = 3–63 d for Cl1-DPEs to Cl4-DPEs in trout (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2363

10.1.4.4 2,6-Dichlorodiphenyl ether (PCDE-10)

Cl

O

Cl Common Name: 2,6-Dichlorodiphenyl ether Synonym: 2,6-DCDPE, PCDE-10 Chemical Name: CAS Registry No: 28419-69-4

Molecular Formula: C12H8Cl2O Molecular Weight: 239.097 Melting Point (°C): 39 (Ruelle & Kesselring 1997) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 237.4 (calculated-Le Bas method at normal boiling point) 192.4 (Ruelle & Kesselring 1997) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.729 (mp at 39°C)

Water Solubility (g/m3 or mg/L at 25°C): 2.08; 0.213 (quoted exptl., calculated-molar volume and mp, Ruelle & Kesselring 1997) 2.08 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C):

0.174 (supercooled liquid PL, GC-RI correlation, Kurz & Kesselring 1997)

Henry’s Law Constant (Pa·m3/mol at 25°C): 19.95 (calculated-P/C, Kurz & Kesselring 1997)

Octanol/Water Partition Coefficient, log KOW: 4.64 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KOA:

6.73 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

Biota: t½ = 4–63 d Cl1-DPEs to Cl4-DPEs in trout (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2364 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.5 2,4,4′-Trichlorodiphenyl ether (PCDE-28)

Cl

Cl O Cl

Common Name: 2,4,4′-Trichlorodiphenyl ether Synonym: 2,4,4′-TCDPE, PCDE-28 Chemical Name: 2,4,4′-trichlorodiphenyl ether CAS Registry No: 59030-21-3

Molecular Formula: C12H7Cl3O Molecular Weight: 273.543 Melting Point (°C): oil (Navalainen et al. 1994) 40 (Ruelle & Kesselring 1997) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 258.3 (calculated-Le Bas method at normal boiling point) 205.3 (Ruelle & Kesselring 1997) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.712 (mp at 40°C) Water Solubility (g/m3 or mg/L at 25°C): 0.102; 0.0385 (quoted exptl.; calculated-molar volume and mp, Ruelle & Kesselring 1997) 0.101 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C):

0.0204 (supercooled liquid PL, GC-RI correlation, Kurz & Ballschmiter 1999)

Henry’s Law Constant (Pa·m3/mol): 33.88 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 5.53 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KOA:

7.19 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB: 2.98; 3.36 (concn of 2,4,4′-trichloro-DPE 39.3; 118 µg/L, juvenile Atlantic salmon, 96-h exposure, Zitko & Carson 1977)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

Biota: excretion t½ = 235 h following uptake from water, excretion t½ = 15 d following uptake from food for Juvenile salmon (Zitko & Carson 1977);

average t½ = 15 d in salmon for trichloro-DPE congeners; biological t½ = 63 d (range 46–104 d) in rainbow trout (average value for trichlorodiphenyl ethers (Niimi 1986);

t½ = 4–63 d Cl1-DPEs to Cl4-DPEs in trout (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2365

10.1.4.6 2,4,5-Trichlorodiphenyl ether (PCDE-29)

Cl

O Cl

Cl Common Name: 2,4,5-Trichlorodiphenyl ether Synonym: 2,4,5-TCDPE, PCDE-29 Chemical Name: 2,4,5-trichlorodiphenyl ether CAS Registry No: 52322-80-2

Molecular Formula: C12H7Cl3O Molecular Weight: 273.543 Melting Point (°C): oil (Opperhuizen & Voors 1987) 61 (Ruelle & Kesselring 1997) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 258.3 (calculated-Le Bas method at normal boiling point) 205.3 (Ruelle & Kesselring 1997) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.443 (mp at 61°C) Water Solubility (g/m3 or mg/L at 25°C): 0.050 (Opperhuizen 1986) 0.072; 0.0486 (quoted exptl., calculated-molar volume and mp, Ruelle & Kesselring 1997) 0.072 (supercooled liquid value, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C):

0.0288 (PL, GC-RT correlation, Kurz & Ballschmiter 1999)

Henry’s Law Constant (Pa·m3/mol): 112.2 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 5.0 (estimated, Opperhuizen 1986) 5.44 (Opperhuizen & Voors 1987; quoted, Niimi et al. 1994) 5.58 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KOA:

6.92 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB: 4.18 (guppy, 8-d exposure, Opperhuizen & Voors 1987)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Biotransformation: rate of metabolism k = 0.27 d–1 (guppy, 8-d exposure, Opperhuizen & Voors 1987)

Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 2 –1 k1 >5×10 d (guppy, Opperhuizen 1986) 3 –1 –1 k1 = 1.5 × 10 mL g d (guppy, 8-d exposure, Opperhuizen & Voors 1987) –1 k2 = 0.34 d (guppy, elimination period 56 d, Opperhuizen & Voors 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2366 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Half-Lives in the Environment:

Biota: average excretion t½ = 15 d for trichloro-DPE congeners in salmon; biological t½ = 63 d in rainbow trout (average value for trichlorodiphenyl ethers, Niimi 1986);

t½ = 4–63 d for Cl1-DPEs to Cl4-DPEs in trout (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2367

10.1.4.7 2,4′,5-Trichlorodiphenyl ether (PCDE-31)

Cl

Cl O

Cl Common Name: 2,4′,5-Trichlorodiphenyl ether Synonym: 2,4′,5-TCDPE, PCDE-31 Chemical Name: 2,4′,5-trichlorodiphenyl ether CAS Registry No: 65075-00-5

Molecular Formula: C12H7Cl3O Molecular Weight: 273.543 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 258.3 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 0.0993 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C):

0.0229 (supercooled liquid PL, GC-RT correlation, Kurz & Ballschmiter 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C): 6.31 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 5.66 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999) 5.70 (GC-RT correlation, Hackenberg et al. 2003)

Octanol/Air Partition Coefficient, log KOA:

8.25 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB: 3.30; 2.93 (ave. concn of 2,4′,5-trichloro-DPE 2.37; 7.01 µg/L, juvenile Atlantic salmon, 96-d exposure, Zitko & Carson 1976)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: excretion t½ = 310 h following uptake from water; t½ = 26 d following uptake from food for juvenile Atlantic salmon (Zitko & Carson 1976);

average excretion t½ = 15 d for trichloro-DPE congeners in salmon; biological t½ = 63 d in rainbow trout (average value for trichlorodiphenyl ethers, Niimi 1986);

t½ = 4–63 d Cl1-DPEs to Cl4-DPEs in trout (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2368 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.8 2,2′,4,4′-Tetrachlorodiphenyl ether (PCDE-47)

Cl Cl

Cl O Cl

Common Name: 2,2′,4,4′-Tetrachlorodiphenyl ether Synonym: 2,2′,4,4′-TCDPE, PCDE-47, 2,2′,4,4′-tetrachlorobiphenyl ether, 2.,2′,4,4′-TCBP Chemical Name: 2,2′,4,4′-tetrachlorodiphenyl ether CAS Registry No: 28076-73-5

Molecular Formula: C12H6Cl4O Molecular Weight: 307.988 Melting Point (°C): 69–70 (Navalainen et al. 1994) 69 (Ruelle & Kesselring 1997) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 279.2 (calculated-Le Bas method at normal boiling point) 218.2 (Ruelle & Kesselring 1997) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.366 (mp at 69.5°C)

Water Solubility (g/m3 or mg/L at 25°C): 0.0466; 0.0154 (quoted exptl., calculated-molar volume and mp, Ruelle & Kesselring 1997) 0.0466 (supercooled liquid, RP-HPLC-RI, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C):

0.00525 (PL, GC-RI correlation, Kurz & Ballschmiter 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C): 34.67 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 5.95 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KAO:

7.80 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: average excretion t½ = 55 d in salmon for tetrachloro-DPE congeners; mean biological t½ = 119 d (range 82–213 d) in rainbow trout (Niimi 1986);

t½ = 4–63 d for Cl1-DPEs to Cl4-DPEs in trout (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2369

10.1.4.9 2,3′,4,4′-Tetrachlorodiphenyl ether (PCDE-66)

Cl Cl

Cl O Cl

Common Name: 2,3′,4,4′-Tetrachlorodiphenyl ether Synonym: 2,3′,4,4′-DCPE, PCDE-66 Chemical Name: 2,3′,4,4′-tetrachlorodiphenyl ether CAS Registry No: 61328-46-9

Molecular Formula: C12H6Cl4O Molecular Weight: 307.988 Melting Point (°C): oil (Navalainen et al. 1994) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 279.2 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 0.0308 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C):

0.00407 (supercooled liquid PL, GC-RI correlation, Kurz & Ballschmiter 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C): 40.74 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 6.13 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KAO:

7.91 (calculated-KOW/KAW, Kurz & Ballschmitter 1999)

Bioconcentration Factor, log BCF or log KB: 3.43; 3.01 (ave. concn of 2,3′,4,4′-tetrachloro-DPE 2.07; 6.03 µg/L, juvenile Atlantic salmon, 96-d exposure, Zitko & Carson 1976)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: excretion t½ = 370 h following uptake from water, t½ = 55 d following uptake from food in juvenile Atlantic salmon (Zitko & Carson 1976);

average excretion t½ = 55 d in salmon for tetrachloro-DPE congeners; mean biological t½ = 119 d (range 82–213 d) in rainbow trout (Niimi 1986);

t½ = 4–63 d in trout for Cl1-DPEs to Cl4-DPEs (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2370 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.10 2,4,4′,5-Tetrachlorodiphenyl ether (PCDE-74)

Cl

Cl O Cl

Cl

Common Name: 2,4,4′,5-Tetrachlorodiphenyl ether Synonym: 2,4,4′,5-PCDE, PCDE-74 Chemical Name: 2,4,4′,5-tetrachlorodiphenyl ether CAS Registry No: 61328-45-8

Molecular Formula: C12H6Cl4O Molecular Weight: 307.988 Melting Point (°C): 62–63 (Navalainen et al. 1994) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 279.2 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 0.0281 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C): –3 4.79 × 10 (PL, GC-RT correlation, Kurz & Ballschmiter 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C): 52.48 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 5.99 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KOA:

7.66 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: average t½ = 55 d in salmon for tetrachloro-DPE congeners (Zitko & Carson 1977; quoted, Niimi 1986); mean biological t½ = 108 d (range 62–407 d) in rainbow trout (Niimi 1986); t½ = 4–63 d in trout for Cl1-DPEs to Cl4-DPEs; t½ = 15 d for Cl4-DPE to Cl5-DPE in waterborne exposed salmon and t½ = 55 d for diet-exposed fish (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2371

10.1.4.11 3,3′,4,4′-Tetrachlorodiphenyl ether (PCDE-77)

Cl Cl

Cl O Cl

Common Name: 3,3′,4,4′-Tetrachlorodiphenyl ether Synonym: 3,3′,4,4′-PCDE, PCDE-77 Chemical Name: 3,3′,4,4′-tetrachlorodiphenyl ether CAS Registry No: 56348-72-2

Molecular Formula: C12H6Cl4O Molecular Weight: 307.988 Melting Point (°C): oil (Opperhuizen & Voors 1987) 69–71 (Navalainen et al. 1994) 70 (Ruelle & Kesselring 1997) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 279.2 (calculated-Le Bas method at normal boiling point) 218.2 (Ruelle & Kesselring 1997) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.362 (mp at 70°C)

Water Solubility (g/m3 or mg/L at 25°C): 0.020 (Opperhuizen 1986) 0.0323; 0.00991 (quoted exptl., calculated-molar volume and mp, Ruelle & Kesselring 1997) 0.0323 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C): –3 2.57 × 10 (PL, GC-RI correlation, Kurz & Ballschmiter 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C): 24.55 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 6.0 (estimated, Opperhuizen 1986) 5.78 (Opperhuizen & Voors 1987; quoted, Niimi et al. 1994) 6.36 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KOA:

8.36 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB: 4.50 (guppy, 8-d exposure, Opperhuizen & Voors 1987) 4.51; 4.09 (guppy; trout muscle, Niimi et al. 1994)

4.46–4.99 (calculated-KOW, Niimi et al. 1994)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): 2 –1 k1 > 5 × 10 d (Guppy, Opperhuizen 1986)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2372 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

2 –1 –1 k1 = 9.6 × 10 mL g d (guppy, 8-d exposure, Opperhuizen & Voors 1987) –1 k2 = 0.03 d (guppy, elimination period 56 d, Opperhuizen & Voors 1987)

Half-Lives in the Environment:

Biota: average t½ = 55 d in salmon for tetrachloro-DPE congeners (Zitko & Carson 1977; quoted, Niimi 1986) mean biological t½ = 134 d (range 73–792 d) in rainbow trout (Niimi 1986); t½ = 23 d in guppy, t½ = 29 d in trout muscle (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2373

10.1.4.12 2,2′,3,4,4′-Pentachlorodiphenyl ether (PCDE-85)

Cl Cl Cl

Cl O Cl

Common Name: 2,2′,3,4,4′-Pentachlorodiphenyl ether Synonym: PDCE-85 Chemical Name: 2,2′,3,4,4′-pentachlorodiphenyl ether CAS Registry No: 71585-37-0

Molecular Formula: C12H5Cl5O Molecular Weight: 342.433 Melting Point (°C): 65–67 (Navalainen et al. 1994) 66 (Ruelle & Kesselring 1997) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 300.1 (calculated-Le Bas method at normal boiling point) 231.1 (Ruelle & Kesselring 1997) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.396 (mp at 66°C)

Water Solubility (g/m3 or mg/L at 25°C): 0.0124; 0.00609 (quoted exptl., calculated-molar volume and mp, Ruelle & Kesselring 1997) 0.0124 (supercooled liquid value, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C): –4 6.92 × 10 (supercooled liquid PL, GC-RI correlation, Kurz & Ballschmiter 1999)

Henry’s Law Constant (Pa·m3/mol): 19.05 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 6.28 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KOA:

8.39 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: average t½ = 55 d in salmon for pentachloro-DPE congeners (Zitko & Carson 1977; Niimi 1986) biological t½ ~ 113 d (range 81–144 d, average value for pentachloro-DPE congeners, Niimi 1986); t½ = 15 d for Cl4-DPE to Cl5-DPE in waterborne exposed salmon and t½ = 55 d for diet-exposed fish (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2374 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.13 2,2′,4,4′,5-Pentachlorodiphenyl ether (PCDE-99)

Cl Cl

Cl O Cl

Cl

Common Name: 2,2′,4,4′,5-Pentachlorodiphenyl ether Synonym: 2,2′,4,4′,5-PCDE, PCDE-99 Chemical Name: 2,2′,4,4′,5-pentachlorodiphenyl ether CAS Registry No: 60123-64-0

Molecular Formula: C12H5Cl5O Molecular Weight: 342.433 Melting Point (°C): oil (Navalainen et al. 1994) 25 (Passivirta et al. 1999) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 300.1 (calculated-Le Bas method at normal boiling point) 231.1 (Ruelle & Kesselring 1997; quoted, Passivirta et al. 1999) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 56.5 (calculated, Passivirta et al. 1999) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0 1.0 (calculated, Passivirta et al. 1999)

Water Solubility (g/m3 or mg/L at 25°C and reported temperature dependence equations): 5.06 × 10–3; 0.0153 (quoted exptl., calculated-molar volume, mp and mobile order thermodynamics, Ruelle & Kesselring 1997) 8.406 × 10–3 (supercooled liquid value, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

log [SL/(mol/L)] = –1.392 – 866.2/(T/K) (liquid, Passivirta et al. 1999) Vapor Pressure (Pa at 25°C and reported temperature dependence equations): –3 1.35 × 10 (PL, GC-RT correlation, Kurz & Ballschmiter 1999) –3 –3 1.34 × 10 ; 1.34 × 10 (liquid PL, GC-RT correlation; converted to solid PS with fugacity ratio F, Passivirta et al. 1999)

log (PS/Pa) = 11.90 – 4404/(T/K) (solid, Passivirta et al. 1999) log (PL/Pa) = 8.95 – 3525/(T/K) (liquid, Passivirta et al. 1999) Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): 54.95 (calculated-P/C, Kurz & Ballschmiter 1999) log [H/(Pa m3/mol)] = 10.34 – 2659/(T/K) (Passivirta et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 6.38 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

7.46, 7.20 (quoted lit., calculated from lit. log KOW and estimated log SL, Passivirta et al. 1999)

Octanol/Air Partition Coefficient, log KOA:

8.03 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB: 3.15; 2.77 (4.01; 12.0 µg/L, ave. concn of 2,2′,4,4′,5-PCDPE (reported as 2,2′4′,5-TCDPE), juvenile Atlantic salmon, 96-d exposure, Zitko & Carson 1976)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2375

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

Biota: excretion t½ = 370 h following uptake from water, t½ = 55 d following uptake from food in juvenile Atlantic salmon (Zitko & Carson 1977);

average excretion t½ = 55 d in salmon for pentachloro-DPE congeners; mean biological t½ = 144 d (range 93–311 d) in rainbow trout (Niimi 1986);

t½ = 15 d for Cl4-DPE to Cl5-DPE in waterborne exposed salmon and t½ = 55 d for diet-exposed fish (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2376 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.14 2,2′,4,4′,6-Pentachlorodiphenyl ether (PCDE-100)

Cl Cl

Cl O Cl

Cl Common Name: 2,2′,4,4′,6-Pentachlorodiphenyl ether Synonym: 2,2′,4,4′,6-PCDE, PCDE-100 Chemical Name: 2,2′,4,4′,6-pentachlorodiphenyl ether CAS Registry No: 104294-16-8

Molecular Formula: C12H5Cl5O Molecular Weight: 342.433 Melting Point (°C): 45–46 (Navalainen et al. 1994) 46 (Passivirta et al. 1999) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 300.1 (calculated-Le Bas method at normal boiling point) 231.1 (Passivirta et al. 1999) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 56.5 (calculated, Passivirta et al. 1999) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0 1.0 (calculated, Passivirta et al. 1999)

Water Solubility (g/m3 or mg/L at 25°C and reported temperature dependence equations): 0.0160 (supercooled liquid value, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

log [SL/(mol/L)] = –1.392 – 943.0/(T/K) (liquid, Passivirta et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): –3 2.19 × 10 (supercooled liquid PL, GC-RT correlation, Kurz & Ballschmiter 1999) –3 –3 2.17 × 10 ; 1.34 × 10 (liquid PL, GC-RT correlation; converted to solid PS with fugacity ratio F, Passivirta et al. 1999)

log (PS/Pa) = 11.90 – 4408/(T/K) (solid, Passivirta et al. 1999) log (PL/Pa) = 8.95 – 3467/(T/K) (liquid, Passivirta et al. 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): 46.77 (calculated-P/C, Kurz & Ballschmiter 1999) log [H/(Pa m3/mol)] = 10.34 – 2524/(T/K) (Passivirta et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 6.11 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

7.11, 6.31 (quoted lit., calculated from lit. log KOW and estimated log SL, Passivirta et al. 1999)

Octanol/Air Partition Coefficient, log KOA:

7.83 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2377

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: excretion t½ = 370 h following uptake from water, t½ = 55 d following uptake from food in juvenile Atlantic salmon (Zitko & Carson 1977);

average excretion t½ = 55 d in salmon for pentachloro-DPE congeners; mean biological t½ = 144 d (range 93–311 d) in rainbow trout (Niimi 1986);

t½ = 15 d for Cl4-DPE to Cl5-DPE in waterborne exposed salmon and t½ = 55 d for diet-exposed fish (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2378 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.15 2,2′,4,5,5′-Pentachlorodiphenyl ether (PCDE-101)

Cl Cl

O Cl

Cl Cl

Common Name: 2,2′,4,5,5′-Pentachlorodiphenyl ether Synonym: PDCE-101 Chemical Name: 2,2′,4,5,5′-pentachlorodiphenyl ether CAS Registry No: 131138-21-1

Molecular Formula: C12H5Cl5O Molecular Weight: 342.433 Melting Point (°C): oil (Navalainen et al. 1994) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 300.1 (calculated-Le Bas method at normal boiling point) 231.1 (Ruelle & Kesselring 1997) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 0.00943; 0.0153 (quoted exptl.; calculated-molar volume and mp, Ruelle & Kesselring 1997) 0.00943 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C): –3 1.74 × 10 (supercooled liquid PL, GC-RT correlation, Kurz & Ballschmiter 1999) Henry’s Law Constant (Pa·m3/mol): 63.10 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 6.22 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KOA:

7.81 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

Biota: excretion t½ = 370 d following uptake from water; t½ = 55 d following uptake from food in juvenile Atlantic salmon (Zitko & Carson 1976);

average t½ = 55 d in salmon for pentachloro-DPE congeners (Zitko & Carson 1977; Niimi 1986); biological t½ = 113 d (range 81–144 d) in rainbow trout (average value of pentachloro-DPE, Niimi 1986); t½ = 15 d for Cl4-DPE to Cl5-DPE in waterborne exposed salmon and t½ = 55 d for diet-exposed fish (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2379

10.1.4.16 2,3,3′,4,4′-Pentachlorodiphenyl ether (PCDE-105)

Cl Cl Cl

Cl O Cl

Common Name: 2,3,3′,4,4′-Pentachlorodiphenyl ether Synonym: PCDE-105 Chemical Name: 2,3,3′,4,4′-pentachlorodiphenyl ether CAS Registry No: 85918-31-6

Molecular Formula: C12H5Cl5O Molecular Weight: 324.433 Melting Point (°C): 64–66 (Navalainen et al. 1994) 65 (Ruelle & Kesselring 1997) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 300.1 (calculated-Le Bas method at normal boiling point) 231.1 (Ruelle & Kesselring 1997) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.405 (mp at 65°C) Water Solubility (g/m3 or mg/L at 25°C): 0.00732; 0.0059 (quoted exptl., calculated-molar volume, mp and mobile order thermodynamics, Ruelle & Kesselring 1997) 0.00732 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C): –4 5.13 × 10 (supercooled liquid PL, GC-RT correlation, Kurz & Ballschmiter 1999) Henry’s Law Constant (Pa·m3/mol at 25°C): 23.99 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 6.51 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KOA:

8.52 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

Biota: average t½ = 55 d in salmon for pentachloro-DPE congeners (Zitko & Carson 1977, Niimi 1986) biological t½ ~ 113 d (range 81–144 d) in rainbow trout (average value for pentachloro-DPE congeners, Niimi 1986);

t½ = 15 d for Cl4-DPE to Cl5-DPE in waterborne exposed salmon and t½ = 55 d for diet-exposed fish (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2380 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.17 3,3′,4,4′,5-Pentachlorodiphenyl ether (PCDE-126)

Cl Cl

Cl O Cl

Cl

Common Name: 3,3′,4,4′,5-Pentachlorodiphenyl ether Synonym: PCDE-126 Chemical Name: 3,3′,4,4′,5-pentachlorodiphenyl ether CAS Registry No: 94339-59-0

Molecular Formula: C12H5Cl5O Molecular Weight: 342.433 Melting Point (°C): 68–70 (Navalainen et al. 1994) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 300.1 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: Water Solubility (g/m3 or mg/L at 25°C): 1.93 × 10–3 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C): –4 5.62 × 10 (supercooled liquid PL, GC-RT correlation, Kurz & Ballschmiter 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C): 100 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 6.83 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999) 6.88 (GC-RT correlation, Hackenberg et al. 2003)

Octanol/Air Partition Coefficient, log KOA:

8.22 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: average t½ = 55 d in salmon for pentachloro-DPE congeners (Zitko & Carson 1977, Niimi 1986) biological t½ ~ 113 d (range 81–144 d) in rainbow trout (average value for pentachloro-DPE congeners, Niimi 1986);

t½ = 15 d for Cl4-DPE to Cl5-DPE in waterborne exposed salmon and t½ = 55 d for diet-exposed fish (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2381

10.1.4.18 2,2′,3,3′,4,4′-Hexachlorodiphenyl ether (PCDE-128)

Cl Cl Cl Cl

Cl O Cl

Common Name: 2,2′,3,3′,4,4′-Hexachlorodiphenyl ether Synonym: PCDE-128 Chemical Name: 2,2′,3,3′,4,4′-hexachlorodiphenyl ether CAS Registry No: 71585-39-2

Molecular Formula: C12H4Cl6O Molecular Weight: 376.878 Melting Point (°C): 141–142 (Navalainen et al. 1994) 95 (Ruelle & Kesselring 1997) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 321.0 (calculated-Le Bas method at normal boiling point) 244.0 (Ruelle & Kesselring 1997) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.206 (mp at 95°C) Water Solubility (g/m3 or mg/L at 25°C): 2.73 × 10–3; 4.33 × 10–4 (quoted exptl., calculated-molar volume and mp, Ruelle & Kesselring 1997) 2.73 × 10–3 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C): –5 8.71 × 10 (supercooled liquid PL, GC-RT correlation, Kurz & Ballschmiter 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C): 12.02 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 6.82 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KOA:

9.13 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

Biota: biological t½ > 170 d (range 100 to > 300 d) in rainbow trout (average value for hexachloro-DPE congeners, Niimi 1986)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2382 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.19 2,2′,3,4,4′,5-Hexachlorodiphenyl ether (PCDE-137)

Cl Cl Cl

Cl O Cl

Cl

Common Name: 2,2′,3,4,4′,5-Hexachlorodiphenyl ether Synonym: PCDE-137 Chemical Name: 2,2′,3,4,4′,5-hexachlorodiphenyl ether CAS Registry No: 71585-36-9

Molecular Formula: C12H4Cl6O Molecular Weight: 376.878 Melting Point (°C): 78–80 (Navalainen et al. 1994) 69 (Ruelle & Kesselring 1997) 80 (Passivirta et al. 1999) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 321.0 (calculated-Le Bas method at normal boiling point) 244.0 (Ruelle & Kesselring 1997) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 56.5 (estimated, Passivirta et al. 1999) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.285 (calculated, Passivirta et al. 1999)

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations): 1.85 × 10–3; 2.18 × 10–3 (quoted exptl., calculated-molar volume, mp and mobile order thermodynamics, Ruelle & Kesselring 1997) 1.61 × 10–3 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

log [SL/(mol/L)] = –1.868 – 1043/(T/K) (liquid, Passivirta et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): –4 2.0 × 10 (PL, GC-RT correlation, Kurz & Ballschmiter 1999) –4 –5 2.04 × 10 ; 5.80 × 10 (supercooled liquid PL, GC-RT correlation; converted to solid PS with fugacity ratio F, Passivirta et al. 1999)

log (PS/Pa) = 12.17 – 4878/(T/K) (solid, Passivirta et al. 1999) log (PL/Pa) = 9.22 – 3837/(T/K) (supercooled liquid, Passivirta et al. 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): 54.95 (calculated-P/C, Kurz & Ballschmiter 1999) log [H/(Pa m3/mol)] = 11.09 – 2794/(T/K) (Passivirta et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 6.72 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

6.72, 6.83 (quoted lit., calculated from lit. log KOW and estimated log SL, Passivirta et al. 1999) 7.11 (GC-RT correlation, Hackenberg et al. 2003)

Octanol/Air Partition Coefficient, log KOA:

8.37 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2383

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: mean biological t½ = 100 d (range 69–179 d) in rainbow trout, mean t½ > 170 d (range 100 to > 300 d) for hexachlorodiphenyl ethers (Niimi 1986).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2384 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.20 2,2′,3,4,4′,5′-Hexachlorodiphenyl ether (PCDE-138)

Cl Cl Cl

Cl O Cl

Cl Common Name: 2,2′,3,4,4′,5′-Hexachlorodiphenyl ether Synonym: PCDE-138 Chemical Name: 2,2′,3,4,4′,5′-hexachlorodiphenyl ether CAS Registry No: 71585-38-1

Molecular Formula: C12H4Cl6O Molecular Weight: 376.878 Melting Point (°C): 69–70 (Navalainen et al. 1994) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 321.0 (calculated-Le Bas method at normal boiling point) 244.0 (Ruelle & Kesselring 1997) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 56.5 (estimated, Passivirta et al. 1999) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.359 (calculated, Passivirta et al. 1999)

Water Solubility (g/m3 or mg/L at 25°C and reported temperature dependence equations): 1.84 × 10–3 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

log [SL/(mol/L)] = –1.868 – 1014/(T/K) (liquid, Passivirta et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): –4 1.70 × 10 (PL, GC-RT correlation, Kurz & Ballschmiter 1999) –4 –5 1.73 × 10 ; 6.23 × 10 (supercooled liquid PL, GC-RT correlation; converted to solid PS with fugacity ratio F, Passivirta et al. 1999)

log (PS/Pa) = 12.15 – 4866/(T/K) (solid, Passivirta et al. 1999) log (PL/Pa) = 9.21 – 3854/(T/K) (supercooled liquid, Passivirta et al. 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): 34.67 (calculated-P/C, Kurz & Ballschmiter 1999) log [H/(Pa m3/mol)] = 11.08 – 2840/(T/K) (Passivirta et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 7.01 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

7.01, 6.77 (quoted lit., calculated from lit. log KOW and estimated log SL, Passivirta et al. 1999)

Octanol/Air Partition Coefficient, log KOA:

8.86 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

Biota: mean biological t½ = 100 d (range 69–179 d) in rainbow trout; mean t½ > 170 d (range 100 to >300 d) for hexachlorodiphenyl ethers (Niimi 1986).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2385

10.1.4.21 2,2′,3,4,4′,6′-Hexachlorodiphenyl ether (PCDE-140)

Cl Cl Cl

Cl O Cl

Cl

Common Name: 2,2′,3,4,4′,6′-Hexachlorodiphenyl ether Synonym: PCDE-140 Chemical Name: 2,2′,3,4,4′,6′-hexachlorodiphenyl ether CAS Registry No: 106220-82-0

Molecular Formula: C12H4Cl6O Molecular Weight: 376.878 Melting Point (°C): 120–122 (Navalainen et al. 1994) 121 (Ruelle & Kesselring 1997) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 321.0 (calculated-Le Bas method at normal boiling point) 244.0 (Ruelle & Kesselring 1997) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.114 (mp at 121°C)

Water Solubility (g/m3 or mg/L at 25°C): 2.99 × 10–3; 6.4 × 10–4 (quoted exptl., calculated-molar volume and mp, Ruelle & Kesselring 1997) 2.99 × 10–3 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C): –4 2.69 × 10 (supercooled liquid PL, GC-RT correlation, Kurz & Ballschmiter 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C): 33.88 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 6.76 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KOA:

8.51 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: mean biological t½ = 149 d (range 99–302 d) in rainbow trout; mean t½ > 170 d (range 100 to > 300 d) for hexachlorodiphenyl ethers (Niimi 1986).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2386 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.22 2,2′,4,4′,5,5′-Hexachlorodiphenyl ether (PCDE-153)

Cl Cl

Cl O Cl

Cl Cl

Common Name: 2,2′,4,4′,5,5′-Hexachlorodiphenyl ether Synonym: PCDE-153 Chemical Name: 2,2′4,4′5,5′-hexachlorodiphenyl ether CAS Registry No: 71859-30-8

Molecular Formula: C12H4Cl6O Molecular Weight: 376.878 Melting Point (°C): 113–115 (Navalainen et al. 1994) 114 (Ruelle & Kesselring 1997) 115 (Passivirta et al. 1999) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 321.0 (calculated-Le Bas method at normal boiling point) 244.0 (Ruelle & Kesselring 1997; quoted, Passivirta et al. 1999)) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 56.5 (estimated, Passivirta et al. 1999) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.134 (mp at 114°C) 0.126 (calculated, Passivirta et al. 1999)

Water Solubility (g/m3 or mg/L at 25°C and reported temperature dependence equations): 1.65 × 10–4; 7.52 × 10–4 (quoted exptl., calculated-molar volume, mp and mobile order thermodynamics, Ruelle & Kesselring 1997) 1.65 × 10–4 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

log [SL/(mol/L)] = –1.868 – 1047/(T/K) (liquid, Passivirta et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): –4 3.47 × 10 (supercooled liquid PL, GC-RT correlation, Kurz & Ballschmiter 1999) –4 –5 3.74 × 10 ; 4.71 × 10 (quoted supercooled liquid PL from Hinckley et al. 1998; converted to solid PS with fugacity ratio F, Passivirta et al. 1999)

log (PS/Pa) = 12.19 – 4916/(T/K) (solid, Passivirta et al. 1999) log (PL/Pa) = 9.24 – 3771/(T/K) (supercooled liquid, Passivirta et al. 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): 79.43 (calculated-P/C, Kurz & Ballschmiter 1999) log (H/(Pa m3/mol)) = 11.11 – 2724/(T/K) (Passivirta et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 6.72 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

6.72, 6.84 (quoted lit., calculated from lit. log KOW and estimated log SL, Passivirta et al. 1999)

Octanol/Air Partition Coefficient, log KOA:

8.21 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2387

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: mean biological t½ = 167 d (range 98–553 d) in rainbow trout ; mean t½ > 170 d (range 100 to > 300 d) for hexachlorodiphenyl ethers (Niimi 1986).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2388 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.23 2,2′,4,4′,5,6′-Hexachlorodiphenyl ether (PCDE-154)

Cl Cl

Cl O Cl

Cl Cl

Common Name: 2,2′,4,4′,5,6′-Hexachlorodiphenyl ether Synonym: PCDE-154 Chemical Name: 2,2′,4,4′,5,6′-hexachlorodiphenyl ether CAS Registry No: 106220-81-9

Molecular Formula: C12H4Cl6O Molecular Weight: 376.878 Melting Point (°C): 94–96 (Navalainen et al. 1994) 95 (Ruelle & Kesselring 1997) 96 (Passivirta et al. 1999) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 321.0 (calculated-Le Bas method at normal boiling point) 244.0 (Ruelle & Kesselring 1997); quoted Passivirta et al. 1999) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 56.5 (estimated, Passivirta et al. 1999) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.206 (mp at 95°C) 0.198 (calculated, Passivirta et al. 1999)

Water Solubility (g/m3 or mg/L at 25°C and reported temperature dependence equations): 3.44 × 10–3; 1.16 × 10–3 (quoted exptl., calculated-molar volume, mp and mobile order thermodynamics, Ruelle & Kesselring 1997) 3.44 × 10–3 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

log [SL/(mol/L)] = –1.868 – 1090/(T/K) (liquid, Passivirta et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): –4 6.46 × 10 (supercooled liquid PL, GC-RT correlation, Kurz & Ballschmiter 1999) –4 –4 6.64 × 10 ; 1.32 × 10 (supercooled liquid PL, GC-RT correlation; converted to solid PS with fugacity ratio F, Passivirta et al. 1999)

log (PS/Pa) = 12.10 – 4760/(T/K) (solid, Passivirta et al. 1999) log (PL/Pa) = 9.15 – 4465/(T/K) (supercooled liquid, Passivirta et al. 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): 70.79 (calculated-P/C, Kurz & Ballschmiter 1999) log [H/(Pa m3/mol)] = 11.02 – 2582/(T/K) (Passivirta et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 6.49 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

6.49, 6.93 (quoted lit., calculated from lit. log KOW and estimated log SL, Passivirta et al. 1999)

Octanol/Air Partition Coefficient, log KOA:

8.03 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2389

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: mean biological t½ = 142 d (range 90–330 d) in rainbow trout; mean t½ > 170 d (range 100 to > 300 d) for hexachlorodiphenyl ethers (Niimi 1986).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2390 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.24 2,3′,4,4′,5,5′-Hexachlorodiphenyl ether (PCDE-167)

Cl Cl

Cl O Cl

Cl Cl Common Name: 2,3′,4,4′,5,5′-Hexachlorodiphenyl ether Synonym: PCDE-167 Chemical Name: 2,3′,4,4′,5,5′-hexachlorodiphenyl ether CAS Registry No: 131138-20-0

Molecular Formula: C12H4Cl6O Molecular Weight: 376.878 Melting Point (°C): 104–105 (Navalainen et al. 1994) 84 (Ruelle & Kesselring 1997) 105 (Passivirta et al. 1999) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 321.0 (calculated-Le Bas method at normal boiling point) 244.0 (Ruelle & Kesselring 1997; quoted Passivirta et al. 1999) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 56.5 (estimated, Passivirta et al. 1999) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.161 (calculated, Passivirta et al. 1999)

Water Solubility (g/m3 or mg/L at 25°C and reported temperature dependence equations): 7.18 × 10–4; 1.51 × 10–3 (quoted exptl., calculated-molar volume, MP and mobile order thermodynamics, Ruelle & Kesselring 1997) 7.18 × 10–4 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

log [SL/(mol/L)] = –1.868 – 1117/(T/K) (liquid, Passivirta et al. 1999)

Vapor Pressure (Pa at 25 and reported temperature dependence equations °C): –4 2.29 × 10 (supercooled liquid PL, GC-RT correlation, Kurz & Ballschmiter 1999) –4 –5 2.49 × 10 ; 4.0 × 10 (supercooled liquid PL, GC-RT correlation; converted to solid PS with fugacity ratio F, Passivirta et al. 1999)

log (PS/Pa) = 12.20 – 4938/(T/K) (solid, Passivirta et al. 1999) log (PL/Pa) = 9.25 – 3822/(T/K) (supercooled liquid, Passivirta et al. 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): 120.23 (calculated-P/C, Kurz & Ballschmiter 1997) log [H/(Pa m3/mol)] = 11.12 – 2705/(T/K) (Passivirta et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 7.11 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

7.11, 6.99 (quoted lit., calculated from lit. log KOW and estimated log SL, Passivirta et al. 1999)

Octanol/Air Partition Coefficient, log KOA:

8.42 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2391

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: mean biological t½ > 170 d (range 100 to > 300 d) in rainbow trout for hexachlorodiphenyl ethers (Niimi 1986).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2392 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.25 2,2′,3,4,4′,5,5′-Heptachlorodiphenyl ether (PCDE-180)

Cl Cl Cl

Cl O Cl

Cl Cl Common Name: 2,2′,3,4,4′,5,5′-Heptachlorodiphenyl ether Synonym: PCDE-180 Chemical Name: 2,2′,3,4,4′,5,5′-heptachlorodiphenyl ether CAS Registry No: 83992-69-2

Molecular Formula: C12H3Cl7O Molecular Weight: 411.324 Melting Point (°C): 88–90 (Navalainen et al. 1994; quoted, Passivirta et al. 1999) 89 (Ruelle & Kesselring 1997) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 341.9 (calculated-Le Bas method at normal boiling point) 256.9 (Ruelle & Kesselring 1997; Passivirta et al. 1999) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 56.5 (estimated, Passivirta et al. 1999) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.236 (mp at 89°C) 0.227 (calculated, Passivirta et al. 1999)

Water Solubility (g/m3 or mg/L at 25°C and reported temperature dependence equations): 1.30 × 10–4; 4.83 × 10–4 (quoted exptl.; calculated-molar volume, mp and mobile order thermodynamics, Ruelle & Kesselring 1997) 1.30 × 10–4 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

log [SL/(mol/L)] = –2.344 – 1073/(T/K) (supercooled liquid, Passivirta et al. 1999) Vapor Pressure (Pa at 25°C and reported temperature dependence equations): –6 6.31 × 10 (supercooled liquid PL, GC-RT correlation, Kurz & Ballschmiter 1999) –5 –5 5.14 × 10 ; 1.17 × 10 (supercooled liquid PL, GC-RT correlation; converted to solid PS with fugacity ratio F, Passivirta et al. 1999)

log (PS/Pa) = 12.31 – 5117/(T/K) (solid, Passivirta et al. 1999) log (PL/Pa) = 9.36 – 4046/(T/K) (supercooled liquid, Passivirta et al. 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): 199.53 (calculated-P/C, Kurz & Ballschmiter 1999) log [H/(Pa m3/mol)] = 11.70 – 2973/(T/K) (Passivirta et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 7.46 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

7.46, 7.20 (quoted lit., calculated from lit. log KOW and estimated log SL, Passivirta et al. 1999) 7.39 (GC-RT correlation, Hankenberg et al. 2003)

Octanol/Air Partition Coefficient, log KOA:

8.55 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2393

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

Biota: mean biological t½ = 146 d (range 90–380 d) in rainbow trout; mean t½ > 300 d (range 146 to > 300 d) for heptachlorodiphenyl ethers (Niimi 1986);

t½ = 6–13 d for Cl7-DPEs to Cl7-DPEs in various tissues of rat (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2394 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.26 2,2′,3,4,4′,5,6′-Heptachlorodiphenyl ether (PCDE-182)

Cl Cl Cl

Cl O Cl

Cl Cl

Common Name: 2,2′,3,4,4′,5,6′-Heptachlorodiphenyl ether Synonym: PCDE-182 Chemical Name: 2,2′,3,4,4′,5,6′-heptachlorodiphenyl ether CAS Registry No: 88467-63-4

Molecular Formula: C12H3Cl7O Molecular Weight: 411.324 Melting Point (°C): 136–138 (Navalainen et al. 1994) 136 (Passivirta et al. 1999) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 341.9 (calculated-Le Bas method at normal boiling point) 256.9 (Passivirta et al. 1999) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 56.5 (estimated, Passivirta et al. 1999) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.076 (calculated, Passivirta et al. 1999)

Water Solubility (g/m3 or mg/L at 25°C and reported temperature dependence equations):

log [SL/(mol/L)] = –2.344 – 1215/(T/K) (supercooled liquid, Passivirta et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): –4 –6 1.01 × 10 ; 7.66 × 10 (supercooled liquid PL, GC-RT correlation; converted to solid PS with fugacity ratio F, Passivirta et al. 1999)

log (PS/Pa) = 12.35 – 5188/(T/K) (solid, Passivirta et al. 1999) log (PL/Pa) = 9.49 – 3976/(T/K) (supercooled liquid, Passivirta et al. 1999)

Henry’s Law Constant (Pa·m3/mol): log [H/(Pa m3/mol)] = 11.74 – 2761/(T/K) (Passivirta et al. 1999)

Octanol/Water Partition Coefficient, log KOW:

7.50 (calculated from lit. log KOW and estimated log SL, Passivirta et al. 1999)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: mean t½ > 300 d (range 146 to > 300 d) for heptachlorodiphenyl ethers (Niimi 1986); t½ = 6–13 d for Cl7-DPEs to Cl9-DPEs in various tissues of rat (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2395

10.1.4.27 2,2′,3,4,4′,6,6′-Heptachlorodiphenyl ether (PCDE-184)

Cl Cl Cl

Cl O Cl

Cl Cl

Common Name: 2,2′,3,4,4′,6,6′-Heptachlorodiphenyl ether Synonym: PCDE-184 Chemical Name: 2,2′,3,4,4′,6,6′-heptachlorodiphenyl ether CAS Registry No: 106220-84-2

Molecular Formula: C12H3Cl7O Molecular Weight: 411.324 Melting Point (°C): 142 (calculated, Passivirta et al. 1999) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 341.9 (calculated-Le Bas method at normal boiling point) 256.9 (Passivirta et al. 1999) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 56.5 (estimated, Passivirta et al. 1999) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.080 (calculated, Passivirta et al. 1999)

Water Solubility (g/m3 or mg/L at 25°C and reported temperature dependence equations):

log [SL/(mol/L)] = –2.344 – 1227/(T/K) (supercooled liquid, Passivirta et al. 1999) Vapor Pressure (Pa at 25°C and reported temperature dependence equations): –4 –5 1.32 × 10 ; 1.06 × 10 (supercooled liquid PL, GC-RT correlation; converted to solid PS with fugacity ratio F, Passivirta et al. 1999)

log (PS/Pa) = 12.73 – 5858/(T/K) (solid, Passivirta et al. 1999) log (PL/Pa) = 9.78 – 4633/(T/K) (supercooled liquid, Passivirta et al. 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): log [H/(Pa m3/mol)] = 12.12 – 3406/(T/K) (Passivirta et al. 1999)

Octanol/Water Partition Coefficient, log KOW:

7.53 (calculated from lit. log KOW and estimated log SL, Passivirta et al. 1999)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

Biota: mean t½ > 300 d (range 146 to > 300 d) for heptachlorodiphenyl ethers (Niimi 1986); t½ = 6–13 d for Cl7-DPEs to Cl9-DPEs in various tissues of rat (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2396 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.28 2,2′,3,3′,4,4′,5,5′-Octachlorodiphenyl ether (PCDE-194)

Cl Cl Cl Cl

Cl O Cl

Cl Cl

Common Name: 2,2′,3,3′,4,4′,5,5′-Octachlorodiphenyl ether Synonym: PCDE-194 Chemical Name: 2,2′,3,3′,4,4′,5,5′-octachlorodiphenyl ether CAS Registry No:

Molecular Formula: C12H2Cl8O Molecular Weight: 445.769 Melting Point (°C): 125–128 (Navalainen et al. 1994) 126 (Ruelle & Kesselring 1997) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 362.8 (calculated-Le Bas method at normal boiling point) 269.8 (Ruelle & Kesselring 1997) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.102 (mp at 126°C)

Water Solubility (g/m3 or mg/L at 25°C): 3.30 × 10–5; 7.57 × 10–5 (quoted exptl., calculated-molar volume, mp and mobile order thermodynamics, Ruelle & Kesselring 1997) 3.30 × 10–5 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C): –5 1.74 × 10 (supercooled liquid PL, GC-RT correlation, Kurz & Ballschmiter 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C): 234.42 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 7.78 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KOA:

8.80 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: t½ = 6 – 13 d for Cl7-DPEs to Cl9-DPEs in various tissues of rat (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2397

10.1.4.29 2,2′,3,3′,4,4′,5,6′-Octachlorodiphenyl ether (PCDE-196)

Cl Cl Cl Cl

Cl O Cl

Cl Cl

Common Name: 2,2′,3,3′,4,4′,5,6′-Octachlorodiphenyl ether Synonym: PCDE-196 Chemical Name: 2,2′,3,3′,4,4′,5,6′-octachlorodiphenyl ether CAS Registry No: 85918-38-3

Molecular Formula: C12H2Cl8O Molecular Weight: 445.769 Melting Point (°C): 147–149 (Navalainen et al. 1994) 149 (Passivirta et al. 1999) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 362.8 (calculated-Le Bas method at normal boiling point) 269.8 (Passivirta et al. 1999) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 56.5 (estimated, Passivirta et al. 1999) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.0595 (calculated, Passivirta et al. 1999)

Water Solubility (g/m3 or mg/L at 25°C and reported temperature dependence equations):

log [SL/(mol/L)] = –2.819 – 1247/(T/K) (supercooled liquid, Passivirta et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): –6 –6 8.86 × 10 ; 5.27 × 10 (supercooled liquid PL, GC-RT correlation; converted to solid PS with fugacity ratio F, Passivirta et al. 1999)

log (PS/Pa) = 12.57 – 5586/(T/K) (solid, Passivirta et al. 1999) log (PL/Pa) = 9.62 – 4341/(T/K) (supercooled liquid, Passivirta et al. 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): log [H/(Pa m3/mol)] = 12.44 – 3094/(T/K) (Passivirta et al. 1999)

Octanol/Water Partition Coefficient, log KOW:

7.88 (calculated from lit. log KOW and estimated log SL, Passivirta et al. 1999)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: t½ = 6 – 13 d for Cl7-DPEs to Cl9-DPEs in various tissues of rat (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2398 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.30 2,2′,3,3′,4,4′,6,6′-Octachlorodiphenyl ether (PCDE-197)

Cl Cl Cl Cl

Cl O Cl

Cl Cl Common Name: 2,2′,3,3′,4,4′,6,6′-Octachlorodiphenyl ether Synonym: PCDE-197 Chemical Name: 2,2′,3,3′,4,4′,6,6′-octachlorodiphenyl ether CAS Registry No: 117948-62-6

Molecular Formula: C12H2Cl8O Molecular Weight: 445.769 Melting Point (°C): 124–126 (Navalainen et al. 1994) 126 (Passivirta et al. 1999) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 362.8 (calculated-Le Bas method at normal boiling point) 269.8 (Passivirta et al. 1999) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 56.6 (estimated, Passivirta et al. 1999) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.100 (calculated, Passivirta et al. 1999)

Water Solubility (g/m3 or mg/L at 25°C and reported temperature dependence equations):

log [SL/(mol/L)] = –2.819 – 1179/(T/K) (supercooled liquid, Passivirta et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): –5 –6 1.75 × 10 ; 1.75 × 10 (supercooled liquid PL, GC-RT correlation; converted to solid PS with fugacity ratio F, Passivirta et al. 1999)

log (PS/Pa) = 12.47 – 5405/(T/K) (solid, Passivirta et al. 1999) log (PL/Pa) = 9.52 – 4228/(T/K) (supercooled liquid, Passivirta et al. 1999) Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): log [H/(Pa m3/mol)] = 12.34 – 3049/(T/K) (Passivirta et al. 1999)

Octanol/Water Partition Coefficient, log KOW:

7.73 (calculated from lit. log KOW and estimated log SL, Passivirta et al. 1999)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: t½ = 6 – 13 d for Cl7-DPEs to Cl9-DPEs in various tissues of rat (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2399

10.1.4.31 2,2′,3,3′,4,4′,5,5′,6-Nonachlorodiphenyl ether (PCDE-206)

Cl Cl Cl Cl

Cl O Cl

Cl Cl Cl

Common Name: 2,2′,3,3′,4,4′,5,5′,6-Nonachlorodiphenyl ether Synonym: PCDE-206 Chemical Name: 2,2′,3,3′,4,4′,5,5′,6-nonachlorodiphenyl ether CAS Registry No: 83992-73-8

Molecular Formula: C12HCl9O Molecular Weight: 480.214 Melting Point (°C): 176–177 (Navalainen et al. 1994) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 383.7 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: Water Solubility (g/m3 or mg/L at 25°C): 1.704 × 10–6 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C): –6 6.92 × 10 (supercooled liquid PL, GC-RT correlation, Kurz & Ballschmiter 1999) Henry’s Law Constant (Pa·m3/mol at 25°C): 1949.84 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 8.07 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KOA:

8.08 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: t½ = 6 – 13 d for Cl7-DPEs to Cl9-DPEs in various tissues of rat (Niimi et al. 1994).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2400 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.4.32 Decachlorodiphenyl ether (PCDE-209)

Cl Cl Cl Cl

Cl O Cl

Cl Cl Cl Cl

Common Name: Decachlorodiphenyl ether Synonym: PCDE-209 Chemical Name: decachlorodiphenyl ether CAS Registry No: 31710-30-2

Molecular Formula: C12Cl10O Molecular Weight: 514.659 Melting Point (°C): 220–222 (Navalainen et al. 1994) 131 (Ruelle & Kesselring 1997) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 404.6 (calculated-Le Bas method at normal boiling point) 295.6 (Ruelle & Kesselring 1997) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 5.64 × 10–8; 1.13 × 10–9 (quoted exptl., calculated-molar volume, mp and mobile order thermodynamics, Ruelle & Kesselring 1997) 5.64 × 10–8 (supercooled liquid, RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Vapor Pressure (Pa at 25°C): –6 1.58 × 10 (supercooled liquid PL, GC-RT correlation, Kurz & Ballschmiter 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C): 14125 (calculated-P/C, Kurz & Ballschmiter 1999)

Octanol/Water Partition Coefficient, log KOW: 8.16 (RP-HPLC-RI correlation, Kurz & Ballschmiter 1999)

Octanol/Air Partition Coefficient, log KOA:

7.40 (calculated-KOW/KAW, Kurz & Ballschmiter 1999)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Biota: mean biological t½ = 46 d (range 27–164 d) in rainbow trout (Niimi 1986)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2401

10.1.5 BROMINATED DIPHENYL ETHERS 10.1.5.1 2-Bromodiphenyl ether (BDE-1)

Br

O

Common Name: 2-Bromodiphenyl ether Synonym: BDE-1, PBDE-1, 1-bromo-2-phenoxybenzene, 2-bromophenyl phenyl ether, o-bromophenyl phenyl ether Chemical Name: 2-monobromodipneyl ether CAS Registry No: 7025-06-1

Molecular Formula: C12H9BrO Molecular Weight: 249.103 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 218.9 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 63.7 (Wong et al. 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C):

Vapor Pressure (Pa at 25°C and reported temperature dependence equation):

0.163; 0.163 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001) log (PL/Pa) = –3327/(T/K) + 10.37, (GC-RT correlation, Wong et al. 2001)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW:

Octanol/Air Partition Coefficient, log KOA: 7.24; 7.34 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Air: first-order degradation t½ = 50 h (estimated by EPIWIN, Wania & Dugani 2003) Surface water: first-order degradation t½ = 900 h (estimated by EPIWIN, Wania & Dugani 2003) Ground water:

Sediment: first-order degradation t½ = 3600 h (estimated by EPIWIN, Wania & Dugani 2003) Soil: first-order degradation t½ = 900 h (estimated by EPIWIN, Wania & Dugani 2003) Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2402 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.2 3-Bromodiphenyl ether (BDE-2)

Br

O

Common Name: 3-Bromodiphenyl ether Synonym: BDE-2, PBDE-2, 1-bromo-3-phenoxybenzene, m-bromophenyl phenyl ether, 3-bromophenyl phenyl ether, 3-phenoxybromobenzene, 3-phenoxyphenyl bromide, m-bromodiphenyl ether, m-phenoxybromobenzene, m-phenox- yphenyl bromide Chemical Name: 3-monobromodiphenyl ether CAS Registry No: 6876-00-2

Molecular Formula: C12H9BrO Molecular Weight: 249.103 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 218.9 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 65.4 (Wong et al. 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C):

Vapor Pressure (Pa at 25°C and reported temperature dependence equation):

0.128; 0.125 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001) log (PL/Pa) = –3416/(T/K) + 10.56, (GC-RT correlation, Wong et al. 2001)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW:

Octanol/Air Partition Coefficient, log KOA: 7.36; 7.44 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2403

10.1.5.3 4-Bromodiphenyl ether (BDE-3)

OBr

Common Name: 4-Bromophenyl phenyl ether Synonym: BDE-3, PBDE-3, p-bromophenyl phenyl ether, 1-bromo-4-phenoxybenzene, 4-bromophenyl phenyl ether, 4-phenoxybromobenzene, 4-phenoxyphenyl bromide, p-bromodiphenyl ether, p-bromophenoxybenzene, p-phenoxybro- mobenzene, p-phenoxyphenyl bromide Chemical Name: 4-bromodiphenyl ether, bromophenyl ether CAS Registry No: 101-55-3

Molecular Formula: C12H9BrO, C6H5-O-C6H4Br Molecular Weight: 249.103 Melting Point (°C): 18.72 (Weast 1977, 1982–83) 18.0 (Dean 1985, 1992) Boiling Point (°C): 310.1 (Weast 1977, 1982–83) 305 (Dean 1985, 1992) Density (g/cm3 at 20°C): 1.423 (Dean 1985) Molar Volume (cm3/mol): 154.8 (20°C, Stephenson & Malanowski 1987) 218.9 (calculated-Le Bas method at normal boiling point) 175.1 (calculated-density) ∆ Enthalpy of Vaporization, HV (kJ/mol): 47.9 (Tittlemier et al. 2002) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C, F: 1.0

Water Solubility (g/m3 or mg/L at 25°C):

4.80 (calculated-KOW, Mabey et al. 1982)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 0.20 (20°C, calculated, Dreisbach 1952; quoted, Callahan et al. 1979; Mabey et al. 1982)

log (PL/kPa) = 5.80633 – 1683.84/(–140.25 + T/K), temp range 463–673 K, (Antoine eq., Stephenson & Malanowski 1987) 0.259 (supercooled liquid PL, GC-RT correlation, Tittlemier et al. 2002)

log (PL/Pa) = –2503/(T/K) + 7.81, (Clausius-Clapeyron eq. from GC-RT correlation measurement, Tittlemier et al. 2002)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated): 10.13 (20–25°C, calculated-P/C, Mabey et al. 1982)

Octanol/Water Partition Coefficient, log KOW: 4.28 (calculated as per Leo et al. 1971 using data of Branson 1977, Callahan et al. 1979; quoted, Ryan et al. 1988) 4.94 (calculated, Mabey et al. 1982) 5.24 (quoted, Van Leeuwen et al. 1992) 4.85 (estimated, Tittlemier et al. 2002)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2404 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Bioconcentration Factor, log BCF:

4.114 (microorganisms-water, calculated-KOW, Mabey et al. 1982)

Sorption Partition Coefficient, log KOC:

4.623 (sediment-water, calculated-KOW, Mabey et al. 1982)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis: Oxidation: << 360 M–1 h–1 for singlet oxygen and << 1.0 M–1 h–1 for peroxy radical (Mabey et al. 1982). Hydrolysis: Biodegradation: estimated half-life of 4.0 h in activated sludge, based on biodegradation of 4-chlorophenyl phenyl ether in activated sewage sludge (Branson 1978; quoted, Callahan et al. 1979). Biotransformation: estimated rate constant of 3 × 10–9 mL cell–1 h–1 for the bacterial transformation in water (Mabey et al. 1982).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2405

10.1.5.4 2,4-Dibromodiphenyl ether (BDE-7)

Br

O Br

Common Name: 2,4-Dibromodiphenyl ether Synonym: BDE-7, PBDE-7, 2,4-dibromo-1-phenoxybenzene Chemical Name: 2,4-dibromodiphenyl ether CAS Registry No: 171977-44-9

Molecular Formula: C12H8Br2O Molecular Weight: 327.999 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 242.2 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 75.4 (Wong et al. 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C):

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 0.0188–0.0127 (for dibromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989)

0.0168; 0.0153 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001) log (PL/Pa) = –3941/(T/K) + 11.34, (GC-RT correlation, Wong et al. 2001)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 5.03 (for dibromodiphenyl ethers, RP-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.03 (quoted value for dibromodiphenyl ether, Pijnenburg et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 8.37; 8.36 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2406 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.5 2,4′-Dibromodiphenyl ether (BDE-9)

Br

Br O

Common Name: 2,4′-Dibromodiphenyl ether Synonym: BDE-8, PBDE-8, 1-bromo-2-(4-bromophenoxy)-benzene Chemical Name: 2,4′-dibromodiphenyl ether CAS Registry No: 147217-71-8

Molecular Formula: C12H8Br2O Molecular Weight: 327.999 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 242.2 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 76.4 (Wong et al. 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C):

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 0.0188–0.0127 (for dibromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989)

0.0137; 0.0124 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001) log (PL/Pa) = –3991/(T/K) + 11.42, (GC-RT correlation, Wong et al. 2001)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 5.03 (dibromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.03 (quoted value for dibromodiphenyl ether, Pijnenburg et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 8.47; 8.45 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2407

10.1.5.6 2,6-Dibromodiphenyl ether (BDE-10)

Br

O

Br

Common Name: 2,6-Dibromodiphenyl ether Synonym: BDE-10, PBDE-10, 1,3-dibromo-2-phenoxybenzene Chemical Name: 2,6-dibromodiphenyl ether CAS Registry No: 51930-04-2

Molecular Formula: C12H8Br2O Molecular Weight: 327.999 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 242.2 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 73.1 (Wong et al. 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C):

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 0.0188–0.0127 (for dibromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989)

0.0277; 0.0256 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001) log (PL/Pa) = –3818/(T/K) + 11.25, (GC-RT correlation, Wong et al. 2001)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 5.03 (dibromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.03 (quoted value for dibromodiphenyl ether, Pijnenburg et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 8.12; 8.13 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2408 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.7 3,4-Dibromodiphenyl ether (BDE-12)

Br

O Br

Common Name: 3,4-Dibromodiphenyl ether Synonym: BDE-12, PBDE-12, 1,2-dibromo-4-phenoxybenzene Chemical Name: 3,4-dibromodiphenyl ether CAS Registry No: 189084-59-1

Molecular Formula: C12H8Br2O Molecular Weight: 327.999 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 242.2 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 77.4 (Wong et al. 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C):

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 0.0188–0.0127 (for dibromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989)

0.0119; 0.107 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001) log (PL/Pa) = –4020/(T/K) + 11.56, (GC-RT correlation, Wong et al. 2001)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 5.03 (for dibromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.03 (quoted value for dibromodiphenyl ether, Pijnenburg et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 8.55; 8.52 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2409

10.1.5.8 3,4′-Dibromodiphenyl ether (BDE-13)

Br

Br O

Common Name: 3,4′-Dibromodiphenyl ether Synonym: BDE-13, PBDE-13, 1-bromo-3-(4-bromophenoxy)-benzene Chemical Name: 3,4′-dibromodiphenyl ether CAS Registry No: 83694-71-7

Molecular Formula: C12H8Br2O Molecular Weight: 327.999 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 242.2 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 77.0 (Wong et al. 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C):

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 0.0188–0.0127 (for dibromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989)

0.0113; 0.0101 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001) log (PL/Pa) = –4044/(T/K) + 11.62, (GC-RT correlation, Wong et al. 2001)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 5.03 (for dibromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.03 (quoted value for dibromodiphenyl ether, Pijnenburg et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 8.57; 8.54 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2410 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.9 4,4′-Dibromodiphenyl ether (BDE-15)

BrO Br

Common Name: 4,4′-Dibromodiphenyl ether Synonym: BDE-15, PBDE-15, 1,1-oxybis[4-bromo]benzene, bis(4-bromophenyl)ether, p, p′-dibromodiphenyl ether Chemical Name: 4,4′-dibromodiphenyl ether CAS Registry No: 2050-47-7

Molecular Formula: C12H8Br2O Molecular Weight: 327.999 Melting Point (°C): 57–58 (Tittlemier et al. 2002) 57.7 (Wania & Dugani 2003) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 242.2 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 78.0 (Wong et al. 2001) 67.7 (Tittlemier et al. 2002) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.477 (mp at 57.5°C, Wania & Dugani 2003)

Water Solubility (g/m3 or mg/L at 25°C): 0.130 (generator column-GC/ECD, Tittlemier et al. 2002)

0.273, 0.79 (supercooled SL, selected measured value, final adjusted value, Wania & Dugani 2003)

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 0.0188–0.0127 (for dibromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) –3 –3 9.84 × 10 ; 8.80 × 10 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001)

log (PL/Pa) = –4074/(T/K) + 11.65, (GC-RT correlation, Wong et al. 2001) 0.0173 (supercooled liquid PL, GC-RT correlation, Tittlemier et al. 2002) log (PL/Pa) = –3528/(T/K) + 10.08, (Clausius-Clapeyron equation from GC-RT correlation measurements, Tittlemier et al. 2002)

0.0143, 0.010 (supercooled, PL, selected measured value, final adjusted value, Wania & Dugani 2003)

Henry’s Law Constant (Pa·m3/mol at 25°C):

21 (calculated-PL/CL, Tittlemier et al. 2002) 4.11 (Wania & Dugani 2003)

Octanol/Water Partition Coefficient, log KOW: 5.03 (for dibromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.03 (value for dibromodiphenyl ether, Pijnenburg et al. 1995) 5.55 (estimated, Tittlemier et al. 2002) 5.03, 5.48 (selected measured value, final adjusted value, Wania & Dugani 2003)

Octanol/Air Partition Coefficient, log KOA: 8.64; 8.60 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2411

8.79, 8.63 (selected measured value, final adjusted value, Wania & Dugani 2003)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis: photochemical degradation pathway of BDE15 undergoes strict debromination via first-order decay, –2 –1 –2 –1 k = 1.98 × 10 min in 100% CH3CN and k = 3.10 × 10 min in CH3OH, corresponding to t½ ~ 30 min. (Rayne et al. 2003) Photooxidation: Hydrolysis: Biodegradation: complete debromination under anaerobic microbial degradation in a fixed-film plug-flow biore- actor (Rayne et al. 2003) Biotransformation:

Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2):

Half-Lives in the Environment:

Air: first order degradation t½ = 120 h (estimated by EPIWIN, Wania & Dugani 2003) Surface water: first order degradation t½ = 1440 h (estimated by EPIWIN, Wania & Dugani 2003) Ground water:

Sediment: first order degradation t½ = 5760 h (estimated by EPIWIN, Wania & Dugani 2003) Soil: first order degradation t½ = 1440 h (estimated by EPIWIN, Wania & Dugani 2003) Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2412 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.10 2,2′,4-Tribromodiphenyl ether (BDE-17)

Br Br

O Br

Common Name: 2,2′,4-Tribromodiphenyl ether Synonym: PBDE-17 Chemical Name: 2,2′,4-tribromodiphenyl ether CAS Registry No: 147217-75-2

Molecular Formula: C12H7Br3O Molecular Weight: 406.895 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 265.5 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 0.00038 (calculated for triBDE, Alcock et al. 1999)

Vapor Pressure (Pa at 25°C at 25°C and reported temperature dependence equation): 0.00266–0.00150 (for tribromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) 0.00266–0.00150 (estimated for tri-BDE, Alcock et al. 1999)

0.00219 (supercooled PL, GC-RT correlation on a CPSil-8 column,Wong et al. 2001)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 5.47–5.58 (for tribromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.47–5.58 (quoted range of value for tribromodiphenyl ether, Pijnenburg et al. 1995; Alcock et al. 1999)

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section: 9.30* (generator column-GC/MS, measured range 15–45°C, Harner & Shoeib 2002)

log KOA = –3.54 + 3803/(T/K), temp range: 15–45°C (generator column-GC/MS, Harner & Shoeib 2002) 9.966, 9.385, 8.841, 8.332 (15, 25, 35, 45°C, calculated-QRSETP model 3, Chen et al. 2002) 9.919, 9.339, 8.789, 8.290 (15, 25, 35, 45°C, calculated-QRSETP model 5, Chen et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2413

TABLE 10.1.5.10.1 Reported octanol-air partition coefficients of 2,2′,4-tribromodiphenyl ether (PBDE 17) at various temperatures

Harner & Shoeib 2002 Chen et al. 2002

generator column-GC/MS quantitative predictive model

t/°C log KOA t/°C log KOA QRSETP* model 3 15 9.777 15 9.966 25 9.27 25 9.385 35 8.901 35 8.841 45 8.517 45 8.332 25 9.3 QRSETP model 5 15 9.919

log KOA = A + B/(T/K) 25 9.339 A –3.45 35 8.798 B 3803 45 9.29 enthalpy of phase change ∆ –1 HOA/(kJ mol ) = 72.8

Quantitative relationships between structures, environmental temperatures and properties.

2,2',4-Tribromodiphenyl ether (PBDE-17): KOA vs. 1/T 11.0

10.5

10.0

9.5 AO

K gol K 9.0

8.5

8.0

7.5 Harner & Shoeib 2002 Harner & Shoeib 2002 (interpolated) Chen et al. 2002 (predicted) 7.0 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) ′ FIGURE 10.1.5.10.1 Logarithm of KOA versus reciprocal temperature for 2,2 ,4-tribromodiphenyl ether (PBDE-17).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2414 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.11 2,4,4′-Tribromodiphenyl ether (BDE-28)

Br

Br O Br

Common Name: 2,4,4′-Tribromodiphenyl ether Synonym: PBDE-28, 2,4-dibromo-1-(4-bromophenoxy)-benzene, p=bromophenyl 2,4-dibromophenyl ether Chemical Name: 2,4,4′-tribromodiphenyl ether CAS Registry No: 41318-75-6

Molecular Formula: C12H7Br3O Molecular Weight: 406.895 Melting Point (°C): 64–64.5 (Tittlemier et al. 2002) 64.25 (Wania & Dugani 2003) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 265.5 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 94.05 (Tittlemier & Tomy 2001) 79.7 (Tittlemier et al. 2002) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.409 (at mp 64.25°C, Wania & Dugani 2003)

Water Solubility (g/m3 or mg/L at 25°C): 0.00038 (calculated for triBDE, Alcock et al. 1999)

0.070 (solid SS, generator column-GC/ECD, Tittlemier et al. 2002) 0.173, 0.334 (supercooled liquid SL, selected measured value, final adjusted value, Wania & Dugani 2003)

Vapor Pressure (Pa at 25°C and the reported temperature dependence equations): 0.00266–0.00150 (for tribromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) 0.00266–0.00150 (estimated for tri-BDE, Alcock et al. 1999) –4 1.78 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier & Tomy 2001) log (PL/Pa) = –4912/(T/K) + 12.73, (GC-RT correlation, Tittlemier & Tomy 2001) 0.00160 (supercooled PL, GC-RT correlation on a CPSil-8 column, Wong et al. 2001) –3 2.19 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier et al. 2002) log (PL/Pa) = –4160/(T/K) + 11.30, (Clausius-Clapeyron eq. from GC-RT correlation, Tittlemier et al. 2002) –3 –3 1.96 × 10 , 1.57 × 10 (supercooled PL, selected measured value, final adjusted value, Wania & Dugani 2003)

Henry’s Law Constant (Pa·m3/mol at 25°C):

5.1 (calculated-PL/CL, Tittlemier et al. 2002) 1.924 (Wania & Dugani 2003)

Octanol/Water Partition Coefficient, log KOW: 5.47–5.58 (for tribromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.47–5.58 (values for tribromodiphenyl ether, Pijnenburg et al. 1995; Alcock et al. 1999) 5.98 (estimated from PCDEs and fragment constant, Tittlemier et al. 2002) 5.53, 5.80 (selected measured value, final adjusted value, Wania & Dugani 2003)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2415

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section: 9.50* (generator column-GC/MS, measured range 15–45°C, Harner & Shoeib 2002)

log KOA = –3.54 + 3889/(T/K), temp range 15–45°C (generator column-GC, Harner & Shoeib 2002) 10.279, 9.689, 9.154, 8.645 (15, 25, 35, 45°C, calculated-QRSETP model 3, Chen et al. 2002) 10.213, 9.634, 9.902, 8.585 (15, 25, 35, 45°C, calculated-QRSETP model 5, Chen et al. 2002) 9.50, 9.41 (selected measured value, final adjusted value, Wania & Dugani 2003)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): –1 k2 = 0.019 d with t½ = 36.5 d (juvenile carp in 100-d experiment Stapleton et al. 2004b)

Half-Lives in the Environment:

Air: first order degradation t½ = 128 h (estimated by EPIWIN, Wania & Dugani 2003) Surface water: first order degradation t½ = 1440 h (estimated by EPIWIN, Wania & Dugani 2003) Ground water:

Sediment: first order degradation t½ = 5760 h (estimated by EPIWIN, Wania & Dugani 2003) Soil: first order degradation t½ = 1440 h (estimated by EPIWIN, Wania & Dugani 2003) Biota: depuration t½ = 36.5 d (juvenile carp in 100-d experiment Stapleton et al. 2004b)

TABLE 10.1.5.11.1 Reported octanol-air partition coefficients of 2,4,4′-tribromodiphenyl ether (PBDE 28) at various temperatures

Harner & Shoeib 2002 Chen et al. 2002

generator column-GC/MS quantitative predictive model

t/°C log KOA t/°C log KOA QRSETP* model 3 15 9.994 15 10.279 25 9.46 25 9.698 35 9.077 35 9.154 45 8.709 45 8.645 25 9.5 QRSETP model 5 15 10.213

log KOA = A + B/(T/K) 25 9.634 A –3.54 35 9.092 B 3889 45 8.585 enthalpy of phase change ∆ –1 HOA/(kJ mol ) = 74.5

Quantitative relationships between structures, environmental temperatures and properties.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2416 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

2,4,4'-Tribromodiphenyl ether (PBDE-28): KOA vs. 1/T 11.0

10.5

10.0

9.5 AO K

gol 9.0

8.5

8.0

7.5 Harner & Shoeib 2002 Harner & Shoeib 2002 (interpolated) Chen et al. 2002 (predicted) 7.0 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) ′ FIGURE 10.1.5.11.1 Logarithm of KOA versus reciprocal temperature for 2,4,4 -tribromodiphenyl ether (PBDE-28).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2417

10.1.5.12 2,4,6-Tribromodiphenyl ether (BDE-30)

Br

O Br

Br

Common Name: 2,4,6-Tribromodiphenyl ether Synonym: PBDE-30, BDE-30, 1,3,5-tribromo-2-phenoxybenzene Chemical Name: 2,4,6-tribromodiphenyl ether CAS Registry No: 155999-95-4

Molecular Formula: C12H7Br3O Molecular Weight: 406.895 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 265.5 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 85.1 (Wong et al. 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 0.00038 (calculated for triBDE, Alcock et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 0.00266–0.00150 (for tribromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) 0.00266–0.00150 (estimated for triBDE, Alcock et al. 1999) –3 –3 4.56 × 10 ; 3.96 × 10 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001)

log (PL/Pa) = –4232/(T/K) + 11.85, (GC-RT correlation, Wong et al. 2001)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 5.47–5.58 (tribromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.47–5.58 (quoted values for tribromodiphenyl ether, Pijnenburg et al. 1995; Alcock et al. 1999)

Octanol/Air Partition Coefficient, log KOA: 9.02; 8.94 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2418 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.13 2,4′,6-Tribromodiphenyl ether (BDE-32)

Br

Br O

Br

Common Name: 2,4′,6-Tribromodiphenyl ether Synonym: PBDE-32, BDE-32, 1,3-dibromo-2-(4-bromophenoxy)-benzene Chemical Name: 2,4′,6-tribromodiphenyl ether CAS Registry No: 189083-60-4

Molecular Formula: C12H7Br3O Molecular Weight: 406.895 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 265.5 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 83.3 (Wong et al. 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 0.00038 (calculated for tri-BDE, Alcock et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 0.00266–0.00150 (for tribromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) 0.00266–0.00150 (estimated for triBDE, Alcock et al. 1999) –3 –3 2.25 × 10 ; 1.90 × 10 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001)

log (PL/Pa) = –4352/(T/K) + 11.94, (GC-RT correlation, Wong et al. 2001)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 5.47–5.58 (for tribromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.47–5.59 (quoted values for tribromodiphenyl ether, Pijnenburg et al. 1995; Alcock et al. 1999)

Octanol/Air Partition Coefficient, log KOA: 9.28; 9.18 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2419

10.1.5.14 2′,3,4-Tribromodiphenyl ether (BDE-33)

Br Br

O Br

Common Name: 2′,3,4-Tribromodiphenyl ether Synonym: PBDE-33, BDE-33. 1,2-dibromo-4-(2-bromophenoxyl)-benzene Chemical Name: 2′,3,4-tribromodiphenyl ether CAS Registry No: 147217-78-5

Molecular Formula: C12H7Br3O Molecular Weight: 406.895 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 265.5 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 81.0 (Wong et al. 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: Water Solubility (g/m3 or mg/L at 25°C): 0.00038 (calculated for tri-BDE, Alcock et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 0.00266–0.00150 (for tribromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) 0.00266–0.01150 (estimated for tri-BDE, Alcock et al. 1999) –3 –3 1.78 × 10 ; 1.49 × 10 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001)

log (PL/Pa) = –4443/(T/K) + 12.15, (GC-RT correlation, Wong et al. 2001) Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 5.47–5.58 (for tribromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.47–5.58 (quoted range of values for tribromodiphenyl ether, Pijnenburg et al. 1995; Alcock et al. 1999)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2420 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.15 3,3′,4-Tribromodiphenyl ether (BDE-35)

Br Br

O Br

Common Name: 3,3′,4-Tribromodiphenyl ether Synonym: PBDE-35, BDE-35, 1,2-dibromo-4-(4-bromophenoxy)-benzene Chemical Name: 3,3′,4-tribromodiphenyl ether CAS Registry No: 147217-80-9

Molecular Formula: C12H7Br3O Molecular Weight: 406.895 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 265.5 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 86.4 (Wong et al. 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 0.00038 (calculated for triBDE, Alcock et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 0.00266–0.00150 (for tribromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) 0.00266–0.00155 (estimated for triBDE, Alcock et al. 1999) –3 –3 1.39 × 10 ; 1.15 × 10 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001)

log (PL/Pa) = –4512/(T/K) + 12.28, (GC-RT correlation, Wong et al. 2001)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 5.47–5.58 (for tribromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.47–5.58 (quoted range of values for tribromodiphenyl ethers, Pijnenburg et al. 1995; Alcock et al. 1999)

Octanol/Air Partition Coefficient, log KOA: 9.61; 9.48 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2421

10.1.5.16 3,4,4′-Tribromodiphenyl ether (BDE-37)

Br

Br O Br

Common Name: 3,4,4′-Tribromodiphenyl ether Synonym: PBDE-37, BDE-37, 1,2-dibromo-4-(4-bromophenoxy)-benzene Chemical Name: 3,4,4′-tribromodiphenyl ether CAS Registry No: 147217-81-0

Molecular Formula: C12H7Br3O Molecular Weight: 406.895 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 265.5 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 86.7 (Wong et al. 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 0.00038 (calculated for tri-BDE, Alcock et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 0.00266–0.00150 (for tribromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) 0.00266–0.00150 (estimated for tri-BDE, Alcock et al. 1999) –3 –4 1.02 × 10 ; 8.0 × 10 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001)

log (PL/Pa) = –4528/(T/K) + 12.20, (GC-RT correlation, Wong et al. 2001)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 5.47–5.58 (for tribromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.47–5.58 (quoted range of values for tribromodiphenyl ether, Pijnenburg et al. 1995; Alcock et al. 1999)

Octanol/Air Partition Coefficient, log KOA: 9.68; 9.54 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2422 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.17 2,2′,4,4′-Tetrabromodiphenyl ether (BDE-47)

Br Br

Br O Br

Common Name: 2,2′,4,4′-Tetrabromodiphenyl ether Synonym: PBDE-47, BDE-47, 1,1¢-oxybis[2,4-dibromo-benzene], NSC 21724 Chemical Name: 2,2′,4,4′-tetrabromodiphenyl ether CAS Registry No: 5436-43-1

Molecular Formula: C12H6Br4O Molecular Weight: 485.791 Melting Point (°C): 83.5–84.5 (Tittlemier et al. 2002) 84.0 (Wania & Dugani 2003) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 288.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 103.13 (Tittlemier & Tomy 2001) 92.0 (Wong et al. 2001) 94.6 (Tittlemier et al. 2002) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.261 (calculated at mp 84°C, Wania & Dugani 2002)

Water Solubility (g/m3 or mg/L at 25°C): 0.00007 (calculated for tetra-BDE, Alcock et al. 1999)

0.015 (solid SS, generator column-GC/ECD, Tittlemier et al. 2002) 0.0496, 0.0947 (supercooled liquid SL, selected measured value, final adjusted value, Wania & Dugani 2003)

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 3.35 × 10–4–2.60 × 10–4 (for tetrabromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) –5 2.19 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier & Tomy 2001) log (PL/Pa) = –5386/(T/K) + 13.42, (GC-RT correlation, Tittlemier & Tomy 2001) –4 –4 3.19 × 10 ; 2.50 × 10 (supercooled PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001) log (PL/Pa) = –4805/(T/K) + 12.62, (GC-RT correlation, Wong et al. 2001) –4 1.86 × 10 (supercooled liquid PL, GC-RT correlation, Tittlemier et al. 2002) log (PL/Pa) = –4940/(T/K) + 12.85, (Clausius-Clapeyron eq. from GC-RT correlation, Tittlemier et al. 2002) –4 –4 2.66 × 10 , 2.15 × 10 (supercooled PL, selected measured value, final adjusted value, Wania & Dugani 2003)

Henry’s Law Constant (Pa·m3/mol at 25°C): 1.5 (calculated-P/C, Tittlemier et al. 2002) 1.107 (Wania & Dugani 2003)

Octanol/Water Partition Coefficient, log KOW: 5.87–6.16 (for tetrabromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.87–6.16 (quoted range for tetra-PBDE, Pijnenburg et al. 1995; Alcock et al. 1999) 6.02 (mean value of Watanabe & Tatsukawa, Gustafsson et al. 1999) 6.55 (estimated, Tittlemier et al. 2002) 6.11, 6.39 (selected measured value, final adjusted value, Wania & Dugani 2003)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2423

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section: 10.53* (generator column-GC/MS, measured range 15–45°C, Harner & Shoeib 2002)

log KOA = –6.47 + 5068/(T/K), temp range: 15–45°C (generator column-GC/MS, Harner & Shoeib 2002) 10.987, 10.406, 9.863, 9.353 (15, 25, 35, 45°C, calculated-QRSETP model 3, Chen et al. 2002) 10.928, 10.349, 9.807, 9.300 (15, 25, 35, 45°C, calculated-QRSETP model 5, Chen et al. 2002) 10.34; 10.14 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002) 10.53, 10.44 (selected measured value, final adjusted value, Wania & Dugani 2003)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): –1 –1 –1 k1 = 120 L d g dry wt, k2 = 0.090 d in blue mussels (Gustafsson et al. 1999) –1 –1 –1 –1 k1 = 0.108 g org. C g lipid h in Lake Höytiäinen sediment; 0.251 g org. C g lipid h in Lake Kuorinka sediment (sediment ingesting oligochaetes, Leppänen & Kukkonen 2004) –1 –1 k2 = 0.034 d in Lake Höytiäinen sediment; 0.071 d in Lake Kuorinka sediment (sediment ingesting oligochaetes, Leppänen & Kukkonen 2004) –1 k2 = 0.023 d with t½ = 30.1 d (juvenile carp in 100-d experiment Stapleton et al. 2004b)

Half-Lives in the Environment:

Air: first order degradation t½ = 256 h (estimated by EPIWIN, Wania & Dugani 2003) Surface water: first order degradation t½ = 3600 h (estimated by EPIWIN, Wania & Dugani 2003) Ground water:

Sediment: first order degradation t½ = 14400 h (estimated by EPIWIN, Wania & Dugani 2003) Soil: first order degradation t½ = 3600 h (estimated by EPIWIN, Wania & Dugani 2003) Biota: depuration half-life of 7.7 d in blue mussels (Gustafsson et al. 1999); biphasic depuration kinetics observed in oligochaete tissues with half-life of 10.5–47.5 h in compartment A for sediment ingesting obliochaetes (Leppänen & Kukkonen 2004)

depuration t½ = 30.1 d (juvenile carp in 100-d experiment Stapleton et al. 2004b)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2424 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 10.1.5.17.1 Reported octanol-air partition coefficients of 2,2′,4,4′-tetrabromodiphenyl ether (PBDE 47) at various temperatures

Harner & Shoeib 2002 Chen et al. 2002

generator column-GC/MS quantitative predictive model

t/°C log KOA t/°C log KOA QRSETP* model 3 15 11.129 15 10.987 25 10.499 25 10.406 35 10.063 35 9.863 45 9.428 45 9.353 25 10.53 QRSETP model 5 15 10.928

log KOA = A + B/(T/K) 25 10.349 A –6.47 35 9.807 B5068459.3 enthalpy of phase change ∆ –1 HOA/(kJ mol ) = 97.0

Quantitative relationships between structures, environmental temperatures and properties.

2,2',4,4'-Tetrabromodiphenyl ether (PBDE-47): KOA vs. 1/T 12.0

11.5

11.0

10.5 AO

K gol K 10.0

9.5

9.0

8.5 Harner & Shoeib 2002 Harner & Shoeib 2002 (interpolated) Chen et al. 2002 (predicted) 8.0 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) ′ ′ FIGURE 10.1.5.17.1 Logarithm of KOA versus reciprocal temperature for 2,2 ,4,4 -tetrabromodiphenyl ether (PBDE-47).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2425

10.1.5.18 2,3′,4,4′-Tetrabromodiphenyl ether (BDE-66)

Br Br

Br O Br

Common Name: 2,3′,4,4′-Tetrabromodiphenyl ether Synonym: PBDE-66, BDE-66, 1,2-dibromo-4-(2,4-dibromophenoxy)-benzene Chemical Name: 2,3′,4,4′-tetrabromodiphenyl ether CAS Registry No: 189084-61-5

Molecular Formula: C12H6Br4O Molecular Weight: 485.791 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 288.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 93.5 (Wong et al. 2001) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 0.00007 (calculated for tetraBDE, Alcock et al. 1999) 0.018 (generator column-GC/ECD, Tittlemier et al. 2002)

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 3.35 × 10–4–2.60 × 10–4 (for tetrabromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) –4 –4 2.38 × 10 ; 1.90 × 10 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001)

log (PL/Pa) = –4882/(T/K) + 12.75, (GC-RT correlation, Wong et al. 2001) –4 1.22 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier et al. 2002) log (PL/Pa) = –5109/(T/K) + 13.23, (Clausius-Clapeyron eq. form GC-RT correlation, Tittlemier et al. 2002)

Henry’s Law Constant (Pa·m3/mol at 25°C):

0.50 (calculated-PL/CL, Tittlemier et al. 2002)

Octanol/Water Partition Coefficient, log KOW: 5.87–6.16 (for tetrabromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.87–6.16 (quoted range for tetra-PBDE, Pijnenburg et al. 1995; Alcock et al. 1999) 6.73 (estimated, Tittlemier et al. 2002)

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section: 10.82* (generator column-GC/MS, measured range 15–45°C, Harner & Shoeib 2002)

log KOA = –7.88 + 5576/(T/K), temp range: 15–45°C (generator column-GC/MS, Harner & Shoeib 2002) 11.348, 10.767, 10.223, 9.714 (15, 25, 35, 45°C, calculated-QRSETP model 3, Chen et al. 2002) 11.281, 10.702, 10.161, 9.653 (15, 25, 35, 45°C, calculated-QRSETP model 5, Chen et al. 2002) 10.49; 10.28 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2426 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

TABLE 10.1.5.18.1 Reported octanol-air partition coefficients of 2,3′,4,4′-tetrabromodiphenyl ether (PBDE 66) at various temperatures

Harner & Shoeib 2002 Chen et al. 2002

generator column-GC/MS quantitative predictive model

t/°C log KOA t/°C log KOA QRSETP* model 3 15 11.516 15 11.348 25 10.773 25 10.767 35 10.224 35 10.223 45 9.673 45 9.714 25 10.82 QRSETP model 5 15 11.281

log KOA = A + B/(T/K) 25 10.702 A –7.88 35 10.161 B 5576 45 9.653 enthalpy of phase change ∆ –1 HOA/(kJ mol ) = 107.0

Quantitative relationships between structures, environmental temperatures and properties.

2,3',4,4'-Tetrabromodiphenyl ether (PBDE-66): KOA vs. 1/T 12.0

11.5

11.0

10.5 AO

K gol K 10.0

9.5

9.0

8.5 Harner & Shoeib 2002 Harner & Shoeib 2002 (interpolated) Chen et al. 2002 (predicted) 8.0 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) ′ ′ FIGURE 10.1.5.18.1 Logarithm of KOA versus reciprocal temperature for 2,3 ,4,4 -tetrabromodiphenyl ether (PBDE-66).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2427

10.1.5.19 2,3′,4,6-Tetrabromodiphenyl ether (BDE-69)

Br Br

O Br

Br

Common Name: 2,3′,4,6-Tetrabromodiphenyl ether Synonym: PBDE-69, BDE-69, 1,3,5-tribromo-2-(30bromophenoxy)-benzene Chemical Name: 2,3′,4,6-tetrabromodiphenyl ether CAS Registry No: 327185-09-1

Molecular Formula: C12H6Br4O Molecular Weight: 485.791 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 288.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 91.1 (Wong et al. 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 0.00007 (calculated for tetraBDE, Alcock et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 3.35 × 10–4–2.60 × 10–4 (for tetrabromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) –4 –4 4.0 × 10 ; 3.20 × 10 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001)

log (PL/Pa) = –4757/(T/K) + 12.56, (GC-RT correlation, Wong et al. 2001)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 5.87–6.16 (for tetrabromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.87–6.16 (quoted range for tetra-PBDE, Pijnenburg et al. 1995; Alcock et al. 1999)

Octanol/Air Partition Coefficient, log KOA: 10.23; 10.04 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2428 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.20 3,3′,4,4′-Tetrabromodiphenyl ether (BDE-77)

Br Br

Br O Br

Common Name: 3,3′,4,4′-Tetrabromodiphenyl ether Synonym: PBDE-77, BDE-77, 1,1′-xylbix[2,3-dibromophenoxy]-benzene Chemical Name: 3.3′,4,4′-tetrabromodiphenyl ether CAS Registry No: 93703-48-1

Molecular Formula: C12H6Br4O Molecular Weight: 485.791 Melting Point (°C): 96.7–98 (Tittlemier et al. 2002) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 288.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 95.3 (Wong et al. 2001) 98.7 (Tittlemier et al. 2002) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 0.00007 (calculated for tetraBDE, Alcock et al. 1999) 0.006 (generator column-GC/ECD, Tittlemier et al. 2002)

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 3.35 × 10–4–2.60 × 10–4 (for tetrabromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) –4 –4 1.56 × 10 ; 1.20 × 10 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001)

log (PL/Pa) = –4977/(T/K) + 12.89, (GC-RT correlation, Wong et al. 2001) –5 6.79 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier et al. 2002) log (PL/Pa) = –5156/(T/K) + 13.13, (Clausius-Clapeyron eq. from GC-RT correlation, Tittlemier et al. 2002)

Henry’s Law Constant (Pa·m3/mol at 25°C):

1.2 (calculated-PL/CL, Tittlemier et al. 2002)

Octanol/Water Partition Coefficient, log KOW: 5.87–6.16 (for tetrabromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 5.87–6.16 (quoted range for tetra-PBDE, Pijnenburg et al. 1995; Alcock et al. 1999) 6.96 (estimated, Tittlemier et al. 2002)

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section: 10.87* (generator column-GC/MS, measured range 15–45°C, Harner & Shoeib 2002)

log KOA = –5.69 + 4936/(T/K), temp range: 15–45°C (generator column-GC/MS, Harner & Shoeib 2002) 11.343, 10.762, 10.218, 9.709 (15, 25, 35, 45°C, calculated-QRSETP model 3, Chen et al. 2002) 11.218, 10.603, 10.097, 9.590 (15, 25, 35, 45°C, calculated-QRSETP model 5, Chen et al. 2002) 10.70; 10.46 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2429

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

TABLE 10.1.5.20.1 Reported octanol-air partition coefficients of 3,3′,4,4′-tetrabromodiphenyl ether (PBDE 77) at various temperatures

Harner & Shoeib 2002 Chen et al. 2002

generator column-GC/MS quantitative predictive model

t/°C log KOA t/°C log KOA QRSETP* model 3 15 11.486 15 11.343 25 10.829 25 10.762 35 10.371 35 10.218 45 9.844 45 9.709 25 10.87 QRSETP model 5 15 11.218

log KOA = A + B/(T/K) 25 10.639 A –5.69 35 10.097 B4936459.59 enthalpy of phase change ∆ –1 HOA/(kJ mol ) = 94.5

Quantitative relationships between structures, environmental temperatures and properties.

3,3',4,4'-Tetrabromodiphenyl ether (PBDE-77): KOA vs. 1/T 12.0

11.5

11.0

10.5 AO K

gol 10.0

9.5

9.0

8.5 Harner & Shoeib 2002 Harner & Shoeib 2002 (interpolated) Chen et al. 2002 (predicted) 8.0 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) ′ ′ FIGURE 10.1.5.20.1 Logarithm of KOA versus reciprocal temperature for 3,3 ,4,4 -tetrabromodiphenyl ether (PBDE-77).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2430 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.21 2,2′,3,3′,4-Pentabromodiphenyl ether (BDE-82)

Br Br Br Br

O Br

Common Name: 2,2′,3,3′,4-Pentabromodiphenyl ether Synonym: PBDE-82, BDE-82, 1,2,3-tribromo-4-(2,3-dibromophenoxy)-benzene Chemical Name: 2,2′,3,3′,4-pentabromodiphenyl ether CAS Registry No: 327185-11-5

Molecular Formula: C12H5Br5O Molecular Weight: 564.687 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 312.1 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 99.1 (Wong et al. 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 6.47 × 10–7 (calculated for pentaBDE, Alcock et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 7.33 × 10–5–1.43 × 10–5 (for pentabromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) 0.07 (estimated for pentaBDE, Alcock et al. 1999) –5 –5 6.47 × 10 ; 4.80 × 10 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001)

log (PL/Pa) = –5175/(T/K) + 13.12, (GC-RT correlation, Wong et al. 2001)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 6.64–6.97 (for pentabromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 6.64–6.97 (quoted range for penta-PBDE, Pijnenburg et al. 1995; Alcock et al. 1999)

Octanol/Air Partition Coefficient, log KOA: 11.14; 10.86 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2431

10.1.5.22 2,2′,3,4,4′-Pentabromodiphenyl ether (BDE-85)

BrBr Br

Br O Br

Common Name: 2,2′,3,4,4′-Pentabromodiphenyl ether Synonym: PBDE-85, BDE-85, 1,2,3-tribromo-4-(2,4-dibromophenoxy)-benzene Chemical Name: 2,2′,3,3,4,4′-pentabromodiphenyl ether CAS Registry No: 182346-21-0

Molecular Formula: C12H5Br5O Molecular Weight: 564.687 Melting Point (°C): 119–121 (Tittlemier et al. 2002) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 312.1 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 110.95 (Tittlemier & Tomy 2001) 110 (Tittlemier et al. 2002) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 6.47 × 10–7 (calculated for pentaBDE, Alcock et al. 1999) 0.006 (generator column-GC/ECD, Tittlemier et al. 2002)

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 7.33 × 10–5–1.43 × 10–5 (for pentabromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) 0.07 (estimated for pentaBDE, Alcock et al. 1999) –6 2.88 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier & Tomy 2001) log (PL/Pa) = –5795/(T/K) + 13.91, (GC-RT correlation, Tittlemier & Tomy 2001) –5 2.81 × 10 (supercooled PL, GC-RT correlation on a CPSil-8 column, Wong et al. 2001) –6 9.86 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier et al. 2002) log (PL/Pa) = –5761/(T/K) + 14.43, (Clausius-Clapeyron eq. from GC-RT correlation, Tittlemier et al. 2002)

Henry’s Law Constant (Pa·m3/mol at 25°C):

0.11 (calculated-PL/CL, Tittlemier et al. 2002)

Octanol/Water Partition Coefficient, log KOW: 6.64–6.97 (for pentabromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 6.64–6.97 (quoted range for penta-PBDE, Pijnenburg et al. 1995; Alcock et al. 1999) 7.03 (estimated, Tittlemier et al. 2002)

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section: 11.66* (generator column-GC/MS, measured range 15–45°C, Harner & Shoeib 2002) 12,312, 11.631, 11.118, 10.544 (15, 25, 35, 45°C, generator column-GC/MS, Harner & Shoeib 2002)

log KOA = –6.22 + 5331/(T/K), temp range: 15–45°C (generator column-GC/MS, Harner & Shoeib 2002) 12.131, 11.549, 11.006, 10.497 (15, 25, 35, 45°C, calculated-QRSETP model 3, Chen et al. 2002) 12.130, 11.551, 11.009, 10.502 (15, 25, 35, 45°C, calculated-QRSETP model 5, Chen et al. 2002)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2432 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

TABLE 10.1.5.22.1 Reported octanol-air partition coefficients of 2,2′,3,4,4′-pentabromodiphenyl ether (PBDE 85) at various temperatures

Harner & Shoeib 2002 Chen et al. 2002

generator column-GC/MS quantitative predictive model

t/°C log KOA t/°C log KOA QRSETP* model 3 15 12.312 15 12.131 25 11.631 25 11.549 35 11.118 35 11.006 45 10.544 45 10.497 25 11.66 QRSETP model 5 15 12.13

log KOA = A + B/(T/K) 25 11.551 A –6.22 35 11.009 B 5331 45 10.502 enthalpy of phase change ∆ –1 HOA/(kJ mol ) = 102.0

note: *QRSETP - quantitative relationships between structures, environmental temperatures and properties.

2,2',3,4,4'-Pentabromodiphenyl ether (PBDE-85): KOA vs. 1/T 13.0

12.5

12.0

11.5 AO

K g K 11.0 ol 10.5

10.0

9.5 Harner & Shoeib 2002 Harner & Shoeib 2002 (interpolated) Chen et al. 2002 (predicted) 9.0 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) ′ ′ FIGURE 10.1.5.22.1 Logarithm of KOA versus reciprocal temperature for 2,2 ,3,4,4 -pentabromodiphenyl ether (PBDE-85).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2433

10.1.5.23 2,2′,4,4′,5-Pentabromodiphenyl ether (BDE-99)

Br Br

Br O Br

Br

Common Name: 2,2′,4,4′,5-Pentabromodiphenyl ether Synonym: PBDE-99, BDE-99, 1,2,4-tribromo-5-(2,4-dibromophenoxy)-benzene Chemical Name: 2,2′,4,4′,5-pentabromodiphenyl ether CAS Registry No: 60348-60-9

Molecular Formula: C12H5Br5O Molecular Weight: 564.687 Melting Point (°C): 90.5–94.5 (Tittlemier et al. 2002) 92.5 (Wania & Dugani 2003) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 312.1 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 104.80 (Tittlemier & Tomy 2001) 100.2 (Wong et al. 2001) 108 (Tittlemier et al. 2002) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.215 (at mp 92.5°C, Wania & Dugani 2003)

Water Solubility (g/m3 or mg/L at 25°C): 6.47 × 10–7 (calculated for pentaBDE, Alcock et al. 1999)

0.0094 (solid SS, generator column-GC/ECD, Tittlemier et al. 2002) 0.0275, 0.0389 (supercooled SL, selected measured value, final adjusted value, Wania & Dugani 2003)

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 7.33 × 10–5–1.43 × 10–5 (for pentabromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) 0.07 (estimated for pentaBDE, Alcock et al. 1999) –5 1.26 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier & Tomy 2001) log (PL/Pa) = –5474/(T/K) + 13.47, (GC-RT correlation, Tittlemier & Tomy 2001) –5 –5 6.82 × 10 ; 5.0 × 10 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001)

log (PL/Pa) = –5241/(T/K) + 13.41, (GC-RT correlation, Wong et al. 2001) –5 1.76 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier et al. 2002) log (PL/Pa) = –5339/(T/K) + 13.37, (Clausius-Clapeyron eq. from GC-RT correlation, Tittlemier et al. 2002) –5 –5 4.57 × 10 , 3.63 × 10 (supercooled PL, selected measured value, final adjusted value, Wania & Dugani 2003)

Henry’s Law Constant (Pa·m3/mol at 25°C):

0.23 (calculated-PL/CL, Tittlemier et al. 2002) 0.530 (Wania & Dugani 2003)

Octanol/Water Partition Coefficient, log KOW: 6.64–6.97 (for pentabromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 6.64–6.97 (quoted range for penta-PBDE, Pijnenburg et al. 1995; Alcock et al. 1999)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2434 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

6.81 (mean value of Watanabe & Tatsukawa, Gustafsson et al. 1999) 7.13 (estimated, Tittlemier et al. 2002) 6.61, 6.76 (selected measured value, final adjusted value, Wania & Dugani 2003)

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section: 11.31* (generator column-GC/MS, measured range 15–45°C, Harner & Shoeib 2002)

log KOA = –4.64 + 4757/(T/K), temp range: 15–45°C (generator column-GC/MS, Harner & Shoeib 2002) 12.067, 11.485, 10.942, 10.433 (15, 25, 35, 45°C, calculated-QRSETP model 3, Chen et al. 2002) 12.002, 11.422, 10.881, 10.373 (15, 25, 35, 45°C, calculated-QRSETP model 5, Chen et al. 2002) 11.28; 10.99 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002) 11.31, 11.26 (selected measured value, final adjusted value, Wania & Dugani 2003)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Bioconcentration and Uptake and Elimination Rate Constants (K1 and K2): –1 –1 –1 k1 = 170 L d g dry wt; k2 = 0.123 d in blue mussels (Gustafsson et al. 1999) –1 –1 –1 –1 –1 k1 = 0.066 g org. C g lipid h ; k2 = 0.022 d in Lake Höytiäinen sediment; k1 = 0.99 g org. C g lipid h ; –1 k2 = 0.026 d in Lake Kuorinka sediment (sediment ingesting oligochaetes, Leppänen & Kukkonen 2004)

Half-Lives in the Environment:

Air: first order degradation t½ = 467 h (estimated by EPIWIN, Wania & Dugani 2003) Surface water: first order degradation t½ = 3600 h (estimated by EPIWIN, Wania & Dugani 2003) Ground water:

Sediment: first order degradation t½ = 14400 h (estimated by EPIWIN, Wania & Dugani 2003) Soil: first order degradation t½ = 3600 h (estimated by EPIWIN, Wania & Dugani 2003) Biota: depuration t½ = 5.6 d in blue mussels (Gustafsson et al. 1999); biphasic depuration kinetics observed in oligochaete tissues with t½ = 10.5–47.5 h in compartment A for sediment ingesting oligochaetes (Leppänen & Kukkonen 2004)

TABLE 10.1.5.23.1 Reported octanol-air partition coefficients of 2,2′,4,4′,5-pentabromodiphenyl ether (PBDE 99) at various temperatures

Harner & Shoeib 2002 Chen et al. 2002

generator column-GC/MS quantitative predictive model

t/°C log KOA t/°C log KOA QRSETP* model 3 15 11.847 15 12.067 25 11.321 25 11.485 35 10.887 35 10.942 45 10.258 45 10.433 25 11.31 QRSETP model 5 15 12.002

log KOA = A + B/(T/K) 25 11.422 A –4.64 35 10.881 B 4757 45 10.373 enthalpy of phase change ∆ –1 HOA/(kJ mol ) = 91.1

note: *QRSETP - quantitative relationships between structures, environmental temperatures and properties.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2435

2,2',4,4',5-Pentabromodiphenyl ether (PBDE-99): KOA vs. 1/T 13.0

12.5

12.0

11.5 AO

K gol K 11.0

10.5

10.0

9.5 Harner & Shoeib 2002 Harner & Shoeib 2002 (interpolated) Chen et al. 2002 (predicted) 9.0 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) ′ ′ FIGURE 10.1.5.23.1 Logarithm of KOA versus reciprocal temperature for 2,2 ,4,4 ,5-pentabromodiphenyl ether (PBDE-99).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2436 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.24 2,2′,4,4′,6-Pentabromodiphenyl ether (BDE-100)

Br Br

Br O Br

Br

Common Name: 2,2′,4,4′,6-Pentabromodiphenyl ether Synonym: PBDE-100, 1,3,5-tribromo-2-(2,4-dibronphenoxy)-benzene Chemical Name: 2,2′,4,4′,6-pentabromodiphenyl ether CAS Registry No: 189084-64-8

Molecular Formula: C12H5Br5O Molecular Weight: 564.687 Melting Point (°C): 102 (Tittlemier et al. 2002) 110 (Wania & Dugani 2003) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 312.1 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 102 (Tittlemier et al. 2002) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.179 (at mp 100.5°C, Wania & Dugani 2003)

Water Solubility (g/m3 or mg/L at 25°C): 0.040 (generator column-GC/ECD, Tittlemier et al. 2002)

0.0499, 0.0541 (supercooled SL, selected measured value, final adjusted value, Wania & Dugani 2003)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 7.33 × 10–5–1.43 × 10–5 (for pentabromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) –5 2.86 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier et al. 2002) log (PL/Pa) = –5339/(T/K) + 13.37, (Clausius-Clapeyron eq. from GC-RT correlation, Tittlemier et al. 2002) –5 –5 3.99 × 10 , 3.68 × 10 (supercooled PL, selected measured value, final adjusted value, Wania & Dugani 2003)

Henry’s Law Constant (Pa·m3/mol at 25°C):

0.069 (calculated-PL/CL, Tittlemier et al. 2002) 0.384 (Wania & Dugani 2003)

Octanol/Water Partition Coefficient, log KOW: 6.64–6.97 (range for penta-PBDEs, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 6.64–6.97 (quoted range for penta-PBDE, Pijnenburg et al. 1995; Alcock et al. 1999) 6.86 (estimated, Tittlemier et al. 2002) 6.51, 6.53 (selected measured value, final adjusted value, Wania & Dugani 2003)

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section: 11.13* (generator column-GC/MS, measured range 15–45°C, Harner & Shoeib 2002)

log KOA = –7.18 + 5459/(T/K), temp range: 15–45°C (generator column-GC/MS, Harner & Shoeib 2002) 11.721, 11.140, 10.596, 10.087 (15, 25, 35, 45°C, calculated-QRSETP model 3, Chen et al. 2002) 11.758, 11.179, 10.637, 10.130 (15, 25, 35, 45°C, calculated-QRSETP model 5, Chen et al. 2002)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2437

11.20; 11.52 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002) 11.13, 11.02 (selected measured value, final adjusted value, Wania & Dugani 2003)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Air: first order degradation t½ = 357 h (estimated by EPIWIN, Wania & Dugani 2003) Surface water: first order degradation t½ = 3600 h (estimated by EPIWIN, Wania & Dugani 2003) Ground water:

Sediment: first order degradation t½ = 14400 h (estimated by EPIWIN, Wania & Dugani 2003) Soil: first order degradation t½ = 3600 h (estimated by EPIWIN, Wania & Dugani 2003) Biota:

TABLE 10.1.5.24.1 Reported octanol-air partition coefficients of 2,2′,4,4′,6-pentabromodiphenyl ether (PBDE 100) at various temperatures

Harner & Shoeib 2002 Chen et al. 2002

generator column-GC/MS quantitative predictive model

t/°C log KOA t/°C log KOA QRSETP* model 3 15 11.755 15 11.721 25 11.185 25 11.14 35 10.509 35 10.596 45 9.993 45 10.087 25 11.13 QRSETP model 5 15 11.758

log KOA = A + B/(T/K) 25 11.179 A –7.18 35 10.637 B 5459 45 10.13 enthalpy of phase change ∆ –1 HOA/(kJ mol ) = 105.0

note: *QRSETP - quantitative relationships between structures, environmental temperatures and properties.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2438 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

2,2',4,4',6-Pentabromodiphenyl ether (PBDE-100): KOA vs. 1/T 13.0

12.5

12.0

11.5 AO

K gol K 11.0

10.5

10.0

9.5 Harner & Shoeib 2002 Harner & Shoeib 2002 (interpolated) Chen et al. 2002 (predicted) 9.0 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) ′ ′ FIGURE 10.1.5.24.1 Logarithm of KOA versus reciprocal temperature for 2,2 ,4,4 ,6-pentabromodiphenyl ether (PBDE-100).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2439

10.1.5.25 2,3,4,4′,6-Pentabromodiphenyl ether (BDE-115)

Br Br

Br O Br

Br

Common Name: 2,3,4,4′,6-Pentabromodiphenyl ether Synonym: PBDE-115, BDE-115, 1,2,3,5-tetrabromo-4-(4-bromophenoxy)benzene Chemical Name: 2,3,4,4′,6-pentabromodiphenyl ether CAS Registry No: 446254-78-0

Molecular Formula: C12H5Br5O Molecular Weight: 564.687 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 312.1 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 101.8 (Wong et al. 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 6.47 × 10–7 (calculated for penta-BDE, Alcock et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 7.33 × 10–5–1.43 × 10–5 (for pentabromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) 0.07 (estimated for penta-BDE, Alcock et al. 1999) –5 –5 3.02 × 10 ; 3.20 × 10 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001)

log (PL/Pa) = –5219/(T/K) + 13.32, (GC-RT correlation, Wong et al. 2001)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 6.64–6.97 (range for penta-PBDEs, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 6.64–6.97 (quoted range for penta-PBDE, Pijnenburg et al. 1995; Alcock et al. 1999)

Octanol/Air Partition Coefficient, log KOA at 25°C: 11.52; 11.20 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2440 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.26 3,3′,4,4′,5-Pentabromodiphenyl ether (BDE-126)

Br Br

Br O Br

Br Common Name: 3.3′,4,4′,5-Pentabromodiphenyl ether Synonym: PBDE-126, BDE-126, 1,2,3-tribromo-5-(3,4-dibromophenoxy)-benzene Chemical Name: 3,3′,4,4′,5-pentabromodiphenyl ether CAS Registry No: 366791-32-4

Molecular Formula: C12H5Br5O Molecular Weight: 564.687 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 312.1 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 6.47 × 10–7 (calculated for pentaBDE, Alcock et al. 1999)

Vapor Pressure (Pa at 25°C): 7.33 × 10–5–1.43 × 10–5 (for pentabromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) 0.07 (estimated for penta-PBDEs, Alcock et al. 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 6.64–6.97 (range for penta-PBDEs, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 6.64–6.97 (quoted range for penta-PBDE, Pijnenburg et al. 1995; Alcock et al. 1999)

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section: 11.97* (generator column-GC/MS, measured range 15–45°C, Harner & Shoeib 2002)

log KOA = –8.41 + 6077/(T/K), temp range: 15–45°C (generator column-GC/MS, Harner & Shoeib 2002) 12.642, 12.001, 11.441, 10.611 (15, 25, 35, 45°C, calculated-QRSETP model 3, Chen et al. 2002) 12.544, 11.964, 11.423, 10.915 (15, 25, 35, 45°C, calculated-QRSETP model 5, Chen et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2441

TABLE 10.1.5.26.1 Reported octanol-air partition coefficients of 3,3′,4,4′,5-pentabromodiphenyl ether (PBDE 126) at various temperatures

Harner & Shoeib 2002 Chen et al. 2002

generator column-GC/MS quantitative predictive model

t/°C log KOA t/°C log KOA QRSETP* model 3 15 12.642 15 12.574 25 12.001 25 11.992 35 11.441 35 11.449 45 10.611 45 10.939 25 11.97 QRSETP model 5 15 12.544

log KOA = A + B/(T/K) 25 11.964 A –8.41 35 11.423 B 6077 45 10.915 enthalpy of phase change ∆ –1 HOA/(kJ mol ) = 116.0

note: *QRSETP - quantitative relationships between structures, environmental temperatures and properties.

3,3',4,4',5-Pentabromodiphenyl ether (PBDE-126): KOA vs. 1/T 13.0

12.5

12.0

11.5 AO

K gol K 11.0

10.5

10.0

9.5 Harner & Shoeib 2002 Harner & Shoeib 2002 (interpolated) Chen et al. 2002 (predicted) 9.0 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) ′ ′ FIGURE 10.1.5.26.1 Logarithm of KOA versus reciprocal temperature for 3,3 ,4,4 ,5-pentabromodiphenyl ether (PBDE-126).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2442 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.27 2,3,3′,4,4′,5′-Hexabromodiphenyl ether (BDE-138)

Br Br Br

Br O Br

Br

Common Name: 2,3,3′,4,4′,5′-Hexabromodiphenyl ether Synonym: PBDE-138, BDE-138, 1,2,3-tribromo-4-(2,4,5-tribromophenoxy)-benzene Chemical Name: 2,3,3′,4,4′,5′-hexabromodiphenyl ether CAS Registry No: 182677-30-1

Molecular Formula: C12H4Br6O Molecular Weight: 643.584 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 335.4 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 114.06 (Tittlemier & Tomy 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 4.08 × 10–6 (calculated for hexaBDE, Alcock et al. 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 9.44 × 10–6–4.22 × 10–6 (for hexabromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) 0.95–0.99 (estimated for hexa-BDE, Alcock et al. 1999) –6 1.51 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier & Tomy 2001) log (PL/Pa) = –5957/(T/K) + 14.17, (GC-RT correlation, Tittlemier & Tomy 2001) –6 1.58 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier et al. 2002) log (PL/Pa) = –6191/(T/K) + 14.97, (Clausius-Clapeyron eq. from GC-RT correlation, Tittlemier et al. 2002)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 6.86–7.93 (range for hexa-PBDEs, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 6.86–7.92 (quoted range for hexa-PBDEs, Pijnenburg et al. 1995; Alcock et al. 1999) 7.91 (estimated, Tittlemier et al. 2002)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2443

10.1.5.28. 2,2′,4,4′,5,5′-Hexabromodiphenyl ether (BDE-153)

Br Br

Br O Br

Br Br Common Name: 2,2′,4,4′,5,5′-Hexabromodiphenyl ether Synonym: PBDE-153, BDE-153, 1,1′-oxybis[2,4,5-tribromophenoxy)-benzene Chemical Name: 2,2′,3,3′,5,5′-hexabromodiphenyl ether CAS Registry No: 68631-49-2

Molecular Formula: C12H4Br6O Molecular Weight: 643.583 Melting Point (°C): 160–163 (Tittlemier et al. 2002) 161.5 (Wania & Dugani 2003) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 335.4 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 107.6 (Wong et al. 2001) 110 (Tittlemier et al. 2002) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.045 (calculated at mp 161.5°C, Wania & Dugani 2003)

Water Solubility (g/m3 or mg/L at 25°C): 4.08 × 10–6 (calculated for hexaBDE, Alcock et al. 1999) –7 8.70 × 10 (Solid SS, generator column-GC/ECD, Tittlemier et al. 2002) 0.0195, 0.0167 (supercooled SL, selected measured value, final adjusted value, Wania & Dugani 2003)

Vapor Pressure (Pa at 25°C and reported temperature dependence equation): 9.44 × 10–6–4.22 × 10–6 (for hexabromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) 0.95–0.99 (estimated for hexa-BDE, Alcock et al. 1999) –6 –8 8.43 × 10 ; 5.80 × 10 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001)

log (PL/Pa) = –5620/(T/K) + 13.78, (GC-RT correlation, Wong et al. 2001) –6 2.09 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier et al. 2002) log (PL/Pa) = –5763/(T/K) + 13.66, (Clausius-Clapeyron eq. from GC-RT correlation, Tittlemier et al. 2002) –6 –6 7.58 × 10 , 8.87 × 10 (supercooled PL, selected measured value, final adjusted value, Wania & Dugani 2003)

Henry’s Law Constant (Pa·m3/mol at 25°C):

0.067 (calculated-PL/CL, Tittlemier et al. 2002) 0.342 (Wania & Dugani 2003)

Octanol/Water Partition Coefficient, log KOW: 6.86–7.93 (hexabromodiphenyl ethers, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 6.86–7.92 (quoted range for hexa-PBDEs, Pijnenburg et al. 1995; Alcock et al. 1999) 7.39 (mean value of Watanabe & Tatsukawa, Gustafsson et al. 1999) 7.62 (estimated, Tittlemier et al. 2002) 7.13, 7.08 (selected measured value, final adjusted value, Wania & Dugani 2003)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2444 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section: 11.82* (generator column-GC/MS, measured range 15–45°C, Harner & Shoeib 2002)

log KOA = –5.39 + 5131/(T/K), temp range 15–45°C (generator column-GC/MS, Harner & Shoeib 2002) 12.708, 12.127, 11.583, 11.074 (15, 25, 35, 45°C, calculated-QRSETP model 3, Chen et al. 2002) 12.556, 11.977, 11.435, 10.928 (15, 25, 35, 45°C, calculated-QRSETP model 5, Chen et al. 2002) 12.15; 11.78 (calibrated GC-RT correlation; GC-RT correlation, Wania et al. 2002) 11.82, 11.89 (selected measured value, final adjusted value, Wania & Dugani 2003)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): –1 –1 k1 = 19 L d g dry wt. in blue mussels (Gustafsson et al. 1999) –1 k2 = 0.086 d in blue mussels (Gustafsson et al. 1999) –1 k2 = 0.051 d with t½ = 13.6 d (juvenile carp in 100-d experiment Stapleton et al. 2004b)

Half-Lives in the Environment:

Air: first order degradation t½ = 1110 h (estimated by EPIWIN, Wania & Dugani 2003) Surface water: first order degradation t½ = 3600 h (estimated by EPIWIN, Wania & Dugani 2003) Ground water:

Sediment: first order degradation t½ = 14400 h (estimated by EPIWIN, Wania & Dugani 2003) Soil: first order degradation t½ = 3600 h (estimated by EPIWIN, Wania & Dugani 2003) Biota: depuration t½ = 8.1 d in blue mussels (Gustafsson et al. 1999); t½ = 13.6 ± 9 d in carp (Stapleton et al. 2004a) depuration t½ = 13.6 d (juvenile carp in 100-d experiment Stapleton et al. 2004b)

TABLE 10.1.5.28.1 Reported octanol-air partition coefficients of 2,2′,4,4′,5,5′-hexabromodiphenyl ether (PBDE 153) at various temperatures

Harner & Shoeib 2002 Chen et al. 2002

generator column-GC/MS quantitative predictive model

t/°C log KOA t/°C log KOA QRSETP* model 3 15 12.318 15 12.708 25 11.86 25 12.127 35 11.569 35 11.583 45 10.534 45 11.074 25 11.82 QRSETP model 5 15 12.556

log KOA = A + B/(T/K) 25 11.977 A –5.39 35 11.435 B 5131 45 10.928 enthalpy of phase change ∆ –1 HOA/(kJ mol ) = 98.2

note: *QRSETP - quantitative relationships between structures, environmental temperatures and properties.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2445

2,2',4,4',5,5'-Hexabromodiphenyl ether (PBDE-153): KOA vs. 1/T 13.0

12.5

12.0

11.5 AO K

gol 11.0

10.5

10.0

9.5 Harner & Shoeib 2002 Harner & Shoeib 2002 (interpolated) Chen et al. 2002 (predicted) 9.0 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) ′ ′ ′ FIGURE 10.1.5.28.1 Logarithm of KOA versus reciprocal temperature for 2,2 ,4,4 ,5,5 -hexabromodiphenyl ether (PBDE-153).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2446 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.29 2,2′,4,4′,5,6′-Hexabromodiphenyl ether (BDE-154)

Br Br

Br O Br

Br Br Common Name: 2,2′,4,4′,5,6′-Hexabromodiphenyl ether Synonym: PBDE-154, BDE-154, 1,3,5-tribromo-2-(2,4,5-tribromophenoxy)-benzene Chemical Name: 2,2′,4,4′,5,6′-hexabromodiphenyl ether CAS Registry No: 207122-15-4

Molecular Formula: C12H4Br6O Molecular Weight: 643.583 Melting Point (°C): 131–132.5 (Tittlemier et al. 2002) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 335.4 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 113 (Tittlemier et al. 2002) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 4.08 × 10–6 (calculated for hexa-PBDEs, Alcock et al. 1999) 8.70 × 10–7 (generator column-GC/ECD, Tittlemier et al. 2002)

Vapor Pressure (Pa at 25°C): 9.44 × 10–6–4.22 × 10–6 (for hexabromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) 0.95–0.99 (estimated for hexa-PBDEs, Alcock et al. 1999) –6 3.80 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier et al. 2002) log (PL/Pa) = –5900/(T/K) + 14.38, (Clausius-Clapeyron eq. from GC-RT correlation, Tittlemier et al. 2002)

Henry’s Law Constant (Pa·m3/mol at 25°C):

0.24 (calculated-PL/CL, Tittlemier et al. 2002)

Octanol/Water Partition Coefficient, log KOW: 6.86–7.93 (range for hexa-PBDEs, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 6.86–7.92 (quoted range for hexa-PBDEs, Pijnenburg et al. 1995; Alcock et al. 1999) 7.39 (estimated, Tittlemier et al. 2002)

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section 11.92* (generator column-GC/MS, measured range 15–45°C, Harner & Shoeib 2002)

log KOA = –4.62 + 4931/(T/K), temp range: 15–45°C (generator column-GC/MS, Harner & Shoeib 2002) 12.471, 11.890, 11.346, 10.837 (15, 25, 35, 45°C, calculated-QRSETP model 3, Chen et al. 2002) 12.361, 11.782, 11.240, 10.733 (15, 25, 35, 45°C, calculated-QRSETP model 5, Chen et al. 2002)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2447

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): –2 –1 k2 = 2.0 × 10 d with t½ = 35 d in juvenile carp (Stapleton et al. 2004a) Half-Lives in the Environment:

Biota: depuration t½ = 35 ± 18 d in juvenile carp (Stapleton et al. 2004a)

TABLE 10.1.5.29.1 Reported octanol-air partition coefficients of 2,2',4,4',5,6'-hexabromodiphenyl ether (PBDE 154) at various temperatures

Harner & Shoeib 2002 Chen et al. 2002

generator column-GC/MS quantitative predictive model

t/°C log KOA t/°C log KOA QRSETP* model 3 15 12.455 15 12.471 25 11.935 25 11.89 35 11.531 35 11.346 45 10.789 45 10.837 25 11.92 QRSETP model 5 15 12.361

log KOA = A + B/(T/K) 25 11.782 A –4.62 35 11.24 B 4931 45 10.733 enthalpy of phase change ∆ –1 HOA/(kJ mol ) = 94.4

note: *QRSETP - quantitative relationships between structures, environmental temperatures and properties.

2,2',4,4',5,6'-Hexabromodiphenyl ether (PBDE-154): KOA vs. 1/T 13.0

12.5

12.0

11.5 AO

K gol K 11.0

10.5

10.0

9.5 Harner & Shoeib 2002 Harner & Shoeib 2002 (interpolated) Chen et al. 2002 (predicted) 9.0 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) ′ ′ ′ FIGURE 10.1.5.29.1 Logarithm of KOA versus reciprocal temperature for 2,2 ,4,4 ,5,6 -hexabromodiphenyl ether (PBDE-154).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2448 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.30 2,3,3′,4,4′,5-Hexabromodiphenyl ether (BDE-156)

Br Br Br

Br O Br

Br Common Name: 2,3,3′,4,4′,5-Hexabromodiphenyl ether Synonym: PBDE-156, BDE-156, 1,2,3,4-tetrabromo-5-(3,4-dibromophenoxy)-benzene Chemical Name: 2,3,3′,4,4′,5-hexabromodiphenyl ether CAS Registry No: 405237-85-6

Molecular Formula: C12H4Br6O Molecular Weight: 643.583 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 335.4 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 4.08 × 10–6 (calculated for hexa-PBDEs, Alcock et al. 1999)

Vapor Pressure (Pa at 25°C): 9.44 × 10–6 –4.22×10–6 (for hexabromodiphenyl ethers, GC-RT correlation, Watanabe & Tatsukawa 1989) 0.95–0.99 (estimated for hexa-PBDEs, Alcock et la. 1999)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 6.86–7.93 (range for hexa-PBDEs, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 6.86–7.92 (quoted range for hexa-PBDEs, Pijnenburg et al. 1995; Alcock et al. 1999)

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section: 11.97* (generator column-GC/MS, measured range 15–45°C, Harner & Shoeib 2002)

log KOA = –5.80 + 5298/(T/K), temp range: 15–45°C (generator column-GC/MS, Harner & Shoeib 2002) 13.211, 12.630, 12.087, 11.577 (15, 25, 35, 45°C, calculated-QRSETP model 3, Chen et al. 2002) 13.150, 12.571, 12.029, 11.522 (15, 25, 35, 45°C, calculated-QRSETP model 5, Chen et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2449

TABLE 10.1.5.30.1 Reported octanol-air partition coefficients of 2,3,3′,4,4′,5′-hexabromodiphenyl ether (PBDE 156) at various temperatures

Harner & Shoeib 2002 Chen et al. 2002

generator column-GC/MS quantitative predictive model

t/°C log KOA t/°C log KOA QRSETP* model 3 15 - 15 13.211 25 11.976 25 12.63 35 - 35 12.087 45 10.858 45 11.577 25 11.97 QRSETP model 5 15 13.15

log KOA = A + B/(T/K) 25 12.571 A –5.80 35 12.029 B 5298 45 11.522 enthalpy of phase change ∆ –1 HOA/(kJ mol ) = 101.0

note: *QRSETP - quantitative relationships between structures, environmental temperatures and properties.

2,3,3',4,4',5'-Hexabromodiphenyl ether (PBDE-156): KOA vs. 1/T 14.0

13.5

13.0

12.5 AO

K gol K 12.0

11.5

11.0

10.5 Harner & Shoeib 2002 Harner & Shoeib 2002 (interpolated) Chen et al. 2002 (predicted) 10.0 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) ′ ′ FIGURE 10.1.5.30.1 Logarithm of KOA versus reciprocal temperature for 2,3,3 ,4,4 ,5-hexabromodiphenyl ether (PBDE-156).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2450 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.31 2,2′,3,4,5,5′,6-Heptabromodiphenyl ether (BDE-183)

Br Br Br

O Br

BrBr Br

Common Name: 2,2′,3,4,5,5′,6-Heptabromodiphenyl ether Synonym: PBDE-183, BDE-183, 1,2,3,5-tetrabromo-4-(2,4,5-trobromophenoxy)-benzene Chemical Name: 2,2′,3,4,5,5′-heptabromodiphenyl ether CAS Registry No: 207122-16-5

Molecular Formula: C12H3Br7O Molecular Weight: 722.479 Melting Point (°C): 171–173 (Tittlemier et al. 2002) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 358.7 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 118 (Tittlemier et al. 2002) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.035 (calculated at mp 172°C, Wania & Dugani 2003)

Water Solubility (g/m3 or mg/L at 25°C): 1.50 × 10–6 (generator column-GC/ECD, Tittlemier et al. 2002)

Vapor Pressure (Pa at 25°C and the reported temperature dependence equations): –7 4.68 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier et al. 2002) log (PL/Pa) = –6185/(T/K) + 14.43, (Clausius-Clapeyron eq. from GC-RT correlation, Tittlemier et al. 2002)

Henry’s Law Constant (Pa·m3/mol at 25°C):

0.0074 (calculated-PL/CL, Tittlemier et al. 2002)

Octanol/Water Partition Coefficient, log KOW: 7.14 (quoted, Wania & Dugani 2003)

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section: 11.96* (generator column-GC/MS, measured range 15–45°C, Harner & Shoeib 2002)

log KOA = –3.71 + 4672/(T/K), temp range: 15–45°C (generator column-GC/MS, Harner & Shoeib 2002) 13.263, 12.681, 12.138, 11.628 (15, 25, 35, 45°C, calculated-QRSETP model 3, Chen et al. 2002) 13.206, 12.627, 12.085, 11.577 (15, 25, 35, 45°C, calculated-QRSETP model 5, Chen et al. 2002)

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

Air: first-order degradation t½ = 1540 h (estimated by EPIWIN, Wania & Dugani 2003)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2451

Surface water: first-order degradation t½ = 3600 h (estimated by EPIWIN, Wania & Dugani 2003) Ground water:

Sediment: first order degradation t½ = 14400 h (estimated by EPIWIN, Wania & Dugani 2003) Soil: first order degradation t½ = 3600 h (estimated by EPIWIN, Wania & Dugani 2003) Biota:

TABLE 10.1.5.31.1 Reported octanol-air partition coefficients of 2,3,3′,4,4′,5′-hexabromodiphenyl ether (PBDE 183) at various temperatures

Harner & Shoeib 2002 Chen et al. 2002

generator column-GC/MS quantitative predictive model

t/°C log KOA t/°C log KOA QRSETP* model 3 15 - 15 13.263 25 11.964 25 12.681 35 11.477 35 12.138 45 10.978 45 11.628 25 11.96 QRSETP model 5 15 13.206

log KOA = A + B/(T/K) 25 12.627 A –3.71 35 12.085 B 4672 45 11.577 enthalpy of phase change ∆ –1 HOA/(kJ mol ) = 89.5

note: *QRSETP - quantitative relationships between structures, environmental temperatures and properties.

2,3,3',4,4',5'-Hexabromodiphenyl ether (PBDE-183): KOA vs. 1/T 14.0

13.5

13.0

12.5 AO

K gol K 12.0

11.5

11.0

10.5 Harner & Shoeib 2002 Harner & Shoeib 2002 (interpolated) Chen et al. 2002 (predicted) 10.0 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) ′ ′ ′ FIGURE 10.1.5.31.1 Logarithm of KOA versus reciprocal temperature for 2,2 ,3,4,4 ,5 ,6-heptabromodiphenyl ether (PBDE-183).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2452 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.1.5.32 2′,3,3′,4,4′,5,6-Heptabromodiphenyl ether (BDE-190)

Br Br Br

Br O Br

Br Br

Common Name: 2′,3,3′,4,4′,5,6-Heptabromodiphenyl ether Synonym: PBDE-190, BDE-190, pentabromo-(3,4-dibromophenoxy)-benzene Chemical Name: 2′,3,3′,4,4′,5,6-heptabromodiphenyl ether CAS Registry No: 189084-68-2

Molecular Formula: C12H3Br7O Molecular Weight: 722.479 Melting Point (°C): Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 358.7 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 121.15 (Tittlemier & Tomy 2001) 115.8 (Wong et al. 2001) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C):

Vapor Pressure (Pa at 25°C at 25°C and reported temperature dependence equation): –7 2.34 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier & Tomy 2001) log (PL/Pa) = –6327/(T/K) + 14.60, (GC-RT correlation, Tittlemier & Tomy 2001) –7 –7 9.05 × 10 ; 5.70 × 10 (supercooled liquid PL: calibrated GC-RT correlation; GC-RT correlation, Wong et al. 2001)

log (PL/Pa) = –6048/(T/K) + 14.24, (GC-RT correlation, Wong et al. 2001) –7 2.82 × 10 (supercooled liquid PL: GC-RT correlation, Tittlemier et al. 2002) log (PL/Pa) = –6552/(T/K) + 15.44, (Clausius-Clapeyron eq. from GC-RT correlation, Tittlemier et al. 2002) Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 8.36 (estimated, Tittlemier et al. 2002)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2453

10.1.5.33 Decabromodiphenyl ether (BDE-209)

Br Br Br Br

Br O Br

Br Br Br Br

Common Name: Decabromodiphenyl ether Synonym: PBDE-209, BDE-209, 1,1′-oxybis[2,3,4,5,6-pentabromo]-benzene, bis(pentabromophenyl)-ether, 102(E), 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether, Decabromobiphenyl oxide, decabromophenyl ether Chemical Name: decabromodiphenyl ether CAS Registry No: 1163-19-5

Molecular Formula:C12Br10O Molecular Weight: 959.167 Melting Point (°C): 302.5 (Wania & Dugani 2003) Boiling Point (°C): Density (g/cm3): Molar Volume (cm3/mol): 428.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): –9 4.17 × 10 (solid SS, quoted lit., Wania & Dugani 2003)

Vapor Pressure (Pa at 25°C): –9 2.95 × 10 (supercooled liquid PL, estimated, Wania & Dugani 2003)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 9.97 (decabromodiphenyl ether, reversed phase-HPLC-RT correlation, Watanabe & Tatsukawa 1989) 9.97 (quoted from Watanabe & Tatsukawa 1990, Pijnenburg et al. 1995) 9.97 (quoted, Wania & Dugani 2003)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constant, k, and Half-Lives, t½: Volatilization:

Photolysis: half-lives on different matrices, indoors under artificial UV-light “continuous”: t½ < 0.25 h on silica gel, t½ = 12 h on sand, t½ = 40–60 h on sediment and t½ = 150–200 h in soil; for outdoors under sunlight “discontinuous”: t½ = 37 h on sand and 80 h on sediment; for outdoor sunlight “continuous”: t½(calc) = 13 h on sand and t½(calc) = 30 on sediment (Södertröm et al. 2004) Photooxidation: Hydrolysis: Biodegradation: anaerobic degradation decreased by 30% within 238 d corresponding to a pseudo-first-order k=1×10–3 d–1 by sewage sludge collected from a mesophilic digester (Gerecke et al. 2005)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2454 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Biotransformation:

Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): –2 –1 k2 = 1.4 × 10 d with t½ = 50 d in juvenile carp (Stapleton et al. 2004)

Half-Lives in the Environment:

Air: first order degradation t½ = 7620 h (estimated by EPIWIN, Wania & Dugani 2003) Surface water: first order degradation t½ = 3600 h (estimated by EPIWIN, Wania & Dugani 2003) Ground water:

Sediment: first order degradation t½ = 14400 h (estimated by EPIWIN, Wania & Dugani 2003); photolysis half- lives on different matrices, indoors under artificial UV-light “continuous”: t½ = 40–60 h on sediment; for outdoors under sunlight “discontinuous”: t½ = 80 h on sediment; for outdoor sunlight “continuous”: t½(calc) = 30 on sediment (Södertröm et al. 2004)

Soil: first order degradation t½ = 3600 h (estimated by EPIWIN, Wania & Dugani 2003); photolysis half-lives on different matrices, indoors under artificial UV-light “continuous”: t½ = 12 h on sand, and 150–200 h in soil; for outdoors under sunlight “discontinuous”: 37 h on sand; for outdoor sunlight “continuous”: t½(calc) = 13 h on sand (Södertröm et al. 2004)

Biota: depuration t½ = 50 ± 17 d in juvenile carp (Stapleton et al. 2004)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2455 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 95.7 81.8 73.5 88.3 60.9 69.7 90.6 92 M 148.2 169.1 102.7 169.1 180.0 (Continued) /mol 3 cm at 20°C Le Bas 89.90 75.22 72.59 68.87 81.09 85.24 97.72 107 ρ Molar volume, V volume, Molar 108.79 127.3 139.96 151.6 119.05 127.5 101.72 119.6 118.72 148.2 154.11 193.4 MW/ ρ 3 ° C g/m 0.71361 103.87 106.1 1.1911 119.71 148.2 1.2192 117.30 147.9 0.7466 136.85 151.6 0.994 0.73 0.6689 0.7495 136.32 150.5 1.201 0.8814 0.7684 169.48 196 1.18066 78.37 1.11 at 20 Density, Density, ° C* 1 0.854 ratio, F Fugacity at 25 °C b.p. 215 1 193.5 °C m.p. 88.148 –108.6 55 188.106 0.7404 11.8580.513 101.5 –103.5 1 59.5 1.0336 1 1.0703 58.07968.07482.101 –111.972.106 –85.61 –91.3 –108.44 35 31.5 64.7 65 1 1 1 1 0.9378 0.9132 0.8892 g/mol 106.551173.037 –70 108 1 1.0475 Molecular weight, MW 2 3 ) 102.174 –124 92.3 1 3 ) 108.138 –37.13 153.7 1 3 5 ) 3 O 102.174 –85.4 68.4 1 H 3 2 2 H CH OO 143.012 171.064 –51.9 –97 178.5 187 1 1 2 2 2 2 O 114.958 –41.5 106OO 1 177.028 177.028 32 10 2 OO 74.121O 102.174 –116.2 –114.8 130.228 34.5 90.08 –95.2 1 1 140.28 1 O 46.068 –141.5 –24.8 1 2 ) ) 2 2 2 2 2 O 86.132 –49.1 88 1 2 4 6 O O O O O ) ) ) O ) 6 4 6 8 2 5 7 9 10 8 ClO 92.524 –26ClO 118ClOClO 142.583 1 142.583 142.583 –26.8 < –18 198.5 197.5 1 1 CH) O-CH O-C 3 Cl Cl Cl ) H H 5 7 7 7 2 4 6 6 4 2 3 H H H H 2- 4- ) H H H H H )O(CH )O(C 3 4 5 4 3 5 2 3 4 5 4 H H H H 9 H H H H 3 7 7 7 OC(CH H 2 7 7 2 3 2 H formula H 6 4 Molecular of ethers and halogenated ethers 227881 C 75-56-9 C CAS no. CAS 542-88-1 C 534-22-5 C 766-51-8 C 108-20-3 ((CH 111-44-4 (ClC 123-91-1 C 628-81-9 (C 111-43-3 (C 109-99-9 C 110-00-9 C 106-89-8 C 142-96-1 (C 142-68-7 C 1984-59-4 C 1984-65-2 C 2845-89-8 C : butyl ether (MTBE) ether butyl 1634-04-4 CH SUMMARY TABLES AND QSPR PLOTS AND QSPR TABLES SUMMARY t- propyl ether propyl butyl ether butyl © 2006 by Taylor & Francis Group, LLC 2,3-Dichloroanisole Diethyl ether (Ethyl ether) (Ethyl ether Diethyl 60-29-7 (C 4-Chloroanisole 3-Chloroanisole Halogenated ethers: Halogenated Epichlorohydrin Aliphatic ethers: ether) (Methyl ether Dimethyl 115-10-6Di- n- (CH ether Butyl ethyl Bis(2-chloroethoxy)methane 111-91-1 (ClC Bis(2-chloromethyl)ether ethers Aromatic Anisole (Methoxybenzene) 100-66-3 (C 1,4-Dioxane TABLE 10.2.1 TABLE properties of physical Summary Compound Furan 2-Methylfuran Tetrahydrofuran Tetrahydropyran Di- n- ether vinyl 2-Chloroethyl 110-75-8 ClC Bis(2-chloroisopropyl)ether 108-60-1 (ClC Di-isopropyl ether Di-isopropyl Methyl Methyl oxide 1,2-Propylene Bis(2-chloroethyl)ether 2-Chloroanisole 2,6-Dichloroanisole Chloromethyl methyl ether methyl Chloromethyl 107-30-2 ClCH 10.2

© 2006 by Taylor & Francis Group, LLC 2456 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals M 190.0 158.6 190.0 210.9 210.9 200.4 221.3 242.2 /mol 3 cm at 20°C Le Bas ρ Molar volume, V volume, Molar 143.51 172.5 MW/ ρ 3 ° C g/m 1.0500 114.43 136.1 1.0748 158.36 195.6 0.9651 126.58 150.3 at 20 Density, Density, ° C* 0.362 0.241 0.264 0.270 0.396 0.230 ratio, F Fugacity at 25 °C b.p. 186 1 0.949 °C m.p. g/mol 138.164207.054241.499 22.5275.944 83 206136.190 66 90 1 Molecular weight, MW 5 ) 122.164 –29.43 169.81 1 5 H 2 2 2 2 H 2 2 OOO 211.473O 211.473 245.918 245.918 70 61.5 88 84 241 0.438 O O O 3 3 4 4 O 170.206 26.87 258 0.959 2 3 4 O O 120.149 –35.6 194.1 1 OC 8 10 2 10 Cl Cl Cl Cl Cl Cl Cl 5 5 4 4 H H 8 7 6 )O(C H 8 5 8 12 H H H H H H H CH 7 7 7 7 8 8 8 5 formula H 6 Molecular H 6 87-40-1 C 91-16-7 C 96-09-3 C CAS no. CAS 101-84-8 C 944-61-6 C 539-30-0 C 2772-46-5 C 54135-80-7 C 16766-29-3 C (Continued) = 56 J/mol K. J/mol = 56 fus S ∆ © 2006 by Taylor & Francis Group, LLC Styrene oxide 2,3,4-Trichloroanisole 4,5-Dichloroveratrole 3,4,5-Trichloroveratrole Tetrachloroveratrole Phenetole (Ethoxybenzene) 103-73-1 (C TABLE 10.2.1 TABLE * Assuming Compound Diphenyl ether Diphenyl Benzyl ethyl ether Benzyl ethyl 2,3,4,5-Tetrachloroanisole 938-86-3 C 2,4,6-Trichloroanisole 2,3,5,6-Tetrachloroanisole (1,2- Veratrole Dimethoxybenzene) 6936-40-9 C

© 2006 by Taylor & Francis Group, LLC Ethers 2457 ) /mol) 3 Continued ( 2.888 0.0461 9.584 8.663 3.37 20.90 13.22* 31.90 10.46 87.72 25.33 70.31 128.9 257.6 258.7 544.6 481.3 H/(Pa·m calculated P/C calculated Henry's law constant law Henry's OW 0.27 2.60 0.1 0.03 log K ) 3 1.662 2.70 3.436 2.50 9.938 2.58 1.776 3.21 71.32 1.12 63.61 2.03 14.80 2.11 32.35 2.03 77.31 1.52 191.4 0.38 468.1 1.26 140.8 1.28 816.2 0.89 995.0 0.82 146.9 1.34 476.5 0.94 711.2 0.30 7662 8196 /(mol/m L )C 3 0.4909 0.5748 3.24 0.0741 0.0741 3.14 1.662 1.648 3.436 1.766 9.938 71.32 63.61 14.80 32.35 77.31 191.4 468.1 140.8 816.2 146.9 995.0 476.5 771.2 /(mol/m S Solubility Selected properties Selected )C 3 86.9 13.12 237 235 490 230 6500 1600 7900 3306 1700 21.6 81000 206 10200 472 850 104 /Pa S/(g/m 5000 miscible 8200 4000 22000 8334 3566 15000 2400 65800 9536 85700 L 20000 P ies of ethers and halogenated ethers at 25°C ethers and halogenated ethers at of ies 21.6 Vapor pressure Vapor 206 472 850 104 /Pa 5000 8200 4000 3566 8334 2400 9536 S 20000 71000 71000 476000 8196 71600 71600 60500 21600 21600 miscible 33500 33500 42000 80000 80000 10000 24900 24900 decompose P 600000 600000 353000 7662 r) ether : : : butyl ether (MTBE) ether butyl t- propyl ether propyl butyl ether butyl © 2006 by Taylor & Francis Group, LLC 2,3-Dichloroanisole 2,6-Dichloroanisole 4-Chloroanisole 3-Chloroanisole 2-Chloroanisole Aromatic ethers Aromatic Anisole (Methoxybenzene) Bis(2-chloroethoxy)methane 2-Chloroethyl vinyl ether vinyl 2-Chloroethyl Compound Bis(2-chloroisopropyl)ether Di- n- Furan Diethyl ether (Ethyl ethe (Ethyl ether Diethyl Methyl ether Butylethyl Di- n- Tetrahydrofuran Tetrahydropyran 1,4-Dioxane Aliphatic ethers ether) (Methyl ether Dimethyl TABLE 10.2.2 TABLE propert of selected physical-chemical Summary Bis(2-chloroethyl)ether Halogenated ethers Halogenated Epichlorohydrin Di-isopropyl ether Di-isopropyl oxide 1,2-Propylene Chloromethyl methyl methyl Chloromethyl Bis(chloromethyl)ether

© 2006 by Taylor & Francis Group, LLC 2458 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals /mol) 3 1.716 H/(Pa·m calculated P/C calculated 26.67 43.80 Henry's law constant law Henry's OW 2.64 2.18 2.68 1.61 log K ) 3 4.658 48.42 23.0 /(mol/m L )C 3 0.0511 0.1411 4.03 4.658 0.2477 1.2879 3.11 /(mol/m S Solubility Selected properties Selected . 3 )C 3 mol/m 1.351.82 0.0055 0.0074 0.0228 0.0280 4.50 4.40 1.59 0.0058 0.0250 4.86 S 10.3 0.0426 0.1077 4.01 18.7 0.1099 0.1146 4.21 10.8 13.2 0.0624 0.1425 4.02 72 569 6690 48.42 2800 23.30 3.05 40 /mol) = 101325 Pa/C = 101325 /mol) 3 100 204 /Pa S/(g/m L P 2.93 40 Vapor pressure Vapor 100 204 /Pa S P essure, Henry's law constant H (Pa·m Henry'sessure, law nzene) le (Continued) © 2006 by Taylor & Francis Group, LLC Diphenyl ether Diphenyl Benzyl ethyl ether Benzyl ethyl Styrene oxide Compound 2,3,4-Trichloroanisole 2,4,6-Trichloroaniso 2,3,4,5-Tetrachloroanisole 2,3,5,6-Tetrachloroanisole (1,2-Dimethoxybe Veratrole 4,5-Dichloroveratrole 3,4,5-Trichloroveratrole Tetrachloroveratrole Phenetole (Ethoxybenzene) TABLE 10.2.2 TABLE atmospheric pressure pr exceeds * Vapor

© 2006 by Taylor & Francis Group, LLC Ethers 2459

TABLE 10.2.3 Suggested half-life classes of ethers and halogenated ethers in various environmental compartments at 25°C

Air Water* Soil Sediment Compound class class class class Aliphatic ethers: Dimethyl ether (Methyl ether)2556 Diethyl ether (Ethyl ether)2556 Methyl t-butyl ether (MTBE)2556 Di-n-propyl ether 2556 1,2-Propylene oxide2456 Furan 2456 Tetrahydrofuran 2456 1,4-Dioxane 2456 Halogenated ethers: Chloromethyl methyl ether2556 Bis(chloromethyl)ether2556 Bis(2-chloroethyl)ether2556 Bis(2-chloroisopropyl)ether2556 2-Chloroethyl vinyl ether2556 Bis(2-chloroethoxy)methane 2556 Aromatic ethers: Anisole (Methoxybenzene) 2556 Styrene oxide 2456 Diphenyl ether 2556

* Certain ethers will have much shorter half-lives because of hydrolysis with singlet oxygen, and biodegradation; this half-life class is conservatively assigned, see Chapter 1 for a discussion.

where,

Class Mean half-life (h) Range (h) 1 5 < 10 2 17 (~ 1 d) 10–30 3 55 (~ 2 d) 30–100 4 170 (~ 1 week) 100–300 5 550 (~ 3 weeks) 300–1,000 6 1700 (~ 2 months) 1,000–3,000 7 5500 (~ 8 months) 3,000–10,000 8 17000 (~ 2 years) 10,000–30,000 9 55000 (~ 6 years) > 30,000

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2460 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

solubility vs. Le Bas molar volume 5 Aliphatic ethers Halogenated ethers 4 Aromatic ethers

3 ) 3 m c/lom(/ 2 L

C gol C 1

0

-1

-2 60 80 100 120 140 160 180 200 220 240 260 3 Le Bas molar volume, VM/(cm /mol) FIGURE 10.2.1 Molar solubility (liquid or supercooled liquid) versus Le Bas molar volume for ethers.

vapor pressure vs. Le Bas molar volume 6 Aliphatic ethers Halogenated ethers Aromatic ethers 5

a 4 P / L P gol P

3

2

1 60 80 100 120 140 160 180 200 220 240 260 3 Le Bas molar volume, VM/(cm /mol) FIGURE 10.2.2 Vapor pressure (liquid or supercooled liquid) versus Le Bas molar volume for ethers.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2461

log K vs. Le Bas molar volume 6 OW Aliphatic ethers Halogenated ethers 5 Aromatic ethers

4

WO 3 K gol K 2

1

0

-1 60 80 100 120 140 160 180 200 220 240 260 3 Le Bas molar volume, VM/(cm /mol) FIGURE 10.2.3 Octanol-water partition coefficient versus Le Bas molar volume for ethers.

Henry's law constant vs. Le Bas molar volume 5 Aliphatic ethers Halogenated ethers 4 Aromatic ethers

3 )lom/

3 2 m .aP(/H gol .aP(/H

1

0

-1

-2 60 80 100 120 140 160 180 200 220 240 260 3 Le Bas molar volume, VM/(cm /mol) FIGURE 10.2.4 Henry’s law constant versus Le Bas molar volume for ethers.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2462 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log K vs. solubility 6 OW Aliphatic ethers Halogenated ethers 5 Aromatic ethers

4

WO 3 K gol K 2

1

0

-1 -2 -1 0 1 2 3 4 5 3 log CL/(mol/cm ) FIGURE 10.2.5 Octanol-water partition coefficient versus molar solubility (liquid or supercooled liquid) for ethers.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2463

10.3 REFERENCES Abraham, M.H., Le J., Acree, Jr., W.E., Carr, P.W., Dallas, A.J. (2001) The solubility of gases and vapours in dry octan-1-ol at 298 K. Chemosphere 44, 855–863. Alcock, R.E., Sweetman, A., Jones, K.C. (1999) Assessment of organic contaminant fate in waste water treatment plants. Chemosphere 38, 2247–2262. Altshuller, A.P., Cohen, I.R., Sleva, S.F., Kopczynski, S.L. (1962) Air pollution: Photooxidation of aromatic hydrocarbons. Science 138(3538), 442–443. Ambrose, D., Ellender, J.H., Sprake, C.H.S., Townsend, R. (1976) Thermodynamic properties of organic oxygen compounds. XLIII. Vapour pressures of some ethers. J. Chem. Thermodyn. 8, 165–178. Ambrose, D., Sprake, C.H.S., Townsend, R. (1972) Thermodynamic properties of organic oxygen compounds. XXIX. The vapour pressure of diethyl ether. J. Chem. Thermodyn. 4, 247–254. Anbar, M., Neta, P. (1967) A compilation of specific bimolecular rate and hydroxyl radical with inorganic and organic compounds in aqueous solution. Int. J. Appl. Radiation Isotopes 18, 493–523. Anderson, T.A., Beauchamp, J.J., Walton, B.T. (1991) Organic chemicals in the environment. J. Environ. Qual. 20. 420–424. Arif, M., Dellinger, B., Taylor P.H. (1997) Rate coefficients of hydroxyl radical reaction with dimethyl ether and methyl tert-butyl ether over an extended temperature range. J. Phys. Chem. A 101, 2436–2441. Atkinson, R. (1985) Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radicals with organic compounds under atmospheric conditions. Chem. Rev. 85, 69–201. Atkinson, R. (1987) Structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds. Int. J. Chem. Kinetics 19, 799–828. Atkinson, R. (1989) Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J. Phys. Chem. Ref. Data Monograph No. 1.

Atkinson, R. (1991) Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with organic compounds. J. Phys. Chem. Ref. Data 20(3), 459–507.

Atkinson, R. (2000) Atmospheric chemistry of VOCs and Nox. Atmos. Environ. 34, 2063–2101. Atkinson, R., Aschmann, S.M., Carter, W.P.L. (1983) Kinetics of the reactions of O3 and OH radicals with furan and thiophene at 298 ± 2 K. Int. J. Chem. Kinet. 15, 51–61.

Atkinson, R., Aschmann, S.M., Pitts, J.N., Jr. (1988) Rate constants for the gas-phase reactions of the NO3 radicals with a series of organic compounds at 296 ± 2 K. J. Phys. Chem. 92, 3454–3457.

Atkinson, R., Aschmann, S.M., Winer, A.M. (1987) Kinetics of the reactions of NO3 radicals with a series of aromatic compounds. Environ. Sci. Technol. 21, 1123–1126.

Atkinson, R., Aschmann, S.M., Winer, A.M., Carter, W.P.L. (1985) Rate constants for the gas-phase reactions of the NO3 radicals with furan, thiophene, and pyrrole at 295 ± 1 K and atmospheric pressure. Environ. Sci. Technol. 19, 87–90. Atkinson, R., Carter, W.L. (1984) Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem. Rev. 84, 437–470. Banerjee, S., Yalkowsky, S.H., Valvani, S.C. (1980) Water solubility and octanol/water partition coefficient of organics. Limitations of solubility-partition coefficient correlation. Environ. Sci. Technol. 14, 1227–1229. Banerjee, S., Howard, P.H., Lande, S.S. (1990) General structure-vapor pressure relationships for organics. Chemosphere 21(10–11), 1173–1180. Banerjee, S., Howard, P.H., Rosenberg, A.M., Dombrowski, A.E., Sikka, H., Tullis, D. (1984) Development of a general kinetic model for biodegradation and its application to chlorophenols and related compounds. Environ. Sci. Technol. 18, 416–422. Barrows, M.E., Petrocelli, S.R., Macek, K.J. (1980) Bioconcentration and elimination of selected water pollutants by bluegill sunfish (Lepomis machrochirus). In: Dynamic, Exposure, Hazard Assessment of Toxic Chemicals. Haque, R., Editor, pp. 379–392, Ann Arbor Science Publishers Inc., Ann Arbor, Michigan. Bechalany, A., Röthlisberger, T., El Tayar, N., Testa, B. (1989) Comparison of various non-polar stationary phases used for assessing lipophilicity. J. Chromatog. 473, 115–124. Bennett, G.M., Phillip, W.G. (1928) CCL II.-The influence of structure on the solubilities of ethers. Part I. Aliphatic ethers. J. Chem. Soc. 1930–1937. Bennett, G.M., Phillip, W.G. (1928) CCLIII.-The influence of structure on the solubilities of ethers. Part II. Some cyclic ethers. J. Chem Soc. 1937–1943. Bennett, P.J., Kerr, J., (1989) Kinetics of the reactions of hydroxyl radicals with aliphatic ethers studies under simulated atmospheric conditions. J. Atmos. Environ. 8, 87–94. Bent, H.E., Francel, R.J. (1948) The vapor pressure of “mustard gas” (β, β = -dichloroethylsulfide), diphenyl ether and their mixture. J. Am. Chem. Soc. 70, 634–637. Bierwagen, B.G., Keller, A.A. (2001) Measurement of Henry’s law constant for methyl tert-butyl ether using solid-phase microex- traction. Environ. Toxicol. Chem. 20, 1625–1629. Bobbo, S., Fedele, L., Camporese, R., Stryjek, R. (2000) Isothermal vapor-liquid equilibrium for the three binary systems 1,1,1,2,3,3- hexafluoropropane with dimethyl ether or propane, and 1,1,1,3,3,3-hexafluoropropane with dimethyl ether. Fluid Phase Equil. 174, 3–12.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2464 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Bodor, N., Garbanyi, Z., Wong, C.K. (1989) A new method for the estimation of partition coefficient. J. Am. Chem. Soc. 111, 3783–3786. Booth, H.S., Everson, H.E. (1948) Hydrotropic solubilities: Solubilities in 40 per cent sodium xylenesulfonate. Ind. Eng. Chem. 40(8), 1491–1493. Bott, T.R., Sadler, H.N. (1966) Vapor pressure of propylene oxide. J. Chem. Eng. Data 11, 25. Boublik, T., Fried, V. Hala, E. (1984) The Vapor Pressures of Pure Substances. 2nd Edition, Elsevier, Amsterdam. Branson, D.R. (1977) A new capacitor fluid - A case study in product stewardship. pp. 44–61. In: Aquatic Toxicology and Hazard Evaluation. ASTM Special Technical Publication 634. Mayer, F.L., Hamelink, J.L., Editors, American Society for Testing and Materials, Philadelphia, Pennsylvania. Branson, D.R. (1978) Predicting the fate of chemicals in the aquatic environment from laboratory data. pp. 55–70. In: Estimating the Hazard of Chemical Substances to Aquatic Life. ASTM Special Technical Publication 657. Cairns, J., Jr., Dickson, K.L., Maki, A.W., Editors, American Society for Testing and Materials, Philadelphia, Pennsylvania. Bridie, A.L., Wolff, C.J.M., Winter, M. (1979) BOD and COD of some petrochemicals. Water Res. 13, 627–630. Brook, D., Nielsen, I., De Bruijn, J., Hermens, J. (1990) An interlaboratory evaluation of the stir-flask method for the determination of octanol-water partition coefficients (log P). Chemosphere 21, 119–133. Brown S.L., Chan, F.Y., Jones, J.L., Liu, D.H., McCaleb, K.E. (1975) Research Program on Hazard Priority Ranking of Manufactured Chemicals. NTIS PB-263163. Stanford Research Institute, Menlo Park, California. Budavari, S., Ed. (1983) The Merck Index, An Encyclopedia of Chemicals, Drugs and Biologicals. 11th edition, Merck & Co., Inc., Rahway, New Jersey. Burkhard, L.P., Kuehl, D.W., Veith, G.D. (1985) Evaluation of reverse phase liquid chromatography/mass spectrometry for estimating of n-octanol/water partition coefficients. Chemosphere 14, 1551–1560. Callahan, M.A., Slimak, M.W., Gabel, N.W., May, I.P., Fowler, C.F., Freed, J.R., Jennings, P., Durfee, R.L., Whitemore, F.C., Maestri, B., Mabey, W.R., Holt, B.R., Gould, C. (1979) Water Related Environmental Fate of 129 Priority Pollutants. Volume I, EPA Report, No. 440/4-79-029a. Versar, Inc., Springfield, Virginia. Capel, P.D., Larson, S.J. (1995) A chemodynamic approach for estimating losses of target organic chemicals form water during sample holding time. Chemosphere 30, 1097–1107. Chao, J., Lin, C.T., Chung, T.H. (1983) Vapor pressure of coal chemicals. J. Phys. Chem. Ref. Data 12, 1033–1063. Chen, J., Xue, X., Schramm, K.-W., Quan, X., Yang, F., Kettrup, A. (2002) Quantitative structure-property relationships for octanol- air partition coefficients of polychlorinated biphenyls. Chemosphere 48, 535–544. Chickos, J.S., Acree, Jr., W.E., Liebman, J.F. (1999) Estimating solid-liquid phase change enthalpies and entropies. J. Phys. Chem. Ref. Data 28, 1535–1673. Chiou, C.T., Freed, V.H., Schmedding, D.W., Kohnert, R. (1977) Partition coefficient and bioaccumulation of selected, organic compounds. Environ. Sci. Technol. 11, 475–478. Chou, J.T., Jurs, P.C. (1979) Computation of partition coefficients from molecular structures by a fragment addition method. In: Physical Chemical Properties of Drugs. Medical Research Series Vol. 10, Yalkowsky, S.H., Sinkula, A.A., Valvani, S.C., Editors. Cidlinsky, J., Polak, J. (1969) Coll. Czech. Chem. Comm. 34, 1317. Ref. see Boublik et al. 1984. Collerson, R.R., Counsell, J.F., Handley, R., Martin, J.F., Sprake, H.C. (1965) Thermodynamic properties of organic oxygen com- pounds. Part XV. Purification and vapour pressures of some ketones, and ethers. J. Chem. Soc. 3697–3700. Collander, R. (1951) The partition of organic compounds between higher alcohols and water. Acta Chem. Scand. 5, 774–780. Cox, H.L., Cretcher, L.H. (1926) The influence of temperature on the reciprocal solubility of the mono-alkyl ethers of ethylene glycol and water. J. Am. Chem. Soc. 48, 451–453. Crenshaw, J.L., Cope, A.C., Finkelstein, N., Rogan, R. (1938) The dioxanates of the mercuric halides. J. Am. Chem. Soc. 60, 2306–2311. Cupitt, L.T. (1980) Fate of Toxic and Hazardous Materials in the Air Environment. U.S. EPA-600/3-80-084. Darnall, K.R., Lloyd, A.C., Winer, A.M., Pitts, Jr., J.N. (1976) Reactivity scale for atmospheric hydrocarbons based on reaction with hydroxyl radicals. Environ. Sci. Technol. 10, 692–696. Daubert, T.E., Danner, R.P. (1985) Data Compilation Tables of Properties of Pure Compounds. American Institute of Chemical Engineering. Dean, J.D., Editor (1985) Lange's Handbook of Chemistry. 13th Edition, McGraw-Hill, Inc., New York. Dean, J.D., Editor (1992) Lange's Handbook of Chemistry. 14th Edition, McGraw-Hill, Inc., New York. DeMore, W.B., Bayes, K.D. (1999) Rate constants for the reactions of hydroxyl radical with several alkanes, cycloalkanes, and dimethyl ether. J. Phys. Chem. A, 103, 2649–2654. Deneer, J.W., Sinnige, T.L., Seinen, W., Hermens, J.L.M. (1988) A quantitative structure-activity relationship for the acute toxicity of some epoxy compounds to the guppy. Aqua. Toxicol. 13, 195–204. Dilling, W.L., Bredweg, C.J., Tefertiller, N.B. (1976) Organic photochemistry. Simulated atmospheric photodecomposition rate of methylene chloride, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and other compounds. Environ. Sci. Technol. 10, 351–356.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2465

Dilling, W.L., Gonsior, S.J., Boggs, G.U., Mendoza, C.G. (1988) Organic photochemistry. 20. A method for estimating gas-phase rate constants for reactions of hydroxyl radicals with organic compounds from their relative rates of reaction with hydrogen under photolysis in 1,1,2-trichlorotrifluoroethane solution. Environ. Sci. Technol. 22, 1447–1453. Dilling, W.L., Tefertiller, N.B., Kallos, G.J. (1975) Evaporation rates of methylene chloride, chloroform, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and other chlorinated compounds in dilute aqueous solutions. Environ. Sci. Technol. 9(9), 833–838. Dohnal, V., Hovorka, Š. (1999) Exponential saturator: A novel gas-liquid partitioning technique for measurement of large limiting activity coefficients. Ind. Eng. Chem. Res. 38, 2036–2043. Dojlido, J.R. (1979) Investigations of Biodegradability and Toxicity of Organic Compounds. Final Report 1975–79. U.S. EPA-600/2- 79–163. Dorfman, L.M., Adams, G.E. (1973) Reactivity of Hydroxyl Radicals in Aqueous Solution. NSRD-NDB-46. NTIS COM-73-50623. National Bureau of Standards, Washington, D.C. 51 pp. Dow Chemical (1979) Personal communication from M. Thomas of Dow Chemical Company to N.W. Gabel of Versar, Inc. Dreisbach, R.R. (1952) Pressure-Volume-Temperature Relationships of Organic Compounds. Handbook Publishers Inc., Sandusky, Ohio. Dreisbach, R.R. (1955) Physical Properties of Chemical Compounds. 19th Advances in Chemistry Series, American Chemical Society, Washington, D.C. Dreisbach, S.A. Martin, A.A.I. (1949) Physical data on some organic compounds. Ind. Eng. Chem. 41, 2875–2878. Dreisbach, R.R., Shrader, S.A. (1949) Vapor pressure-temperature data on some organic compounds. Ind. Eng. Chem. 41, 2879–2880. Dulin, D., Drossman, H., Mill, T. (1986) Products and quantum yields for photolysis of chloroaromatics in water. Environ. Sci. Technol. 20, 72–77. Du Pont (1966) Solubility Relationships of the Freon Fluorocarbon Compounds. Technical Bulletin B-7, Du Pont de Nemours & Company, Wilmington, Delaware. Durkin, P.R., Howard, P.H., Saxena, J. (1975) Investigations of Selected Potential Environmental Contaminants: Haloethers. U.S. EPA-560/2-75-006. U.S. Environmental Protection Agency, Office of Toxic Substances, Washington, D.C. Eadsforth, C.V. (1986) Application of reversed-phase HPLC for the determination of partition coefficients. Pestic. Sci. 17, 311–325. Eon, C., Pommier, C., Guiochon, G. (1971) Vapor pressures and second virial coefficients of some five-membered heterocyclic derivatives. J. Chem.Eng. Data 16, 408–410. Edney, E.O., Kleindienst, T.E., Coese, E.W. (1986) Room temperature rate constants for the reaction of OH radicals with selected chlorinated and oxygenated hydrocarbons. Intl. J. Chem. Kinet. 18, 1355–1371. Ellington, J.J. (1989) Hydrolysis Rate Constants for Enhancing Property-Reactivity Relationships. EPA/600/3-89/063. NTIS PB89- 220479. U.S. Environmental Protection Agency, Environmental Research Laboratory, Athens, Georgia. Ellington, J.J., Stancil, F.E., Jr., Payne, W.D., Trusty, C.D. (1987) Measurements of Hydrolysis Rate Constants for Evaluation of Hazardous Waste Land Disposal: Data on 54 Chemicals. Volume II. EPA/600/3-87/019. U.S. Environmental Protection Agency, Athens, Georgia. Fischer, A., Müller, M., Klasmeier, J. (2004) Determination of Henry’s law constant for methyl tert-butyl ether (MTBE) at groundwater temperatures. Chemosphere 54, 689–694. Fishbein, L. (1979) Potential halogenated industrial carcinogenic and mutagenic chemicals. III. Alkane halides, alkanols and ethers. Sci. Total Environ. 11, 223–257. Flom, D.G., Alpert, N., Elving, P.J. (1951) Systems involving cis- or trans-dichloroethylene and an acetal or ether. Ind. Eng. Chem. 43, 1178–1181 Fujita, T., Iwasa, J., Hansch, C. (1964) A new substituent constant, "pi" derived from partition coefficients. J. Am. Chem. Soc. 86, 5175–5180. Funasaki, N., Hada, S., Neya, S., Machida, K. (1984) Intramolecular hydrophobic association of two alkyl chains of oligoethylene glycol diethers and diesters in water. J. Phys. Chem. 88, 5786–5790. Funasaki, N., Hada, S., Neya, S. (1985) Partition coefficients of aliphatic ethers-molecular surface area approach. J. Phys. Chem. 89, 3046–3049. Gaffney, J.S., Levine, S.Z. (1979) Predicting gas phase organic molecule reaction rates using linear free-energy correlations. I. O(3P) and OH addition and abstraction reactions. Int'l. J. Chem. Kinet. 11, 1197–1209. Gallaugher, A.F., Hibbert, H. (1937) Studies on reactions relating to carbohydrates and polysaccharides. LV. Vapor pressures of the polyethylene glycols and their derivatives. J. Am. Chem. Soc. 59, 2521–2525. Garst, J.E. (1984) Accurate, wide-range, automated, high-performance liquid chromatographic method for the estimation of octanol/water partition coefficients. II: Equilibrium in partition coefficient measurements, additivity of substituent constants, and correlation of biological data. J. Pharm. Sci. 73, 1623–1629. Ge, J., Liu, W., Dong, S. (1987) Determination of partition coefficients with chemically bonded omega-hydroxysilica as HPLC column packing. Sepu 5, 182. GEMS (1986) Graphical Exposure Modeling System. FAP, Fate Atmospheric Pollution. Data Base, Office of Toxic Substances. U.S. Environmental Protection Agency. Gerecke, A.C., Hartmann, P.C., Heeb, N.V., Kohler, H.-P. E. Giger, W., Schmid, Pl, Zennegg, M., Kohler, M. (2005) Anaerobic degradation of decabromodiphenyl ether. Environ. Sci. Technol. 39, 1078–1083. Gibbard, J.F., Creek, J.L. (1980) Vapor pressure of methanol from 288.15 to 337.65 K. J. Chem. Eng. Data 19, 308–310.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2466 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Gluck, S.J. (1990) Extended octanol-water partition coefficient determined by dual-mode centrifugal partition chromatography. J. Liq. Chromatogr. 13, 3559–3570. Güesten, H., Filby, W.G., Schoop, S. (1981) Prediction of hydroxyl radical reaction rates with organic compounds in the gas phase. Atom. Environ. 15, 1763–1765. Gustafsson, K., Björk, M., Burreau, S., Gilek, M. (1999) Bioaccumulation kinetics of brominated flame retardants (polybrominated diphenyl ethers) in blue mussels (Mytilus edules). Environ. Toxicol. Chem. 18, 1218–1224. Guthrie, Jr., G.B., Scott, D.W., Hubbard, W.N., Katz, C., McCullough, J.P., Gross, M.E. (1952) Thermodynamic properties of furan. J. Am. Chem. Soc. 74, 4662–4669. Haag, W.R., Mill, T. (1988) Effect of a subsurface sediment on hydrolysis of haloalkanes and epoxides. Environ. Sci. Technol. 22, 658–663. Hackenberg, R., Schütz, A., Ballschmiter, K. (2003) High-resolution gas chromatography retention data as basis for the estimation

of KOW values using PCB congeners as secondary standards. Environ. Sci. Technol. 37, 2274–2279. Haky, J.E., Young, A.M. (1984) Evaluation of a simple HPLC correlation method for the estimation of the octanol-water partition coefficients of organic compounds. J. Liq. Chromatogr. 7, 675–689. Hammond, M.W., Alexander, M. (1972) Effects of chemical structure on microbial degradation of methyl substituted aliphatic acids. Environ. Sci. Technol. 6(8), 732–735. Hanai, T., Tran, C., Hubert, J. (1981) An approach to the prediction of retention times in liquid chromatography. J. HRC & CC 4, 454–460. Hansch, C., Anderson, S.M. (1967) The effect of intramolecular hydrophobic bonding on partition coefficients. J. Org. Chem. 32, 2583. Hansch, C., Leo, A. (1979) Substituents Constants for Correlation Analysis in Chemistry and Biology. Wiley, New York. Hansch, C., Leo, A. (1985) Medchem Project Issue No. 26. Pomona College, Claremont, California. Hansch, C., Leo, A. (1987) Log P Database, Pomona College Medicinal Chemistry Project, Claremont, CA 91711. Hansch. C., Leo, A.J., Hoekman, D. (1995) Exploring QSAR, Hydrophobic, Electronic, and Steric Constants. ACS Professional Reference Book, American Chemical Society, Washington, DC. Hansch, C., Quinlan, J.E., Lawrence, G.L. (1968) The linear free-energy relationship between partition coefficients and aqueous solubilities of organic liquids. J. Org. Chem. 33, 347–350. Hansch, C., Vittoria, A., Silipo, C., Jow, P.Y.C. (1975) Partition coefficients and the structure-activity relationship of anesthetic gases. J. Med. Chem. 18, 546–548.

Harner, T., Shoeib, M. (2002) Measurements of octanol-air partition coefficients (KOA) for polybrominated diphenyl ethers (PBDEs): Predicting partitioning in the environment. J. Chem. Eng. Data 47, 228–232. Hawker, D.W., Connell, D.W. (1985) Relationship between partition coefficient, uptake rate constant, clearance rate constant and time to equilibrium for bioaccumulation. Chemosphere 14(9), 1205–1219. Hill, A.E. (1923) The mutual solubility of liquids. I. The mutual solubility of ethyl ether and water. II. The solubility of water in benzene. J. Am. Chem. Soc. 45, 1143–1152. Hinckley, D.A., Bidleman, T.F., Foreman, W.T. (1990) Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatographic retention data. J. Chem. Eng. Data 35, 232–237. Hine, J., Mookerjee, P.K. (1975) The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions. J. Org. Chem. 40, 292–298. Horstmann, S., Wilken, M., Fischer, K., Gmehling, J. (2004) Isothermal vapor-liquid equilibrium and excess enthalpy data for the binary systems propylene oxide + 2-methylpentane and difluoromethane (R32) + pentafluoroethane (R125). J. Chem. Eng. Data 49,1504–1507. Hovorka, F., Schaeffer, R.A., Dreisbach, D. (1936) The system dioxane and water. J. Am. Chem. Soc. 58, 2264–2267. Howard, P.H., Editor (1989) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. I-Large Production and Priority Pollutants. Lewis Publishers, Chelsea, Michigan. Howard, P.H., Editor (1990) Handbook of Environmental Fate and Exposure Data for Organic Chemicals. Vol. II-Solvents. Lewis Publishers Inc., Chelsea, Michigan. Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., Michalenko, E.M., Editors (1991) Handbook of Environmental Degra- dation Rates. Lewis Publishers, Inc., Chelsea, Michigan. Isnard, P., Lambert, S. (1988) Estimating bioconcentration factors from octanol-water partition coefficient and aqueous solubility. Chemosphere 17, 21–34. Isnard, P., Lambert, S. (1989) Aqueous solubility/n-octanol water partition coefficient correlations. Chemosphere 18, 1837–1853. Jónasson, A., Persson, O., Fredenslund, A. (1995) High pressure solubility of carbon dioxide and carbon monoxide in dimethyl ether. J. Chem. Eng. Data 40, 296–300. Jones, D.M., Wood, N.F. (1964) The mechanism of vinyl ether hydrolysis. J. Chem. Soc. 5400–5403. Kablukov, I.A., Malischeva, V.T. (1925) The volumetric method of measurement of the mutual solubility of liquids. The mutual solubility of the systems ethyl ether-water and iso-amyl alcohol-water. J. Am. Chem. Soc. 47, 1553–1561. Kankaanperä, A. (1969) Basocoties of the oxygen atoms in symmetrical and unsymmetrical acetals. Part II. The base strengths and their relation to the rate coefficients of the different partial fission reactions of acetal hydrolysis. Acta. Chem. Scand. 23, 1728–1732. Kawamoto, K., Urano, K. (1989) Parameters for predicting fate of organochlorine pesticides in the environment. I. Octanol-water and air-water partition coefficients. Chemosphere 18, 1987–1996.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2467

Kawasaki, M. (1980) Experiences with test scheme under chemical control law of Japan: An approach to structural-activity correla- tions. Ecotox. Environ. Saf. 4, 444–454. Kennedy, R.M., Sagenkahn, M., Aston, J.G. (1941) The heat capacity and entropy, heats of fusion and vaporization, and the vapor pressure of dimethyl ether. The density of gaseous dimethyl ether. J. Am. Chem. Soc. 64, 2267–2272. Kier, L.B., Hall, L. (1976) Molecular Connectivity in Chemistry and Drug Research. Chapter 5. Molecular properties and molecular connectivity. In: Medicinal Chemistry, Vol. 14 (A series of Monographs), pp. 123–167. Academic Press, New York. Kincannon, D.F., Lin, Y.S. (1985) Microbial degradation of hazardous wastes by land treatment. In: Proc. Indust. Waste Conf. 40, 607–619. Kleopfer, R.D., Fairless, B.J. (1972) Characterization of organic compounds in a municipal water supply. Environ. Sci. Technol. 6, 1036–1037. Kobe, K.A., Ravicz, A.E., Vohra, S.P. (1956) Critical properties and vapor pressures of some ethers and heterocyclic compounds. Ind. Eng. Chem. 1, 50–56. Koizumi, E., Ouchi, S. (1970) Nippon Kagaku Zassi 91, 501. -reference from Boublik et al. 1984 Kolb, B., Welter, C., Bichler, C. (1992) Determination of partition coefficients by automatic equilibrium headspace gas chromatography by vapor phase calibration. Chromatographia 34, 235–240. Krasnykh, E.L., Vasiltsova, T.V., Verevkin, S.P., Heintz, A. (2002) Vapor pressures and enthalpies of vaporization of benzyl halides and benzyl ethers. J. Chem. Eng. Data 47, 1372–1378. Krähenbühl, M.A., Gmehling, J. (1994) Vapor pressure of methyl tert-butyl ether, ethyl tert-butyl ether, isopropyl tert-butyl ether, tert-amyl methyl ether, and tert-amyl ethyl ether. J. Chem. Eng. Data 39, 759–762. Kramer, C-R., Henze, U. (1990) Verteilungseigenschaften von Bensenderivaten. 1. Zum temperatureinfluss auf die verteilung von monosubstituierten benzenen und nitrobenzenen im system n-octanol/wasser. Z. Phys. Chemie - Leizing 271, 503–513 Krijgsheld, K.R., Van der Gen, A. (1986) Assessment of the impact of the emission of certain organochlorine compounds of the aquatic environment. Part II: Allylchloride, 1,3- and 2,3-dichloropropene. Chemosphere 15, 881–893. Kühne, R., Ebert, R.-U., Kleint, F., Schmit, G., Schüürmann, G. (1995) Group contribution methods to estimate water solubility of organic chemicals. Chemosphere 30, 2061–2077. Kurz, J., Ballschmitter, K. (1999) Vapour pressures, aqueous solubilities, Henry's law constants, partition coefficients between

gas/water (Kgw) n-octanol/water (KOW) and gas/octanol (Kgo) of 106 polychlorinated diphenyl ethers (PCDE). Chemosphere 38, 573–586. Kwok, E.S.C., Atkinson R. (1995) Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: An update (1995) Atmos. Environ. 1685–1695. Laity, J.L., Burstain, I.G., Appel, B.R. (1973) Photochemical smog and the atmospheric reactions of solvents. Chapter 7, pp. 95–112. In: Solvents Theory and Practice. Tess, R.W., Editor, Advances in Chemistry Series 124, Am. Chem. Soc., Washington, DC. Lange, N.A., Editor (1971) Lange's Handbook of Chemistry. McGraw-Hill, New York. Leo, A., Hansch, C., Elkins, D. (1971) Partition coefficients and their uses. Chem. Rev. 71, 525–612. Leo, A., Jow, P.Y.C., Silipo, C., Hansch, C. (1975) Calculation of hydrophobic constant (Log P) from π and f constants. J. Med. Chem. 18, 863–868. Leppänen, M, Kukkonen, J.W.K. (2004) Toxicokinetics of sediment-associated polybrominated diphenylethers (flame retardants) in benthic invertebrates (Lumbriculus variegatus, oligochaeta). Environ. Toxicol. Chem. 23, 166–172. Lide, D.R., Editor (2003) Handbook of Chemistry and Physics. 84th edition, CRC Press, LLC. Boca Raton, Florida. Lloyd, A.C., Darnall, K.R., Winer, A.M., Pitts, Jr., J.N. (1976) Relative rate constants for reaction of the hydroxyl radical with a series of alkanes, alkenes, and aromatic hydrocarbons. J. Phys. Chem. 80, 789–794. Ludzack, F.J., Ettinger, M.B. (1963) Biodegradability of organic chemicals isolated from rivers. Purdue Univ., Eng. Bull. Ext. Ser. 115, 278–282. Lun, R., Shiu, W.Y., Mackay, D. (1995) Aqueous solubilities and octanol-water partition coefficients of chloroveratroles and chloroanisoles. J. Chem. Eng. Data 40, 959–962. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors (1982) Handbook of Chemical Property Estimation Methods. McGraw-Hill Book Company, New York. Mabey, W., Mill, T. (1978) Critical review of hydrolysis of organic compounds in water under environmental conditions. J. Phys. Chem. Ref. Data 7, 383–415. Mabey, W., Smith, J.H., Podoll, R.T., Johnson, H.L., Mill, T., Chiou, T.W., Gate, J., Waight-Partridge, I., Jaber, H., Vandenberg, D. (1982) Aquatic Fate Process for Organic Priority Pollutants. EPA Report, No. 440/4-81-14. Mackay, D. (1982) Correlation of bioconcentration factors. Environ. Sci. Technol. 16, 274–278. Mackay, D., Wolkoff, A.W. (1973) Rate of evaporation of low-solubility contaminants from water bodies to atmosphere. Environ. Sci. Technol. 7, 611–614. Makovskaya, V., Dean, J.R., Tomlinson, W.R., Comber, M. (1995) Determination of octanol-water partition coefficients using gradient liquid chromatography. Anal. Chim. Acta 315, 183–192. McDonald, R.A., Shrader, S.A., Stull, D.R. (1959) Vapor pressures and freezing points of 30 organics. J. Chem. Eng. Data 4, 311–313. McGowan, J.C., Atkinson, P.N., Ruddle, L.H. (1966) The physical toxicity of chemicals. V. Interaction terms for solubilities and partition coefficients. J. Appl. Chem. 16, 99–102. Meyer, E.F., Hotz, R.D. (1973) High-precision vapor-pressure data for eight organic compounds. J. Chem. Eng. Data 18, 359–362.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2468 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Meylan, W., Howard, P.H., Boethling, R.S. (1992) Molecular topology/fragment contribution method for predicting soil sorption coefficients. Environ. Sci. Technol. 26, 1560–1587. Mill, T. (1980) Handbook of Environmental Chemistry. Vol. II, Springer-Verlag, Berlin. Mill, T., Mabey, W. (1985) Chapter 8, Photochemical transformations. In: Environmental Exposure from Chemicals. Volume I, Neely, W.B., Blau, G.E., Editors, CRC Press Inc. Miller, M.E., Stuart, J.D. (2000) Measurement of aqueous Henry’s law constants for oxygenates and aromatics found in gasolines by the static headspace method. Anal. Chem. 72, 622–625. Minick, D.J., Frenz, J.H., Patrick, M.A., Brent, D.A. (1988) A comprehensive method for determining hydrophobicity constants by reversed-phase high-performance liquid chromatography. J. Med. Chem. 31, 1923–1933. Mirrlees, M.S., Moulton, S.J., Murphy, C.T., Taylor, P.J. (1976) Direct measurement of octanol-water coefficients by high-pressure liquid chromatography. J. Med. Chem. 19, 615. Moriarty, J., Sidebottom, H., Wenger, J., Mellouki, A., Le Bras, G. (2003) Kinetic studies on the reactions of hydroxyl radicals with cyclic ethers and aliphatic diethers. J. Phys. Chem. A 107, 1499–1505. Moriguchi, I. (1975) Quantitative structure activity studies. Parameters relating to hydrophobicity. Chem. Pharm. Bull. 23(2), 247–257. Müller, M., Klein, W. (1991) Estimating atmosphere degradation processes by SARs. Sci. Total Environ. 109/110, 261–273. Nakagawa, Y., Izumi, K., Oikawa, N., Sotomatsu, T., Shigemura, M., Fujita, T. (1992) Analysis and prediction of hydrophobicity parameters of substituted acetanilides, benzamides and related aromatic compounds. Environ. Toxicol. Chem. 11, 910–916. Navalainen, T., Koistinen, J., Hurnela, P. (1994) Synthesis, structure verification, and chromatographic relative retention times of polychlorinated diphenyl ethers. Environ. Sci. Technol. 28, 1341–1347. Nelson, L., Rattigan, O., Neavyn, R., Sidebottom, H., Treacy, J., Nielsen, O. (1990) Absolute and relative rate constants for the reactions of hydroxyl radicals and chlorine atoms with a series of aliphatic alcohols and ethers at 298 K. Int. J. Chem. Kinet.22, 1111–1126. Neilson, A.H., Allard, A.S., Reiland, S., Remberger, M., Tärnholm, A., Viktor, T., Landner, L. (1984) Tri- and tetra-chloroveratrole, metabolites produced by bacterial O-methylation of tri- and tetra-chloroguaiacol: An assessment of their bioconcentration potential and their effects on fish reproduction. Can. J. Fish. Aquat. Sci. 41, 1502–1512. Nicolini, E., Laffitte, P. (1949) Comptes Renous 229, 77. -reference from Boublik et al. 1984. Nielsen, F., Olsen, E., Fredenslund, A. (1994) Henry's law constants and infinite dilution activity coefficients of volatile organic compounds in water by a validated batch air stripping method. Environ. Sci. Technol. 28, 2133–2138. Niimi, A.J. (1986) Biological half-lives of chlorinated diphenyl ethers in rainbow trout (Salmo gairdneri). Aqua. Toxicol. 9, 105–116. Niimi, A.J., Metcalfe, C.D., Huestis, S.Y. (1994) Chlorinated diphenyl ethers in Great Lakes fish and their environmental implication. Environ. Toxicol. Chem. 13, 1133–1138. Noles, J.R., Zollweg, J.A. (1992) Vapor-liquid equilibrium for chlorodifluoromethane + dimethyl ether from 283 to 395 K at pressures to 5.0 MPa. J. Chem. Eng. Data 27, 306–310. Oliver, B.G., Niimi, A.J. (1984) Rainbow trout bioconcentration of some halogenated aromatics from water at environmental concentration. Environ. Toxicol. Chem. 3, 271–277. Opperhuizen A. (1986) Bioconcentration of hydrophobic chemicals in fish. In: Aquatic Toxicology and Environmental Fate: Nine Volume. ASTM STP 921. Poston, T.M., Purdy, R., Eds., pp. 304–315, American Society for Testing and materials, Philadelphia, PA. Opperhuizen, A., Voore, P.I. (1987) Uptake and elimination of polychlorinated aromatic ethers by fish: chloroanisoles. Chemosphere 16, 953–962. Pankow, J.F. (1990) Minimization of volatilization losses during sampling and analysis of volatile organic compounds in water. In: Significance and Treatment of Volatile Organic Compounds in Water. Ram, N.M., Christman, R.F., Cantor, K.P., Editors, Lewis Publishers, Inc., Chelsea, Michigan. Pankow, J.F., Rosen, M.E. (1988) The determination of volatile compounds in water by purging directly to a capillary column with whole column cryotrapping. Environ. Sci. Technol. 22, 398–405. Passivirta, J., Sinkkonen, S., Mikkelson, P., Rantio, T., Wania, F. (1999) Estimation of vapor pressures, solubilities and Henry’s law constants of selected persistent organic pollutants as functions of temperatures. Chemosphere 39, 811–832. Pearlman, R.S., Yalkowsky, S.H., Banerjee, S. (1984) Water solubilities of polynuclear aromatic and heteroaromatic compounds. J. Phys. Chem. Ref. Data 13, 555–562. Perry, R.A., Atkinson, R., Pitts, Jr., J.N. (1977) J. Chem. Phys. 67, 611 Perry, R.A., Atkinson, R., Pitts, Jr., J.N. (1977) Kinetics and mechanisms of the gas phase reaction of OH radicals with methoxybenzene and o-cresol over temperature range 299–435 K. J. Phys. Chem. 81(17), 1607–1611. Pfeifer, O., Lohmann, U., Ballschmiter, K. (2001) Halogenated methyl-phenyl ethers () in the environment: Determination

of vapor pressures, aqueous solubilities, Henry’s law constants, and gas/water-(Kgw), n-octanol/water-(KOW) and gas/n-octanol (Kgo) partition coefficients. Fresenius J. Anal. Chem. 371, 598–606. Pijnenburg, A.M.C.M., Everts, J.W., de Boer, J., Boon, J.P. (1995) Polybrominated biphenyl and diphenylether flame retardants: Analysis Toxicity, and environmental occurrence. Rev. Environ. Contam. Toxicol. 141, 1–26. Pinal, R., Rao, P.S.C., Lee, L.S., Cline, P.V. (1990) Cosolvency of partially miscible organic solvents on the solubility of hydrophobic organic chemicals. Environ. Sci. Technol. 24(5), 639–647.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2469

Pratesi, P., Villa, L., Ferri, V., de Micheli, C., Grna, E., Grieco, C., Silipo, C., Vittoria, A. (1979) On the additive-constitutive properties of substituent hydrophobic parameters in a set of muscarinic agents. Il Farmaco Ed. Sci. 34, 579–587. Quayle, O.R. (1953) The parachors of organic compounds. Chem. Rev. 53, 439–589. Radding, S.B., Liu, D.H., Johnson, H.L., Mill, T. (1977) Review of the Environmental Fate of Selected Chemicals. EPA Report No. 560/5-77-003. U.S. Environmental Protection Agency, Office of Toxic Substances, Washington, D.C. Ravishankara, A.R., Davis, D.D. (1978) Kinetic rate constants for the reaction of OH with methanol, , and tetrahydrofuran at 298 K. J. Phys. Chem. 82, 2852–2853. Rayne, S., Ikonomou, M.G., Whale, M.D. (2003) Anaerobic microbial and photochemical degradation of 4,4′-dibromodiphenyl ether. Water Res. 37, 551–560. Reich, R., Sanhueza, V. (1993) Vapor-liquid equilibria for α-pinene or β-pinene with anisole. J. Chem. Eng. Data 38, 341–343. Rekker, R.F. (1977) The Hydrophobic Fragmental Constant. Elsevier Scientific Publishing Co., Amsterdam. Remberger, M., Allard, A.-S., Neilson, A.H. (1986) Biotransformations of chloroguaiacols, chlorocatechols, and chloroveratroles in sediments. Appl. Environ. Microbiol. 51, 532–558. Riddick, J.A., Bunger, W.B., Sakano, T.K. (1986) Organic Solvents: Physical Properties and Methods of Purification. 4th Edition, John-Wiley & Sons, New York. Ritter, S., Hauthal, W.J., Maurer, G. (1994) Partition coefficients of some environmentally important organic compounds between 1- octanol and water from reversed-phase high-performance liquid chromatography. J. Chem. Eng. Data 39, 414–147. Robbins, G.A., Wang, S., Stuart, J.D. (1993) Using the static headspace method to determine Henry’s law constants. Anal. Chem. 65, 3113–3118. Rogers, K.S., Cammarata, A. (1969) Superdelocalizability and charge density. A correlation with partition coefficients. J. Med. Chem. 12, 692. Ruelle, P., Kesselring, U.W. (1997) Aqueous solubility prediction of environmentally important chemicals from the mobile order thermodynamics. Chemosphere 34, 275–298. Ryan, J.A., Bell, R.M., Davidson, J.M., O’Connor, G.A. (1988) Plant uptake of non-ionic organic chemicals from soils. Chemosphere 17, 2299–2323. Sabljic, A. (1984) Predictions of the nature and strength of soil sorption of organic pollutants from molecular topology. J. Agric. Food Chem. 32, 243–246. Sabljic, A. (1987) Nonempirical modeling of environmental distribution and toxicity of major organic pollutants. In: QSAR in Environmental Toxicology-II. Kaiser, K.L.E., Editor, D. Reidel Publishing Co., Dordrecht, Holland. pp. 309–332.

Sabljic, A., Güsten, H. (1990) Predicting the night-time NO3 radical reactivity in the troposphere. Atmos. Environ. 24A, 73–78. Sabljic, A., Güsten, H., Verhaar, H., Hermens J. (1995) QSAR modelling of soil sorption, improvements and systematics of log Koc vs. log Kow correlations. Chemosphere 31, 4489–4514. Sangster, J. (1989) Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data 18(3), 1111–1229. Sangster, J. (1993) LOGKOW Databank, Sangster Research Laboraory, Montreal, Quebec Santodonato, J., et al. (1980) Investigation of Selected Potential Environmental Contaminants: Epichlorohydrin and Epibromohydrin. US EPA-560/11-80-006. Sarrikoski, J., Lindström, R., Tyynelä, M., Viluksela, M. (1986) Factors affecting the absorption of phenolics and carboxylic acids in the guppy (Poecillia reticulata). Ecotoxicol. Environ. Saf. 11 158–173. Sasaki, S. (1978) The scientific aspects of the chemical substance control law in Japan. In: Aquatic Pollutants: Transformation and Biological Effects. Hutzinger, O. et al., Editors, Pergamon, Press, Oxford, U.K. pp. 283–298. Schmidt-Bleek, F., Haberland, W., Klein, A.W., Caroli, S. (1982) Steps toward environmental hazard assessment of new chemicals (including a hazard ranking scheme, based upon directive 79/831/EEC). Chemosphere 11, 383–415. Scott, D.W. (1970) Tetrahydrofuran: Vibrational assignment, chemical thermodynamic properties, and vapor pressure. J. Chem. Thermodyn. 2, 833–837. Seidell, A. (1941) Solubilities. 2nd. Edition, Van Nostrand, New York. Serrentino, R., Citti, L., Gervasi, P.G., Turchi, G. (1983) The type I binding of some aliphatic epoxides to cytochrome P-450 and their inhibition of mono-oxygenase activity. Ital. J. Biochem. 32, 111. Söderström, G., Sellström, U., de Wit, C., Tysklind, M. (2004) Photolytic debromination of decabromodiphenyl ether (BDE 209). Environ. Sci. Technol. 38, 127–132. Stapleton, H.M., Alaee, M., Letcher, R.J., Baker, J.E. (2004a) Debromination of the flame retardant decabromodiphenyl ether by juvenile carp (Cyprinus carpio) following dietary exposure. Environ. Sci. Technol. 38, 112–119. Stapleton, H.M., Letcher, R.J., Li, J., Baker, J.E. (2004b) Dietary accumulation and metabolism of polybrominated diphenyl ethers by juvenile carp (Cyprinus carpio). Environ. Toxicol. Chem. 23, 1939–1946. Staudinger, J., Roberts, P.V. (1996) A critical review of Henry’s law constant for environmental applications. Crit. Rev. Environ. Sci. Technol. 26, 205–297. Staudinger, J., Roberts, P.V. (2001) A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions. Chemosphere 44, 561–576 Stephenson, R.M. (1992) Mutual solubilities: Water-ketones, water-ethers, and water-gasoline-alcohols. J. Chem. Eng. Data 37, 80–95. Stephenson, R.M., Malanowski, S. (1987) Handbook of the Thermodynamics of Organic Compounds. Elsevier Science Publishing Co., Inc., New York.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2470 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Stull, D.R. (1947) Vapor pressure of pure substances organic compounds. Ind. Eng. Chem. 29, 517–560. Taylor, R.S., Smith, L.B. (1922) The vapor pressures, densities and some derived quantities for ether at low temperatures. J. Am. Chem. Soc. 44, 2450–2463. Thomann, R.V. (1989) Bioaccumulation model of organic chemical distribution in aquatic food chains. Environ. Sci. Technol. 23, 699–707. Tittlemier, S.A., Tomy, G.T. (2001) Vapor pressures of six brominated diphenyl ether congeners. Environ. Toxicol. Chem. 20, 146–148. Tittlemier, S.A., Halldorson, T., Stern, G.A., Tomy, G.T. (2002) Vapor pressures, aqueous solubilities, and Henry’s law constants of some brominated flame retardants. Environ. Toxicol. Chem. 21, 1804–1810. Tou, J.C., Westover, L.B., Sonnabend, L.F. (1974) Kinetic studies of bis(chloromethyl)ether hydrolysis by mass spectrometry. J. Phys. Chem. 78, 1096–1098. Tully, F.P., Droege, A.T. (1987) Int. J. Chem. Kinet. 19, 251. Urano, K., Ogura, K., Wada, H. (1981) Direct analytical method for aliphatic compounds in water by steam carrier gas chromatography. Water Res. 15, 225–231. USEPA (1974) Proceedings of the Solvent Reactivity Conference. U.S. Environmental Protection Agency, EPA-650/3-74-010. Research Triangle Park, North Carolina. USEPA (1981) Treatability Manual I. Treatability Data. EPA-600/2-82-001a. US. Environmental Protection Agency, Washington, D.C. USEPA (1986) EXAMS Computer Database. Valvani, S.C., Yalkowsky, S.H., Roseman, T.J. (1981) Solubility and partitioning IV: Aqueous solubility and octanol-water partition coefficients of liquid nonelectrolytes. J. Pharm. Sci. 70(5), 502–507. Van Duuren, B.L., Katz, C., Goldschmidt, B.M., Frenkel, K., Sivak, A. (1972) Carcinogenicity of halo-ethers. II. Structure-activity relationships of analogs of bis(chloromethyl)ether. J. Nat. Cancer Inst. 48, 1431–1439. Van Leeuwen, C.J., Van Der Zandt, P.T.J., Aldenberg, T., Verhaar, H.J.M., Hermens, J.L.M. (1992) Application of QSARs, extrap- olation and equilibrium partitioning in aquatic effects assessment. I. Narcotic industrial pollutants. Environ. Toxicol. Chem. 11(2), 267–282. Veith, G.D., Defoe, D.L., Bergstedt, B.V. (1979) Measuring and estimating the bioconcentration factor of chemicals in fish. J. Fish Res. Board Can. 36, 1040–1048. Veith, G.D., Kosian, P. (1983) Estimating bioconcentration potential from octanol/water partition coefficients. In: Physical Behavior of PCBs in the Great Lakes. Mackay, D., Paterson, S., Eisenreich, S.J., Simmons, M.S., Editors, Ann Arbor Science Publishers, Ann Arbor, Michigan. pp. 269–282. Veith, G.D., Macek, K.J., Petrocelli, S.R., Carroll, J. (1980) An evaluation of using partition coefficients and water solubility to estimate bioconcentration factors for organic chemicals in fish. In: Aquatic Toxicology. ASTM STP 707 pp. 116–129, Am. Soc. for Testing and Materials, Philadelphia, Pa. Verschueren, K. (1977) Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold, New York, N.Y. Verschueren, K. (1983) Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold, New York, N.Y. Vesala, A. (1974) Thermodynamics of transfer nonelectrolytes from light and heavy water. I. Linear free energy correlations of free energy of transfer with solubility and heat of melting of nonelectrolyte. Acta Chem. Scand. 28A(8), 839–845. Vinson, Jr., C.G., Martin, J.J. (1963) Heat of vaporization and vapor pressure of 1,4-dioxane. J. Chem. Eng. Data 8, 74–75.

Wallington, T.J., Atkinson, R., Winer, A.M., Pitts, J.N., Jr. (1986) Absolute rate constants for the gas-phase reactions of the NO3 radicals with CH3SH, CH3SCH3, CH3SSCH3, H2S, SO2, and CH3OCH3 over the temperature range 280–350 K. J. Phys. Chem. 90, 5393–5396. Wallington, T.J., Liu, R., Dagaut, P., Kurylo, M. (1988a) The gas phase reactions of hydroxyl radicals with a series of aliphatic ethers over the temperature range 240–440 K. Int. J. Chem. Kinet. 20, 41–49. Wallington, T.J., Dagaut, P., Kurylo, M.J. (1988b) Correlation between gas-phase and solution-phase reactivities of hydroxyl radicals toward saturated organic compounds. J. Phys. Chem. 92, 5024–5028. Wallington, T.J., Dagaut, P., Liu, R., Kuoylo, M.J. (1988c) Gas-phase reactions of hydroxyl radicals with the fuel additives methyl tert-butyl ether and tert-butyl alcohol over the temperature range 240–440 K. Environ. Sci. Technol. 22, 842–844.

Wallington, TJ., Dagaut, P., Liu, R., Kurylo, M.J. (1988d) Rate constants for the gas phase reactions of OH with C5 through C7 aliphatic alcohols and ethers: predicted and experimental values. Int. J. Chem. Kinet. 20, 541–547. Wallington, T.J., Andino, J.M., Potts, A.R., Rudy, S.J., Siegl, W.O., Zhang, Z., Kurylo, M.J., Hule, R.E. (1993) Atmospheric chemistry of automotive fuel additives: Diisopropyl ether. Environ. Sci. Technol. 27(1), 98–104. Walton, B.T., Hendricks, M.S., Anderson, T.A., Griest, W.H., Meeriweather, R., Beauchamp, J.J., Francis, C.W. (1992) Soil sorption of volatile and semivolatile organic compounds in a mixture. J. Environ. Qual. 21, 552–558. Wang, W., Wang, L., Tian, L., Zhang, Z., Qiu, J. (1987) Partition coefficients of the intermediate of pyrethroid in n-octanol/water system. Huazhong Gongxueyuan Xuebao 15, 135–137. Wang, L., Zhao, Y., Hong, G. (1992) Predicting aqueous solubility and octanol/water partition coefficients of organic chemicals from molar volume. Environ. Chem. 11, 55–70. Wania, F., Dugani, C.B. (2003) Assessing the long-range transport potential of polybrominated diphenyl ethers: A comparison of four multimedia models. Environ. Toxicol. Chem. 22, 1252–1261. Wania, F., Lei, Y.D., Harner, T. (2002) Estimating octanol-air partition coefficients of nonpolar semivolatile organic compounds from gas chromatographic retention times. Anal Chem. 74, 3476–3483.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Ethers 2471

Watanabe, I., Tatsukawa, R. (1989) Anthropogenic brominated aromatics in the Japanese environment. In: Proceedings: Workshop on Brominated Aromatic Flame Retardants. pp. 63–70. Skokloster, Sweden, 24–26 October, 1989. Weast, R.C. (1972–73) CRC Handbook of Chemistry and Physics. 53th Edition, CRC Press, Inc., Cleveland, Ohio. Weast, R.C. (1982–83) CRC Handbook of Chemistry and Physics. 63rd Edition, CRC Press, Boca Raton, Florida. Webb, R.F., Duke, A.J., Smith, L.S.A. (1962) Acetals and oligoacetals. Part I. Preparation and properties of reactive oligoformals. J. Chem. Soc. (London), 4307–4319. Windholz, M., Ed. (1983) The Merck Index, An Encyclopedia of Chemicals, Drugs and Biologicals. 10th edition, Merck & Co., Inc., Rahway, New Jersey. Wine, P.H., Thompson, R.J. (1984) Kinetics of OH reactions with furan, thiophene, and tetrahydrothiophene. Int. J. Chem. Kinet. 16, 867–878. Wong, A., Lei, Y.D., Alaee, M., Wania, F. (2001) Vapor pressures of the polybrominated diphenyl ethers. J. Chem. Eng. Data 46, 239–242. Wu, J., Liu, Z., Pan, J., Zhao, X. (2004) Vapor pressure measurements of dimethyl ether from (233 to 399) K. J. Chem. Eng. Data 49, 32–34. Yao, C.C.D., Haag, W.R. (1991) Rate constants for direct reactions of ozone with several drinking water contaminants. Water Res. 25, 761–773. Yaws, C.L., Yang, H.-C., Hopper, J.R., Hansen, K.C. (1990) Organic chemicals: water solubility data. Chem. Eng. July, 115–118. Yaws, C., Yang, H.C., Pan, X. (1991) Henry's law constants for 362 organic compounds in water. Chem. Eng. 98(11), 179–185.

Yaws, C.L. (1994) Handbook of Vapor Pressure. Volume 1: C1 to C4 Compounds, Volume 2: C5 to C7 Compounds. Volume 3: C5 to C28 Compounds. Gulf Publishing Co., Houston, Texas. Zitko, V., Carson, W.G. (1977) Uptake and excretion of chlorinated diphenyl ethers and brominated toluenes by fish. Chemosphere 6, 293–301. Zoeteman, B.C.J., Harmsen, K., Linders, J.B.H. (1980) Persistent organic pollutants in river water and ground water of the Netherlands. Chemosphere 9, 231–249.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 11 Alcohols

CONTENTS 11.1 List of Chemicals and Data Compilations ...... 2474 11.1.1 Alcohols ...... 2474 11.1.1.1 Methanol ...... 2474 11.1.1.2 Ethanol ...... 2480 11.1.1.3 Propanol (n-Propyl alcohol) ...... 2486 11.1.1.4 Isopropanol (i-Propyl alcohol) ...... 2491 11.1.1.5 n-Butanol (n-Butyl alcohol) ...... 2497 11.1.1.6 Isobutanol (i-Butyl alcohol) ...... 2507 11.1.1.7 sec-Butyl alcohol...... 2511 11.1.1.8 tert-Butyl alcohol ...... 2518 11.1.1.9 1-Pentanol (n-Amyl alcohol) ...... 2523 11.1.1.10 1-Hexanol ...... 2529 11.1.1.11 1-Heptanol...... 2535 11.1.1.12 1-Octanol (n-Octyl alcohol) ...... 2540 11.1.1.13 1-Nonanol ...... 2546 11.1.1.14 1-Decanol ...... 2549 11.1.1.15 Ethylene glycol ...... 2553 11.1.1.16 Allyl alcohol ...... 2557 11.1.1.17 Cyclohexanol...... 2560 11.1.1.18 Benzyl alcohol...... 2565 11.2 Summary Tables and QSPR Plots...... 2570 11.3 References ...... 2575

2473

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2474 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

11.1 LIST OF CHEMICALS AND DATA COMPILATIONS

11.1.1 ALCOHOLS 11.1.1.1 Methanol

H H OH H Common Name: Methanol Synonym: methyl alcohol, carbinol, wood alcohol, wood spirit CAS Registry No: 67-56-1

Molecular Formula: CH3OH Molecular Weight: 32.042 Melting Point (°C): –97.53 (Lide 2003) Boiling Point (°C): 64.6 (Lide 2003) Density (g/cm3 at 20°C): 0.7914 (Weast 1982–83) Molar Volume (cm3/mol): 42.5 (exptl. at normal bp, Lee et al. 1972; quoted, Reid et al. 1977) 40.6 (calculated-density, Rohrschneider 1973) 37.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): miscible (Dean 1985; Howard 1990) miscible (Yaws et al. 1990)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 16210* (interpolated-regression of tabulated data, temp range –44.0 to 64.7°C, Stull 1947) 16937* (comparative ebulliometry, measured range 15–83.7°C, Ambrose & Sprake 1970) log (P/Pa) = 7.18411 – 1569.492/(T/K – 34.613); restricted temp range 15–39°C (Antoine eq., comparative ebulliometry, Ambrose & Sprake 1970) log (P/Pa) = 7.20519 – 1581.933/(T/K – 33.439); temp range 15–83.7°C (Antoine eq., comparative ebulliometry, Ambrose & Sprake 1970) 16927 (vapor-liquid equilibrium VLE data, Polák & Lu 1972) log (P/mmHg) = [–0.2185 × 8978.8/(T/K)] + 8.639821; temp range –44 to 224°C (Antoine eq., Weast 1972–73) 16958* (static method, measured range 288.15–337.65 K, Gibbard & Creek 1974) 12260, 21330 (20°C, 30°C, Verschueren 1983) 16960 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 7.24693 – 1806.615/(241.833 + t/°C); temp range 1.72–63.38°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 7.20660 – 1582.698/(239.765 + t/°C); temp range 14–79.63°C (Antoine eq. from reported exptl. data of Ambrose & Sprake 1970, Boublik et al. 1984) log (P/kPa) = 7.023029 – 1595.671/(240.905 + t/°C), temp range 15–65°C (Antoine eq. derived from.exptl data of Gibbard & Creek 1974, Boublik et al. 1984) 16670 (interpolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.89750 – 1474.08/(229.13 + t/°C); temp range –14 to 65°C (Antoine eq., Dean 1985, 1992) log (P/mmHg) = 7.97328 – 1515.14/(232.85 + t/°C); temp range 64–110°C (Antoine eq., Dean 1985, 1992) 16937 (Riddick et al. 1986)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2475

log (P/kPa) = 7.20519 – 1581.993/(175.47 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986)

log (PL/kPa) = 7.4182 – 1710.2/(–22.25 + T/K); temp range 175–273 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.25164 – 1608.39/(–31.07 + T/K); temp range 274–337 K (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.09489 – 1521.23/(–39.18 + T/K); temp range 338–487 K (Antoine eq.-III, Stephenson & Malanowski 1987)

log (PL/kPa) = 5.86277 – 1105.884/(–64.272 + T/K); temp range 188–228 K (Antoine eq.-IV, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.44355 – 1712.316/(–22.61 + T/K); temp range 224–290 K (Antoine eq.-V, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.26415 – 1615.59/(–30.437 + T/K); temp range 285–345 K (Antoine eq.-VI, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.14736 – 1544.804/(–37.235 + T/K); temp range 335–376 K (Antoine eq.-VII, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.27466 – 1641.542/(–25.789 + T/K); temp range 373–458 K (Antoine eq.-VIII, Stephenson & Malanowski 1987) log (P/mmHg) = 45.6171 – 3.2447 × 103/(T/K) –13.988·log(T/K) + 6.6365 × 10–3·(T/K) – 1.0507 × 10–13·(T/K)2; temp range 175–513 K (vapor pressure eq., Yaws 1994) 35341 (40°C, vapor-liquid equilibrium VLE data, DeBord et al. 2002)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and the reported temperature dependence equations. Additional data at other temperatures designed * are compiled at the end of this section): 0.446 (partial pressure-isoteniscope, Butler et al. 1935) 0.444 (entrainment method-GC, Burnett 1963) 0.472 (exptl., Hine & Mookerjee 1975) 0.367, 0.319 (calculated-group contribution, bond contribution, Hine & Mookerjee 1975) 0.45* (headspace-GC, measured range 0–25°C, Snider & Dawson 1985) 0.451 (limiting activity coefficient by headspace-GC., Abraham et al. 1987) 0.704 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 0.451 (limiting activity coefficient by headspace-GC., Li & Carr 1993) 0.620 (gas stripping-GC, Altschuh et al. 1999) 0.506 (extrapolated-headspace GC data, measured range 40–90°C, Gupta et al. 2000)

ln KAW = 8.969 – 5206.8/(T/K); temp range 40–90°C (van’t Hoff eq., headspace GC, Gupta et al. 2000) 0.334 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 3.444 – 2142/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 1.239* (40°C, headspace-GC, measured range 40–65°C, Teja et al. 2001)

Octanol/Water Partition Coefficient, log KOW: –0.82 (shake flask-CR, Collander 1951) –0.66 (shake flask-GC, Hansch & Anderson 1967) –0.77 ± 0.02 (shake flask-GC, Leo et al. 1975; Hansch & Leo 1979; Hansch & Leo 1985) –0.52 (shake flask-RC, Cornford 1982) –0.70 (shake flask, OECD 1981 Guidelines, Geyer et al. 1984) –0.64, –0.63 (quoted, calculated-TSA, Iwase et al. 1985) –0.71 (shake flask-GC at pH 7.0, Riebesehl & Tomlinson 1986) –0.74 (recommended, Sangster 1989, 1993) –0.77 (recommended value, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA as 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section: 2.98* (20.29°C, from GC determined γ∞ in octanol, measured range 20.29–50.28°C, Gruber et al. 1997) 2.84 (head-space GC, Abraham et al. 2001)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2476 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Bioconcentration Factor, log BCF: 4.45 (alga Chlorella fusca, wet wt. basis, Geyer et al. 1984)

4.45 (alga Chlorella fusca, calculated-KOW, Geyer et al. 1984) < 1.0 (golden ide, after 3 d, Freitag et al. 1985) 4.46 (algae, after 1 d, Freitag et al. 1985) 2.67 (activated sludge, after 5 d, Freitag et al. 1985)

Sorption Partition Coefficient, log KOC: –0.23 (calculated-MCI χ, Gerstl & Helling 1987) 0.44 (soil, quoted exptl., Meylan et al. 1992) –0.36 (soil, calculated-MCI χ and fragment contribution, Meylan et al. 1992)

–1.08 (calculated-KOW, Kollig 1993) 0.44 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k or Half-Lives, t½:

Volatilization: t½ ~ 5.3 h and 2.6 d for a model river 1-m deep and an environmental pond (Lyman et al. 1982; selected, Howard 1990). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH; for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression see reference: 8 –1 –1 –13 3 –1 –1 kOH = (5.7 ± 0.6) × 10 L mol s or 9.5 × 10 cm molecule s at 292 K (relative rate method, Campbell et al. 1976) –12 3 –1 –1 kOH = (1.06 ± 0.10) × 10 cm molecule s at 296 ± 2 K (Overend & Paraskevopoulos 1978; quoted, Atkinson 1985) –12 3 –1 –1 kOH = (1.00 ± 0.10) × 10 cm molecule s at 298 K (flash photolysis-resonance fluorescence, Ravis- hankara & Davis 1978) –11 3 –1 –1 kOH = 5.7 × 10 cm molecule s at 300 K (Lyman et al. 1982) –1 –1 k ~ 0.024 M s for the reaction with O3 in water at pH 2-5 and 20–23°C (Hoigné & Bader 1983) –12 3 –1 –1 kOH = 0.76 × 10 cm molecule s at 296 K in air (Meier et al. 1985; quoted, Atkinson 1985) –11 3 –1 –1 –11 3 –1 –1 kOH(calc) = 6.5 × 10 cm molecule s , kOH(obs.) = 9.0 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985) –12 3 –1 –1 kOH = 0.80 × 10 cm molecule s at 298 K (Zellner & Lorenz 1984; quoted, Carlier et al. 1986) –12 3 –1 –1 –12 3 –1 –1 kOH(exptl) = 0.90 × 10 cm molecule s , kOH(calc) = 0.53 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –13 3 –1 –1 kOH* = (8.61 ± 0.47) × 10 cm molecule s at 296 K, measured range 240–440 K (flash photolysis- resonance fluorescence, Wallington & Kurylo 1987a) –16 3 –1 –1 kNO3 <6.0×10 cm molecule s at 298 ± 2 K (flash photolysis-absorption technique (Wallington et al. 1987; selected, Atkinson 1991) k(aq.) = 1.60 × 10–12 cm3 molecule–1 s–1 for the solution-phase reaction with OH radical in aqueous solution (Wallington & Kurylo 1987b) –13 3 –1 –1 kOH(exptl)* = 8.61 × 10 cm molecule s at 296 K, measured range 240–440 (flash photolysis-resonance fluorescence, Wallington et al. 1988a) –13 3 –1 –1 –12 3 –1 –1 kOH = 8.61 × 10 cm molecule s ; k(soln) = 1.60 × 10 cm molecule s for reaction with OH radical in aqueous solution (Wallington et al. 1988b) –13 3 –1 –1 kOH* = 9.32 × 10 cm molecule s at 298 K (recommended, Atkinson 1989, 1990) –13 3 –1 –1 –12 kOH = (9.0 ± 0.9) × 10 cm molecule s by pulse radiolysis-UV spectroscopy; kOH = (1.0 ± 0.23) × 10 cm3 molecule–1 s–1 by relative rate method, at 298 ± 2 K (Nelson et al. 1990) –12 3 –1 –1 kOH(calc) = 4.05 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis:

Biodegradation: t½(aerobic) = 1 d, t½(anaerobic) = 1 d in natural waters (Capel & Larson 1995) Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2477

Half-Lives in the Environment:

Air: t½ > 9.9 d for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976);

estimated t½ = 17.8 d in ambient atmosphere (Howard 1990); atmospheric transformation lifetime was estimated to be 1 to 5 d (Kelly et al. 1994);

calculated lifetimes of 12 d and 1.0 yr for reactions with OH radical, NO3 radical, respectively (Atkinson 2000). Surface water: t½(aerobic) = 1 d, t½(anaerobic) = 1 d in natural waters (Capel & Larson 1995) Groundwater: Sediment: Soil: Biota:

TABLE 11.1.1.1.1 Reported vapor pressures of methanol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4) ln P = A – B/T/K) – C/(T/K)2 + D/(T/K)3 (5)

Stull 1947 Ambrose & Sprake 1970 Gibbard & Creek 1974

summary of literature data comparative ebulliometry static method-manometer

t/°C P/Pa t/°C P/Pa T/K P/kPa T/K P/kPa –44.0 133.3 14.899 9815 288.1506 9.8844 323.1420 55.5900 –25.3 666.6 19.236 12468 288.1508 9.8858 323.1460 55.5996 –16.2 1333 23.323 15519 288.1511 9.8889 323.1490 55.5972 –6.0 2666 27.083 18858 288.1516 9.8867 328.1436 68.8187 5.0 5333 29.911 21769 293.1361 13.0023 328.1442 68.8158 12.1 7999 32.885 25206 293.1443 13.0119 328.1476 68.8450 21.2 13332 35.858 29128 293.1507 13.0109 328.1517 84.5907 34.8 26664 40.637 36493 293.1628 13.0228 333.1417 84.5859 49.9 53329 45.407 45347 298.1478 16.9558 333.1466 84.5940 64.7 101325 48.876 52883 298.1500 16.9562 333.1468 84.5859 53.315 64036 298.1505 16.9578 333.1471 84.5940 mp/°C –97.8 56.428 72975 298.1517 16.9584 337.6462 101.2523 60.814 87345 303.1427 21.8743 337.6456 101.2526 63.784 98330 303.1464 21.8782 337.6514 101.2742 64.717 101998 303.1494 21.8823 68.403 117714 303.1503 21.8859 vapor pressure eq. 71.770 133741 308.1459 27.9763 eq. 5 P/kPa 75.683 154640 308.1509 27.9844 A 15.6129944 79.626 178306 308.1521 27.9871 103B 2.8459280 83.678 205653 313.1500 35.4685 105C 3.743415457 313.1504 35.4695 107D 2.188669628 Antoine eq. for full range 313.1504 35.4714 eq. 3 P/Pa 313.1520 35.4654 A 7.20519 318.1475 44.5814 B –1581.93 318.1477 44.5799 C –33.439 318.1483 44.5829 318.1506 44.5833 data also fitted to Cragoe equation, eq. 5 see ref.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2478 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Methanol: vapor pressure vs. 1/T 8.0 Ambrose & Sprake 1970 Gibbard & Creek 1974 7.0 Stull 1947 Polák & Lu 1972 DeBord et al. 2002 6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 64.6 °C 0.0 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 1/(T/K)

FIGURE 11.1.1.1.1 Logarithm of vapor pressure versus reciprocal temperature for methanol.

TABLE 11.1.1.1.2 Reported Henry’s law constants and octanol-air partition coefficients of methanol at various temperatures

Henry’s law constant log KOA Snider & Dawson 1985 Teja et al. 2001 Gruber et al. 1997

gas stripping-GC headspace-GC GC det’d activity coefficient

3 3 t/°C H/(Pa m /mol) t/°C H/(Pa m /mol) t/°C log KOA 0 0.0908 40 1.239 20.29 2.98 25 0.4507 50 2.066 30.3 2.76 60 3.656 40.4 2.56 enthalpy of transfer: 65 4.526 50.28 2.40 ∆H/(kJ mol–1) = 41.0

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2479

Methanol: Henry's law constant vs. 1/T 2.0

1.0

)lom/ 0.0 3 m.aP(/H nl m.aP(/H -1.0

-2.0

-3.0 Snider & Dawson 1985 Teja et al. 2001 experimental data -4.0 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 11.1.1.1.2 Logarithm of Henry’s law constant versus reciprocal temperature for methanol.

Methanol: KOA vs. 1/T 3.5

3.0 AO

K gol K 2.5

2.0

Gruber et al. 1997 Abraham et al. 1999 1.5 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 1/(T/K)

FIGURE 11.1.1.1.3 Logarithm of KOA versus reciprocal temperature for methanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2480 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

11.1.1.2 Ethanol

OH

Common Name: Ethanol Synonym: ethyl alcohol, methylcarbinol Chemical Name: ethanol, ethyl alcohol CAS Registry No: 64-17-5

Molecular Formula: CH3CH2OH Molecular Weight: 46.068 Melting Point (°C): –114.14 (Lide 2003) Boiling Point (°C): 78.29 (Lide 2003) Density (g/cm3 at 20°C): 0.78933, 0.78505 (20°C, 25°C, Dreisbach & Martin 1949) 0.7893 (Weast 1982–83) Molar Volume (cm3/mol): 58.6 (calculated-density, Rohrschneider 1973) 59.2 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 15.9 (Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 5.02 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): miscible (Dean 1985) miscible (Riddick et al. 1986) miscible (Yaws et al. 1990)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 7314, 7581* (24.4, 24.8°C, measured range 12.80–78.0°C, Kahlbaum 1883) 6906* (22.7°C, static method, measured range 22,7–78°C, Smyth & Engel 1929) 7599 (gas saturation/air-bubbling method, Washburn & Handorf 1935) 39345* (vapor-liquid equilibrium VLE data, measured range 35–60°C, Scatchard & Raymond 1938) 7538* (interpolated-regression tabulated data, temp range –31.3 to 78.4°C, Stull 1947) 1593, 7869, 29456 (0, 25, 50°C, static method, vapor-liquid equilibrium VLE data, Kretschmer et al. 1948) 7869* (static method, measured range 0–78.553°C, Kretschmer & Wiebe 1949) log (P/mmHg) = 8.11576 – 1595.76/(t/°C + 226.5); temp range 0–78.553°C, Kretschmer & Wiebe 1949) log (P/mmHg) = 8.24169 – 1652.6/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 7870* (comparative ebulliometry, measured range 19.622–93.5°C, Ambrose & Sprake 1970) log (P/Pa) = 7.16879 – 1552.601/(T/K – 50.731); restricted temp range 19.6–43.2°C (Antoine eq., comparative ebulliometry, Ambrose & Sprake 1970) log (P/Pa) = 7.24739 – 1599.039/(T/K – 46.391); temp range 19.6–93.5°C (Antoine eq., comparative ebulliom- etry, Ambrose & Sprake 1970) 7865 (vapor-liquid equilibrium VLE data, Polák & Lu 1972) log (P/mmHg) = [–0.2185 × 9673.6/(T/K)] + 8.827392; temp range –31.3–242°C (Antoine eq., Weast 1972–73) 5852, 6665, 9998 (20, 25, 30°C, Verschueren 1983) 8060 (calculated-Antoine eq., Boublik et al. 1984)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2481

log (P/kPa) = 7.24222 – 1595.811/(226.448 + t/°C); temp range 19.62–93.48°C (Antoine eq. from reported exptl. data of Ambrose & Sprake 1970, Boublik et al. 1984) log (P/kPa) = 4.11678 – 323.237/(74.916 + t/°C); temp range 12.8–78.2°C (Antoine eq. from reported exptl. data of Kahlbaum 1883, Boublik et al. 1984) log (P/kPa) = 7.31243 – 1630.868/(229.581 + t/°C); temp range 0–78.55°C (Antoine eq. from reported exptl. data of Kretschmer & Wiebe 1949, Boublik et al. 1984) 7968 (calculated-Antoine eq., Dean 1985) log (P/mmHg) = 8.32109 – 1718.10/(237.52 + t/°C); temp range –2 to 100°C (Antoine eq., Dean 1985, 1992) 7870 (Riddick et al. 1986) log (P/kPa) = 7.16879 – 1552.601/(222.419 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986)

log (PL/kPa) = 7.15946 – 1547.464/(–51.177 + T/K); temp range 320–359 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.23347 – 1591.28/(–47.056 + T/K), temp range: 292–367 K, (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 8.9391 – 2381.5/(T/K); temp range 210–271 K (Antoine eq.-III, Stephenson & Malanowski 1987) log (PL/kPa) = 8.5224 – 2299/(T/K); temp range 193–223 K (Antoine eq.-IV, Stephenson & Malanowski 1987) log (PL/kPa) = 7.16386 – 1550.006/(–50.941 + T/K); temp range 320–359 K, (Antoine eq.-V, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.27664 – 1615.127/(–45.012 + T/K); temp range 292–353 K (Antoine eq.-VI, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.95131 – 1423.668/(–63.568 + T/K); temp range 349–374 K (Antoine eq.-VII, Stephenson & Malanowski 1987) log (P/mmHg) = 23.8442 – 2.8642 × 103/(T/K) –5.0474·log(T/K) + 3.7448 × 10–11·(T/K) + 2.7361 × 10–5·(T/K)2; temp range 159–516 K (vapor pressure eq., Yaws 1994) 17819 (40°C, vapor-liquid equilibrium VLE data, DeBord et al. 2002)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.520 (partial pressure-isoteniscope, Butler et al. 1935) 0.0118 (partial vapor pressure, concn.-GC, Burnett & Swoboda 1962) 0.4660 (entrainment method-GC, Burnett 1963)

0.637 (exptl.-calculated CW/CA, Hine & Mookerjee 1975) 0.495, 0.472 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 0.527* (headspace-GC, measured range 0–25°C, Snider & Dawson 1985) 0.530 (limiting activity coefficient by headspace-GC., Abraham et al. 1987) 0.637 (calculated-MCI χ, Nirmalakhandan & Speece 1988) 0.823 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 0.70 (correlated-molecular structure, Russell et al. 1992) 0.542 (limiting activity coefficient by headspace-GC., Li & Carr 1993) 0.593 (solid-phase microextraction SPME-GC, Bartelt 1997) 0.744 (gas stripping-GC, Altschuh et al. 1999) 0.568 (extrapolated-headspace GC data, measured range 40–90°C, Gupta et al. 2000)

ln KAW = 10.173 – 5531.6/(T/K); temp range 40–90°C (van’t Hoff eq., headspace GC, Gupta et al. 2000) 0.361 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 5.576 – 2757/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: –0.32 (shake flask-CR, Collander 1951) –0.16 (Leo et al. 1969; Hansch & Dunn III 1972) –0.30 (shake flask-GC, Dillingham et al. 1973) –0.31 ± 0.02 (shake flask-GC, Leo et al. 1975; Hansch & Leo 1979; Hansch & Leo 1985) –0.22, –0.20 (calculated-f const., Rekker 1977) –0.18 (shake flask-RC, Cornford 1982)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2482 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

–0.20 (shake flask-GC at pH 7, Riebesehl & Tomlinson 1986) –0.30 (recommended, Sangster 1989, 1993) –0.25 (thermometric titration, Fujiwara et al. 1991) –0.29 (calculated-activity coeff. γ from UNIFAC, Dallos et al. 1993) –0.31, –0.22 (recommended value; value at pH 7.2, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section: 3.34* (20.29°C, from GC determined γ∞ in octanol, measured range 20.29–50.28°C, Gruber et al. 1997) 3.20 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF: –1.63 (calculated as per Mackay 1982, Schultz et al. 1990)

Sorption Partition Coefficient, log KOC: 0.09 (calculated- MCI χ, Gerstl & Helling 1987) 0.20 (soil, exptl., Meylan et al. 1992) –0.14 (soil, calculated-MCI χ and fragment contribution, Meylan et al. 1992) 0.20 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: t½ ~ 6 d from water (estimated, Howard 1990). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression see reference: –1 –1 5 k = 0.01 M s for oxidation by RO2 radical at 30°C in aquatic systems with t½ = 8 × 10 d (Howard 1972; Hendry et al. 1974; quoted, Mill 1982)

photooxidation t½ = 0.24–2.4 h based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976) 9 –1 –1 –12 3 –1 –1 kOH = (1.8 ± 0.2) × 10 L mol s or 3.0 × 10 cm molecule s at 292 K (relative rate method, Campbell et al. 1976) 2 –1 –1 k = < 2 × 10 M s for oxidation by singlet oxygen in aquatic systems at 25°C with t½ > 100 yr (Foote 1976; Mill 1979; Mill 1982) 9 –1 –1 kOH = 2 × 10 L mol s at 25°C in the atmosphere with t½ = 2.8 d (Hendry & Kenley 1979) –12 3 –1 –1 kOH = (3.74 ± 0.37) × 10 cm molecule s at 296 ± 2 K (Overend & Paraskevopoulos 1978) 12 3 –1 –1 kOH = 1.8 × 10 cm mol s at 300 K (Lyman et al. 1982) –12 3 –1 –1 kOH = (2.62 ± 0.36) × 10 cm molecule s at 298 K (flash photolysis-resonance fluorescence, Ravishan- kara & Davis 1978) –12 3 –1 –1 kOH = 1.75 × 10 cm molecule s at 298 K (Meier et al. 1985) –1 –1 k(aq.) = (0.37 ± 0.04) M s for the reaction with O3 in water at pH 2 and 20–23°C (Hoigné & Bader 1983) –12 3 –1 –1 kOH = 2.9 × 10 cm molecule s at 298 K (Zellner & Lorenz 1984; quoted, Carlier et al. 1986) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 3.3 × 10 cm molecule s , kOH(obs.) = 2.9 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –12 3 –1 –1 –12 3 –1 –1 kOH(exptl) = 2.9 × 10 cm molecule s , kOH(calc) = 3.1 × 10 cm ·molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –13 3 –1 –1 kOH* = (33.3 ± 2.3) × 10 cm molecule s at 296 K, measured range 240–440 K (flash photolysis- resonance fluorescence, Wallington & Kurylo 1987a) –16 3 –1 –1 kNO3 <9.0×10 cm molecule s at 298 ± 2 K (flash photolysis-absorption technique, Wallington et al. 1987; quoted, Atkinson 1991) –12 3 –1 –1 kOH* = 3.33 × 10 cm molecule s at 296 K, measured range 240–440 K (flash photolysis-resonance fluorescence, Wallington et al. 1988a) –12 3 –1 –1 –12 3 –1 –1 kOH = 3.33 × 10 cm molecule s , k(soln) = 3.20 × 10 cm molecule s for the solution-phase reaction with OH radical in aqueous solution (Wallington et al. 1988b)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2483

–12 3 –1 –1 kOH* = 3.27 × 10 cm molecule s at 298 K (recommended, Atkinson 1989, 1990) –12 3 –1 –1 kOH = (3.04 ± 0.25) × 10 cm molecule s by pulse radiolysis-UV spectroscopy; kOH = (3.46 ± 0.52) × 10–12 cm3 molecule–1 s–1 by relative rate method, at 298 ± 2 K (Nelson et al. 1990) k(aq.) = 0.51 M–1 s–1 at pH 7.2, k = 0.72 M–1 s–1 at pH 7.3, and k = 0.77 M–1 s–1 at pH 8.1 for direct reaction

with ozone in water at 21°C with t½ = 18 h at pH 7 (Yao & Haag 1991) –12 3 –1 –1 kOH(calc) = 5.16 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation:

t½(aq. aerobic) = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation screening test data (Heukelekian & Rand 1955; Malaney & Gerhold 1969; selected, Howard et al. 1991)

t½(aq. anaerobic) = 96–672 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991) k = 0.0.43–0.055 h–1 in 30 mg/L activated sludge after a time lag of 5–10 h (Urano & Kato 1986). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 0.24–2.4 h in air for the gas-phase reaction with hydroxyl radical, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976);

t½ ~ 5.9 d to 4.0 d estimated in the atmosphere (Graedel 1978; quoted, Howard 1990), based on the reaction with a OH radical concentration of 8 × 105 molecules/cm3 (Campbell 1976; Lyman et al. 1982; quoted, Howard 1990);

photooxidation t½ = 12.2–122 h, based on measured rate constant for the reaction with OH radical in air (Atkinson 1987; selected, Howard et al. 1991);

calculated lifetimes of 3.5 d and 26 d for reactions with OH radical, NO3 radical, respectively (Atkinson 2000). Surface water: photooxidation t½ = 334 d -36.6 yr, based on measured rate constant for the reaction with hydroxyl radical in water (Anbar & Neta 1967; selected, Howard et al. 1991); measured rate constants of 0.51 M–1 s–1, 0.72 M–1 s–1, 0.77 M–1 s–1, at pH 7.2, 7.3, 8.1, respectively, for direct reaction with ozone in water at

21°C, with t½ = 18 h at pH 7 (Yao & Haag 1991). Groundwater: t½ = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota

TABLE 11.1.1.2.1 Reported vapor pressures of ethanol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Kahlbaum 1883 Scatchard & Raymond 1938 Kretschmer & Wiebe 1949 Ambrose & Sprake 1970

Ber. 16, 2476 (1883) vapor-liquid equilibrium static method, VLE data ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 12.80 2733 35 13703 0.0 1593 19.622 5726 17.4 4114 40 17877 25.0 7869 23.633 7269 21.0 5509 45 23033 34.988 13736 25.722 8205 24.4 7314 50 29488 44.994 23058 28.157 9430 24.8 7581 55 37312 50.0 29456 33.334 12566 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2484 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 11.1.1.2.1 (Continued)

Kahlbaum 1883 Scatchard & Raymond 1938 Kretschmer & Wiebe 1949 Ambrose & Sprake 1970

Ber. 16, 2476 (1883) vapor-liquid equilibrium static method, VLE data ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 26.2 8261 60 46839 54.988 37302 36.606 14981 78.0 101325 65 58443 65.0 58400 39.237 17200 70 72273 78.553 102219 43.228 21109 85 88858 47.349 25914 eq. 2 P/mmHg 51.081 31047 A 8.11576 54.554 36760 Smyth & Engel 1929 Stull 1947 B 1595.76 58.873 44584 static-manometry summary of literature data C 226.5 62.865 53267 t/°C P/Pa t/°C P/Pa 66.578 62572 70.559 74032 22.7 6906 –31.3 133.3 74.980 88763 32.6 12012 –12.0 666.6 77.485 97821 35.7 14079 –2.30 1333 77.989 100121 41.8 19345 8.0 2666 78.340 101518 57.2 40903 19.0 5333 78.497 102151 59.6 45690 26.0 7999 79.188 104983 69.4 70808 34.9 13332 82.363 118791 78.1 99672 48.4 26664 85.836 135519 78.4 101325 63.5 53329 89.606 155824 78.4 101325 93.481 179321 bp/°C 78.4–78.5 mp/°C –112

Ethanol: vapor pressure vs. 1/T 8.0 experimental data Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 78.29 °C 0.0 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 1/(T/K) FIGURE 11.1.1.2.1 Logarithm of vapor pressure versus reciprocal temperature for ethanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2485

TABLE 11.1.1.2.2 Reported Henry’s law constants and octanol-water partition coefficients of ethanol at various temperatures

Henry’s law constant log KOA Snider & Dawson 1985 Gruber et al. 1997

gas stripping-GC GC det’d activity coefficient

3 t/°C H/(Pa m /mol) t/°C log KOA 0 0.0688 20.29 3.34 25 0.5274 30.3 3.10 40.4 2.87 enthalpy of transfer: 50.28 2.69 ∆H/(kJ mol–1) = 54.392

Ethanol: Henry's law constant vs. 1/T 2.0

1.0

)lom/ 0.0 3 m.aP( -1.0 /H /H

nl -2.0

-3.0

Snider & Dawson 1985 experimental data -4.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K) FIGURE 11.1.1.2.2 Logarithm of Henry’s law constant versus reciprocal temperature for ethanol.

Ethanol: KOA vs. 1/T 4.0

3.5 AO K

gol 3.0

2.5

Gruber et al. 1997 Abraham et al. 1999 2.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 1/(T/K)

FIGURE 11.1.1.2.3 Logarithm of KOA versus reciprocal temperature for ethanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2486 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

11.1.1.3 Propanol (n-Propyl alcohol)

OH

Common Name: Propanol Synonym: propyl alcohol, 1-propanol, n-propyl alcohol Chemical Name: propanol, propyl alcohol, n-propyl alcohol CAS Registry No: 71-23-8

Molecular Formula: C3H8O, CH3CH2CH2OH Molecular Weight: 60.095 Melting Point (°C): –124.39 (Lide 2003) Boiling Point (°C): 97.2 (Lide 2003) Density (g/cm3 at 20°C): 0.8035 (Weast 1982–83) 0.8037 (Dean 1985) Molar Volume (cm3/mol): 75.1 (calculated-density, Rohrschneider 1973) 81.4 (calculated-Le Bas method at normal boiling point) Acid Dissociation Constant, pK:

19.4 (pKs, Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 5.372 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): >3.1×106 (Booth & Everson 1948) miscible (Dean 1985; Riddick et al. 1986, Yaws et al. 1990))

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 2844 (saturated vapor density-gas saturation, Puck & Wise 1946) 2594* (interpolated-regression of tabulated data, temp range –15 to 97.8°C, Stull 1947) 10990* (48.14°C, measured range 48.14–97.1°C, Brown & Smith 1959) 2720* (ebulliometry-differential thermal analysis, measured range 19.3–97.3°C, Kemme & Kreps 1969) log (P/mmHg) = 8.18894 – 1690.864/(221.346 + t/°C); temp range 19.3–97.3°C, or pressure range 14.7–758.5 mmHg (Antoine eq., ebulliometry-differential thermal analysis, Kemme & Kreps 1969) 2798* (comparative ebulliometry, measured range 60.2–104.5°C, Ambrose & Sprake 1970) log (P/Pa) = 6.74390 – 1365.579/(T/K – 82.093); restricted temp range 60.2–81.2°C (Antoine eq., comparative ebulliometry, Ambrose & Sprake 1970) log (P/Pa) = 6.87613 – 1441.705/(T/K – 74.291); temp range 60.2–104.5°C (Antoine eq., comparative ebulliom- etry, Ambrose & Sprake 1970) log (P/mmHg) = [–0.2185 × 10421.1/(T/K)] + 8.937293; temp range –15 to 250°C (Antoine eq., Weast 1972–73) 2744 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.97878 – 1497.734/(204.094 + t/°C); temp range 48.14–94.36°C (Antoine eq. from reported exptl. data of Brown & Smith 1959, Boublik et al. 1984) log (P/kPa) = 6.87065 – 1438.587/(198.552 + t/°C); temp range 60.2–104.6°C (Antoine eq. from reported exptl. data of Ambrose & Sprake 1970, Boublik et al. 1984) 2780 (interpolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.84767 – 1499.21/(204.64 + t/°C); temp range 2–120°C (Antoine eq., Dean 1985, 1992) 2798 (Riddick et al. 1986) log (P/kPa) = 6.87613 – 1441.705/(198.859 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2487

log (PL/kPa) = 6.86874 – 1437.906/(–74.621 + T/K); temp range 333–378 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.74195 – 1364.911/(–82.114 + T/K); temp range 356–378 K (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 8.7592 – 2506/(T/K); temp range 200–228 K (Antoine eq.-III, Stephenson & Malanowski 1987) log (PL/kPa) = 6.74403 – 1366.08/(–81.994 + T/K); temp range 356–376 K (Antoine eq.-IV, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.87377 – 1440.743/(–74.344 + T/K); temp range 333–376 K (Antoine eq.-V, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.58415 – 1273.365/(–92.178 + T/K); temp range 369–407 K (Antoine eq.-VI, Stephenson & Malanowski 1987) log (P/mmHg) = 31.5155 – 3.457 × 103/(T/K) – 7.5235·log (T/K) – 4.287 × 10–11·(T/K) + 1.3029 × 10–7·(T/K)2; temp range 124–537 K (vapor pressure eq., Yaws 1994) 6939 (40°C, vapor-liquid equilibrium VLE data, DeBord et al. 2002) 9470 (45.43°C, vapor-liquid equilibrium VLE data, measured range 45.43–58.9°C, Pasanen et al. 2004) 5876 (37.02°C, ebulliometric method, measured range 310.17–356.7 K, Lubomska & Malanowski 2004) log (P/kPa) = 7.219284 – 1629.492/[(T/K) – 57.556]; temp range 310.17–356.7 K (Antoine eq., ebulliometric method, Lubomska & Malanowski 2004)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.694 (measured partial pressure/mole fraction x at dilute concn, Butler et al. 1935) 0.620 (entrainment method-GC, Burnett 1963) 0.683 (exptl., Hine & Mookerjee 1975) 0.699; 0.710 (calculated-group contribution; calculated-bond contribution, Hine & Mookerjee 1975) 0.751* (headspace-GC, measured range 0–25°C, Snider & Dawson 1985) 0.683 (limiting activity coefficient by headspace-GC., Abraham et al. 1987) 0.925 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 0.683, 0.942 (quoted, correlated-molecular structure, Russell et al. 1992) 0.715 (limiting activity coefficient by headspace-GC., Li & Carr 1993) 1.034 (solid-phase microextraction SPME-GC, Bartelt 1997) 0.372 (wetted-wall column-GC, Altschuh et al. 1999) 0.802 (extrapolated-headspace GC data, measured range 40–90°C, Gupta et al. 2000)

ln KAW = 11.830 – 5923.2/(T/K); temp range 40–90°C (van’t Hoff eq., headspace GC, Gupta et al. 2000) 0.490 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 6.955 – 3123/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 0.34 (shake flask-GC, Hansch & Anderson 1967) 0.30 (shake flask-GC, Dillingham et al. 1973) 0.25 ± 0.01 (shake flask-GC, Leo et al. 1975) 0.29 (Hansch & Leo 1979) 0.32 (shake flask-GC at pH 7, Riebesehl & Tomlinson 1986) 0.25 (recommended, Sangster 1989) 0.25 (recommended value, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section: 3.85* (20.29°C, from GC determined γ∞ in octanol, measured range 20.29–50.28°C, Gruber et al. 1997) 3.20 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF: –1.069 (calculated as per Mackay 1982, Schultz et al. 1990)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2488 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Sorption Partition Coefficient, log KOC: 0.37 (calculated-MCI χ, Gerstl & Helling 1987) 0.48 (soil, quoted exptl., Meylan et al. 1992) 0.12 (soil, calculated-MCI χ and fragment contribution, Meylan et al. 1992) 0.48 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated * data at other temperatures and/or the Arrhenius expression see reference:

photooxidation t½ = 0.24–2.4 h for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976) 9 –1 –1 kOH = (2.3 ± 0.2) × 10 L mol s at 292 K (relative rate method, Campbell et al. 1976) 2 –1 –1 k<2×10 M s for the oxidation by singlet oxygen at 25°C in aquatic systems with t½ > 100 yr (Foote 1976; Mill 1979; quoted, Mill 1982) 9 –1 –1 kOH = 2 × 10 M s at 25°C with t½ = 2.8 d (Hendry & Kenley 1979; quoted, Mill 1982) –12 3 –1 –1 kOH = (5.33 ± 0.53) × 10 cm molecule s at 296 ± 2 K (Overend & Paraskevopoulos 1978; quoted, Atkinson 1985) k = (0.37 ± 0.04) M–1 s–1 for the reaction with ozone in water at pH 2 and 20–23°C (Hoigné & Bader 1983) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 5.3 × 10 cm molecule s , kOH(obs.) = 5.3 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985) –12 3 –1 –1 –12 3 –1 –1 kOH(exptl) = 5.3 × 10 cm molecule s , kOH(calc) = 5.0 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –12 3 –1 –1 kOH = (5.34 ± 0.29) × 10 cm molecule s at 296 K (flash photolysis-resonance fluorescence, Wallington & Kurylo 1987a) –12 3 –1 –1 –12 3 –1 –1 kOH = 5.34 × 10 cm molecule s ; k(soln) = 4.7 × 10 cm molecule s for solution-phase reaction with OH radical in aqueous solution (Wallington et al. 1988b) –12 3 –1 –1 kOH* = 5.34 × 10 cm molecule s 298 K (recommended, Atkinson 1989, 1990) –12 3 –1 –1 kOH = (5.64 ± 0.48) × 10 cm molecule s by pulse radiolysis-UV spectroscopy; kOH = (5.50 ± 0.44) × 10–12 cm3 molecule–1 s–1 by relative rate method, at 298 ± 2 K (Nelson et al. 1990) –12 3 –1 –1 kOH(calc) = 6.8 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation: average rate of biodegradation 71.0 mg COD g–1 h–1 based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 0.24–2.4 h for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976). Surface water: Groundwater: Sediment: Soil: Biota

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2489

TABLE 11.1.1.3.1 Reported vapor pressures of propanol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Brown & Smith 1959 Kemme & Kreps 1969 Ambrose & Sprake 1970

summary of literature data differential thermal analysis comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa ebulliometry –15.0 133.1 48.14 10990 19.3 1960 60.168 20438 5.0 666.6 48.16 10996 19.8 1987 65.599 26579 14.7 1333 48.18 11018 24.5 2720 70.255 33024 25.3 2666 54.52 15405 30.3 3920 74.507 40001 36.4 5333 61.51 21851 30.3 3933 78.022 46676 43.5 7999 65.80 26867 35.2 5293 81.174 53435 52.8 13332 70.09 32831 41.3 7519 83.931 59974 66.8 26664 74.56 40177 48.1 10839 86.490 66638 82.0 53329 81.11 53379 55.4 16052 88.856 73334 97.8 101325 97.08 101358 65.7 26584 91.026 79952 97.09 101331 74.6 39997 93.143 86877 mp/°C –127 97.10 101393 86.6 66461 94.955 93192 86.0 65456 97.3 101125 96.837 100132 91.13 80472 97.595 103031 94.36 91342 Antoine eq. 98.513 106666 eq. 2 P/mmHg 100.155 113408 A 8.18894 101.666 119903 B 1690.864 103.166 126648 C 221.346 104.515 133259 ∆ –1 HV/(kJ mol ) at bp 56.066

Propanol (n -propyl alcohol): vapor pressure vs. 1/T 8.0 Brown & Smith 1959 Kemme & Kreps 1969 7.0 Ambrose & Sprake 1970 Stull 1947 experimental data 6.0

5.0 /Pa) S 4.0

log(P 3.0

2.0

1.0 b.p. = 97.2 °C 0.0 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 1/(T/K) FIGURE 11.1.1.3.1 Logarithm of vapor pressure versus reciprocal temperature for propanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2490 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 11.1.1.3.2 Reported Henry’s law constants and octanol-air partition coefficients of propanol at various temperatures

Henry’s law constant log KOA Snider & Dawson 1985 Gruber et al. 1997

gas stripping-GC GC det’d activity coefficient

3 t/°C H/(Pa m /mol) t/°C log KOA 0 0.0757 20.29 3.85 25 0.7512 30.3 3.56 40.4 3.33 enthalpy of transfer: 50.28 3.11 ∆H/(kJ mol–1) = 58.576

Propanol (n -propyl alcohol): Henry's law constant vs. 1/T 2.0

1.0

)lo 0.0 m/ 3 m.aP -1.0 ( /H nl /H

-2.0

-3.0

Snider & Dawson 1985 experimental data -4.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K) FIGURE 11.1.1.3.2 Logarithm of Henry’s law constant versus reciprocal temperature for propanol.

Propanol (n -propyl alcohol): KOA vs. 1/T 4.5

4.0 AO

K gol K 3.5

3.0

Gruber et al. 1997 Abraham et al. 1999 2.5 0.0028 0.0029 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 1/(T/K)

FIGURE 11.1.1.3.3 Logarithm of KOA versus reciprocal temperature for propanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2491

11.1.1.4 Isopropanol (i-Propyl alcohol)

OH

Common Name: Isopropanol Synonym: isopropyl alcohol, 2-propanol, i-propyl alcohol, dimethylcarbinol, sec-propylalcohol, perspirit, petrohol, avantine, IPA Chemical Name: isopropanol, isopropyl alcohol, i-propyl alcohol CAS Registry No: 67-63-0

Molecular Formula: C3H8O, CH3(CH3)CHOH Molecular Weight: 60.095 Melting Point (°C): –87.9 (Lide 2003) Boiling Point (°C): 82.3 (Lide 2003) Density (g/cm3 at 20°C): 0.7812 (25°C, Butler et al. 1935) 0.7855 (Weast 1982–83; Dean 1985) Molar Volume (cm3/mol): 76.8 (calculated-density, Rohrschneider 1973) 81.4 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 17.1 (Serjeant & Dempsey 1979; Howard 1990) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 5.406 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): >3.1×106 (Booth & Everson 1948) miscible (Dean 1985; Riddick et al. 1986; Howard 1990)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 5866* (static method-isoteniscope, measured 0–90°C, Parks & Barton 1928) 5700* (interpolated-regression of tabulated data, temp range –26.1 to 82.5°C, Stull 1947) 5775* (comparative ebulliometry, measured range 52.323–89.261°C, Ambrose & Sprake 1970) log (P/Pa) = 6.73896 – 1290.345/(T/K – 82.778); restricted temp range 52.3–71.1°C (Antoine eq., comparative ebulliometry, Ambrose & Sprake 1970) log (P/Pa) = 6.86618 – 1360.131/(T/K – 75.558); temp range 52.3–89.3°C (Antoine eq., comparative ebulliom- etry, Ambrose & Sprake 1970) log (P/mmHg) = [–0.2185 × 10063.5/(T/K)] + 7.805751; temp range –91 to 160°C (Antoine eq., Weast 1972–73) 4266, 7588 (20°C, 30°C, Verschueren 1983) 5070; 5700 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.86634 – 1360.183/(197.593 + t/°C); temp range 52.3–89.26°C (Antoine eq. from reported exptl. data of Ambrose & Sprake 1970, Boublik et al. 1984) log (P/kPa) = 6.358 – 1082.462/(166.482 + t/°C); temp range 81.61–147.6°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 6021 (calculated-Antoine eq., Dean 1985) log (P/mmHg) = 8.11778 – 1580.92/(219.61 + t/°C); temp range 0–101°C (Antoine eq., Dean 1985, 1992) 5775 (Riddick et al. 1986) log (P/kPa) = 6.86618 – 1360.131/(126.36 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2492 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (PL/kPa) = 6.86087 – 1357.514/(–75.786 + T/K); temp range 325–363 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.72348 – 1282.26/(–83.591 + T/K); temp range 347–363 K (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 9.681 – 2626/(T/K); temp range 195–228 K (Antoine eq.-III, Stephenson & Malanowski 1987) log (PL/kPa) = 6.73782 – 1290.039/(–82.771 + T/K); temp range 347–363 K (Antoine eq.-IV, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.86451 – 1359.473/(–75.592 + T/K); temp range 325–363 K (Antoine eq.-V, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.61939 – 1225.439/(–89.774 + T/K); temp range 350–383 K (Antoine eq.-VI, Stephenson & Malanowski 1987) log (P/mmHg) = 38.2363– 3.5513 × 103/(T/K) – 10.031·log(T/K) – 3.474 × 10–10·(T/K) + 1.7367 × 10–6·(T/K)2; temp range 185–508 K (vapor pressure eq., Yaws 1994) 13806 (40°C, vapor-liquid equilibrium VLE data, DeBord et al. 2002)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.814 (measured partial pressure/mole fraction x at dilute concn, Butler et al. 1935) 0.820 (exptl., Hine & Mookerjee 1975) 1.159, 0.710 (calculated-group contribution, calculated-bond contribution; Hine & Mookerjee 1975) 0.80* (headspace-GC, measured range 0–25°C, Snider & Dawson 1985) 1.131 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 3.16* (40°C, equilibrium headspace-GC, measured range 40–80°C, Kolb et al. 1992)

ln (1/KAW) = –10.6 + 5413/(T/K); temp range 40–80°C (equilibrium headspace-GC measurements, Kolb et al. 1992) 0.820, 0.715 (quoted, correlated-molecular structure, Russell et al. 1992) 1.091 (gas stripping-GC, Altschuh et al. 1999) 5.55 (EPICS-GC, Ayuttaya et al. 2001) 0.521 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 5.576 – 2757/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 2.186 – 0.666 (27°C, equilibrium headspace-GC, solute concn 12.31-125.08 mg/L, measured range 300–315 K, Cheng et al. 2003) 2.186* (27°C, equilibrium headspace-GC, measured range 27–42°C, Cheng et al. 2003)

Octanol/Water Partition Coefficient, log KOW: 0.14 (Leo et al. 1969; Hansch & Dunn III 1972) 0.05 (shake flask-GC, Dillingham et al. 1973) 0.05 (Hansch & Leo 1985) 0.14 (HPLC-k’ correlation, Funasaki et al. 1986) 0.55 (UNIFAC activity coefficient, Banerjee & Howard 1988) 0.05 (recommended, Sangster 1989, 1993) 0.05 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section: 3.54* (20.29°C, from GC determined γ∞ in octanol, measured range 20.29–50.28°C, Gruber et al. 1997) 3.38 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2493

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: the estimated t½ ~3.6 d for evaporation from water 1 m deep with 1 m/s current and 3 m/s wind (Lyman et al. 1982; quoted, Howard 1990). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression see reference:

photooxidation t½ = 197 d to 22 yr in water, based on measured rate constant for the reaction with OH radical in water (Dorfman & Adams 1973; selected, Howard et al. 1991)

photooxidation t½ = 0.24–2.4 h in air for the gas-phase reaction with OH radical, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976) 2 –1 –1 k<2×10 M s for oxidation by singlet oxygen at 25°C in aquatic systems with t½ > 100 yr (Foote 1976; Mill 1979; quoted, Mill 1982) 9 –1 –1 kOH = 4.1 × 10 M s at 25°C with t½ = 1.3 d (Hendry & Kenley 1979; quoted, Mill 1982) –12 3 –1 –1 kOH = (5.48 ± 0.55) × 10 cm molecule s at (296 ± 2) K (Overend & Paraskevopoulos 1978; quoted, Atkinson 1985) 12 3 –1 –1 kOH = 4.3 × 10 cm mol s at 300 K (Lyman et al. 1982) k = (1.9 ± 0.2) M–1 s–1 for the reaction with ozone in water at pH 2-6 and 20–23°C (Hoigné & Bader 1983) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 7.1 × 10 cm molecule s , kOH(obs.) = 6.2 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985) –12 3 –1 –1 –12 3 –1 –1 kOH(exptl) = 6.2 × 10 cm molecule s , and kOH(calc) = 6.6 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –12 3 –1 –1 kOH* = (5.81 ± 0.34) × 10 cm molecule s at 296 K, measured range 240–440 K (flash photolysis- resonance fluorescence, Wallington & Kurylo 1987a) –15 3 –1 –1 kNO3 <2.3×10 cm molecule s at 298 ± 2 K (flash photolysis-absorption technique, Wallington et al. 1987; quoted, Atkinson 1991) k(aq.) = 3.20 × 10–12 cm3 molecule–1·s–1 for the solution-phase reaction with OH radical in aqueous solution (Wallington & Kurylo 1987b) –12 3 –1 –1 kOH(exptl)* = 5.81 × 10 cm molecule s at 296 K, measured range 240–440 K (flash photolysis- resonance fluorescence, Wallington et al. 1988a) –12 3 –1 –1 –12 3 –1 –1 kOH = 5.81 × 10 cm molecule s ; k(soln) = 3.2 × 10 cm molecule s for reaction with OH radical in aqueous solution (Wallington et al. 1988b) –12 3 –1 –1 kOH* = 5.21 × 10 cm molecule s at 298 K (recommended, Atkinson 1989, 1990) –12 3 –1 –1 kOH = (5.69 ± 1.09) × 10 cm molecule s by pulse radiolysis-UV spectroscopy; kOH = (5.78 ± 0.753) × 10–12 cm3 molecule–1 s–1 by relative rate method, at 298 ± 2 K (Nelson et al. 1990) –12 3 –1 –1 kOH(calc) = 2.90 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation: k = 52.0 mg COD g–1 h–1, average rate of biodegradation based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982);

t½ (aq. aerobic) = 24–168 h, based on unacclimated aerobic aqueous screening test data (Gellman & Heukelekian 1955; Heukelekian & Rand 1955; Price et al. 1974; Takemoto et al. 1981; Wagner 1976; selected, Howard et al. 1991);

t½ (aq. anaerobic) = 96–672 h, based on estimated aerobic aqueous biodegradation half-life and unacclimated anaerobic aqueous screening test data (Hou et al. 1983; Sonoda & Seiko 1968; Speece 1983; selected, Howard et al. 1991). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment:

Air: photooxidation t½ = 0.24–2.4 h in air for the gas-phase reaction with hydroxyl radical, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976);

photooxidation t½ = 6.2–72 h, based on measured rate constant for the reaction with hydroxyl radical in air (Atkinson 1985, 1987; quoted, Howard 1990; selected, Howard et al. 1991).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2494 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Surface water: photooxidation t½ = 197 d to 22 yr, based on measured rate constant for the reaction with hydroxyl radical in water (Dorfman & Adams 1973; selected, Howard et al. 1991);

t½ = 26–168 h, based on estimated unacclimated aerobic aqueous biodegradation half-life (Howard et al. 1991).

Groundwater: t½ = 48–336 h, based on estimated unacclimated aerobic aqueous biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 24–168 h, based on estimated unacclimated aerobic aqueous biodegradation half-life (Howard et al. 1991). Biota:

TABLE 11.1.1.4.1 Reported vapor pressures of isopropanol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Parks & Barton 1928 Stull 1947 Ambrose & Sprake 1970

summary of static method/isoteniscope literature data comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa 0 1187 –26.1 133.1 52.323 26540 5 1613 –7.00 666.6 56.779 33044 10 2266 2.40 1333 60.798 40017 15 3173 12.7 2666 64.091 46612 20 4320 23.8 5333 67.087 53371 25 5866 30.5 7999 69.704 59931 30 7879 39.5 13332 72.131 66601 35 10519 53.0 26664 74.372 73286 40 14079 67.8 53329 76.454 79997 45 18239 82.5 101325 78.431 86822 50 23571 80.160 93175 55 30318 mp/°C –85.8 81.931 100078 60 38464 82.958 104266 65 48409 85.090 113416 70 60635 86.550 120046 75 74847 87.992 126573 80 92232 89.261 133218 85 112737 90 136082 ∆ –1 HV/(kJ mol ) = at 25°C 44.43 at bp 40.166

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2495

Isopropanol (i -propyl alcohol): vapor pressure vs. 1/T 8.0 Parks & Barton 1928 Ambrose & Sprake 1970 7.0 Stull 1947 DeBord et al. 2002 6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 82.3 °C 0.0 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 1/(T/K) FIGURE 11.1.1.4.1 Logarithm of vapor pressure versus reciprocal temperature for isopropanol.

TABLE 11.1.1.4.2 Reported Henry’s law constants and octanol-air partition coefficients of isopropanol at various temperatures

Henry’s law constant log KOA Snider & Dawson 1985 Kolb et al. 1992 Cheng et al. 2003 Gruber et al. 1997

gas stripping-GC equilibrium headspace-GC equilibrium headspace-GC GC det’d activity coefficient

3 3 3 t/°C H/(Pa m /mol) t/°C H/(Pa m /mol) t/°C H/(Pa m /mol) t/°C log KOA 0 0.0811 40 3.16 27 2.186 20.29 3.54 25 0.800 60 9.68 32 2.51 30.3 3.27 70 15.94 37 3.35 40.4 3.04 enthalpy of transfer: 80 25.09 42 4.24 50.28 2.85 ∆H/(kJ mol–1) = 58.576

ln (1/KAW) = A – B/(T/K)

1/KAW A–10.6 B –5413

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2496 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Isopropanol (i -propyl alcohol): Henry's law constant vs. 1/T 4.0

3.0

2.0 )lom/ 1.0 3 m.aP(/H nl m.aP(/H 0.0

-1.0

-2.0

Snider & Dawson 1985 -3.0 Kolb et al. 1992 Cheng et al. 2003 experimental data -4.0 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K)

FIGURE 11.1.1.4.2 Logarithm of Henry’s law constant versus reciprocal temperature for isopropanol.

Isopropanol (i -propyl alcohol): KOA vs. 1/T 4.0

3.5 AO

K gol K 3.0

2.5

Gruber et al. 1997 Abraham et al. 1999 2.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 1/(T/K)

FIGURE 11.1.1.4.3 Logarithm of KOA versus reciprocal temperature for isopropanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2497

11.1.1.5 n-Butanol (n-Butyl alcohol)

OH

Common Name: n-Butanol Synonym: 1-butanol, n-butyl alcohol, n-propylcarbinol Chemical Name: n-butyl alcohol, 1-butanol CAS Registry No: 71-36-3

Molecular Formula: C4H10O, CH3CH2CH2CH2OH Molecular Weight: 74.121 Melting Point (°C): –88.6 (Dean 1985; Riddick et al. 1986; Lide 2003) Boiling Point (°C): 117.73 (Lide 2003) Density (g/cm3 at 20°C): 0.80593 (25°C, Butler et al. 1935) 0.80980 (Weast 1982–83) 0.80956, 0.80575 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 91.7 (calculated-density, Rohrschneider 1973) 103.6 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 20.89 (Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 9.37 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): 56 (estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 68120, 79000* (18, 20°C, shake flask-turbidity, Fühner 1924) 73500* (volumetric method, Hill & Malisoff 1926) 64000* (20°C, synthetic method, Jones 1929) 70800* (30°C, vapor liquid equilibrium, measured range 0–105°C, Mueller et al. 1931) 74500 (gravimetric method, Stockhart & Hull 1931) 73180 (24.85°C, shake flask-interferometer, Butler et al. 1933) 73100 (shake flask-cloud point, Butler et al. 1933) 70000 (26°C, synthetic method, Othmer et al. 1945) 73320 (shake flask-residue volume, Booth & Everson 1948) 74100 (shake flask-interferometry, Hansen et al. 1949) 73000 (shake flask-interferometry, quoted from Butler et al. 1933, Donahue & Bartell 1952) 75850 (estimated, McGowan 1954) 78700 (26.7°C, shake flask-turbidity, Skrzec & Murphy 1954) 74000 (surface tension, Kinoshita et al. 1958) 70000 (titration, Petriris & Geankopolis 1959) 75600* (20°C, synthetic method, measured range 0–125°C, von Erichsen 1962) 77800 (shake flask-GC, Korenman et al. 1974, 1975) 74000* (shake flask-colorimetric analysis, De Santis et al. 1976) 70000* (29.8°C, shake flask-refractometry, measured range 29.8–124.6°C, Aoki & Moriyoshi 1978) 63300 (generator column-GC, Wasik et al. 1981; Tewari et al. 1982) 77000 (Verschueren 1983; Howard 1990) 74000* (recommended, IUPAC solubility series, temp range 10–110°C, Barton 1984) 74500 (selected, Riddick et al. 1986)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2498 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

80300* (20°C, shake flask-GC/TC, measured range 0–90.8°C, Stephenson & Stuart 1986) 74600 (selected, Yaws et al. 1990) 65720 (shake flask-GC, Li et al. 1992) 71230 (shake flask-GC, Li & Andren 1994)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 800* (24.0°C, static method, measured range 15.1–117.6°C, Kahlbaum 1898) 904* (24.98°C, modified isoteniscope method, measured range 24.98–101.16°C, Butler et al. 1935) log (P/mmHg) = 40.2105 – 4100/(T/K) – 10.35·log (T/K); temp range 25–110°C (isoteniscope measurements, Butler et al. 1935) 819 (saturated vapor density-gas saturation, Puck & Wise 1946) 667* (20°C, summary of literature data, temp range –1.20 to 117°C, Stull 1947) log (P/mmHg) = 8.27488 – 1873.9/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 10274* (64.56°C, measured range 64.56–117.56°C, Brown & Smith1959) 820 (calculated-Antoine eq., Reid & Sherwood 1966) 733* (22.6°C, ebulliometry-differential thermal analysis, measured range 22.6–117.8°C, Kemme & Kreps 1969) log (P/mmHg) = 7.42117 – 1351.555/(179.810 + t/°C); temp range 22.6–117.8°C, or pressure range 5.5–766 mmHg (Antoine eq., ebulliometry-differential thermal analysis, Kemme & Kreps 1969) 910* (comparative ebulliometry, measured range 78.558–125.686°C, Ambrose & Sprake 1970) log (P/Pa) = 6.41435 – 1262.767/(T/K – 104.445); restricted temp range 78.558–100.74°C (Antoine eq., com- parative ebulliometry, Ambrose & Sprake 1970) log (P/Pa) = 6.54743 – 1338.769/(T/K – 96.108); temp range 78.558–125.686°C (Antoine eq., comparative ebulliometry, Ambrose & Sprake 1970) 864 (Hoy 1970) 948* (298.11 K, measured range 283.10–323.12 K, Geiseler et al. 1973) log (P/mmHg) = [–0.2185 × 10970.5/(T/K)] + 8.929597; temp range –1.2 to 277°C (Antoine eq., Weast 1972–73) 868* (24.96°C, vapor-liquid equilibrium data, temp range 281.1–323.12 K, Gmehling et al. 1982) 586, 1333 (20°C, 30°C, quoted, Verschueren 1983) 890 (interpolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.54068 – 1335.018/(176.654 + t/°C); temp range 78.56–125.7°C (Antoine eq. from reported exptl. data of Ambrose & Sprake 1970, Boublik et al. 1984) log (P/kPa) = 6.71950 – 1428.939/(185.552 + t/°C); temp range 41.5–108.8°C (Antoine eq. from reported exptl. data Kahlbaum 1898, Boublik et al. 1984) log (P/kPa) = 6.66896 – 1405.473/(183.866 + t/°C); temp range 64.5–117.56°C (Antoine eq. from reported exptl. data of Brown & Smith 1959, Boublik et al. 1984) log (P/kPa) = 6.7666 – 1460.309/(189.211 + t/°C); temp range 22.6–117.8°C (Antoine eq. from reported exptl. data of Kemme & Kreps 1969, Boublik et al. 1984) 936 (Daubert & Danner 1985) 824 (interpolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.47680 – 1362.39/(178.77 + t/°C); temp range 15–131°C (Antoine eq., Dean 1985, 1992) 910 (selected, Riddick et al. 1986) log (P/kPa) = 6.54743 – 1338.769/(177.042 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986)

log (PL/kPa) = 6.41661 – 1264.515/(–104.202 + T/K); temp range 376–399 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.54172 – 1336.026/(–96.348 + T/K); temp range 323–413 K (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.05559 – 1738.4/(–46.544 + T/K), temp range: 413–550 K, (Antoine eq.-III, Stephenson & Malanowski 1987)

log (PL/kPa) = 8.9241 – 2697/(T/K); temp range 209–251 K (Antoine eq.-IV, Stephenson & Malanowski 1987) log (PL/kPa) = 6.41594 – 1264.106/(–104.251 + T/K); temp range 376–397 K (Antoine eq.-V, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.54723 – 1339.093/(–96.03 + T/K); temp range 351–397 K (Antoine eq.-VI, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2499

905* (298.11 K, static method-Hg manometer, measured range 283.10–323.12 K, Gracia et al. 1992) 998 (calculated-solvatochromic parameters, Banerjee et al. 1990) log (P/mmHg) = 39.6673 – 4.0017 × 103/(T/K)–10.295·log (T/K) – 3.2572 × 10–10·(T/K) + 8.6672 × 10–7·(T/K)2; temp range 184–563 K (vapor pressure eq., Yaws 1994) 933* (static method-manometer, measured range 278.15–323.15 K, Garriga et al. 2002)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.866 (measured partial pressure/mole fraction x at dilute concn, Butler et al. 1935) 0.731 (entrainment method-GC, Burnett 1963) 0.892 (shake flask, partial vapor pressure-GC, Buttery et al. 1969) 0.860; 0.964; 1.057 (exptl.; calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 0.80* (headspace-GC, measured range 0–25°C, Snider & Dawson 1985) 0.860 (limiting activity coefficient by headspace-GC., Abraham et al. 1987) 4.024* (40°C, equilibrium headspace-GC, measured range 40–80°C, Kolb et al. 1992)

ln (1/KAW) = –10.2 + 5234/(T/K); temp range: 40–80°C (equilibrium headspace-GC measurements, Kolb et al. 1992) 0.880 (limiting activity coefficient by headspace-GC., Li & Carr 1993) 0.868 (wetted-wall column-GC, Altschuh et al. 1999) 1.214 (extrapolated-headspace GC data, measured range 40–90°C, Gupta et al. 2000)

ln KAW = 12.141 – 5982.0/(T/K); temp range 40–90°C (van’t Hoff eq., headspace GC, Gupta et al. 2000) 0.53 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 6.600 – 3009/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 0.83 (shake flask-CR, Collander 1951) 0.84 (calculated-π constant, Hansch et al. 1968) 0.88 (Hansch & Dunn III unpublished result, Leo et al. 1971; Hansch & Leo 1985) 0.84, 0.86; 0.84 (calculated-fragment const.; calculated-π constant, Rekker 1977) 0.89 (Hansch & Leo 1979) 0.955 (HPLC-RV/RT correlation, Yonezawa & Urushigawa 1979) 1.02 (HPLC-RV correlation, Yonezawa & Urushigawa 1979) 0.80 (calculated by Rekker’s method, Hanai et al. 1981) 0.79 (generator column-GC, Wasik et al. 1981; Tewari et al. 1982) 0.76 (calculated from measured activity coeff. γ, Wasik et al. 1981) 0.93 (shake flask-RC, Cornford 1982) 0.80 (RP-HPLC-k’ correlation, D’Amboise & Hanai 1982) 0.87 (shake flask-GC at pH 7, Riebesehl & Tomlinson 1986) 0.79 (generator column-GC, Schantz & Martire 1987) 0.80 (calculated from measured activity coeff., γ, Schantz & Martire 1987) 0.87 (calculated-γ from UNIFAC, Banerjee & Howard 1988) 0.823, 0.84 (calculated-CLOGP, calculated-M.O. indices, Bodor et al. 1989) 0.84 (recommended, Sangster 1989, 1993) 0.87 (calculated-UNIFAC activity coefficients, Dallos et al. 1993) 0.89 (calculated-UNIFAC activity coeff., Dallos et al. 1993) 0.88 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 4.19 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF: –0.439 (calculated as per Mackay 1982, Schultz et al. 1990)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2500 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Sorption Partition Coefficient, log KOC:

1.85 (calculated-KOW, Lyman et al. 1982) 0.64 (calculated-MCI χ, Gerstl & Helling 1987) 0.50 (soil, quoted exptl., Meylan et al. 1992) 0.39 (soil, calculated-MCI χ and fragment contribution, Meylan et al. 1992)

0.50 (calculated-KOW, Kollig 1993) 0.50 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: evaporation rate k = 2.538 × 10–4 mol m–2 h–1 was determined by gravimetric method with an air flow rate k = (50 ± 1) L h–1 at 20 ± 0.1°C (Gückel et al. 1973);

estimated half-lives, t½ ~2.4 h in streams, t½ ~3.9 h in rivers and t½ ~125.9 h in lakes (Lyman et al. 1982; quoted, Howard 1990). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression see reference: 9 –1 –1 –17 k = 2.2 × 10 L mol s for the reaction with 1 × 10 M hydroxyl radical in water with t½ ~1 yr (Anbar & Neta 1967; quoted, Howard 1990)

photooxidation t½ = 2602–104000 h in water, based on measured rate constant for reaction with OH radical in aqueous solution (Dorfman & Adams 1973; quoted, Howard et al. 1991) –10 3 –1 –1 kOH = 6.8 × 10 cm molecule s at 292 K (relative rate method, Campbell et al. 1976) photooxidation t½ = 0.24–2.4 h for the gas-phase reaction with OH radical in air, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976)

t½ = 6.5 h for the vapor phase reaction with photochemically produced NO radical in the atmosphere (Dilling et al. 1976; quoted, Howard 1990) –12 3 –1 –1 kOH = 4.1 × 10 cm molecule s at 300 K (Lyman et al. 1982) k = 0.58 ± 0.06) M–1 s–1 for the reaction with ozone in water at pH 2.0-6.0 and 20–23°C (Hoigné & Bader 1983) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 6.7 × 10 cm molecule s , kOH(obs.) = 7.3 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987)

photooxidation t½ = 8.8–87.7 h in air, based on measured rate constant for the vapor-phase reaction with OH radical in air (Atkinson 1985; selected, Howard et al. 1991) estimated half-life of 2.3 d for the vapor phase reaction with photochemically produced OH radical in the atmosphere (GEMS 1986; quoted, Howard 1990) –12 3 –1 –1 –12 3 –1 –1 kOH(exptl) = 7.3 × 10 cm molecule s , and kOH(calc) = 6.4 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –12 3 –1 –1 kOH = (8.31 ± 0.63) × 10 cm molecule s at 296 K (flash photolysis-resonance fluorescence, Wallington & Kurylo 1987a) –12 3 –1 –1 –12 3 –1 –1 kOH(exptl) = 8.31 × 10 cm molecule s and k(soln) = 7.0 × 10 cm molecule s for the reaction with OH radical in aqueous solution (flash photolysis-resonance fluorescence, Wallington & Kurylo 1987b) –12 3 –1 –1 –12 3 –1 –1 kOH = 8.31 × 10 cm molecule s ; k(soln) = 7.0 × 10 cm molecule s for reaction with OH radical in aqueous solution (Wallington et al. 1988b) –12 3 –1 –1 kOH = (7.2 - 8.31) × 10 cm molecule s at 292–296 K (review, Atkinson 1989) –12 3 –1 –1 kOH = 8.3 × 10 cm molecule s at 298 K (recommended, Atkinson 1990) –12 3 –1 –1 –12 kOH = (7.80 ± 0.2) × 10 cm molecule s by pulse radiolysis-UV spectroscopy; kOH = (8.56 ± 0.70) × 10 cm3 molecule–1 s–1 by relative rate method, at 298 ± 2 K (Nelson et al. 1990) –12 3 –1 –1 kOH(calc) = 8.9 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation:

t½(aq. aerobic) = 24–168 h, based on unacclimated freshwater grab sample data (Hammerton 1955) and aqueous screening test data (Bridie et al. 1979; selected, Howard et al. 1991); k = 84.0 mg COD g–1 h–1, average rate of biodegradation based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2501

t½(aq. anaerobic) = 96–1296 h, based on acclimated screening test data (Chou et al. 1979; selected, Howard et al. 1991) and aqueous aerobic biodegradation half-life (Howard et al. 1991); k(calc) = (0.959 ± 0.063) × 102 h–1 by activated sludge (Yonezawa & Urushigawa 1979) k = 0.035–0.046 h–1 in 30 mg/L activated sludge after a time lag of 5-10 h (Urano & Kato 1986). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 0.24-2.4 h for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976);

photodecomposition t½ = 6.5 h under simulated atmospheric conditions, with NO (Dilling et al. 1976); –6 3 t½(calc) = 1.2 d for the atmospheric reaction with 1 × 10 molecules/cm of OH radical (Howard 1990); photooxidation t½ = 8.8-87.7 h, based on measured rate constant for the vapor-phase reaction with OH radical in air (Atkinson 1985; selected Howard et al. 1991).

Surface water: t½ = 24-168 h, based on unacclimated freshwater grab sample data (Hammerton 1955; selected, Howard et al. 1991) and aqueous screening test data (Bridie et al. 1979; selected, Howard et al. 1991);

photooxidation t½ = 2602-104000 h, based on measured rate constant for reaction with hydroxyl radicals in aqueous solution (Dorfman & Adams 1973; selected, Howard et al. 1991);

estimated volatilization half-lives, t½ = 2.4 h in streams, t½ = 3.9 h in rivers and t½ = 125.9 h in lakes (Lyman et al. 1982; quoted, Howard 1990).

Groundwater: t½ = 48-1296 h, based on estimated aqueous anaerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 24-168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

TABLE 11.1.1.5.1 Reported aqueous solubilities of 1-butanol at various temperatures 1.

Fühner 1924 Hill & Malisoff 1926 Jones 1929 Mueller et al. 1931

synthetic method volumetric method synthetic method vapor liquid equilibrium

t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 0 104500 5 95500 0 91000 0 95500 10 90000 10 89100 20.0 64000 15 83000 20 79000 15 82100 40.0 60300 30 70800 30 71000 20 78100 60.0 60000 45 65000 40 65500 25 73500 65.0 60300 60 65200 50 63500 30 70800 80.0 64000 75 68000 60 63500 35 68300 100.0 82000 90 78000 70 65500 40 66000 107.72 97900 105 98000 80 70000 50 64600 110.0 102000 90 78000 60 65200 120.0 147000 100 90500 70 67300 110 10900 80 68900 97.9 87400 114.5 127300 116.9 134600 123.3 197300 125.15 304400 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2502 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 11.1.1.5.1 (Continued) 2.

von Erichsen 1952 Aoki & Moriyoshi 1978 Barton 1984 Stephenson & Stuart 1986

synthetic method shake flask-refractometry IUPAC recommended shake flask-GC/TC

t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 at 1atm 0 103200 29.8 70000 0 104000 0 103300 10 86800 49.6 69000 5 96000 9.6 89800 20 75600 59.5 75000 10 89000 20.0 80300 30 70600 69.5 67000 15 82000 30.8 70700 40 67200 89.5 75000 20 78000 40.1 67700 50 65500 99.3 95000 25 74000 50.0 65400 69 65200 106.9 106000 30 71000 60.1 63500 70 66700 109.8 110000 35 68000 70.2 67300 80 69000 118.1 145000 40 66000 80.1 70400 90 75000 119.1 172000 50 64000 90.8 72600 100 88200 122.1 182000 60 65000 110 110500 122.7 189000 70 67000 120 154500 123.9 218000 75 69000 125 235000 124.3 247000 80 70000 124.6 279000 85 73000 90 77000 95 83000 De Santis et al. 1976 100 91000 shake flask-colorimetry 105 100000 110 111000 20 80000 115 130000 30 79400 40 66000

1-Butanol (n -butyl alcohol): solubility vs. 1/T -2.0 experimental data Barton 1984 (IUPAC recommended) -2.5

-3.0

x nl x -3.5

-4.0

-4.5

-5.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 11.1.1.5.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 1-butanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2503

TABLE 11.1.1.5.2 Reported vapor pressures of 1-butanol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) ln P = A – B/{(T/K) – C} (3a) log P = A – B/(T/K) – C·log (T/K) (4) 1.

Kahlbaum 1898 Butler et al. 1935 Stull 1947 Brown & Smith 1959

static method isoteniscope method summary of literature data

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 41.5 2866 24.98 904 –1.20 133.3 64.56 10274 44.3 3200 40.0 1276 20.0 666.6 64.74 10371 46.2 3466 45.03 1800 30.2 1333 70.15 13668 48.6 4133 50.08 4593 41.5 2666 75.39 17692 50.1 4400 60.11 8091 53.4 5333 79.00 20982 52.0 5066 70.29 13732 60.3 7999 79.02 21022 55.0 5999 80.58 22465 70.1 13332 89.14 33160 60.2 7999 90.83 35544 84.3 26664 97.33 46859 64.3 9999 101.16 77140 100.8 53329 103.3 59548 69.8 13332 117.5 101325 108.23 72038 78.1 19998 bp/°C 117.71 113.26 86855 84.3 26664 D25 0.8059 mp/°C –79.9 117.56 131371 89.4 33330 93.7 39997 eq. 4 P/mmHg 97.4 46663 A 40.2105 100.0 53329 B 4100 103.7 59995 C 10.35 106.3 66661 ∆ –1 108.8 73327 HV/(kJ mol ) = 52.84 at 25°C 2.

Kemme & Kreps 1969 Ambrose & Sprake 1970 Geiseler et al. 1973 Gmehling et al. 1982

differential thermal analysis comparative ebulliometry Z. Phys. Chem. 254, 261 V-L equil. data collection

t/°C P/Pa t/°C P/Pa T/K P/Pa T/K P/Pa 22.6 733.3 78.558 20413 283.10 309 283.10 269 30.9 1373 84.243 26518 288.13 457 288.13 405 36.2 1973 89.212 33045 293.12 663 293.12 599 40.7 2613 93.662 39973 298.11 948 298.11 868 48.2 4133 97.357 46601 303.11 1335 303.11 1241 52.4 5280 100.743 53450 308.10 1856 308.10 1744 58.3 7373 103.636 59932 313.08 2545 313.08 2416 65.8 10852 106.367 66630 318.11 3457 318.11 3309 73.5 16185 108.884 73332 323.12 4640 323.12 4473 85.1 27731 111.162 79856 93.8 40463 113.429 86807 ref. from Gracia 1989 196.5 67594 115.324 92996 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2504 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 11.1.1.5.2 (Continued)

Kemme & Kreps 1969 Ambrose & Sprake 1970 Geiseler et al. 1973 Gmehling et al. 1982

differential thermal analysis comparative ebulliometry Z. Phys. Chem. 254, 261 V-L equil. data collection

t/°C P/Pa t/°C P/Pa T/K P/Pa T/K P/Pa 117.8 102125 117.413 100142 119.193 106702 Antoine eq. 120.939 113410 eq. 2 P/mmHg 122.564 119943 A 7.42117 124.115 126625 B 1351.864 125.686 133323 C 179.810 3.

Gracia et al. 1992 Garriga et al. 2002

static method-Hg manometer static method-manometer

T/K P/Pa T/K P/Pa 283.10 265 278.15 192 288.13 411 283.15 230 293.12 613 288.15 453 298.11 905 293.15 635 303.11 1315 298.15 933 308.10 1831 303.15 1315 313.08 2522 308.15 1827 318.11 3420 313.15 2518 323.12 4600 318.15 3429 323.15 4586 Antoine eq. eq. 3a P/kPa A 12.12863 B 2039.057 C 132.925

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2505

1-Butanol (n -butyl alcohol): vapor pressure vs. 1/T 8.0 experimental data Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 117.73 °C 0.0 0.0024 0.0028 0.0032 0.0036 0.004 0.0044 1/(T/K) FIGURE 11.1.1.5.2 Logarithm of vapor pressure versus reciprocal temperature for 1-butanol.

TABLE 11.1.1.5.3 Reported Henry’s law constants of 1-butanol at various temperatures and temperature dependence equations

ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a)

ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a)

ln (kH/atm) = A – B/(T/K) (3) ln [H/(Pa m3/mol)] = A – B/(T/K) (4) ln [H/(atm·m3/mol)] = A – B/(T/K) (4a) 2 KAW = A – B·(T/K) + C·(T/K) (5)

Snider & Dawson 1985 Kolb et al. 1992

gas stripping-GC equilibrium headspace-GC

t/°C H/(Pa m3/mol) t/°C H/(Pa m3/mol) 0 0.0873 40 4.024 25 0.800 60 11.64 70 19.81 enthalpy of transfer: 80 29.69 ∆H/(kJ mol–1) = 58.576

eq. 2a 1/KAW A –10.2 B 5234

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2506 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

1-Butanol (n -butyl alcohol): Henry's law constant vs. 1/T 4.0

3.0

2.0 )lom/ 1.0 3 m.aP(/H nl m.aP(/H 0.0

-1.0

-2.0

-3.0 Snider & Dawson 1985 Kolb et al. 1992 experimental data -4.0 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 11.1.1.5.3 Logarithm of Henry’s law constant versus reciprocal temperature for 1-butanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2507

11.1.1.6 Isobutanol (i-Butyl alcohol)

OH

Common Name: Isobutanol Synonym: isobutyl alcohol, 2-methyl-1-propanol, i-butyl alcohol Chemical Name: isobutanol, isobutyl alcohol, 2-methyl-1-propanol CAS Registry No: 78-83-1

Molecular Formula: C4H10O, (CH3)2CHCH2OH Molecular Weight: 74.121 Melting Point (°C): –101.9 (Lide 2003) Boiling Point (°C): 1087.89 (Lide 2003) Density (g/cm3 at 20°C): 0.8018 (Weast 1982–83) 0.8016, 0.7978 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 92.5 (20°C, calculated-density) 103.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 6.32 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): 56 (estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated): 100140 (18°C, shake flask-turbidity, Fühner 1924) 85000 (20°C, Seidell 1941) 75600 (shake flask-interferometry, Donahue & Bartell 1952) 94000 (shake flask-colorimetric, De Santis et al. 1976) 95000 (18°C, Verschueren 1983) 76270 (IUPAC recommended, Barton 1984) 100000 (Dean 1985; Riddick et al. 1986)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 1541* (24.98°C, modified isoteniscope method, measured range 25–90°C, Butler et al. 1935) log (P/mmHg) = 43.5513 – 4185/(T/K) – 11.50·log (T/K); temp range 25–100°C (isoteniscope measurements, Butler et al. 1935) 1648 (interpolated-regression of tabulated data, Stull 1947) 1333* (21.7°C, summary of literature data, temp range –9.0 to 108°C, Stull 1947) 1527* (comparative ebulliometry, measured range 343.044–388.733 K, Ambrose & Sprake 1970) log (P/Pa) = 6.35383 – 1194.628/(T/K – 106.291); restricted temp range 343–367.4 K (Antoine eq., comparative ebulliometry, Ambrose & Sprake 1970) log (P/Pa) = 6.50091 – 1275.197/(T/K – 97.363); temp range 343–388.8 K (Antoine eq., comparative ebulliom- etry, Ambrose & Sprake 1970) log (P/mmHg) = [–0.2185 × 10936.0/(T/K)] + 9.1138032; temp range –9.0 to 241°C (Antoine eq., Weast 1972–73) 1527 (selected, Riddick et al. 1986) log (P/kPa) = 6.50091 – 1295.197/(t/°C + 175.787), temp range not specified (Riddick et al. 1986)

log (PL/kPa) = 6.34528 – 1190.463/(–106.712 + T/K); temp range 369–389 K (Antoine eq.-I, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2508 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (PL/kPa) = 6.49241 – 1271.027/(–97.758 + T/K); temp range 313–411 K (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.05055 – 1511.48/(–81.634 + T/K); temp range 381–524 K (Antoine eq.-III, Stephenson & Malanowski 1987)

log (PL/kPa) = 9.8507 – 2875/(T/K); temp range 202–243 K (Antoine eq.-IV, Stephenson & Malanowski 1987) log (PL/kPa) = 6.34606 – 1190.8481/(–106.673 + T/K); temp range 369–389 K (Antoine eq.-V, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.50104 – 1275.669/(–97.269 + T/K); temp range 342–389 K (Antoine eq.-VI, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.27047 – 1147.676/(–111.933 + T/K); temp range 383–416 K (Antoine eq.-VII, Stephenson & Malanowski 1987) log (P/mmHg) = 109.2803 – 6.306 × 103/(T/K) – 36.947·log(T/K) + 1.4462 × 10–2·(T/K) – 3.948 × 10–13·(T/K)2; temp range 165–548 K (vapor pressure eq., Yaws 1994) 1500 (selected, Mackay et al. 1992, 1995)

Henry’s Law Constant (Pa·m3/mol at 25°C): 1.20 (measured partial pressure/mole fraction x at dilute concn, Butler et al. 1935)

1.214 (exptl.-CW/CA, Hine & Mookerjee 1975) 1.159. 1.057 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 0.992 (headspace-GC, Snider & Dawson 1985) 1.186 (calculated-MCI χ, Nirmalakhandan & Speece 1988b) 1.84 (solid-phase microextraction SPME-GC, Bartelt 1997) 2.73 (gas stripping-GC, Shiu & Mackay 1997) 0.892 (wetted-wall column-GC, Altschuh et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 0.83 (shake flask-CR, Collander 1951) 0.61 (calculated-π constant, Hansch et al. 1968) 0.64 (Leo et al. 1969) 0.65 (from Hansch & Dunn III unpublished result, Leo et al. 1971) 0.76 (shake flask-GC, Dillingham et al. 1973) 0.76 (shake flask, Hansch & Leo 1985; 1987) 0.76 (recommended, Sangster 1989, 1993) 0.76 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 3.80 (calculated-measured γ∞ in pure octanol and vapor pressure P, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: using Henry’s law constant, t½(calc) = 79.7 h for evaporation from a model river of 1-m deep with a current of 3 m/s and with a wind velocity of 3 m/s (Lyman et al. 1982; selected, Howard 1990). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation t½ = 201 d to 22 yr in water, based on measured rate for the reaction with OH radical in water (Anbar & Neta 1967; selected, Howard et al. 1991)

photooxidation t½ = 0.24–2.4 h in air for the gas-phase reaction with OH radical, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2509

photooxidation t½ = 9.96–99.6 h in air, based on estimated rate constant for the reaction with hydroxyl radical in air (Atkinson 1987; selected, Howard et al. 1991). Hydrolysis: Biodegradation: biodegradation rate constant k = 0.015–0.020 h–1 in 30 mg/L activated sludge after a time lag of 5–10 h (Urano & Kato 1986)

t½(aq. aerobic) = 43–173 h, based on river die-away data for one sample of water from one river (Hammerton 1955; selected, Howard et al. 1991)

t½(aq. anaerobic) = 172–692 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: photooxidation half-life of 0.24–2.4 h in air for the gas-phase reaction with hydroxyl radicals, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976); photode-

composition t½ = 3.5 h under simulated atmospheric conditions, with NO (Dilling et al. 1976); photooxidation t½ = 9.96–99.6 h, based on estimated rate constant for the reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991).

Surface water: photooxidation t½ = 201 d to 22 yr, based on measured rate for the reaction with hydroxyl radicals in water (Anbar & Neta 1967; quoted, Howard et al. 1991); t½ = 43–173 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Groundwater: t½ = 86–346 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 43–173 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). biota:

TABLE 11.1.1.6.1 Reported vapor pressures of isobutanol at various temperatures and the coefficients for the equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Butler et al. 1935 Stull 1947 Ambrose & Sparke 1970

isoteniscope method summary of literature data comparative ebulliometry

t/°C P/Pa t/°C P/Pa T/K P/Pa 24.98 1541 –9.0 133.3 343.044 20457 40.0 2196 11.0 666.6 348.552 26554 45.03 2985 21.7 1333 353.357 33057 50.08 7415 32.4 2666 357.674 39994 60.11 12778 44.1 5333 361.213 46532 70.29 21292 51.7 7999 364.531 53442 80.58 34184 61.5 13332 367.356 59959 90.83 53036 75.9 26664 369.965 66546 91.4 53329 372.439 73326 bp/°C 82.39 108.0 101325 374.696 79983 D25 0.7812 376.846 86765 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2510 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 11.1.1.6.1 (Continued)

Butler et al. 1935 Stull 1947 Ambrose & Sparke 1970

isoteniscope method summary of literature data comparative ebulliometry

t/°C P/Pa t/°C P/Pa T/K P/Pa mp/°C –108 378.739 93121 eq. 4 P/mmHg 380.718 100153 A 43.5513 382.476 106746 B 4185 384.166 113.417 C 11.50 385.775 120072 ∆ –1 387.252 126441 HV/(kJ mol ) = 51.63 at 25°C 388.773 133283

Isobutanol (i -butyl alcohol): vapor pressure vs. 1/T 8.0 Butler et al. 1935 Ambrose & Sprake 1970 7.0 Stull 1947

6.0

5.0 /Pa) S 4.0

log(P 3.0

2.0

1.0 b.p. = 107.89 °C 0.0 0.0024 0.0028 0.0032 0.0036 0.004 0.0044 1/(T/K)

FIGURE 11.1.1.6.1 Logarithm of vapor pressure versus reciprocal temperature for isobutanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2511

11.1.1.7 sec-Butyl alcohol

OH

Common Name: sec-Butyl alcohol Synonym: 2-butyl alcohol, 2-butanol, methylethylcarbinol Chemical Name: 2-butanol, sec-butyl alcohol CAS Registry No: 78-92-2

Molecular Formula: C4H10O, CH3CH2CHOHCH3 Molecular Weight: 74.121 Melting Point (°C): –88.5 (Lide 2003) Boiling Point (°C): 99.51 (Lide 2003) Density (g/cm3 at 20°C): 0.8063 (Weast 1982–83) 0.8065, 0.8024 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 91.9 (20°C, calculated-density) 103.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 56 (estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 200000 (20°C, synthetic method, Jones 1929) 185000 (20°C, shake flask, Evans 1936) 198000* (20°C, shake flask-refractometer, measured range 20–85°C, Morachevskii & Popovich 1965) 177000, 165000 (25, 35°C, shake flask-titration, Ratouis & Dodé 1965) 202000* (20°C, equilibrium pressure cell/shake flask-refractometric method, measured range 10–110°C, pressure range 1–800 atm, Moriyoshi et al. 1975) 225000 (shake flask-colorimetric analysis, De Santis et al. 1976) 130000 (shake flask-refractometric method, Becke & Quitzch 1977) 187000* (equilibrium pressure vessel/shake flask-GC, measured range 265–372 K, pressure range 0.1–75 MPa, Bozdag & Lamb 1983) 181000* (recommended, IUPAC solubility series, temp range 10–110°C, Barton 1984) 196000* (20°C, shake flask-GC/TC, measured range 0–90.2°C, Stephenson & Stuart 1986) 175340* (25.28°C, shake flask-laser scattering technique, measured range 276.94–386.6 K, Ochi et al. 1996)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 2286* (modified isoteniscope method, measured range 25–91°C. Butler et al. 1935) log (P/mmHg) = 43.4800– 4110/(T/K) – 11.50·log (T/K); temp range 25–90°C (isoteniscope measurements, Butler et al. 1935) 2266* (interpolated-regression of tabulated data, temp range –12.2 to 99.5°C, Stull 1947) 33031* (73.392°C, ebulliometry, measured range 73.392–107.146°C, Biddiscombe et al. 1954) 10610* (49.730°C, measured range 49.730–99.410°C, Brown et al. 1969) 2317* (comparative ebulliometry, measured range 67.723–107.743°C, Ambrose & Sprake 1970) log (P/Pa) = 6.26852 – 1126.667/(T/K – 108.361); restricted temp range 67.7–83.34°C (Antoine eq., comparative ebulliometry, Ambrose & Sprake 1970) log (P/Pa) = 6.86618 – 1360.131/(T/K – 75.558); temp range 67.723–107.743°C (Antoine eq., comparative ebulliometry, Ambrose & Sprake 1970)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2512 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

2357 (Hoy 1970) log (P/mmHg) = [–0.2185 × 10712.3/(T/K)] + 9.096778; temp range –12.2–251°C (Antoine eq., Weast 1972–73) 1600, 3200 (20°C, 30°C, Verschueren 1983) 2200, 2190, 2275 (extrapolated-Antoine equations, Boublik et al. 1984) log (P/kPa) = 6.35079 – 1169.924/(169.731 + t/°C); temp range 67.7–107.14°C (Antoine eq. from reported exptl. data of Ambrose & Sprake 1970, Boublik et al. 1984) log (P/kPa) = 6.32690 – 1157.363/(168.32 + t/°C); temp range 72.39–107.15°C (Antoine eq. from reported exptl. data of Biddiscombe et al. 1954, Boublik et al. 1984) log (P/kPa) = 6.47826 – 1235.4/(176.82 + t/°C); temp range 49.73–99.41°C (Antoine eq. from reported exptl. data of Brown et al. 1969, Boublik et al. 1984) 2438 (calculated-Antoine eq., Dean 1985) log (P/mmHg) = 7.47431 – 1314.31/(186.55 + t/°C); temp range 25 to 120°C (Antoine eq., Dean 1985, 1992) 2317 (selected, Riddick et al. 1986) log (P/kPa) = 6.35457 – 1171.893/(t/°C + 169.955), temp range not specified (Riddick et al. 1986)

log (PL/kPa) = 6.26823 – 1126.887/(–108.291 + T/K); temp range 359–381 K (Antoine eq-I., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.34976 – 1169.754/(–103.388 + T/K); temp range 3039–403 K (Antoine eq-II., Stephenson & Malanowski 1987)

log (PL/kPa) = 5.74369 – 735.87/(–176.795 + T/K); temp range 372–5241 K (Antoine eq-III., Stephenson & Malanowski 1987)

log (PL/kPa) = 7.50959 – 1751.931/(–52.906 + T/K); temp range 210–303 K (Antoine eq-IV., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.2663 – 1125.853/(–108.414 + T/K); temp range 359–380 K (Antoine eq-V., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.35314 – 1171.484/(–103.199 + T/K); temp range 340–379 K (Antoine eq-VI., Stephenson & Malanowski 1987) 2440, 997 (measured, calculated-solvatochromic parameters, Banerjee et al. 1990) log (P/mmHg) = 49.4476 – 4.2487 × 103/(T/K) –13.793·log(T/K) + 6.2736 × 10–11·(T/K) + 2.1988 × 10–6·(T/K)2; temp range 158–536 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 1.040 (measured partial pressure/mole fraction x at dilute concn, Butler 1935) 1.033 (exptl., Hine & Mookerjee 1975) 1.60, 1.057 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 0.918* (headspace-GC, measured range 0–25°C, Snider & Dawson 1985) 1.107 (calculated-MCI χ, Nirmalakhandan & Speece 1988b) 0.604 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 6.734 – 3031/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 0.61 (shake flask-GC, Hansch & Anderson 1967; Hansch et al. 1968) 0.74, 0.64 (calculated-f const., calculated-π const., Rekker 1977) 0.81 (HPLC-RT correlation, Yonezawa & Urushigawa 1979) 0.87 (calculated-activity coeff. γ from UNIFAC, Banerjee & Howard 1988) 0.65 (recommended, Sangster 1989) 0.61 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section: 3.99* (20.29°C, from GC determined γ∞ in octanol, measured range 20.29–50.28°C, Gruber et al. 1997) 3.80 (calculated from determined γ∞ in octanol and vapor pressure, Abraham et al. 2001)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2513

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation t½ = 129 d to 23 yr, based on measured rate for the reaction with hydroxyl radical in aqueous solution (Anbar & Neta 1967; Dorfman & Adams 1973; selected, Howard et al. 1991)

photooxidation t½ = 0.24–2.4 h for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976) 2 –1 –1 k<2×10 M s for oxidation by singlet oxygen at 25°C in aquatic systems with t½ > 100 yr (Foote 1976; Mill 1979; quoted, Mill 1982) 9 –1 –1 kOH = 4.1 × 10 M s for at 25°C with t½ = 1.3 d (Hendry & Kenley 1979; quoted, Mill 1982) Hydrolysis:

Biodegradation: aqueous aerobic t½ = 24–168 h, based on river die-away studies (Hammerton 1955; selected, Howard et al. 1991) and aqueous anaerobic t½ = 96–672 h, based on estimated aqueous aerobic biodegradation half-life (selected, Howard et al. 1991); –1 –1 average rate of biodegradation kB = 55.0 (mg COD g h ) based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982) Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: photooxidation t½ = 0.24–2.4 h for the gas-phase reaction with OH radical in air, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976);

photodecomposition t½ = 4.0 h under simulated atmospheric conditions, with NO (Dilling et al. 1976);

photooxidation t½ = 7.2–72 h, based on measured rate constant for the reaction with OH radical in air (Edney & Corse 1986; selected, Howard et al. 1991);

calculated lifetimes of 1.3 d and 17 d for reactions with OH radical, NO3 radical, respectively (Atkinson 2000) Surface water: t½ = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Groundwater: t½ = 48–336 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

TABLE 11.1.1.7.1 Reported aqueous solubilities of sec-butyl alcohol at various temperatures 1.

Morachevskii & Popovich ‘65 Moriyoshi et al. 1975 Bozdag & Lamb 1983 Barton 1984

shake flask-refractometry shake flask-refractometry equil. pressure cell-GC IUPAC recommended

t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 at 1 atm at 0.1 MPa 20 198000 10 239000 –8 271000 10 239000 40 146000 20 202000 –6 266000 20 199000 60 140000 27 179000 –4 266000 25 181000 80 140000 40 149000 –3 263000 30 175000 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2514 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 11.1.1.7.1 ( Continue )d

Morachevskii & Popovich ‘65 Moriyoshi et al. 1975 Bozdag & Lamb 1983 Barton 1984

shake flask-refractometry shake flask-refractometry equil. pressure cell-GC IUPAC recommended

t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 85 150000 50 132000 0 264000 35 163000 60 128000 2 256000 40 155000 70 129000 5 249000 50 140000 80 138000 10 232000 60 142000 90 155000 15 228000 70 138000 100 183000 20 203000 80 143000 110 239000 25 187000 90 158000 30 171000 100 186000 measured range 283–378 K 110 239000 pressure range 1–800 atm measured range 265–372 K full list of data see ref. pressure range 0.1–75 MPa full list of data see ref. 2.

Stephenson & Stuart 1986 Ochi et al. 1996 shake flask-GC/TC laser scattering technique

t/°C S/g·m–3 T/K mole frac. x T/K mole frac. x 0 260000 276.94 0.0738 362.51 0.0406 10 235000 278.13 0.0725 364.96 0.0421 20 196000 279.96 0.0705 370.41 0.0459 29.9 170000 284.94 0.0642 376.89 0.0530 40 151000 289.08 0.0590 379.76 0.0573 50 140000 290.58 0.0571 381.25 0.0621 60.3 134000 292.18 0.0553 383.23 0.0680 70.1 133000 295.15 0.0522 384.39 0.0751 80.1 136000 298.43 0.0491 385.63 0.0820 90.2 145000 301.48 0.0471 386.04 0.0908 305.14 0.0452 386.23 0.0965 309.16 0.0421 386.58 0.1050 311.88 0.0406 386.65* 0.1151 314.10 0.0393 *the upper critical solution point 321.88 0.0371 324.99 0.0361 332.50 0.0342 340.01 0.0342 349.30 0.0361 352.25 0.0371 360.81 0.0393

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2515

sec -Butyl alcohol: solubility vs. 1/T -1.0 Moriyoshi et al. 1975 Stephenson & Stuart 1986 Ochi et al. 1996 Barton 1984 (IUPAC recommended) experimental data -2.0

x nl x -3.0

-4.0

-5.0 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K)

FIGURE 11.1.1.7.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for sec-butyl alcohol.

TABLE 11.1.1.7.2 Reported vapor pressures of sec-butyl alcohol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4) 1.

Butler et al. 1935 Stull 1947 Biddiscombe et al. 1954 Brown et al. 1969

isoteniscope method summary of literature data ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 24.98 2286 –12.2 133.3 73.392 33031 49.730 10610 40.0 3272 7.20 666.6 76.600 39942 54.050 13402 45.03 4440 16.9 1333 80.131 46616 57.740 16271 50.08 10764 27.3 2666 83.340 53447 62.020 20198 60.12 18452 38.1 5333 86.112 39983 67.498 16382 70.3 29878 45.2 7999 88.693 66641 72.180 32861 80.59 47356 54.1 13332 91.068 73266 76.970 40792 90.84 72407 67.9 26664 93.303 80010 83.060 53067 83.9 53329 95.394 86761 88.450 66274 bp/°C 99.95 99.5 101325 97.252 93093 94.160 83033 D25 0.8029 99.201 100155 99.410 101321 mp/°C –114.7 100.931 106774 eq. 4 P/mmHg 120.611 113533 A 43.4800 104.186 120168 B 4110 105.647 126596 C 11.50 107.146 133.471 ∆ –1 HV/(kJ mol ) = 50.21 at 25°C (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2516 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 11.1.1.7.2 (Continued) 2.

Ambrose & Sprake 1970

comparative ebulliometry

t/°C P/Pa 67.723 26556 72.392 33031 76.601 39942 80.131 46616 83.340 53447 86.111 59984 88.693 66641 91.067 73284 93.303 81010 95.394 86759 97.253 93095 99.201 100154 100.931 106775 102.611 113530 104.186 120167 105.647 126593 107.143 133470

sec -Butyl alcohol: vapor pressure vs. 1/T 8.0 experimental data Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 99.51 0.0 0.0024 0.0028 0.0032 0.0036 0.004 0.0044 1/(T/K) FIGURE 11.1.1.7.2 Logarithm of vapor pressure versus reciprocal temperature for sec-butyl alcohol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2517

TABLE 11.1.1.7.3 Reported Henry’s law constants and octanol-air partition coefficients of sec-butyl alcohol at various temperatures

Henry’s law constant log KOA Snider & Dawson 1985 Gruber et al. 1997

gas stripping-GC GC det’d activity coefficient

3 t/°C H/(Pa m /mol) t/°C log KOA 0 0.0987 20.29 3.98 25 0.9180 30.3 3.68 40.4 3.44 enthalpy of transfer: 50.28 3.22 ∆H/(kJ mol–1) = 58.576

sec -Butyl alcohol: Henry's law constant vs. 1/T 2.0

1.0

)lom/ 0.0 3 m.aP(/H nl m.aP(/H -1.0

-2.0

-3.0 Snider & Dawson 1985 Butler 1935 Hine & Mookerjee 1975 -4.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K) FIGURE 11.1.1.7.3 Logarithm of Henry’s law constant versus reciprocal temperature for sec-butyl alcohol.

sec -Butyl alcohol: KOA vs. 1/T 4.5

4.0 AO

K gol K 3.5

3.0

Gruber et al. 1997 Abraham et al. 1999 2.5 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 1/(T/K)

FIGURE 11.1.1.7.4 Logarithm of KOA versus reciprocal temperature for sec-butyl alcohol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2518 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

11.1.1.8 tert-Butyl alcohol

OH

Common Name: tert-Butyl alcohol Synonym: 3-butanol, t-butyl alcohol, 2-methyl-2-propanol, trimethylcarbinol, Chemical Name: t-butanol, t-butyl alcohol, 2-methyl-2-propanol CAS Registry No: 75-65-0

Molecular Formula: C4H10O, (CH3)3COH Molecular Weight: 74.121 Melting Point (°C): 25.69 (Lide 2003) Boiling Point (°C): 82.4 (Lide 2003) Density (g/cm3 at 20°C): 0.78581, 0.78086 (20°C, 25°C, Dreisbach & Martin 1949) 0.7883 (Weast 1982–83) 0.7858 (Dean 1985) 0.7812 (25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 94.2 (calculated-density, Rohrschneider 1973) 103.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 6.64 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): 22.76, 56 (observed, estimated, Yalkowsky & Valvani 1980) Fugacity Ratio at 25°C (assuming ∆S = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): miscible (Palit 1947; Riddick et al. 1986) miscible (Barton 1984; Dean 1985; Howard 1990; Yaws et al. 1990) miscible (Yaws et al. 1990)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 5600* (static method/isoteniscope, measured range 20–90°C, Parks & Barton 1928) 5654* (24.98°C, modified isoteniscope method, measured range 30–80°C, Butler et al. 1935) log (P/mmHg) = 43.2834 – 3935/(T/K) –11.50·log (T/K); temp range 30–80°C (isoteniscope measurements, Butler et al. 1935) 5019* (interpolated-regression of tabulated data, temp range –20.4 to 82.9°C, Stull 1947) log (P/mmHg) = 8.24380 – 1675.4/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 16500* (43.34°C, measured range 43.34–82.41°C, Dreisbach & Shrader 1949) 5637* (comparative ebulliometry, measured range 329.946–362.710 K, Ambrose & Sprake 1970) log (P/Pa) = 6.24072 – 1049.320/(T/K – 107.724); restricted temp range 329.946–345.288 K (Antoine eq., comparative ebulliometry, Ambrose & Sprake 1970) log (P/Pa) = 6.35648 – 1107.060/(T/K – 101.048); temp range 329.946–362.71 K (Antoine eq., comparative ebulliometry, Ambrose & Sprake 1970) log (P/mmHg) = [–0.2185 × 10413.2/(T/K)] + 9.193472; temp range –20.4 to 222.5°C (Antoine eq., Weast 1972–73) 5600 (Verschueren 1983; Howard et al. 1986) 5637 (selected, Riddick et al. 1986) log (P/kPa) = 6.35648 – 1107.060/(t/°C + 172.102) temp not specified (Riddick et al. 1986)

log (PL/kPa) = 6.22619 – 1042.416/(–108.5 + T/K); temp range 347–363 K (Antoine eq.-I, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2519

log (PL/kPa) = 6.35045 – 1104.341/(–101.315 + T/K); temp range 299–375 K (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.27388 – 989.74/(–124.966 + T/K); temp range 356–480 K (Antoine eq.-III, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.23125 – 1044.891/(–108.211 + T/K), temp range: 347–363 K, (Antoine eq.-IV, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.35498 – 1106.556/(–101.071 + T/K); temp range 329–363 K (Antoine eq.-V, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.09542 – 975.944/(–116.864 + T/K); temp range 357–461 K (Antoine eq.-VI, Stephenson & Malanowski 1987) 1008, 5600 (calculated-solvatochromic parameters, quoted lit., Banerjee et al. 1990) log (P/mmHg) = 71.8181 – 4.9966 × 103/(T/K) – 21.805·log(T/K) + 1.9238 × 10–8·(T/K) + 5.8247 × 10–6·(T/K)2; temp range 299–506 K (vapor pressure eq., Yaws 1994) 5610* (static method-manometer, measured range 298.15–323.15 K, Garriga et al. 2002)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 1.210 (measured partial pressure/mole fraction x at dilute concn, Butler et al. 1935) 1.214 (exptl., Hine & Mookerjee 1975) 1.057, 1.057 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 1.460* (25°C headspace-GC, measured range 0–25°C, Snider & Dawson 1985) 1.426 (calculated-MCI χ, Nirmalakhandan & Speece 1988b) 0.917 (wetted-wall column-GC, Altschuh et al. 1999) 0.907 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 8.467 – 3488/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 0.37 (shake flask-GC, Hansch & Anderson 1967; Leo et al. 1969) 0.59 (HPLC-RT correlation, Yonezawa & Urushigawa 1979) 0.35 (Hansch & Leo 1985) 0.40 (calculated-solvatochromic parameters, Taft et al. 1985) 0.39 (HPLC-k’ correlation, Funasaki et al. 1986) 0.34 (shake flask, Log P Database, Hansch & Leo 1987) 0.35 (recommended, Sangster 1989) 0.34 (calculated-UNIFAC activity coefficient, Dallos et al. 1993) 0.35 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 3.50 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

–1.46 (calculated-KOW, Lyman et al. 1982; quoted, Howard 1990)

Sorption Partition Coefficient, log KOC:

1.57 (soil, calculated-KOW, Lyman et al. 1982; quoted, Howard 1990)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: estimated half-lives, t½ = 51.6 h in streams, t½ = 65.37 h in rivers and t½ = 3104.3 h in lakes were estimated by using Henry’s law constant and assuming the wind velocity to be 3 m/s, the current velocities of the streams, rivers, and lakes 2,1, and 0.01 m/s with depths of lakes 50 m and that of the streams and lakes 1 m deep (Lyman et al. 1982; quoted, Howard 1990). Photolysis:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2520 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression see reference:

photooxidation t½ = 771 d to 64500 yr, based on measured rate for the reaction with hydroxyl radical in water (Howard et al. 1991)

photooxidation t½ > 9.9 d(Darnall et al. 1976) k ~ 0.003 M–1 s–1 for the reaction with ozone in water at pH 2–6 and 20–23°C (Hoigné & Bader 1983) –11 3 –1 –1 –12 3 –1 –1 kOH(calc) = 6.9 × 10 cm molecule s , kOH(obs.) = 1.09 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985)

photooxidation t½ = 59–590 h, based on measured rate for the reaction with OH radical in air (Atkinson 1985; selected, Howard et al. 1991) –11 3 –1 –1 –12 3 –1 –1 kOH(calc) = 5.9 × 10 cm molecule s , and kOH(exptl) = 1.09 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –11 3 –1 –1 kOH = (1.08 ± 0.11) × 10 cm molecule s at 296 K (flash photolysis-resonance fluorescence, Wallington & Kurylo 1987a) –12 3 –1 –1 –12 3 –1 –1 kOH = 1.07 × 10 cm molecule s ; k(soln) = 1.0 × 10 cm molecule s for reaction with OH radical in aqueous solution (Wallington et al. 1988b) –12 3 –1 –1 kOH* = 1.07 × 10 cm molecule s at 298 K, measured range 243–440 K (flash photolysis-resonance fluorescence, Wallington 1988c) –12 3 –1 –1 kOH* = 1.12 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) k(aq.) = 0.01 M–1 s–1 at pH 2.3, k = 0.45 M–1 s–1 at pH 2.2, k = 0.46 M–1 s–1 at pH 5.2 for direct reaction

with ozone in water and 20°C, with t½ = 390 d at pH 7 (Yao & Haag 1991). –12 3 –1 –1 kOH(calc) = 0.53 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation: average rate of biodegradation 30.0 mg COD g–1 h–1 based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982);

t½(aq. aerobic) = 677–4320 h, based on river die-away studies; t½(aq. anaerobic) = 2400–12000 h, based on degradation rates in microcosm studies simulating anaerobic aquifers (Howard et al. 1991).

t½(aerobic) = 28 d, t½(anaerobic) = 100 d in natural waters (Capel & Larson 1995) Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: photooxidation t½ > 9.9 d for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976);

t½ = 34.5 h for 10 ppm in the air reacted with 5 ppm NO (Dilling et al. 1976); photooxidation t½ = 59-590 h, based on measured rate for the reaction with hydroxyl radical in air (Atkinson 1985; selected, Howard et al. 1991);

t½ ~ 1.09 month for the vapor phase reaction with photochemically produced hydroxyl radical in air (GEMS 1986; quoted, Howard 1990). 8 Surface water: t½ ~ 8.8 yr, based on rate constant k = 2.5 × 10 L/mol·s for the reaction with hydroxyl radicals in water (Anbar & Neta 1967; quoted, Howard 1990);

t½ = 672-4320 h, based on unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991) measured rate constant k = 0.001 M–1 s–1 for direct reaction with ozone in water at pH 2.3 and 20°C, with

t½ = 390 d at pH 7 (Yao & Haag 1991) t½(aerobic) = 28 d, t½(anaerobic) = 100 d in natural waters (Capel & Larson 1995) Groundwater: t½ = 1344-8640 h, based on unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 360-4800 h, based on soil microcosm studies (Howard et al. 1991). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2521

TABLE 11.1.1.8.1 Reported vapor pressures of tert-butyl alcohol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Parks & Barton 1928 Butler et al. 1935 Stull 1947 Garriga et al. 2002

static method/isoteniscope isoteniscope method summary of literature data static method-manometer

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 20 4080 24.98 5654* –20.4 133.3 25 5610 25 5600 40.0 7753 –3.0 666.6 30 7685 30 7586 45.03 10423 5.5 1333 35 10347 35 10172 50.08 23705 14.3 2666 40 13787 40 13639 60.12 38850 24.5 5333 45 18143 45 17839 70.3 61648 31.0 7999 50 23578 50 23238 75.43 72927 39.8 13332 55 29891 80.59 100112 52.7 26664 Ambrose & Sprake 1970 60 38024 *solid 68.0 53329 comparative ebulliometry 65 47756 bp/°C 82.75 82.9 101325 T/K P/Pa 70 59635 329.946 33123 75 73754 eq. 4 P/mmHg mp/°C 25.3 333.931 40058 80 90579 A 43.2834 337.204 46623 85 110164 B 3935 340.225 53431 90 132816 C 11.59 342.857 60007 Dreisbach & Shrader 1949 347.448 73160 ∆ –1 ∆ –1 HV/(kJ mol ) = HV/(kJ mol ) = 46.86 ebulliometry 351.659 86911 at 25°C 45.56 at 25°C t/°C P/Pa 355.146 99932 at bp 39.66 43.34 16500 358.422 113545 61.82 42066 362.710 133505 72.49 67661 full list of data see ref. 82.41 101325

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2522 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

tert -Butyl alcohol: vapor pressure vs. 1/T 8.0 experimental data Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 82.4 °C m.p. = 25.69 °C 0.0 0.0024 0.0028 0.0032 0.0036 0.004 0.0044 1/(T/K) FIGURE 11.1.1.8.1 Logarithm of vapor pressure versus reciprocal temperature for tert-butyl alcohol.

TABLE 11.1.1.8.2 Reported Henry’s law constants of tert-butyl alcohol at various temperatures

Snider & Dawson 1985

gas stripping-GC

t/°C H/(Pa m3/mol) 0 0.1135 25 1.4581 enthalpy of transfer: ∆H/(kJ mol–1) = 66.944

tert -Butyl alcohol: Henry's law constant vs. 1/T 2.0

1.0

) l o m / m o l ) 0.0 3 m . a P ( / H n l n H / ( P a . m -1.0

-2.0

-3.0 Snider & Dawson 1985 Butler 1935 Hine & Mookerjee 1975 Altschuh et al. 1999 -4.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K) FIGURE 11.1.1.8.2 Logarithm of Henry’s law constant versus reciprocal temperature for tert-butyl alcohol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2523

11.1.1.9 1-Pentanol (n-Amyl alcohol)

OH

Common Name: 1-Pentanol Synonym: amyl alcohol, n-butylcarbinol, 1-pentanol, n-pentyl alcohol, pentyl alcohol Chemical Name: n-amyl alcohol, n-pentyl alcohol, 1-pentanol CAS Registry No: 71-41-0

Molecular Formula: C5H12O, CH3CH2CH2CH2CH2OH Molecular Weight: 88.148 Melting Point (°C): –77.6 (Lide 2003) Boiling Point (°C): 137.98 (Lide 2003) Density (g/cm3 at 20°C): 0.81253 (25°C, Butler et al. 1935) 0.8144 (Weast 1982–83) 0.81445, 0.81080 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 108.0 (calculated-density, Lande & Banerjee 1981) 125.8 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 20.81 (Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 10.5 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): 56 (estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 22080 (shake flask-interferometer, Butler et al. 1933) 21900* (volumetric method, measured range 20–30°C, Ginnings & Baum 1937) 22100 (20°C, surface tension, Addison 1945) 23600 (20°C, Seidell 1941) 27570 (shake flask-residue volume, Booth & Everson 1948) 15230 (20°C, shake flask-turbidity, Laddha & Smith 1948) 25400 (shake flask-interferometry, Hansen et al. 1949) 23500* (20°C, synthetic method, measured range 0–180°C, von Erichsen 1952) 22000 (shake flask-titration, Crittenden & Hixon 1954) 22140 (estimated, McGowan 1954) 22000 (surface tension, Kinoshita et al. 1958) 23800 (shake flask-GC, Korenman 1974, 1975) 21950 (Riddick & Bunger 1955) 18800 (shake flask-GC, Evans et al. 1978) 11720 (generator column-GC, Wasik et al. 1981; Tewari et al. 1982) 22000* (recommended best value, IUPAC Solubility Data Series, temp range 0–180°C, Barton 1984) 22500* (20.2°C, shake flask-GC/TC, measured range 0–90.7°C, Stephenson et al. 1984) 20190 (shake flask-GC, Li & Andren 1994)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 333* (25°C, extrapolated-modified isoteniscope method, measured range 60–131°C, Butler et al. 1935)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2524 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (P/mmHg) = 46.4925 –4580/(T/K) – 12.42·log (T/K); temp range 60–131°C (isoteniscope measurements, Butler et al. 1935) 349* (interpolated-regression of tabulated data, temp range 13.6–138°C, Stull 1947) 286* (extrapolated-ebulliometry, measured range 33.9–138°C, Kemme & Kreps 1969) 573.3* (33.9°C, ebulliometry-differential thermal analysis, measured range 33.9–138°C, Kemme & Kreps 1969) log (P/mmHg) = 7.55787 – 1492.549/(181.529 + t/°C); temp range 33.9–138°C, or pressure range 4.3–765.4 mmHg (Antoine eq., ebulliometry-differential thermal analysis, Kemme & Kreps 1969) 293* (comparative ebulliometry, measured range 74.763–156°C, Ambrose & Sprake 1970) log (P/Pa) = 6.13796 – 1190.412/(T/K – 123.055); restricted temp range 74.763–128.665°C (Antoine eq., com- parative ebulliometry, Ambrose & Sprake 1970) log (P/Pa) = 6.30306 – 1286.333/(T/K – 111.843); temp range 74.763–128.665°C (Antoine eq., comparative ebulliometry, Ambrose & Sprake 1970) 313 (calculated-Antoine eq., Riddick & Bunger 1970) log (P/mmHg) = [–0.2185 × 12495.5/(T/K)] + 9.574342; temp range 13.6–137.8°C (Antoine eq., Weast 1972–73) 189 (20°C, extrapolated-Antoine eq. of Kemme & Kreps 1969, Gückel et al. 1982) 373 (20°C, Verschueren 1983) 172, 250 (extrapolated-Antoine equations., Boublik et al. 1984) log (P/kPa) = 6.00024 – 1103.91/(138.221 + t/°C); temp range 165–240.65°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.31559 – 1292.273/(161.837 + t/°C); temp range 74.5–156°C (Antoine eq. from reported exptl. data of Ambrose & Sprake 1970, Boublik et al. 1984) 313 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.17758 – 1314.56/(168.11 + t/°C); temp range 37–138°C (Antoine eq., Dean 1985, 1992) 293 (selected, Riddick et al. 1986) log (P/kPa) = 6.30306 – 1286.333/(t/°C + 161.307), temp range not specified (Riddick et al. 1986)

log (PL/kPa) = 6.14668 – 1195.924/(–122.348 + T/K); temp range 388–420 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.30990 – 1290.23/(–111.419 + T/K); temp range 347–429 K (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.1490 – 1197.233/(–122.194 + T/K); temp range 388–420 K (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.3975 – 1337.613/(–106.567 + T/K); temp range 326–411 K (Antoine eq.-IV, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.28069 – 1277.413/(–112.34 + T/K); temp range 408–441 K (Antoine eq.-VI, Stephenson & Malanowski 1987) log (P/mmHg) = 71.2535 – 5.4977 × 103/(T/K) –21.366·log(T/K) + 3.8108 × 10–10·(T/K) + 5.0339 × 10–6·(T/K)2; temp range 196–586 K (vapor pressure eq., Yaws 1994) 891 (40°C, vapor-liquid equilibrium VLE data, Rhodes et al. 1997)

Henry’s Law Constant (Pa m3/mol): 1.324 (measured partial pressure/mole fraction x at dilute concn, Butler et al. 1935) 1.271 (exptl., Hine & Mookerjee 1975) 1.426, 1.60 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 1.04 (calculated-P/C, Mackay & Yuen 1983) 1.017 (limiting activity coefficient by headspace-GC., Abraham et al. 1987) 1.271 (calculated-MCI χ, Nirmalakhandan & Speece 1988) 1.236 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 1.60 (correlated-molecular structure, Russell et al. 1992) 1.186 (limiting activity coefficient by headspace-GC., Li & Carr 1993) 1.057 (extrapolated-headspace GC data, measured range 40–90°C, Gupta et al. 2000)

ln KAW = 14.233 – 6559.6/(T/K); temp range 40–90°C (van’t Hoff eq., headspace GC, Gupta et al. 2000)

Octanol/Water Partition Coefficient, log KOW: 1.40 (from Hansch & Dunn III unpublished result, Leo et al. 1971; Hansch & Dunn III 1972)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2525

1.37, 1.38; 1.34 (calculated-fragment const.; calculated-π constant, Rekker 1977) 1.44, 1.48 (HPLC-RV/RT correlation, Yonezawa & Urushigawa 1979) 1.53 (generator column-GC, Wasik et al. 1981; Tewari et al. 1982) 1.33 (HPLC-RT correlation, D’Amboise & Hanai 1982) 1.56 (shake flask, Log P Database, Hansch & Leo 1987) 1.49 (shake flask-GC at pH 7, Riebesehl & Tomlinson 1986) 1.53 (generator column-GC, Schantz & Martire 1987) 1.55 (calculated from measured γ, Schantz & Martire 1987) 1.51 (recommended value, Sangster 1989, 1993) 1.41 (shake flask-GC, Fujiwara et al. 1991) 1.56 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 4.69 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF: 0.241 (calculated as per Mackay 1982, Schultz et al. 1990)

Sorption Partition Coefficient, log KOC: 0.93 (calculated-MCI χ, Gerstl & Helling 1987) 0.70 (soil, quoted exptl., Meylan et al. 1992) 0.65 (soil, calculated-MCI χ and fragment contribution, Meylan et al. 1992) 0.70 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: evaporation rate of 6.92 × 10–5 mol cm–2 h–1 was determined by gravimetric method with an air flow rate of (50 ± 1) L h–1 at 20 ± 0.1°C (Gückel et al. 1973). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation t½ = 0.24–2.4 h for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976) –11 3 –1 –1 –12 3 –1 –1 kOH(exptl) = 1.08 × 10 cm molecule s , k = 6.50 × 10 cm molecule s for the reaction with hydroxyl radical in aqueous solution at 298 K (flash photolysis-resonance fluorescence, Wallington & Kurylo 1987) –11 3 –1 –1 –12 3 –1 –1 kOH = 1.08 × 10 cm molecule s ; k(soln) = 6.5 × 10 cm molecule s for reaction with OH radical in aqueous solution (Wallington et al. 1988b) –12 3 –1 –1 kOH = 10.8 × 10 cm molecule s at 296 K (review, Atkinson 1989) –12 3 –1 –1 –12 kOH = (12.0 ± 1.6) × 10 cm molecule s by pulse radiolysis-UV spectroscopy; kOH = (10.5 ± 1.3) × 10 cm3 molecule–1 s–1 by relative rate method, at 298 ± 2 K (Nelson et al. 1990) –12 3 –1 –1 kOH(calc) = 9.37 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 0.24–2.4 h for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976). Surface water: Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2526 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 11.1.1.9.1 Reported aqueous solubilities of 1-pentanol at various temperatures

Ginnings & Baum 1937 von Erichsen 1952 Barton 1984 Stephenson et al. 1984

volumetric method synthetic method IUPAC recommended shake flask-GC/TC

t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 20 23600 0 30500 0 31000 0 23100 25 21900 10 27000 10 27000 10.2 25900 30 20300 20 23500 20 23100 20.2 22500 30 21000 25 22000 30.6 20200 40 19000 30 20400 40.2 18700 50 18000 40 20000 50.0 18300 60 18000 50 18000 60.3 18300 70 18500 60 18000 70.0 19500 80 19000 70 19000 80.0 19900 90 20000 80 19000 90.7 22100 100 22500 90 20000 110 26000 100 23000 120 30000 110 26000 130 35500 120 30000 140 43000 130 36000 150 53500 140 43000 160 69000 150 54000 170 95500 160 69000 180 175000 170 96000 180 175000

1-Pentanol (n -amyl alcohol): solubility vs. 1/T -3.0 experimental data Barton 1984 (IUPAC recommended) -3.5

-4.0

x nl x -4.5

-5.0

-5.5

-6.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 11.1.1.9.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 1-pentanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2527

TABLE 11.1.1.9.2 Reported vapor pressures of 1-pentanol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Butler et al. 1935 Stull 1947 Kemme & Kreps 1969 Ambrose & Sprake 1970

isoteniscope method summary of literature data differential thermal analysis comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 24.98 333.3 13.6 133.3 33.9 573.3 74.763 7175 60.12 3468 34.7 666.6 45.6 1267 83.542 11204 70.3 6153 44.9 1333 52.6 2027 87.571 13615 80.59 10364 55.8 2666 56.7 2640 90.768 15825 90.84 16772 68.0 5333 63.6 3920 95.514 19660 101.17 26398 75.5 7999 69.3 5426 101.629 25714 110.2 38250 85.8 13332 74.9 7306 106.362 31393 120.56 56542 102.0 26664 83.1 11026 110.658 37413 130.89 81580 119.8 53329 90.7 15879 115.564 45399 137.8 101325 102.4 26664 119.681 53129 bp/°C 137.75 112.3 40263 124.099 62576 D25 0.8125 mp/°C - 125.8 66941 128.665 73706 138.0 102045 133.309 86610 eq. 4 P/mmHg 136.688 97054 A 46.4925 Antoine eq. 138.514 103110 B 4580 eq. 2 P/mmHg 142.435 117105 C 11.42 A 7.55787 146.598 133550 B 1492.549 151.332 154379 ∆ –1 HV/(kJ mol ) = 56.90 C 181.529 155.977 177156 at 25°C Antoine eq. for full range eq. 3 P/mmHg A 6.30306 B 1286.333 C 111.843 Data also fitted to Cragoe equation, see ref.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2528 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

1-Pentanol (n -amyl alcohol): vapor pressure vs. 1/T 8.0 Butler et al. 1935 Kemme & Kreps 1969 7.0 Ambrose & Sprake 1970 Stull 1947 Rhodes et al. 1997 6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 137.98 °C 0.0 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 1/(T/K) FIGURE 11.1.1.9.2 Logarithm of vapor pressure versus reciprocal temperature for 1-pentanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2529

11.1.1.10 1-Hexanol

OH

Common Name: 1-Hexanol Synonym: amylcarbinol, 1-hexanol, n-hexyl alcohol Chemical Name: n-hexyl alcohol, 1-hexanol CAS Registry No: 111-27-3

Molecular Formula: C6H14O, CH3CH2CH2CH2CH2CH2OH Molecular Weight: 102.174 Melting Point (°C): –47.4 (Lide 2003) Boiling Point (°C): 157.6 (Lide 2003) Density (g/cm3 at 20°C): 0.8136 (Weast 1982–83) 0.81875, 0.81534 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 126.0 (calculated-density, Lande & Banerjee 1981) 148.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 15.40 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): 56 (estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 5000* (20°C, shake flask-turbidity, measured range 0–110°C, Fühner 1924) 6240 (shake flask-interferometer, Butler et al. 1933) 5025 (20°C, shake flask-turbidity, Laddha & Smith 1948) 6400* (20°C, synthetic method, measured range 0–220°C, von Erichsen 1952) 6000 (shake flask-titration, Crittenden & Hixon 1954) 6300 (estimated, McGowan 1954) 6000 (surface tension, Kinoshita et al. 1958) 5838* (shake flask-refractive index, measured range 5.5–33.6°C, Hill & White 1974) 3590 (shake flask-GC, Korenman et al. 1974) 4230 (generator column-GC, Wasik et al. 1981; Tewari et al. 1982) 6000* (recommended best value, IUPAC Solubility Series, temp range 0–220°C, Barton 1984) 6660* (20°C, shake flask-GC/TC, measured range 0–90.3°C, Stephenson et al. 1984) 5354 (shake flask-GC, Li & Andren 1994)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 95.86* (24.98°C, extrapolated-modified isoteniscope data, measured range 60.11–152.77°C, Butler et al. 1935) log (P/mmHg) = 51.0030 – 5068/(T/K) – 13.80·log (T/K), temp range 60–152°C (isoteniscope measurements, Butler et al. 1935) 151.1* (interpolated-regression of tabulated data, temp range 24.4–157°C, Stull 1947) 88.25 (extrapolated, ebulliometry, measured range 52–157°C, Kemme & Kreps 1969) 760* (52.2°C, ebulliometry-differential thermal analysis, measured range 52.3–157.3°C, Kemme & Kreps 1969) log (P/mmHg) = 7.28781 – 1422.031/(t/°C + 165.444); temp range 52–157°C or pressure range 5.7–757.3 mmHg (Antoine eq., ebulliometry-differential thermal analysis, Kemme & Kreps 1969) log (P/mmHg) = [–0.2185 × 12708.5/(T/K)] + 9.367617; temp range 24.4–157°C (Antoine eq., Weast 1972–73)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2530 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

130.6 (20°C, Verschueren 1983) 79.65, 79.7 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.20107 – 1305.63/(153.901 + t/°C); temp range 52.2–157.3°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.26314 – 1334.63/(156.297 + t/°C); temp range 60.11–152.7°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 55.5 (extrapolated from Antoine eq. of Kemme & Kreps 1969, Gückel et al. 1982) 52.9, 254, 888 (20, 40, 60°C, evaporation rate-gravimetric method, Gückel et al. 1982) 109.5 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.86045 – 1707.26/(196.66 + t/°C); temp range 35–157°C (Antoine eq., Dean 1985, 1992) 110 (selected, Riddick et al. 1986) log (P/kPa) = 6.41271 – 1422.031/(t/°C + 165.444); temp range not specified (Riddick et al. 1986) 111 (interpolated-Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.41271 – 1422.031/(–107.706 + T/K); temp range 325–431 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 10.60355 – 3986.406/(46.713 + T/K); temp range 298–343 K (Antoine eq.-II, Stephenson & Malanowski 1987) log (P/mmHg) = 53.9686 – 4.9501 × 103/(T/K) – 15.199·log(T/K) – 6.6922 × 10–10·(T/K) + 2.3647 × 10–6·(T/K)2; temp range 229–611 K (vapor pressure eq., Yaws 1994) 113* (static method-manometry, measured range 278.15–323.15 K, Garriga et al. 1996) ln (P/kPa) = 8.472727 – 1275.055/(T/K – 178.568); temp range 278.15–323.15 K (Antoine eq., static method- manometry, Garriga et al. 1996)

Henry’s Law Constant (Pa m3/mol at 25°C): 1.562 (measured partial pressure/mole fraction x at dilute aqueous solution, Butler et al. 1935) 1.735 (shake flask, partial vapor pressure-GC, Buttery et al. 1969) 1.562 (exptl., Hine & Mookerjee 1975) 1.88, 2.367 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 1.46 (limiting activity coefficient by headspace-GC., Abraham et al. 1987) 1.60 (calculated-MCI χ, Nirmalakhandan & Speece 1988b) 1.896 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 1.56 (limiting activity coefficient by headspace-GC., Li & Carr 1993) 1.016 (wetted-wall column-GC, Altschuh et al. 1999) 2.60 (extrapolated-headspace GC data, measured range 40–90°C, Gupta et al. 2000)

ln KAW = 11.705 – 5538.7/(T/K); temp range 40–90°C (van’t Hoff eq., headspace GC, Gupta et al. 2000)

Octanol/Water Partition Coefficient, log KOW: 2.03 (shake flask-GC, Hansch & Anderson 1967; Leo et al. 1971; Hansch & Dunn III 1972) 1.99 (HPLC-RV correlation, Yonezawa & Urushigawa 1979) 2.03 (generator column-GC, Wasik et al. 1981; Tewari et al. 1982) 1.86 (RP-HPLC-k’ correlation, D’Amboise & Hanai 1982) 2.03 (HPLC-k’ correlation, Funasaki et al. 1986) 2.04 (shake flask-GC at pH 7, Riebesehl & Tomlinson 1986) 2.03 (generator column-GC, Schantz & Martire 1987) 2.05 (calculated from measured γ, Schantz & Martire 1987) 1.50 (calculated-activity coeff. γ from UNIFAC, Banerjee & Howard 1988) 2.03 (recommended, Sangster 1989, 1993) 2.03 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 5.18 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF: 0.711 (calculated as per Mackay 1982, Schultz et al. 1990)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2531

Sorption Partition Coefficient, log KOC: 1.01 (soil, quoted exptl., Meylan et al. 1992) 0.92 (soil, calculated-MCI χ and fragment contribution, Meylan et al. 1992) 1.01 (calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k or Half-Lives, t½: Volatilization: evaporation rate of 1.85 × 10–5 mol·cm–2·h–1 was determined by gravimetric method with an air flow rate of (50 ± 1) L·h–1 at (20 ± 0.1)°C (Gückel et al. 1973). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation t½ = 0.24–2.4 h in air for the gas-phase reaction with hydroxyl radical, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976) –12 3 –1 –1 –12 3 –1 –1 kOH(exptl) = (12.4 ± 0.7) × 10 cm molecule s , kOH(calc) = 10.0 × 10 cm molecule s at 298 K (flash photolysis-resonance fluorescence, Wallington et al. 1988a) –11 3 –1 –1 –11 3 –1 –1 kOH(exptl) = 1.24 × 10 cm molecule s at 298 K, and k(soln) = 1.20 × 10 cm molecule s for the reaction with OH radical in aqueous solution (Wallington et al. 1988b) –12 3 –1 –1 kOH = 12.4 × 10 cm molecule s at 298 K (Atkinson 1989) –12 3 –1 –1 –12 kOH = (12.2 ± 2.4) × 10 cm molecule s by pulse radiolysis-UV spectroscopy; kOH = (12.9 ± 1.2) × 10 cm3 molecule–1 s–1 by relative rate method, at 298 ± 2 K (Nelson et al. 1990) –12 3 –1 –1 kOH(calc) = 10.48 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 0.24–2.4 h in air for the gas-phase reaction with hydroxyl radical, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976). Surface water: Groundwater: Sediment: Soil: Biota

TABLE 11.1.1.10.1 Reported aqueous solubilities of 1-hexanol at various temperatures 1.

Fühner 1924 von Erichsen 1952 Hill & White 1974 Barton 1984

synthetic method synthetic method shake flask-interferometry IUPAC recommended

t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 0 7800 0 8100 5.51 7879 0 7900 10 6700 10 7000 6.85 7655 10 6900 20 5900 20 6400 8.15 7375 20 6200 30 5450 30 5900 11.0 7061 25 6000 40 5200 40 5400 12.94 6820 30 5700 50 5150 50 5000 14.68 6651 40 5300 60 5300 60 5200 17.04 6427 50 5100 70 5650 70 5600 20.71 6124 60 5200 80 6200 80 6100 22.99 5894 70 5600 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2532 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 11.1.1.10.1 (Continued)

Fühner 1924 von Erichsen 1952 Hill & White 1974 Barton 1984

synthetic method synthetic method shake flask-interferometry IUPAC recommended

t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 90 6800 90 6900 25.01 5838 80 6200 100 7850 100 8000 26.99 5764 90 6900 110 8900 110 9100 28.94 5702 100 7900 120 10400 30.92 5639 110 9000 130 11900 33.59 5560 120 10000 140 13700 130 12000 150 16300 140 14000 160 20500 150 16000 170 27000 160 21000 180 36100 170 27000 190 48700 180 36000 200 67500 190 49000 210 97000 200 68000 220 163000 210 97000 220 163000 2.

Stephenson et al. 1984

shake flask-GC/TC

t/°C S/g·m–3 09640 10.2 7590 20.0 6660 29.7 5580 39.8 5140 50.0 4970 60.0 5180 70.3 5770 80.3 6250 90.3 6380

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2533

1-Hexanol: solubility vs. 1/T -3.0 experimental data -3.5 Barton 1984 (IUPAC recommended)

-4.0

-4.5

-5.0 x nl -5.5

-6.0

-6.5

-7.0

-7.5

-8.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K)

FIGURE 11.1.1.10.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 1-hexanol.

TABLE 11.1.1.10.2 Reported vapor pressures of 1-hexanol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) ln P = A –B/(C + T/K) (3a) log P = A – B/(T/K) – C·log (T/K) (4)

Butler et al. 1935 Stull 1947 Kemme & Kreps 1969 Garriga et al. 1996

static method-isoteniscope summary of literature data differential thermal analysis static method-manometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 24.98 95.86 24.4 133.3 52.2 760.0 5 13 60.11 1300 47.2 666.6 60.4 1293 10 24 70.29 2365 58.2 1333 67.4 2040 15 45 80.58 4213 70.3 2666 72.6 2733 20 68 90.83 7275 83.7 5333 79.2 3973 25 113 101.16 12000 92.0 7999 85.0 5436 30 169 110.19 18012 102.8 13332 91.1 7373 35 251 120.55 27624 119.6 26664 98.7 10666 40 369 130.88 41303 138.0 53329 107.6 16105 45 517 141.67 60901 157.0 101325 119.7 26798 50 713 152.77 87966 130.1 40237 mp/°C –51.6 144.5 66661 Antoine eq. bp/°C 155.7 157.3 100965 eq. 3a P/kPa D25 0.8183 A 8.472727 Antoine eq. B 1275.055 eq. 4 P/mmHg eq. 2 P/mmHg C –178.875 A 51.003 A 7.28781 B 5068 B 1422.031 C 13.80 C 165.444 ∆ –1 HV/(kJ mol ) = 62.84 at 25°C

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2534 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

1-Hexanol: vapor pressure vs. 1/T 8.0 Butler et al. 1935 Kemme & Kreps 1969 7.0 Garriga et al. 1996 Stull 1947 6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 157.6 °C 0.0 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 1/(T/K) FIGURE 11.1.1.10.2 Logarithm of vapor pressure versus reciprocal temperature for 1-hexanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2535

11.1.1.11 1-Heptanol

OH

Common Name: 1-Heptanol Synonym: 1-heptanol, n-heptyl alcohol Chemical Name: n-heptyl alcohol, 1-heptanol CAS Registry No: 111-70-6

Molecular Formula: C7H16O, CH3(CH2)6OH Molecular Weight: 116.201 Melting Point (°C): –33.2 (Lide 2003) Boiling Point (°C): 176.45 (Lide 2003) Density (g/cm3 at 20°C): 0.82053 (25°C, Butler et al. 1935) 0.8219 (Weast 1982–83; Dean 1985) Molar Volume (cm3/mol): 142.0 (calculated-density, Lande & Banerjee 1981) 170.2 (calculated- Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 56 (estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 930* (18°C, shake flask-turbidity, measured range 70–130°C, Fühner 1924) 1804 (shake flask-interferometer, Butler et al. 1933) 1720 (20°C, shake flask-titration, Addison 1943) 3288 (shake flask-centrifuge, Booth & Everson 1948) 1200 (shake flask-turbidimetric method, Harkins & Oppenheimer 1949) 2000* (20°C, synthetic method, measured range 0–245°C, von Erichsen 1952) 1800 (estimated, McGowan 1954) 1700 (surface tension, Kinoshita et al. 1958) 1500* (20°C, surface tension, 15–60 °C, measured range Vochten & Petre 1973) 1676* (shake flask-interferometric method, measured range 6–34.9°C, Hill & White 1974) 1313 (generator column-GC, Wasik et al. 1981; Tewari et al. 1982) 1740* (recommended best value, IUPAC Solubility Data Series, temp range 0–240°C, Barton1984) 1840* (20.2°C, shake flask-GC/TC, measured range 0–90.5°C, Stephenson et al. 1984) 1510 (shake flask-GC, Li & Andren 1994)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 29.86* (extrapolated, modified isoteniscope method, measured range 60–110°C, Butler et al. 1935) log (P/mmHg) = 55.1972 – 5580/(T/K) – 15.41·log (T/K); temp range 60–152°C (isoteniscope measurements, Butler et al. 1935) 44.04* (extrapolated-regression of tabulated data, temp range 42.4–175.8°C, Stull 1947) 22.2 ( extrapolated-Antoine eq., ebulliometry, Kemme & Kreps 1969) 626.6* (63.5°C, ebulliometry-differential thermal analysis, measured range 63.6–176.4°C, Kemme & Kreps 1969) log (P/mmHg) = 6.85450 – 1266.783/(139.663 + t/°C); temp range 63.6–176.4°C, or pressure range 5.3–760 mmHg (Antoine eq., ebulliometry-differential thermal analysis, Kemme & Kreps 1969) 31.30 (calculated-Antoine eq., Jordan 1970) log (P/mmHg) = [–0.2185 × 13920.9/(T/K)] + 9.720613; temp range 42.4–175.8°C (Antoine eq., Weast 1972–73)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2536 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

12.8 (20°C, extrapolated from Antoine eq. of Kemme & Kreps 1969, Gückel et al. 1982) 24.0 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.10824 – 1323.566/(146.241 + t/°C); temp range 63.6–176.4°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.01857 – 1278.78/(146.403 + t/°C); temp range 60.11–152.8°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 17.64 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 6.64767 – 1140.64/(126.56 + t/°C); temp range 60–176°C (Antoine eq., Dean 1985, 1992)

log (PL/kPa) = 5.9794 – 1256.783/(–133.487 + T/K); temp range 336–450 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.10408 – 1322.62/(–126.87 + T/K); temp range 335–450 K (Antoine eq.-I, Stephenson & Mal- anowski 1987) log (P/mmHg) = –19.9205 –4.3239 × 103/(T/K) + 18.794·log (T/K)–5.0553 × 10–2·(T/K) + 2.6161 × 10–5·(T/K)2; temp range 239–632 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C): 1.909 (measured partial pressure/mole fraction x at dilute concn, Butler et al. 1935) 1.880 (exptl., Hine & Mookerjee 1975) 2.656, 3.583 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 2.015 (calculated-MCI χ, Nirmalakhandan & Speece 1988) 1.176 (computed-vapor liquid equilibrium VLE data, Yaws et al. 1991) 5.55 (calculated-molecular structure, Russell et al. 1992) 5.62 (gas stripping-GC, Shiu & Mackay 1997) 1.165 (wetted-wall column-GC, Altschuh et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 2.53 (Hansch & Dunn III 1972) 2.41 (HPLC-RV correlation, Yonezawa & Urushigawa 1979) 2.57 (generator column-GC, Wasik et al. 1981; Tewari et al. 1982) 2.39 (RP-HPLC-k’ correlation, D’Amboise & Hanai 1982) 2.60 (HPLC-k’ correlation, Funasaki et al. 1986) 2.65 (shake flask-GC at pH 7, Riebesehl & Tomlinson 1986) 2.57 (shake flask, Log P Database, Hansch & Leo 1987) 2.57 (generator column-GC, Schantz & Martire 1987) 2.57 (calculated-activity coeff. γ, Schantz & Martire 1987) 1.83 (calculated-activity coeff. γ from UNIFAC, Banerjee & Howard 1988) 2.62 (recommended, Sangster 1989, 1993) 2.72 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF: 1.09 (calculated as per Mackay 1982, Schultz et al. 1990)

Sorption Partition Coefficient, log KOC: 1.48 (calculated-MCI χ, Gerstl & Helling 1987) 1.14 (soil, quoted exptl., Meylan et al. 1992) 1.19 (soil, calculated-MCI χ and fragment contribution, Meylan et al. 1992) 1.14 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: evaporation rate of 6.804 × 10–6 mol cm–2 h–1 was determined by gravimetric method with an air flow rate of (50 ± 1) L h–1 at 20°C (Gückel et al. 1973). Photolysis:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2537

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation t½ = 0.24–2.4 h in air for the gas-phase reaction with hydroxyl radical, based on the rate of disappearance of hydrocarbon due to reaction with OH radical in air (Darnall et al. 1976) –12 –1 –1 –12 –1 –1 –1 kOH(exptl) = (13.6 ± 1.3) × 10 cm molecule s–1, kOH(calc) = 10.5 × 10 cm molecule s at 298 K (flash photolysis-resonance fluorescence, Wallington et al. 1988a) –12 –1 –1 –1 –11 –1 –1 –1 kOH(exptl) = 1.36 × 10 cm molecule s , and k(soln) = 1.20 × 10 cm molecule s for the s reaction with OH radical in aqueous solution (Wallington et al. 1988b) –12 3 –1 –1 kOH = (13.7 ± 1.5) × 10 cm molecule s at 298 ± 2 K (relative rate method, Nelson et al. 1990) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 0.24–2.4 h in air for the gas-phase reaction with hydroxyl radical, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical in air (Darnall et al. 1976). Surface water: Sediment: Soil: Biota:

TABLE 11.1.1.11.1 Reported aqueous solubilities of 1-heptanol at various temperatures 1.

Fühner 1924 von Erichsen 1952 Vochten & Petre 1973 Hill & White 1974

synthetic method synthetic method surface tension measurement shake flask-interferometer

t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 70 1250 0 3400 15 2000 6.0 2204 80 1700 10 2600 20 1500 10.2 2020 90 2250 20 2000 30 1500 10.54 1998 100 2800 30 1600 40 1300 15.08 1868 110 3350 40 1300 50 1400 17.94 1794 120 4300 50 1100 60 1500 20.03 1750 130 5150 60 1100 21.9 1685 70 1500 24.99 1676 80 1900 25.07 1665 90 2300 26.04 1652 100 2900 28.02 1639 110 3500 30.14 1623 120 4300 30.16 1625 130 5300 32.9 1610 140 6500 34.9 1605 150 8000 160 9800 170 12300 180 16000 190 20800 200 25400 210 34800 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2538 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 11.1.1.11.1 (Continued)

Fühner 1924 von Erichsen 1952 Vochten & Petre 1973 Hill & White 1974

synthetic method synthetic method surface tension measurement shake flask-interferometer

t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 220 46800 230 67000 240 101000 245 139600 2.

Barton 1984 Stephenson et al. 1984

IUPAC recommended shake flask-GC/TC

t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 0 3400 120 4300 0 2360 10 2500 130 5200 10.5 2530 20 1700 140 6500 20.2 1840 25 1740 150 8000 30.6 1540 30 1600 160 10000 39.8 1660 40 1300 170 12000 50.1 1620 50 1200 180 16000 60.0 1780 60 1300 190 21000 70.1 2040 70 1400 200 26000 80.1 2170 80 1800 210 35000 90.5 2430 90 2300 220 47000 100 2900 230 67000 110 3400 240 101000

1-Heptanol: solubility vs. 1/T -3.0 experimental data Barton1984 (IUPAC recommended) -4.0

-5.0

x nl x -6.0

-7.0

-8.0

-9.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 11.1.1.11.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 1-heptanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2539

TABLE 11.1.1.11.2 Reported vapor pressures of 1-heptanol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Butler et al. 1935 Stull 1947 Kemme & Kreps 1969

isoteniscope method summary of literature data differential thermal analysis

t/°C P/Pa t/°C P/Pa t/°C P/Pa 24.98 29.86 42.4 133.3 63.6 626.6 68.11 505 64.3 666.6 76.1 1453 70.29 997 74.7 1333 81.5 2000 80.58 1913 85.8 2666 87.6 2813 90.83 3430 99.8 5333 94.3 4026 101.16 5882 108.0 7999 99.9 5360 110.10 9061 119.5 13332 106.4 7399 120.55 14292 136.6 26664 114.5 10732 130.88 21811 155.6 53329 124.1 16319 141.67 32864 175.8 101325 136.5 26798 152.77 48596 147.8 40463 mp/°C 34.6 162.8 66794 bp/°C 175.6 178.4 101432 D25 0.8205 Antoine eq. eq. 4 P/mmHg eq. 2 P/mmHg A 56.1972 A 6.85450 B 5580 B 1256.783 C 15.41 C 139.663 ∆ –1 HV/(kJ mol ) = 68.66 at 25°C

1-Heptanol: vapor pressure vs. 1/T 8.0 Butler et al. 1935 Kemme & Kreps 1969 7.0 Stull 1947

6.0

5.0 )aP / S 4.0 P(go

l 3.0

2.0

1.0 b.p. = 176.45 °C m.p. = -33.2 °C 0.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 0.0044 1/(T/K) FIGURE 11.1.1.11.2 Logarithm of vapor pressure versus reciprocal temperature for 1-heptanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2540 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

11.1.1.12 1-Octanol (n-Octyl alcohol)

OH

Common Name: 1-Octanol Synonym: 1-octanol, n-octyl alcohol, capryl alcohol, heptylcarbinol Chemical Name: n-octyl alcohol, 1-octanol CAS Registry No: 111-87-5

Molecular Formula: C8H18O, CH3(CH2)7OH Molecular Weight: 130.228 Melting Point (°C): –14.8 (Lide 2003) Boiling Point (°C): 195.15 (Lide 2003) Density (g/cm3 at 20°C): 0.827 (Weast 1982–83) 0.82499, 0.82157 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 158.0 (calculated-density, Rohrschneider 1973; Lande & Banerjee 1981) 192.4 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 42.3 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): 56 (estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 586 (shake flask-interferometer, Butler et al. 1933) 760 (30°C, shake flask-titration, Sobotka & Glick 1934.) 420 (20°C, shake flask-surface tension, Addison 1945) 590 (shake flask-turbidimeter, McBain & Richard 1946) 500 (shake flask-titration, Crittenden & Hixon 1954) 582 (estimated, McGowan 1954) 490 (shake flask-surface tension, Kinoshita et al. 1958) 495 (shake flask-turbidity, Shinoda et al. 1959) 1000 (30°C, shake flask-turbidimeter, Rao et al. 1961)

330 (calculated-KOW, Hansch et al. 1968) 530 (15°C, shake flask-surface tension, Vochten & Petre 1973) 600, 600 (40, 60°C, shake flask-titration, Lavrova & Lesteva 1976) 10000, 5000 (95, 115°C, shake flask-polythermic method, Zhuravleva et al. 1977) 540* (recommended best value, IUPAC Solubility Data Series, temp range 15–115°C, Barton 1984) 490* (20.5°C, shake flask-GC/TC, measured range 20.5–90.3°C, Stephenson et al. 1984) 517 (shake flask-GC, Li et al. 1992) 417 (shake flask-GC, Li & Andren 1994)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 11.06* (25°C, extrapolated-modified isoteniscope data, measured range 60.12–110°C, Butler et al. 1935) log (P/mmHg) = 40.2105 – 4100/(T/K) – 10.35·log (T/K); temp range 20–110°C (isoteniscope measurements, Butler et al. 1935) 18.8* (extrapolated-regression of tabulated data, temp range 54–195.2°C, Stull 1947) log (P/mmHg) = 8.29442 – 2302.3/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 7604* (121.99°C, ebulliometry, measured range 121.99–195.28°C, Dreisbach & Shrader 1949)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2541

5.28 (extrapolated-Antoine eq., ebulliometry- DTA, Kemme & Kreps 1969) 706.6* (78.9°C, ebulliometry-differential thermal analysis, measured range 78.9–195.3°C, Kemme & Kreps 1969) log (P/mmHg) = 6.62354 – 1196.639/(124.107 + t/°C); temp range 78.9–195.3°C, or pressure range 5.3–760 mmHg (Antoine eq., ebulliometry-differential thermal analysis, Kemme & Kreps 1969) 10* (comparative ebulliometry, measured range 113.274–206.123 K, Ambrose & Sprake 1970) log (P/Pa) = 5.79413 – 1434.755/(T/K – 149.407); restricted temp range 113.274–151.974°C, (Antoine eq., comparative ebulliometry, Ambrose & Sprake 1970) log (P/Pa) = 5.88511 – 1264.322/(T/K – 142.420); temp range 113.274–206.123°C (Antoine eq., comparative ebulliometry, Ambrose & Sprake 1970) 142* (54.88°C, comparative ebulliometry, measured range 328.03–386.96 K, data fitted to Chebyshev polynomial, Ambrose et al. 1974) 2.78 (20°C, extrapolated from Antoine eq. of Kemme & Kreps 1969, Gückel et al. 1982) 4.07, 32.3, 177 (20, 40, 60°C, evaporation rate-gravimetric method, Gückel et al. 1982) log (P/mmHg) = [–0.2185 × 14262.4/(T/K)] + 9.601156; temp range: 54–195°C, (Antoine eq., Weast 1972–73) 10.06, 6.89, 5.74. 9.95 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.80512 – 1752.302/(174.07 + t/°C); temp range 54.88–113.9°C (Antoine eq. from reported exptl. data of Ambrose et al. 1974, Boublik et al. 1984) log (P/kPa) = 5.98227 – 1322.952/(137.413 + t/°C); temp range 79.9–195.4°C (Antoine eq. from reported exptl. data of Kemme & Kreps 1969, Boublik et al. 1984) log (P/kPa) = 5.87970 – 1260.554/(130.23 + t/°C); temp range 113.3–206.1°C (Antoine eq. from reported exptl. data of Ambrose & Sprake 1970, Boublik et al. 1984) log (P/kPa) = 6.00162 – 1356.232/(144.452 + t/°C); temp range 229.05–250.8°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 13.43 (calculated-Antoine eq., Dean 1985) log (P/mmHg) = 12.0701 – 4506.8/(319.9 + t/°C); temp range 0–80°C (Antoine eq., Dean 1985, 1992) log (P/mmHg) = 6.83790 – 1310.62/(136.05 + t/°C); temp range 70–195°C (Antoine eq., Dean 1985, 1992) 14.5 (static measurement, Berti et al. 1986) 10.0 (Riddick et al. 1986) log (P/kPa) = 5.88511 – 1264.322/(t/°C + 130.73); temp range not specified (Riddick et al. 1986) 13.5 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 5.90052 – 1273.291/(–141.417 + T/K); temp range 386–480 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 5.342 – 3343/(T/K); temp range 267–282 K (Antoine eq.-II, Stephenson & Malanowski 1987) log (PL/kPa) = 18.014 – 5507/(T/K); temp range 238–251 K (Antoine eq.-III, Stephenson & Malanowski 1987) log (PL/kPa) = 5.7934 – 1208.201/(–149.366 + T/K); temp range 430–474 K (Antoine eq.-IV, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.39406 – 1540.599/(–114.618 + T/K); temp range 328–400 K (Antoine eq.-V, Stephenson & Malanowski 1987)

log (PL/kPa) = 5.90632 – 1276.86/(–140.996 + T/K); temp range 397–479 K (Antoine eq.-VI, Stephenson & Malanowski 1987) 10.58 (Daubert & Danner 1989; quoted, Howard 1993) log (P/mmHg) = –26.3876 – 4.2263 × 103/(T/K) + 21.093·log(T/K) – 5.0048 × 10–2·(T/K) + 2.4611 × 10–5·(T/K)2; temp range 258–653 K (vapor pressure eq., Yaws 1994) 8.0* (static method-manometry, measured range 278.15–323.15 K, Garriga et al. 1996) ln (P/kPa) = 13.058110 – 2443.493/(T/K – 162.071); temp range 278.15–323.15 K (Antoine eq., static method- manometry, Garriga et al. 1996)

Henry’s Law Constant (Pa·m3/mol at 25°C): 2.454 (measured partial pressure/mole fraction x at dilute concn, Butler et al. 1935) 2.479 (shake flask, partial vapor pressure-GC, Buttery et al. 1969) 2.422 (exptl., Hine & Mookerjee 1975) 3.344, 6.085 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 2.537 (calculated-MCI χ, Nirmalakhandan & Speece 1988)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2542 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

1.609 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 1.537 (wetted-wall column-GC, Altschuh et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 3.15 (shake flask-CR, Collander 1951) 2.84 (calculated-π constant, Hansch et al. 1968) 3.03 (Hansch & Dunn III 1972) 2.95, 2.97; 2.84 (calculated-f const.; calculated-π constant, Rekker 1977) 2.97 (HPLC-k’ correlation, Könemann et al. 1979) 2.80 (HPLC-RV correlation, Yonezawa & Urushigawa 1979) 2.92 (RP-HPLC-k’ correlation, D’Amboise & Hanai 1982) 3.16 (shake flask-GC, Platford 1983) 2.97 (Hansch & Leo 1985) 3.27 (shake flask-GC at pH 7, Riebesehl & Tomlinson 1986) 2.14 (calculated-activity coeff. γ from UNIFAC, Banerjee & Howard 1988) 3.07 (recommended, Sangster 1989, 1993) 3.00 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 6.03 (calculated-measured γ∞ in pure octanol and vapor pressure P, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

0.307 (calculated-KOW, Lyman et al. 1982; quoted, Howard 1993) 0.097 (calculated-S, Lyman et al. 1982; quoted, Howard 1993) 1.651 (calculated as per Mackay 1982, Schultz et al. 1990)

Sorption Partition Coefficient, log KOC:

2.99 (soil, calculated-KOW, Lyman et al. 1982; quoted, Howard 1993) 2.14 (soil, calculated-S, Lyman et al. 1982; quoted, Howard 1993) 1.56, 1.76 (quoted, calculated-MCI χ, Gerstl & Helling 1987) 1.56 (soil, quoted exptl., Meylan et al. 1992) 1.45 (soil, calculated-MCI χ and fragment contribution, Meylan et al. 1992) 1.56 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: evaporation rate k = 1.752 × 10–6 mol·cm–2·h–1 was determined by gravimetric method with an air flow rate k = (50 ± 1) L h–1 at 20 ± 0.1°C (Gückel et al. 1973);

t½ ~1.8 d from a model river of 1-m deep flowing at 1 m/s with a wind speed of 3 m/s, based on calculated Henry’s law constant (Lyman et al. 1982; quoted, Howard 1993);

t½ ~8.2 d from a model pond with the consideration of adsorption (USEPA 1987; quoted, Howard 1993). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation half-life of 0.24–2.4 h in air for the gas-phase reaction with OH radical, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976) k ≤ 0.8 M–1 s–1 for the reaction with ozone in water at pH 2 and 20–23°C (Hoigné & Bader 1983) –12 3 –1 –1 kOH = (13.6 ± 1.3) × 10 cm molecule s at 298 K (Wallington et al. 1988a; Atkinson 1989) –12 3 –1 –1 kOH = (14.4 ± 1.5) × 10 cm molecule s at 298 ± 2 K (relative rate method, Nelson et al. 1990) –12 3 –1 –1 kOH(calc) = 11.67 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2543

Half-Lives in the Environment:

Air: t½ = 0.24–2.4 h in air for the gas-phase reaction with hydroxyl radical, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976); –11 3 –1 –1 photooxidation t½ = 1.3 d in air, based on measured rate constant k = 1.195 × 10 cm molecule s for the vapor-phase reaction with photochemically produced hydroxyl radical of 5 × 105 cm–3 at 25°C in air (Atkinson 1987; quoted, Howard 1993). Surface water: Groundwater: Sediment: Soil: Biota:

TABLE 11.1.1.12.1 Reported aqueous solubilities of 1-octanol at various temperatures

Barton 1984 Stephenson et al. 1984

tentative or recommended shake flask-GC/TC

t/°C S/g·m–3 t/°C S/g·m–3 15 530 20.5 490 20 420 30.6 640 25 540 40.1 650 30 760 50.0 1050 40 600 60.3 880 60 600 70.3 770 95 1000 80.1 870 115 500 90.3 860 25 540* 30 900* *“best” values

1-Octanol (n -octyl alcohol): solubility vs. 1/T -6.0 Stephenson et al. 1984 Lavrova & Lesteva 1976 Zhuravleva et al. 1977 Barton 1984 (IUPAC tentative) -7.0 experimental data

-8.0 ln x -9.0

-10.0

-11.0 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 11.1.1.12.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 1-octanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2544 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 11.1.1.12.2 Reported vapor pressures of 1-octanol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) ln P = A – B/(C + T/K) (3a) log P = A – B/(T/K) – C·log (T/K) (4) 1.

Butler et al. 1935 Stull 1947 Dreisbach & Shrader 1949 Kemme & Kreps 1969

isoteniscope method summary of literature data ebulliometry ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 24.98 11.066 54.0 133.3 121.99 7604 78.9 706.6 60.12 220.0 76.5 666.6 125.42 8851 88.8 1360 70.3 441.3 88.3 1333 140.37 16500 95.4 2000 80.59 890.6 101.0 2666 166.09 42066 101.5 2800 90.84 1589 115.2 5333 181.17 67661 108.4 4000 101.17 2868 123.8 7999 195.28 101325 114.0 5266 110.2 4456 135.2 13332 120.9 7253 120.56 7202 152.0 26664 131.2 11386 130.89 11390 173.8 53329 140.2 16505 141.68 17683 195.2 101325 166.1 42063 152.78 26858 181.2 67674 mp/°C –15.4 195.3 101325 bp/°C 194.5 D25 0.8232 Antoine eq. eq. 2 P/mmHg eq. 4 P/mmHg A 6.62354 A 65.2106 B 1196.639 B 6190 C 124.107 C 18.40 ∆ –1 HV/(kJ mol ) = 72.93 at 25°C 2.

Ambrose & Sprake 1970 Ambrose et al. 1974 Garriga et al. 1996

comparative ebulliometry comparative ebulliometry static method-manometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa 113.274 5065 54.88 142 5 < 2 117.718 6261 64.11 281 10 < 2 122.526 7810 70.44 431 15 < 2 127.503 9742 73.91 544 20 3 133.164 12400 77.69 700 25 8 139.162 15845 79.86 803 30 15 147.224 21679 82.36 938 35 25 151.974 25859 84.65 1078 40 45 157.372 31373 87.26 1259 45 77 161.868 36654 89.24 1415 50 116 167.897 44832 91.26 1591 173.981 54475 95.52 2022 Antoine eq.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2545

TABLE 11.1.1.12.2 (Continued)

Ambrose & Sprake 1970 Ambrose et al. 1974 Garriga et al. 1996

comparative ebulliometry comparative ebulliometry static method-manometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa 179.523 64637 101.66 2817 eq. 3a P/Pa 184.300 74519 105.12 5376 A 13.058110 190.026 87866 109.57 4226 B 2443.493 195.114 101222 113.81 5236 C –162.071 195.504 102265 201.198 119164 data fitted to Chebyshev 206.123 135431 polynomial, see ref. Antoine eq. for full range eq. 3 P/Pa A 5.88511 B 1264.322 C –142.420 Data also fitted to Cragoe equation, see ref.

1-Octanol (n -octyl alcohol): vapor pressure vs. 1/T 7.0 experimental data Stull 1947 6.0

5.0

4.0 )aP/

S 3.0 P(g ol 2.0

1.0

0.0 b.p. = 195.16 °C m.p. = -14.8 °C -1.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K)

FIGURE 11.1.1.12.2 Logarithm of vapor pressure versus reciprocal temperature for 1-octanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2546 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

11.1.1.13 1-Nonanol

OH

Common Name: 1-Nonanol Synonym: n-nonyl alcohol Chemical Name: 1-nonanol CAS Registry No: 143-08-8

Molecular Formula: C9H20O, CH3(CH2)8OH Molecular Weight: 144.254 Melting Point (°C): –5 (Lide 2003) Boiling Point (°C): 213.37 (Lide 2003) Density (g/cm3 at 20°C): 0.8273 (Weast 1982–83) Molar Volume (cm3/mol): 174.4 (20°C, Stephenson and Malanowski 1987) 214.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 140 (shake flask-surface tension, Kinoshita et al. 1958) 140 (15°C, shake flask-surface tension, Vochten and Petre 1973) 130 (recommended-IUPAC Solubility Data Series, Barton 1984) 280* (20°C, shake flask-GC/TC, measured range 9.8–90.5°C, Stephenson & Stuart 1986) 128 (20°C, shake flask/slow stirring-GC, Letinski et al. 2002)

Vapor Pressure (Pa at 25°C or as indicated and the reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (59.5°C, summary of literature data, temp range 59.5–213.5°C, Stull 1947) 746.6* (91.7°C, ebulliometry-differential thermal analysis, measured range 91.7–213.6°C, Kemme & Kreps 1969) log (P/mmHg) = 6.83667 – 1373.417/(133.968 + t/°C); temp range 91.7–213.6°C, or pressure range 5.6–757.5 mmHg (Antoine eq., ebulliometry-differential thermal analysis, Kemme & Kreps 1969) log (P/mmHg) = [–0.2185 × 14065.1/(T/K)] + 8.99150; temp range 69.5–231°C (Antoine eq., Weast 1972–73) 7.466 (20°C, extrapolated from data of Stull 1947, Gückel et al. 1973) 1.87 (20°C, evaporation rate-gravimetric method, Gückel et al. 1973) 12680* (152.15°C, ebulliometry, measured range 152–221.35°C, Hon et al. 1976) 0.106 (20°C, evaporation rate-gravimetric method, Gückel et al. 1982)

log (PL/kPa) = 5.9049 – 1341.28/(–142.64 + T/K); temp range 381–495 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 5.9454 – 1366.566/(–139.73 + T/K); temp range 368–500 K (Antoine eq.-II, Stephenson & Malanowski 1987) log (P/mmHg) = 103.0308 –8.1526 × 103/(T/K) –31.641·log(T/K) – 7.230 × 10–10·(T/K) + 6.0332 × 10–6·(T/K)2; temp range 280–690 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C): 1.675 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2547

Octanol/Water Partition Coefficient, log KOW: 3.77 (generator column-GC, Tewari et al. 1982) 4.26 (shake flask, Log P Database, Hansch & Leo 1987) 4.26 (recommended, Sangster 1993) 4.26 (shake flask, recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constant, k, and Half-Lives, t½:

Half-Lives in the Environment:

TABLE 11.1.1.13.1 Reported aqueous solubilities of 1-nonanol at various temperatures

Stephenson & Stuart 1986

shake flask-GC/TC

t/°C S/g·m–3 9.8 350 20.0 280 29.6 310 39.6 340 49.8 320 60.1 340 70.5 330 80.2 280 90.5 300

1-Nonanol: solubility vs. 1/T -9.0

-9.5

-10.0

x nl x -10.5

-11.0

Stephenson & Stuart 1986 -11.5 Barton 1984 (IUPAC recommended) Kinoshita et al. 1958 Vochten & Petre 1973 Letinski et al. 2002 -12.0 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 11.1.1.13.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 1-nonanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2548 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 11.1.1.13.2 Reported vapor pressures of 1-nonanol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Kemme & Kreps 1969 Hon et al. 1976

summary of literature data differential thermal analysis ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa ebulliometry 59.5 133.1 91.7 746.6 152.15 12680 86.1 666.6 102.1 1400 170.20 25385 99.7 1333 108.9 2040 181.03 37146 113.8 2666 114.4 2706 187.49 46110 129.0 5333 122.4 4026 194.80 58337 139.0 7999 128.8 5413 203.95 77352 151.3 13332 135.8 7399 207.76 86645 170.5 26664 144.7 10719 213.44 101948 192.1 53329 155.0 16092 213.97 103527 213.5 101325 169.0 26851 217.73 115289 181.0 40317 221.35 127515 mp/°C –5 198.0 66994 213.6 101845 bp/°C 213.17 Antoine eq. eq. 2 P/mmHg eq. 2 P/mmHg A 7.60022 A 6.83667 B 1793.77 B 1373.417 C 166.91 C 133.968

1-Nonanol: vapor pressure vs. 1/T 8.0 Kemme & Kreps 1969 Hon et al. 1976 7.0 Stull 1947

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 213.37 °C m.p. = -5 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 1/(T/K) FIGURE 11.1.1.13.2 Logarithm of vapor pressure versus reciprocal temperature for 1-nonanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2549

11.1.1.14 1-Decanol

OH

Common Name: 1-Decanol Synonym: decyl alcohol Chemical Name: 1-decanol CAS Registry No: 112-30-1

Molecular Formula: C10H22O, CH3(CH2)8CH2OH Molecular Weight: 158.281 Melting Point (°C): 6.9 (Lide 2003) Boiling Point (°C): 231.1 (Lide 2003) Density (g/cm3 at 20°C): 0.8297 (Weast 1982–83) Molar Volume (cm3/mol): 190.8 (20°C, calculated-density, Stephenson and Malanowski 1987) 236.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 50 (shake flask-turbidimetric method, Stearns et al. 1947) 36 (20°C, shake flask-surface tension, Addison and Hutchinson 1949) 50 (shake flask-turbidimetric method-photometer, Harkins and Oppenheimer 1949) 37 (shake flask-surface tension, Kinoshita et al. 1958) 32 (15°C, shake flask-surface tension, Vochten and Petre 1973) 10000, 8000 (102.5, 120.5°C, polythermic method, Zhuravleva et al. 1977) 37* (recommended-IUPAC Solubility Data Series, temp range 15–120°C, Barton 1984) 210* (29.6°C, shake flask-GC/TC, measured range 29.6–90.4°C, Stephenson 1992) 35.9 (dialysis tubing equilibration-GC, Etzweiler et al. 1995)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (69.5°C, summary of literature data, temp range 69.5–231.0°C, Stull 1947) 747* (105.0°C, ebulliometry-differential thermal analysis, measured range 105–231°C, Kemme & Kreps 1969) log (P/mmHg) = 6.39379 – 1180.306/(104.321 + t/°C); temp range 105–231°C, or pressure range 5.6–757.5 mmHg (Antoine eq., ebulliometry-differential thermal analysis, Kemme & Kreps 1969) 1.0* (comparative ebulliometry, measured range 127.261–255.2°C, Ambrose & Sprake 1970) log (P/Pa) = 5.94387 – 1434.755/(T/K – 139.888); restricted temp range 127.261–194.484°C (Antoine eq., com- parative ebulliometry, Ambrose & Sprake 1970) log (P/Pa) = 5.86571 – 1373.916/(T/K – 147.202); temp range 127.16–255.2°C (Antoine eq., comparative ebul- liometry, Ambrose & Sprake 1970) 124* (76.23°C, comparative ebulliometry, measured range 349.38–406.19 K, data fitted to Chebyshev polynomial, Ambrose et al. 1974) log (P/mmHg) = [–0.2185 × 13849.2/(T/K)] + 9.115470; temp range 59.5–213.5°C (Antoine eq., Weast 1972–73) 0.5866 (20°C, evaporation rate-gravimetric method, Gückel et al. 1973) 1.10 (20°C, evaporation rate-gravimetric method, Gückel 1982)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2550 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (P/kPa) = 5.76028 – 1315.079/(119.128 + t/°C), temp range 105–231°C (Antoine eq. derived from.exptl. data of Kemme & Kreps 1969, Boublik et al. 1984) log (P/kPa) = 5.84611 – 1365.892/(124.619 + t/°C), temp range 127.2–255.2°C (Antoine eq. derived from data of Ambrose & Sprake 1970, Boublik et al. 1984)

log (PS/kPa) = 17.615 – 6028/(T/K); temp range 264–279 K (solid, Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.57397 – 1761.308/(–113.992 + T/K); temp range 349–410 K (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 5.8587 – 1374.347/(–147.547 + T/K); temp range 405–528 K (Antoine eq.-III, Stephenson & Malanowski 1987) log (P/mmHg) = 111.7949 –8.3502 × 103/(T/K) –34.786·log(T/K) + 3.3682 × 10–10·(T/K) + 7.2697 × 10–6·(T/K)2; temp range 268–673 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C): 2.689 (computer value, Yaws et al. 1991) 3.222 (wetted-wall column-GC, Altschuh et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 3.98 (HPLC-RT correlation, D’Amboise & Hani 1982) 4.57 (shake flask, Log P Database, Hansch & Leo 1987) 4.57 (recommended, Sangster 1993) 4.57 (shake flask, recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constant, k and Half-Lives, t½:

Half-Lives in the Environment:

TABLE 11.1.1.14.1 Reported aqueous solubilities of 1-decanol at various temperatures

Barton 1984 Stephenson & Stuart 1986

IUPAC recommended shake flask-GC/TC

t/°C S/g·m–3 t/°C S/g·m–3 15 32 29.6 210 20 36 40.3 260 25 37 50.0 260 102 10000# 60.3 280 120 8000# 70.2 220 # tentative 80.2 240 90.4 230 mp/°C 5

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2551

1-Decanol: solubility vs. 1/T -6.0 Zhuravleva et al. 1977 Stephenson & Stuart 1986 -7.0 Barton 1984 (IUPAC recommended) Barton 1984 (IUPAC tentative) experimental data -8.0

-9.0 ln x -10.0

-11.0

-12.0

-13.0 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K)

FIGURE 11.1.1.14.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 1-decanol.

TABLE 11.1.1.14.2 Reported vapor pressures of 1-decanol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Kemme & Kreps 1969 Ambrose & Sprake 1970 Ambrose & Sprake 1974

summary of literature data differential thermal analysis comparative ebulliometry comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 69.5 133.3 105.0 747 127.261 2656 349.38 124 97.3 666.6 114.5 1360 129.526 2968 358.67 235 111.3 1333 121.7 2000 133.573 3600 364.21 339 125.8 2666 127.3 2680 138.245 4468 364.26 352 142.1 5333 135.6 3986 141.817 5242 371.15 528 152.9 7999 142.2 5346 147.863 6250 371.30 534 165.8 13332 149.9 7466 149.414 7266 375.86 701 186.2 26664 159.2 10812 154.602 8995 379.24 854 208.6 53329 169.9 16172 159.206 10799 380.38 917 231.0 101325 183.9 25398 163.693 12835 383.04 1061 197.4 40397 168.653 15439 385.72 1236 mp/°C 7.0 215.3 67301 174.653 19146 388.16 1408 231.0 101005 177.568 21193 392.43 1769 182.748 25250 395.02 2025 Antoine eq 189.377 31359 397.42 2283 eq. 2 P/mmHg 194.484 36807 401.34 2774 A 6.39397 201.039 44875 403.08 3017 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2552 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 11.1.1.14.2 (Continued)

Stull 1947 Kemme & Kreps 1969 Ambrose & Sprake 1970 Ambrose & Sprake 1974

summary of literature data differential thermal analysis comparative ebulliometry comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa B 1180.306 207.352 55899 404.70 3263 C 104.321 213.119 63364 406.19 3504 218.923 74244 225.489 87994 230.471 99886 237.598 118863

1-Decanol: vapor pressure vs. 1/T 8.0 Kemme & Kreps 1969 Ambrose & Sprake 1970 Ambrose et al. 1974 7.0 Stull 1947

6.0

5.0 /Pa) S 4.0

log(P 3.0

2.0

1.0 b.p. = 231.1 °C m.p. = 6.9 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 1/(T/K) FIGURE 11.1.1.14.2 Logarithm of vapor pressure versus reciprocal temperature for 1-decanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2553

11.1.1.15 Ethylene glycol

HO OH

Common Name: Ethylene glycol Synonym: 1,2-ethanediol, 1,2-dihydroxyethane, MEG Chemical Name: 1,2-ethanediol, ethylene glycol CAS Registry No: 107-21-1

Molecular Formula: C2H6O2, HOCH2CH2OH Molecular Weight: 62.068 Melting Point (°C): –12.69 (Lide 2003) Boiling Point (°C): 197.3 (Lide 2003) Density (g/cm3 at 20°C): 1.1088 (Weast 1982–83) Molar Volume (cm3/mol): 55.8 (Rohrschneider 1973) 66.6 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 14.22 (Dean 1985) 14.24 (Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 9.958 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0 Water Solubility (g/m3 or mg/L at 25°C): miscible (Dean 1985; Howard 1990; Yaws et al. 1990) miscible (Riddick et al. 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 22.39 (extrapolated-Antoine eq., differential manometer, Gallaugher & Hibbert 1937) log (P/mmHg) = 9.2087 – 2976.6/(T/K); temp range 40–120°C (Antoine eq. from differential Hg manometry measurements, Gallaugher & Hibbert 1937) 133.3* (53.0°C, summary of literature data, temp range 53.0–197.3°C, Stull 1947) log (P/mmHg) = [–0.2185 × 14032.4/(T/K)] + 9.394685; temp range: 53–197.3°C (Antoine eq., Weast 1972–73) 11.70* (ebulliometry, extrapolated-Antoine eq., measured range 270–310 K, Ambrose & Hall 1981) log (P/kPa) = 11.1828 – 2611.2/[(T/K) – 40.0]; temp range 270–310 K (ebulliometry, Antoine eq., Ambrose & Hall 1981) log (P/kPa) = 6.83995 – 1818.591/[(T/K) – 94.499]; temp range 374.01–495.4 K (Antoine eq., ebulliometry, Ambrose & Hall 1981) 7.40* (20°C, average, gas saturation-GC/FID, Hales et al. 1981) log (P/mmHg) = 23.7259 – 4648.55/(T/K) – 503391/(T/K)–2; temp range 283–373 K (empirical vapor pressure eq., gas saturation, Hales et al. 1981) 14.90 (20°C, evaporation method, Gückel et al. 1982) 6.67, 26.66 (20°C, 30°C, Verschueren 1983) 0.73, 9.30 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 5.69339 – 1093.154/(98.821 + t/°C); temp range 122.5–186.5°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 7.13856 – 2035.185/(1936.936 + t/°C); temp range 50–200°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 11.86 (extrapolated-Antoine eq., Dean 1985) 11.7 (Riddick et al. 1986)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2554 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (P/kPa) = 6.83995 – 1818.591/(178.651 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) log (P/kPa) = 8.3726 – 2994.4/(T/K), temp range 130–190°C, (Antoine eq., Riddick et al. 1986) log (P/mmHg) = 8.0908 – 2088.9/(203.5 + t/°C); temp range 50–200°C (Antoine eq., Dean 1985, 1992) 10.1 (extrapolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.98465 – 1928.08/(–83.45 + T/K); temp range 323–473 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.86912 – 1817.439/(–95.859 + T/K), temp range 363–418 K (Antoine eq.-II, Stephenson & Malanowski 1987) 12.26 (Howard et al. 1986; quoted, Banerjee et al. 1990) log (P/mmHg) = 82.4062 – 6.3472 × 103/(T/K) – 25.433·log(T/K) – 2.3732 × 10–9·(T/K) + 8.7467 × 10–6·(T/K)2; temp range 160–645 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C):

0.006 (calculated-CW/CA, Hine & Mookerjee 1975) 5.81 × 10–6, 2.37 × 10–5 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975)

Octanol/Water Partition Coefficient, log KOW: –1.93 (shake flask, Hansch & Leo 1979) –1.34 (shake flask-RC, Cornford 1982) –1.36 (shake flask, Log P Database, Hansch & Leo 1987) –1.36 (recommended, Sangster 1993) –1.36 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF: 1.00 (golden ide, after 3 d, Freitag et al. 1985) 2.28 (algae, after 1 d, Freitag et al. 1985) 2.30 (activated sludge, after 5 d, Freitag et al. 1985)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k or Half-Lives, t½: Volatilization: evaporation rate k = 2.915 × 10–6 mol cm–2 h–1 was determined by gravimetric method with an air flow rate k = (50 ± 1) L h–1 at 20 ± 0.1°C (Gückel et al. 1973); evaporation rate k = 2.97 × 10–8 mol cm–2 h–1 was determined at 20°C (Gückel et al. 1982). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation t½ = 267 d-64.6 yr in water, based on measured rate constant for the reaction with OH radical (Anbar & Neta 1967; Dorfman & Adams 1973; selected, Howard et al. 1991)

photooxidation t½ = 0.24–2.4 h in air for the gas-phase reaction with OH radical, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976) –12 3 –1 –1 kOH = (7.7 ± 1.1) × 10 cm molecule s at 295 K in air (Wiedermann & Zetzsch 1982; quoted, Atkinson 1985)

photooxidation t½ = 8.3–83 h in air, based on measured rate constant for the reaction with OH radical in air (Atkinson 1985; selected, Howard et al. 1991) Hydrolysis: Biodegradation: k = 41.7 mg COD g–1 h–1, average rate based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982); k = 0.026–0.035 h–1 in 30 mg/L activated sludge after a time lag of 10–15 h (Urano & Kato 1986b)

t½(aq. aerobic) = 48–288 h, based on grab sample from river die-away studies (Evans & David 1974; selected, Howard et al. 1991);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2555

t½(aq. anaerobic) = 192–1152 h, based on aqueous aerobic biodegradation half-life (Howard et al. 1991). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 0.24–2.4 h in air for the gas-phase reaction with hydroxyl radical, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976);

photooxidation t½ = 8.3–83 h, based on measured rate constant for the reaction with hydroxyl radical in air (Atkinson 1985; selected, Howard et al. 1991); atmospheric transformation lifetime was estimated to be 1 to 5 d (Kelly et al. 1994).

Surface water: photooxidation t½ = 267 d-64.6 yr, based on measured rate constant for the reaction with hydroxyl radicals in water (Anbar & Neta 1967; Dorfman & Adams 1973; quoted, Howard et al. 1991); t½ = 48–288 h, based on aqueous aerobic biodegradation half-life (Howard et al. 1991).

Groundwater: t½ = 96–576 h, based on aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 48–288 h, based on aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota

TABLE 11.1.1.15.1 Reported vapor pressures of ethylene glycol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4) log P = A – B/(T/K) – C/(T/K)2 (5) ln P = A – B/(T/K) – C/(T/K)2 (5a) 1.

Stull 1947 Ambrose & Hall 1981 Hales et al. 1981

summary of literature data comparative ebulliometry transpiration-GC analysis

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa “continuous” measurements “collection” measurements 53.0 133.3 100.86 2208 10.0 2.698 9.0 2.711 79.7 666.6 103.869 2584 9.68 2.834 9.8 2.706 92.1 1333 107.59 3121 8.97 2.656 9.79 2.938 105.8 2666 111.997 3885 10.01 7.285 10.02 2.873 120.2 5333 115.971 4705 19.91 7.565 9.73 2.825 129.5 7999 120.647 5857 20.05 7.174 9.94 2.805 141.8 13332 124.645 7032 39.85 14.94 10.09 2.795 158.5 26664 129.735 8800 39.97 43.54 19.9 7.254 178.5 53329 133.244 10244 39.77 42.48 19.05 7.084 197.3 101325 182.095 62918 59.72 44.12 19.93 7.577 187.372 74338 59.94 184.9 20.51 7.911 mp/°C –15.6 192.976 88398 60.04 187.8 19.93 7.495 197.704 101829 59.72 197.8 20.0 7.210 203.13 119270 74.55 466.2 20.0 7.710 207.615 135464 74.57 476.9 39.97 41.84 212.932 156959 73.74 472.6 217.989 179863 100.17 2166.0 222.287 201399 100.15 2098.0 overall best fit equation 25.0 11.70 eq. 5a P/Pa (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2556 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 11.1.1.15.1 (Continued)

Stull 1947 Ambrose & Hall 1981 Hales et al. 1981

summary of literature data comparative ebulliometry transpiration-GC analysis

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa (extrapolated value) A 23.7259 B 4648.55 bp/°C 297.54 C 503391 eq. 3 P/kPa A 6.83995 B 1818.591 C –94.499

Ethylene glycol: vapor pressure vs. 1/T 7.0 experimental data Stull 1947 6.0

5.0

4.0 )aP/

S 3.0 P(gol

2.0

1.0

0.0 b.p. = 197.3 °C m.p. = -12.69 °C -1.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 1/(T/K) FIGURE 11.1.1.15.1 Logarithm of vapor pressure versus reciprocal temperature for ethylene glycol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2557

11.1.1.16 Allyl alcohol

OH

Common Name: Allyl alcohol Synonym: propenylalcohol, 2-propen-1-ol, 1-propene-3-ol, vinylcarbinol Chemical Name: allyl alcohol, 1-propene-3-ol, 2-propen-1-ol CAS Registry No: 107-18-6

Molecular Formula: C3H6O, CH2=CHCH2OH Molecular Weight: 58.079 Melting Point (°C): –129 (Stull 1947; Weast 1982–83; Verschueren 1983; Riddick et al. 1986; Lide 2003) Boiling Point (°C): 97.1 (Weast 1982–83; Dean 1985; Riddick et al. 1986) 97 (Lide 2003) Density (g/cm3 at 20°C): 0.854 (Weast 1982–83; Dean 1985) 0.85511 (15°C, Riddick et al. 1986) Molar Volume (cm3/mol): 64.8 (Kamlet et al. 1986; Leahy 1986) 74.0 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 15.5 (Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): Fugacity Ratio at 25°C (assuming ∆S = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): miscible (Dean 1985) miscible (Riddick et al. 1986)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 2666* (21.7°C, temp range –20 to 96.6°C, Stull 1947) 3140 (Hoy 1970) log (P/mmHg) = [–0.2185 × 10577.7/(T/K)] + 9.143231; temp range –20 to 96.6°C (Antoine eq., Weast 1972–73) 2666, 4266 (20°C, 30°C, Verschueren 1983) 3750 (Riddick et al. 1986) log (P/kPa) = 31.75070 – 3451.8/(T/K) – 7.94975 log (T/K); temp not specified (Riddick et al. 1986) 3298 (interpolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 7.40725 – 1790.13/(–38.295 + T/K); temp range 253–370 K (Antoine eq., Stephenson & Malanowski 1987) log (P/mmHg) = 21.3978 – 2.9525 × 103/(T/K) – 3.8137·log(T/K) – 2.7145 × 10–3·(T/K) + 1.8811 × 10–6·(T/K)2; temp range 144–545 K (vapor pressure eq., Yaws 1994) 6954* (38.28°C, ebulliometry, measured range 311.42–355.70 K, Lubomska & Malanowski 2004) log (P/kPa) = 6.936209 – 1513.129/[(T/K) – 63.131]; temp range 311.42–355.70 K (Antoine eq., ebulliometric method, Lubomska & Malanowski 2004)

Henry’s Law Constant (Pa·m3/mol at 25°C):

0.506 (calculated-CW/CA., Hine & Mookerjee 1975) 0.510 (calculated-bond contribution, Hine & Mookerjee 1975) 0.564 (computed, Yaws et al. 1991)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2558 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Octanol/Water Partition Coefficient, log KOW: 0.17 (shake flask, Hansch & Leo 1979) 0.17 (recommended, Sangster 1989) 0.17 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Hydrolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation t½ = 334 d-37 yr, based on measured rate constant for the reaction with hydroxyl radical in water (Anbar & Neta 1967; quoted, Howard et al. 1991)

photooxidation t½ = 2.2–22 h, based on estimated rate constant for the reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991) –12 3 –1 –1 kOH = 25.9) × 10 cm molecule s at 440 K (Atkinson 1989) Biodegradation: t½(aq. aerobic) = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation screening test data (Sasaki 1978; quoted, Howard et al. 1991); t½(aq. anaerobic) = 96–672 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: photooxidation t½ = 2.2–22 h, based on estimated rate constant for the reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991).

Surface water: photooxidation t½ = 334 d-37 yr, based on measured rate constant for the reaction with hydroxyl radical in water (Anbar & Neta 1967; quoted, Howard et al. 1991).

Groundwater: t½ = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991) Sediment:

Soil: t½ 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

TABLE 11.1.1.16.1 Reported vapor pressures of allyl alcohol at various temperatures

Stull 1947 Lubomska & Malanowski 2004

summary of literature data ebulliometry

t/°C P/Pa T/K P/Pa –20.0 133.3 311.42 6954 0.20 666.6 315.81 8869 10.5 1333 319.97 11079 21.7 2666 326.70 15672 33.4 5333 331.84 20194 40.3 7999 334.20 22603 50.0 13332 337.96 26943 64.5 26664 341.54 31723

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2559

TABLE 11.1.1.16.1 (Continued)

Stull 1947 Lubomska & Malanowski 2004

summary of literature data ebulliometry

t/°C P/Pa T/K P/Pa 80.2 53329 344.27 35822 96.6 101325 346.97 40304 351.37 48613 mp/°C –129 353.15 52334 353.59 53299 355.70 58108

Allyl alcohol: vapor pressure vs. 1/T 8.0 Lubomska & Malanowski 2004 Stull 1947 7.0

6.0

5.0 /Pa) S 4.0

log(P 3.0

2.0

1.0 b.p. = 97 °C 0.0 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 1/(T/K)

FIGURE 11.1.1.16.1 Logarithm of vapor pressure versus reciprocal temperature for allyl alcohol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2560 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

11.1.1.17 Cyclohexanol

OH

Common Name: Cyclohexanol Synonym: adronol, anol, cyclohexylalcohol, hexahydrophenol, hexalin, hydralin, hydrophenol Chemical Name: cyclohexanol CAS Registry No: 108-93-0

Molecular Formula: C6H11OH Molecular Weight: 100.158 Melting Point (°C): 25.93 (Lide 2003) Boiling Point (°C): 160.84 (Lide 2003) Density (g/cm3): 0.9624 (Lide 2003) Molar Volume (cm3/mol): 104.0 (calculated-density, Lande & Banerjee 1981) 125.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 1.70 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 37000* (shake flask-synthetic method, temp range 7.2–184.72°C, Sidgwick & Sutton 1930) 39200 (shake flask-interferometry, Hansen et al. 1949) 32920 (residue volume, Booth & Everson 1942) 40000* (20°C, synthetic method, measured range 0–184°C, Zil’berman 1951) 48960 (shake flask-interferometry, Donahue & Bartell 1952) 36000 (26.7°C, shake flask-turbidity, Skrzec & Murphy 1954) 38000* (recommended “best” value, IUPAC Solubility Data Series, temp range 0–180°C, Baron 1984) 37500 (selected, Riddick et al. 1986) 44400* (19.7°C, shake flask-GC/TC, measured range 0–90.3°C, Stephenson & Stuart 1986) 38200 (selected, Yaws et al. 1990) 37500 (dialysis tubing equilibration-GC. Etzweiler et al. 1995)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 467* (34.0°C, Ramsay-Young method, measured range 34.0–149.0°C, Gardner & Brewer 1937) 133.1*, 194 (21°C, interpolated-regression of tabulated data, temp range 21–161°C, Stull 1947) 7177* (93.73°C, temp range 93.73–160.70°C, Novak et al. 1960; quoted, Boublik et al. 1984) log (P/mmHg) = [–0.2185 × 11935.8/(T/K)] + 8.909086; temp range 21–161°C (Antoine eq., Weast 1972–73) 174.8 (calculated-Cox eq., Chao et al. 1983) log (P/mmHg) = [1– 434.658/(T/K)] × 10^{0.951396 – 8.46102 × 10–4·(T/K) + 8.87926 × 10–7·(T/K)2}; temp range 294.15–434.15 K (Cox eq., Chao et al. 1983) 37.53 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 6.2553 – 912.87/(109.13 + t/°C); temp range 94–161°C (Antoine eq., Dean 1985, 1992) 1300 (56°C, Riddick et al. 1986) log (P/kPa) = 5.92859 – 1199.10/(t/°C + 145.0); temp range 107–160°C (Riddick et al. 1986) 97.36 (interpolated, solid, Antoine eq.-I, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2561

80.0, 84.85 (extrapolated, liquid, Antoine eq.-I and II, Stephenson & Malanowski 1987)

log (PS/kPa) = 9.631 – 3173.1/(T/K); temp range 272–298 K (Antoine eq.-I, for solid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.1634 – 1318.5/(–116.55 + T/K); temp range 318–434 K (Antoine eq.-II, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.27792 – 1381.8/(–110.132 + T/K); temp range 300–434 K (Antoine eq.-III, liquid, Stephenson & Malanowski 1987) 106.6 (Daubert & Danner 1989) 14.66, 196.0 (quoted, calculated-solvatochromic parameters, Banerjee et al. 1990) log (P/mmHg) = 49.9123 – 4.8446 × 103/(T/K) – 13.711·log(T/K) + 3.5451 × 10–9·(T/K) + 1.5932 × 10–6·(T/K)2; temp range 297–625 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol):

0.581 (calculated-CW/CA., Hine & Mookerjee 1975) 2.48, 2.37 (calculated-group contribution, bond contribution, Hine & Mookerjee 1975) 0.281 (calculated-P/C, Howard 1993) 0.278 (correlated-molecular structure, Russell et al. 1992) 0.446 (wetted-wall column-GC, Altschuh et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 1.23 (shake flask-AS, Hansch & Anderson 1967, Hansch et al. 1968; Leo et al. 1971; Hansch & Leo 1979) 1.36 (calculated-activity coeff. γ from UNIFAC, Banerjee & Howard 1988) 1.23 (recommended, Sangster 1989, 1993) 1.23 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 5.18 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

0.708 (estimated-KOW, Lyman et al. 1990) 0.176 (estimated-S, Lyman et al. 1990)

Sorption Partition Coefficient, log KOC:

2.045 (soil, estimated-KOW, Lyman et al. 1990; quoted, Howard 1993) 1.114 (soil, estimated-S, Lyman et al. 1990; quoted, Howard 1993)

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Volatilization: t½ ~145 d estimated from a model environmental pond with the consideration of the effect of adsorption (USEPA 1987; quoted, Howard 1993);

based on the Henry’s law constant, t½ ~13.3 d from a model river of 1 m deep flowing at 1 m/s with a wind velocity of 3 m/s at 25°C (Lyman et al. 1990; quoted, Howard 1993). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –12 3 –1 –1 5 3 kOH = 17.4 × 10 cm molecule s with OH radical concentration of 5 × 10 per cm in air at 25°C corresponds to an atmosphere t½ = 22 h (Atkinson 1987; quoted, Howard 1993) Hydrolysis: Biodegradation: average rate of biodegradation k = 28.0 mg COD g–1 h–1 based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982). Biotransformation:

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2562 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Half-Lives in the Environment: –12 3 –1 –1 Air: photooxidation t½ = 22 h, based on estimated reaction rate constant of 17.4 × 10 cm molecule s for the vapor phase reaction with 5 × 105 hydroxyl radical per cm3 in air at 25°C (Howard 1993). Surface water: Ground water: Sediment: Soil: Biota:

TABLE 11.1.1.17.1 Reported aqueous solubilities of cyclohexanol at various temperatures

Sidgwick & Sutton 1930 Zil’berman 1951 Barton 1984 Stephenson & Stuart 1986

synthetic method synthetic method IUPAC recommended shake flask-GC/TC

t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 t/°C S/g·m–3 7.2 50000 0 53400 0 53000 0 67700 9.4 47800 10 45700 10 46200 9.5 54000 9.7 45800 20 40000 20 39700 19.7 44400 11.2 44100 30 36000 25 38000 30.6 37400 12.0 45500 40 33300 30 35500 40.0 36300 14.2 42300 50 31400 40 33000 50.0 34900 15.2 42900 54 31000 50 31000 60.3 33700 16.3 40900 62 31000 60 31000 70.1 34400 20.6 39500 70 31900 70 32000 80.2 36000 20.8 38200 80 34100 80 34000 90.3 37500 24.6 .37500 90 36500 90 37000 27.55 35200 100 39300 100 39000 28.7 35700 110 42800 110 43000 31.85 33700 120 47000 120 49000 33.6 34100 130 53000 130 56000 40.4 32600 140 61000 140 64000 40.45 31800 150 72000 150 77000 45.8 31900 160 88000 160 93000 121.95 51400 170 115000 170 120000 156.9 92200 180 178000 180 190000 174.3 150000 184 339000 179.4 192000 184.72 324000 Zh. Fis. Khim. 24, 776–8

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2563

Cyclohexanol: solubility vs. 1/T -2.5 experimental data Barton 1984 (IUPAC recommended) -3.0

-3.5 x n -4.0 l

-4.5

-5.0

-5.5 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 11.1.1.17.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for cyclohexanol.

TABLE 11.1.1.17.2 Reported vapor pressures of cyclohexanol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Gardner & Brewer 1937 Stull 1947 Novak et al. 1960

Ramsay-Young method summary of literature data in Boublik et al. 1984

t/°C P/Pa t/°C P/Pa t/°C P/Pa 34.0 467 21.0 133.3 93.73 7177 37.5 560 44.0 666.6 97.02 9210 46.4 587 56.0 1333 99.71 10426 47.8 693 68.8 2666 102.52 11876 53.6 907 83.0 5333 104.83 13159 59.4 1133 91.8 7999 108.82 15372 73.0 2773 103.7 13332 112.70 18252 80.5 4146 121.7 26664 116.86 21891 97.8 9826 141.4 53329 120.35 25264 119.1 13771 161.0 101325 125.54 30864 136.9 47036 130.95 37543 149.0 71994 mp/°C 23 136.22 45356 142.41 56448 bp/°C 162.3 148.72 69487 155.71 86046 160.70 99192 in Boublik et al. 1984 eq. 2 P/kPa A 5.34182 B 894.818 C 106.797 bp/°C 161.425

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2564 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Cyclohexanol: vapor pressure vs. 1/T 8.0 Gardner & Brewer 1937 Novak et al. 1960 7.0 Stull 1947

6.0

5.0 )a P/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 160.84 °C m.p. = 25.93 °C 0.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 0.0044 1/(T/K) FIGURE 11.1.1.17.2 Logarithm of vapor pressure versus reciprocal temperature for cyclohexanol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2565

11.1.1.18 Benzyl alcohol

OH

Common Name: Benzyl alcohol Synonym: benzenemethanol, (hydroxymethyl)benzene, o-hydroxy toluene, phenylcarbinol, phenylmethanol Chemical Name: benzyl alcohol CAS Registry No: 100-51-6

Molecular Formula: C7H8O, C6H5CH2OH Molecular Weight: 108.138 Melting Point (°C): –15.4 (Lide 2003) Boiling Point (°C): 205.31 (Lide 2003) Density (g/cm3 at 20°C): 1.04535, 1.04156 (20°C, 25°C, Dreisbach 1955) 1.04127 (25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 103.5 (calculated-density, Rohrschneider 1973) 125.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 48.13, 61.42 (normal bp, 25°C, Dreisbach 1955) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 17.406 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 38020 (Seidell 1941) 34200 (estimated, McGowan 1954) 38000 (20–25°C, shake flask-GC, Urano et al. 1982) 35000 (20°C, Verschueren 1983) 42900 (shake flask-LSC, Banerjee 1985) 43000* (20.1°C, shake flask-GC/TC, measured range 0–50°C, Stephenson & Stuart 1986) 46070 (shake flask-GC, Li et al. 1992)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (60.9°C, static method, measured range 60.9–152.1°C, Kahlbaum 1898) 26.7* (38.8°C, ebulliometry, measured range 38.8–151.6°C, Gardner & Brewer 1937) 15.40* (extrapolated-regression of tabulated data, temp range 58–205.7°C, Stull 1947) log (P/mmHg) = 7.90550 – 2187.8/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 6287* (122.52°C, ebulliometry, measured range 122.52–205.41°C, Dreisbach & Shrader 1949) 19.59 (calculated by formula, Dreisbach 1955) log (P/mmHg) = 7.58200 – 1904.3/(200.0 + t/°C); temp range 112–330°C (Antoine eq. for liquid state, Dreisbach 1955) 12.0 (Hoy 1970) log (P/mmHg) = [–0.2185 × 14093.2/(T/K)] + 9.391874; temp range 58–204.7°C (Antoine eq., Weast 1972–73) 8.35*, 10.06 (20°C, 25°C, extrapolated-Antoine eq., gas-saturation method, Grayson & Fosbraey 1982) log (P/Pa) = 29.0 – 7958/(T/K); temp range 29.5–60.1°C (Antoine eq., gas saturation, Grayson & Fosbraey 1982) 4.750 (extrapolated-Cox eq., Chao et al. 1983)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2566 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (P/mmHg) = [1– 479.624/(T/K)] × 10^{1.02742 – 6.26739 × 10–4·(T/K) + 1.28791 × 10–7·(T/K)2}; temp range 340.95–463.65 K (Cox eq., Chao et al. 1983) 12.07, 9.69 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.34897 – 1650.313/(174.623 + t/°C); temp range 122.5–205.4°C (Antoine eq. from reported exptl. data of Dreisbach & Shrader 1949, Boublik et al. 1984) log (P/kPa) = 6.39383 – 1655.003/(171.85 + t/°C); temp range 38.8–151.6°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 11.72 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.19817 – 1632.593/(172.79 + t/°C); temp range 122–205°C (Antoine eq., Dean 1985, 1992) 15.0 (selected, Riddick et al. 1986) log (P/kPa) = 8.963 – 3214/(T/K); temp range not specified (Antoine eq., Riddick et al. 1986) 15.25 (interpolated-Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.7069 – 1904.3/(–73.15 + T/K); temp range 385–573 K (Antoine eq-I., Stephenson & Malanowski 1987)

log (PL/kPa) = 8.963 – 3214/(T/K); temp range 293–315 K (Antoine eq-II., Stephenson & Malanowski 1987) 7.395 (ebulliometry, fitted to Antoine eq., Ambrose & Ghiassee 1990) 12.0 (calculated-Wagner eq., Ambrose & Ghiassee 1990) log (P/mmHg) = –36.2189 – 3.3475 × 103/(T/K) + 23.337·log(T/K) – 4.46 × 10–2·(T/K) + 2.1443 × 10–5·(T/K)2; temp range 258–677 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C): 0.0231 (quoted estimated value of Hine & Mookerjee 1975, Howard 1993) 0.0396 (calculated-P/C, Howard 1993) < 0.0273 (wetted-wall column-GC, Altschuh et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 1.10 (shake flask-UV, Fujita et al. 1964; Hansch et al. 1968) 1.10 ± 0.02 (shake flask-UV, Iwasa et al. 1965) 1.10 (shake flask-UV, Hansch et al. 1968) 1.10 (shake flask-RC, Cornford 1982) 1.00 (shake flask-UV, Mayer et al. 1982) 1.16 ± 0.02 (exptl.-ALPM, Garst & Wilson 1984) 1.06 (HPLC-k’ correlation, Eadsforth 1986) 1.58 (calculated-activity coeff. γ from UNIFAC, Banerjee & Howard 1988) 1.05 (RP-HPLC-RT correlation, ODS column with masking agent, Bechalany et al. 1989) 1.05 (recommended, Sangster 1989, 1993) 1.22 (centrifugal partition chromatography CPC-RV, El Tayar et al. 1991) 0.96 (calculated-UNIFAC activity coefficients, Dallos et al. 1993) 1.10 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: Bioconcentration Factor, log BCF:

0.602 (calculated-KOW, Lyman et al. 1982; quoted, Howard 1993)

Sorption Partition Coefficient, log KOC: 1.193 (red-brown Australian soil with 1.09% organic carbon, Briggs 1981; quoted, Howard 1993)

0.790 (calculated-KOW, Kollig 1993)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: estimated t½ = 97 d for a model river of 1 m deep, flowing at 1 m/s with wind velocity of 3 m/s (Lyman et al. 1982; quoted, Howard 1993). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2567

–12 3 –1 –1 kOH = 22.9 × 10 cm molecule s at 298 K (Atkinson 1989) –12 3 –1 –1 kOH(calc) = 7.99 × 10 cm molecule s , estimated from Atmospheric Oxidation Program; kOH(exptl) = –12 3 –1 –1 –12 3 –1 –1 22.9 × 10 cm molecule s ; and kOH(calc) = 7.98 × 10 cm molecule s , estimated from Fate of Atmospheric Pollutants Program, (Meylan & Howard 1993) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) - 0.85 × 10 cm molecule s , kOH(exptl) = 22.9 × 10 cm molecule s at 298 K (SAR structure-activity relationship, Kwok & Atkinson 1995) Hydrolysis: Biodegradation: biodegradation rate constant k = 0.042–0.062 h–1 in 30 mg L–1 activated sludge after a lag time of 5–15 h (Urano & Kato 1986). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: the estimated t½ ~2 d for the vapor-phase reaction with photochemically produced hydroxyl radical in the atmosphere (Atkinson 1985; quoted, Howard 1993). Surface water: Groundwater: Sediment: Soil: Biota:

TABLE 11.1.1.18.1 Reported aqueous solubilities of benzyl alcohol at various temperatures

Stephenson & Stuart 1986

shake flask-GC/TC

t/°C S/g·m–3 0 48000 9.8 47000 20.1 43000 29.6 43000 40.2 45000 50.0 52000

Benzyl alcohol: solubility vs. 1/T -3.0 Stephenson & Stuart 1986 Banerjee 1985 Li et al. 1992 -3.5

-4.0

-4.5 ln x

-5.0

-5.5

-6.0 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 11.1.1.18.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for benzyl alcohol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2568 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 11.1.1.18.2 Reported vapor pressures of benzyl alcohol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Kahlbaum 1898 Gardner & Brewer 1937 Stull 1947 Grayson & Fosbraey 1982

static method ebulliometry summary of literature data gas saturation-GC/LC

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 60.9 133.3 38.8 26.7 58.0 133.3 29.5 18.29 67.8 266.6 42.5 80.0 80.8 666.6 30.2 22.77 72.9 400.0 46.8 106.7 92.6 1333 39.8 44.22 77.2 533.3 50.5 120.0 105.8 2666 40.1 46.11 80.8 666.6 85.2 906.6 119.8 5333 49.7 101.41 92.8 1333.2 97.2 1747 129.3 7999 60.1 221.10 99.9 1999.8 113.5 3880 141.7 13332 20 8.35 105.3 2666.4 128.8 7786 160.0 26664 109.7 3333.06 151.6 18918 183.0 53329 eq. 1a P/Pa 113.4 3999.7 204.7 101325 A 29.0 116.7 4666.3 bp/°C 206.9 B 7958 119.6 5332.9 mp/°C –15.3 122.2 5999.5 124.4 6666.1 133.9 9999.2 Dreisbach & Shrader 1949 141.3 13332 ebulliometry 152.1 19998 t/°C P/Pa 122.52 6287 127.12 7605 130.90 8851 134.28 10114 147.09 16500 190.50 67661 205.41 101325

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2569

Benzyl alcohol: vapor pressure vs. 1/T 7.0 experimental data Stull 1947 6.0

5.0

4.0 )aP / S 3.0 P(gol

2.0

1.0

0.0 b.p. = 205.31 °C m.p. = -15.4 °C -1.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 1/(T/K) FIGURE 11.1.1.18.2 Logarithm of vapor pressure versus reciprocal temperature for benzyl alcohol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2570 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals M /mol 3 cm at ρ 91.90 103.6 55.98 66.6 76.51 81.4 94.88 103.6 67.92 74.0 74.79 81.4 58.36 59.2 40.49 37.0 91.56 103.6 90.78 106.9 92.47 103.6 20°C Le Bas Molar volume, V Molar volume, MW/ 1 1 1 1 190.77 236.8 1 1 1 1 103.85 125.6 1 1 108.23 125.8 1 1 1 124.79 148.0 1 11 141.38 157.85 170.2 1 192.4 104.07 125.6 1 108.91 125.8 25°C Fugacity ratio, F at ratio, °C 82.3 99.51 1 97 b.p. 119.3 213.37 1 174.37 214.6 °C 6.9 231.1 m.p. g/mol 62.068 –12.69 197.3 Molecular Molecular weight, MW 2 OH 158.281 OH 74.121 –88.5 OHOHOHOH 88.148OH 88.148OH 102.174 116.201 –77.6 130.228 –73 144.254 –47.4 –33.2OH 137.98 –14.8 –5 157.6 176.45 100.158 195.16 25.93 160.84 OHOH 60.095OH 74.121 –87.9 74.121 –101.9 25.69 107.89 82.4 OHOHOH 46.068 60.095 –114.14 74.121 –124.39 –88.6 78.29 97.2 117.73 OHOHOH 58.079 86.132 108.138 –129 –17.5 –15.4 140.42 205.31 9 OH 32.042 –97.53 64.6 7 9 9 5 7 9 21 OH) 5 9 7 3 11 11 13 15 17 19 11 2 H H H H H H H H H H H 4 H H H H H H H 3 4 4 2 3 4 3 5 7 5 5 6 7 8 9 6 10 C C C C formula t i i s Molecular 75-65-0 71-41-0 C 96-41-3 C 67-63-0 67-56-1 CH 71-36-3 C 78-83-1 64-17-5 C 78-92-2 71-23-8 C CAS no. CAS 107-18-6 C 111-70-6 C 112-30-1 C 108-93-0 C 143-08-8 C 111-87-5 C 107-21-1 (CH 100-51-6 C 111-27-3 C 6032-29-7 C -Propyl alcohol) -Propyl -Butyl alcohol) -Butyl -Amyl alcohol) n -Amyl i -Propyl alcohol) -Propyl -Butyl alcohol) n -Butyl -Octyl alcohol) n -Octyl n Butyl alcohol -Butyl alcohol -Butyl Ethanol Allyl alcohol tert- TABLE 11.2.1 TABLE of alcohols properties of physical Summary Compound Methanol sec Isobutanol ( Isobutanol Cyclohexanol Ethylene glycol Ethylene 1-Butanol ( 1-Butanol ( 1-Pentanol Cyclopentanol Propanol ( 1-Hexanol 1-Decanol Isopropanol ( i 1-Heptanol 2-Pentanol ( 1-Octanol 1-Nonanol Benzyl alcohol © 2006 by Taylor & Francis Group, LLC 11.2 PLOTS AND QSPR TABLES SUMMARY

© 2006 by Taylor & Francis Group, LLC © 2006 byTaylor& FrancisGroup, LLC

TABLE 11.2.2 Summary of selected physical-chemical properties of alcohols at 25°C

Henry’s law constant Selected properties H/(Pa·m3/mol)

Compound Solubility Vapor pressure log KOW 3 3 S/(g/m )CL/(mol/m )PL/Pa calcd P/C exptl (a) exptl (b) exptl (c) Methanol miscible miscible 16210 –0.77 0.45 0.45 Ethanol miscible miscible 7800 –0.31 0.53 0.527 Propanol miscible miscible 2780 0.25 0.751 Isopropanol miscible miscible 5700 0.05 0.80 1-Butanol 74000 998.4 900 0.82 0.9014 0.80 0.892 0.80 Isobutanol 81000 1093 1500 0.76 1.3726 0.99 0.99 sec-Butyl alcohol 181000 2442 2300 0.61 0.9419 0.80 0.918 tert-Butyl alcohol miscible miscible 5500 0.35 1.46 1.46 1-Pentanol 22000 249.6 300 1.50 1.202 1.314 2-Pentanol 45000 510.5 777 1.14 1.522 1-Hexanol 6000 58.72 110 2.03 1.873 1.562 1.735 1-Heptanol 1740 14.97 24 2.62 1.603 1.909 1-Octanol 540 4.146 11 3.07 2.653 2.454 2.48 1-Nonanol 130 0.9012 4.26 1-Decanol 37 0.2338 4.57 Ethylene glycol miscible miscible 12 –1.36 0.006 Allyl alcohol miscible miscible 3750 0.17 Cyclopentanol 292 Cyclohexanol 38000 379.4 85 1.23 0.224 Benzyl alcohol 80 0.7398 12 1.10 16.22

(a) Butler et al. 1935 (b) Buttery et al. 1969 (c) Snider & Dawson 1985

© 2006 by Taylor & Francis Group, LLC 2572 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 11.2.3 Suggested half-life classes of alcohols in various environmental compartments at 25°C

Air Water Soil Sediment Compound class class class class Methanol 4334 Ethanol 3334 Propanol (n-Propyl alcohol)3334 Isopropanol (i-Propyl alcohol) 3334 1-Butanol (n-Butyl alcohol) 3334 Isobutanol (i-Butyl alcohol) 3334 tert-Butyl alcohol 4445 1-Pentanol (n-Amyl alcohol) 3334 1-Hexanol 3334 1-Octanol (n-Octyl alcohol)3334 Ethylene glycol3334 Allyl alcohol 3334 Cyclohexanol 3334 Benzyl alcohol3334

where,

Class Mean half-life (hours) Range (hours) 15< 10 2 17 (~ 1 day) 10–30 3 55 (~ 2 days) 30–100 4 170 (~ 1 week) 100–300 5 550 (~ 3 weeks) 300–1,000 6 1700 (~ 2 months) 1,000–3,000 7 5500 (~ 8 months) 3,000–10,000 8 17000 (~ 2 years) 10,000–30,000 9 ~ 5 years > 30,000

solubility vs. Le Bas molar volume 4

3 ) 3

mc/lom(/ 2 L

C gol C 1

0

-1 30 50 70 90 110 130 150 170 190 210 230 250 3 Le Bas molar volume, VM/(cm /mol) FIGURE 11.2.1 Molar solubility (liquid or supercooled liquid) versus Le Bas molar volume for alcohols.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2573

vapor pressure vs. Le Bas molar volume 5

4

3 aP / L P gol P

2

1

0 30 50 70 90 110 130 150 170 190 210 230 250 3 Le Bas molar volume, VM/(cm /mol) FIGURE 11.2.2 Vapor pressure (liquid or supercooled liquid) versus Le Bas molar volume for alcohols.

log K vs. Le Bas molar volume 5 OW

4

3 WO

K gol K 2

1

0

-1 30 50 70 90 110 130 150 170 190 210 230 250 3 Le Bas molar volume, VM/(cm /mol)

FIGURE 11.2.3 Octanol-water partition coefficient versus Le Bas molar volume for alcohols.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2574 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Henry's law constant vs. Le Bas molar volume 1 )lom/ 3 m.aP(/H gol m.aP(/H 0

-1 30 50 70 90 110 130 150 170 190 210 230 250 3 Le Bas molar volume, VM/(cm /mol)

FIGURE 11.2.4 Henry’s law constant versus Le Bas molar volume for alcohols.

log K vs. solubility 5 OW

4

3 WO

K gol K 2

1

0

-1 -1 0 1 2 3 4 3 log CL/(mol/cm )

FIGURE 11.2.5 Octanol-water partition coefficient versus molar solubility (liquid or supercooled liquid) for alcohols.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2575

11.3 REFERENCES Abraham, M.H., Grellier, P.L., McGill, R.A. (1987) Determination of olive oil-gas and hexadecane-gas partition coefficients, and calculation of the corresponding olive oil-water and hexadecane-water partition coefficients. J. Chem.Soc. Perkin Trans. 2, 797–803. Abraham, M.H., Le, J., Acree, Jr., W.E., Carr, P.W. (1999) Solubility of gases and vapours in propan-1-ol at 298 K. J. Phys. Org. Chem. 12, 675–680. Abraham, M.H., Le J., Acree, Jr., W.E., Carr, P.W., Dallas, A.J. (2001) The solubility of gases and vapours in dry octan-1-ol at 298 K. Chemosphere 44, 855–863. Addison, C.C. (1943) The properties of freshly formed surfaces. Part I. The application of the vibrating-jet technique to surface-tension measurements of mobile liquids. J. Chem. Soc. 535–541. Addison, C.C. (1945) The properties of freshly formed surfaces. Part IV. The influence of chain-length and structure on the static and dynamic surface tensions of aqueous alcohol solutions. J. Chem. Soc. 98–106. Addison, C.C., Hutchinson, S.K. (1949) The properties of freshly formed surfaces. Part XI. Factors influencing surface activity and adsorption rates in aqueous decyl alcohol solutions. J. Chem. Soc. 3387–3395. Altschuh, J., Brüggemann, Santl, H., Eichinger, G., Piringer, O.G.(1999) Henry’s law constants for a diverse set of organic chemicals: Experimental determination and comparison of estimation methods. Chemosphere 39, 1871–1887. Ambrose, D., Ellender, J.H., Ellender, Sprake, C.H.S. (1974) Thermodynamic properties of organic oxygen compounds. XXXV. Vapour pressures of aliphatic alcohols. J. Chem. Thermodyn. 6, 909–914. Ambrose, D., Ghiassee, N.B. (1990) Vapour pressures, critical temperatures, and critical pressures of benzyl alcohol, octan-2-ol, and 2-ethylhexan-1-ol. J. Chem. Thermodyn. 22, 307–311. Ambrose, D., Hall, D.J. (1981) Thermodynamic properties of organic oxygen compounds. L. The vapour pressures of 1,2-ethanediol (ethylene glycol) and bis(2-hydroxyethyl) ether (diethylene glycol). J. Chem. Thermodyn. 13, 61–66. Ambrose, D., Sprake, C.H.S. (1970) Thermodynamic properties of organic oxygen compounds. XXV. Vapour pressures and normal boiling temperatures of aliphatic alcohols. J. Chem. Thermodyn. 2, 631–645. Anbar, M., Neta, P. (1967) A compilation of specific bimolecular rate hydroxyl radical with inorganic and organic compounds in aqueous solution. Int. J. Appl. Radiation Isotopes 18, 493–523. Aoki, Y., Moriyoshi, T. (1978) Mutual solubility of n-butanol + water under high pressures. J. Chem. Thermodyn. 10. 1173–1179. Atkinson, R. (1985) Kinetics and mechanisms of the gas-phase reactions of hydroxyl radical with organic compounds under atmospheric conditions. Chem. Rev. 85, 69–201. Atkinson, R. (1987) Structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds. Int’l. J. Chem. Kinetics 19, 799–828. Atkinson, R. (1987) Estimation of OH radical rate constants and atmospheric lifetimes for polychlorobiphenyls, dibenzo-p-dioxins. Environ. Sci. Technol. 21, 305–307. Atkinson, R. (1989) Kinetics and Mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J. Phys. Chem. Data Monograph No.1. Atkinson, R. (1990) Gas-phase tropospheric chemistry of organic chemistry: A review. Atmos. Environ. 24A(1), 1–41.

Atkinson, R. (1991) Kinetics and mechanisms of the gas-phase reactions of the NO3 radical with organic compounds. J. Phys. Chem. Ref. Data 20, 459–507.

Atkinson, R. (2000) Atmospheric chemistry of VOCs and Nox. Atmos. Environ. 34, 2063–2101. Ayuttaya, P.C.N., Rogers, T.N., Mullins, M.E., Kline, A.A. (2001) Henry’s law constants derived from equilibrium static cell measurements for dilute organic-water mixtures. Fluid Phase Equil. 185, 359–377. Banerjee, S. (1985) Calculation of water solubility of organic compounds with UNIFAC-derived parameters. Environ. Sci. Technol. 19, 369–370. Banerjee, S., Howard, P.H. (1988) Improved estimation of solubility and partitioning through correction of UNIFAC-derived activity coefficients. Environ. Sci. Technol. 22, 839–841. Banerjee, S., Howard, P.H., Lande, S.S. (1990) General structure-vapor pressure relationships for organics. Chemosphere 21, 1173–1180. Barton, A.F.M. (1984) Alcohols with water. In: IUPAC Solubility Data Series Vol. 15. Pergamon Press, New York. p. 438. Bartelt, R.J. (1997) Calibration of a commercial solid-phase microextraction device for measuring headspace concentration of organic volatiles. Anal. Chem. 69, 364–272. Bechalany, A., Röthlisberger, T., El Tayar, N., Testa, B. (1989) Comparison of various non-polar stationary phases used for assessing lipophilicity. J. Chromatog. 473, 115–124.

Becke, H., Quitzch, G. (1977) The phase equilibrium behavior of ternary systems of the C4-alcohol-hydrocarbon type. Chem. Tech. (Leipzig) 29, 49–51. Biddiscombe, D.P., Coulson, E.A., Handley, R., Harrington, E.F.G. (1954) The preparation on physical properties of pure pyridine and some methyl homologues. J. Chem. Soc. 1957–1967. Bodor, N., Gabanyi, Z., Wong, C.K. (1989) A new method for the estimation of partition coefficient. J. Am. Chem. Soc. 111, 3783–3786. Booth, H.S., Everson, H.E. (1948) Hydrotropic solubilities. Solubilities in 40 per cent sodium xylenesulfonate. Ind. Eng. Chem. 40(8), 1491–1493. Boublik, T., Fried, V., Hala, E. (1984) The Vapour Pressures of Pure Substances, 2nd ed., Elsevier, Amsterdam, The Netherlands.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2576 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Bozdag, D., Lamb., J.B. (1983) Dependence of the mutual solubilities of (2-butanol + Water) upon pressure and temperatures. J. Chem. Thermodyn. 15, 165–171. Bridie, A.L., Wolff, C.J.M., Winter, M. (1979) BOD and COD of some petrochemicals. Water Res. 13, 627–630. Brown, I., Smith, F. (1959) Austr. J. Chem. 12, 407—reference in Boublik et al. 1984. Brown, I., Fock, H., Smith, F. (1969) Thermodynamic properties of solutions normal and branched alcohols in benzene and n-hexane. J. Chem. Thermodyn. 1, 275 (1969). Burnett, M.G. (1963) Determination of partition coefficients at infinite dilution by the gas chromatographic analysis of the vapor above dilute solutions. Anal. Chem. 35, 1567–1570. Burnett, M.G., Swoboda, P.A.T. (1962) A simple method for the calibration of sensitive gas chromatographic detectors. Anal. Chem. 34, 1162–1163. Butler, J.A.V., Ramchandani, C.N., Thomson, D.W. (1935) The solubility of nonelectrolytes. Part I. The free energy of hydration of some aliphatic alcohols. J. Chem. Soc. 280–285. Butler, J.A.V., Thomson, D.W., Maclennan, W.H. (1933) The free energy of the normal aliphatic alcohols in aqueous solution. The partial vapour pressures of aqueous solutions of methyl, n-propyl, and n-butyl alcohols. Part II. The solubilities of some normal aliphatic alcohols in water. Part III. The theory of binary solutions, and its application in aqueous-alcoholic solutions. J. Chem. Soc. Part 1, 674–686. Buttery, R.G., Ling, L.C., Guadagni, D.G. (1969) Food volatiles. Volatilities of aldehydes, ketones, and esters in dilute water solution. J. Agric. Food Chem. 17(2), 385–389. Campbell, I.M., McLaughlin, D.F., Handy, B.J. (1976) Rate constants for reactions of hydroxyl radicals with alcohol vapours at 292 K. Chem. Phys. Lett. 38, 362–364. Capel, P.D., Larson, S.J. (1995) A chemodynamic approach for estimating losses of target organic chemicals form water during sample holding time. Chemosphere 30, 1097–1107. Carlier, P., Hannachi, H., Mouvier, G. (1986) The chemistry of carbonyl compounds in the atmosphere-A review. Atmos. Environ. 20(11), 2079–2099. Chao, J., Lin, C.T., Chung, T.H. (1983) Vapor pressure of coal chemicals. J. Phys. Chem. Ref. Data 12(4), 1034–1063. Cheng, W.-H., Chu, F.-S., Liou, J.-J. (2003) Air-water interface equilibrium partitioning coefficients of aromatic hydrocarbons. Atmos. Environ. 17, 4807–4815. Chou, W.L., Speece, R.E., Siddiqi, R.H. (1979) Acclimation and degradation of petrochemical wastewater components by methane fermentation. Biotechnol. Bioeng. Symp. 8, 391–414. Collander, R. (1951) Partition of organic compounds between higher alcohols and water. Acta. Chem. Scand. 5, 774–780. Cornford, E.M. (1982) Correlation between liquid partition coefficients and surface permeation in schistosoma japonicum. J. Membr. Biol. 64, 217. Crittenden, Jr. E.D., Hixon, A.W. (1954) Extraction of hydrogen chloride from aqueous solutions. Ind. Eng. Chem. 46, 265–168. Dallos, A., Wienke, G., Ilchman, A., Gmehlong, J. (1993) Vorausberechnung von octanol/wasser-verteilungskoeffizienten mit hilfe der UNIFAC-method. Chem.-Ing.-Tech. 65(2), 201–203. D’Amboise, M., Hanai, T. (1982) Hydrophobicity and retention in reverse phase liquid chromatography. J. Chromatogr. 5, 229–244. Darnall, K.R., Lloyd, A.C., Winer, A.M., Pitts Jr., J.N. (1976) Reactivity scale for the atmospheric hydrocarbons based on reaction with hydroxyl radical. Environ. Sci. Technol. 10, 692–696. Daubert, T.E., Danner, R.P. (1985) Data Compilation Tables of Properties of Pure Compounds. Am. Institute of Chemical Engineers. p.450. Daubert, T.E., Danner, R.P. (1989) Physical & Thermodynamic Properties of Pure Compounds. Am. Institute of Chemical Engineers. Dean, J. (1985) Lange’s Handbook of Chemistry. 13th ed., McGraw-Hill, New York. Dean, J.D., Ed. (1992) Lange’s Handbook of Chemistry. 14th ed. McGraw-Hill, New York. DeBord, A.M., Bhethanabotla, V.R., Campbell, S.W. (2002) Total vapor pressure measurements for 2-ethoxyethanol with methanol ethanol, 1-propanol, and 2-propnanol at 313.15 K. J. Chem. Eng. Data 47, 1355–1358. De Santis, R., Marrelli, L., Muscetta, P.N. (1976) Liquid-liquid equilibria in water-aliphatic alcohol systems in the presence of sodium chloride. Chem. Eng. J. 11, 207–214. Dilling, W.L., Bredweg, C.J., Terfertiller, N.B. (1976) Organic photochemistry. Simulated atmospheric rates of methylene chloride, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and other compounds. Environ. Sci. Technol. 10, 351–356. Dillingham, E.O., Mast, R.W., Bass, G.E., Autian, J. (1973) Toxicity of methyl- and halogen-substituted alcohols in tissue culture relative to structure-activity models and acute toxicity in mice. J. Pharm. Sci. 62, 22. Donahue, D.J., Bartell, F.E. (1952) The boundary tension at water-organic liquid interfaces. J. Phys. Chem. 56, 480–484. Dorfman, L.M., Adams, G.E. (1973) Reactivity of the Hydroxyl Radical in Aqueous Solution. NSRD-NDB-46. NTIS COM-73–50623. National Bureau of Standards, Washington D.C. 51 pp. Dreisbach, R.R. (1955) Physical Properties of Chemical Compounds. Adv. Chem. Ser. 15, Am. Chem. Soc., Washington, D.C. Dreisbach, R.R., Martin, R.A. (1949) Physical data on some organic compounds. Ind. Eng. Chem. 41, 2875–2878. Dreisbach, R.R., Shrader, A.A.I. (1949) Vapor pressure-temperature data on some organic compounds. Ind. Eng. Chem. 41, 2879–2880. Eadsforth, C.V. (1986) Application of reverse-phase HPLC for the determination of partition coefficients. Pest. Sci. 17(3), 311–325. Edney, E.O., Corse, E.W. (1986) Validation of OH Radical Reaction Rate Constant Test Protocol. NTIS PB86–166 758/as. U.S. Environmental Protection Agency, Washington, D.C.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2577

El Tayar, N., Tsai, R.-S., Vallat, P., Altomare, C., Testa, B. (1991) Measurement of partition coefficients by various centrifugal partition chromatographic techniques. J. Chromatogr. 556, 181–194. Etzweiler, F., Senn, E., Schmidt, H.W.H. (1995) Method for measuring aqueous solubilities of organic compounds. Anal. Chem. 67, 655–658. Evans, T.W. (1936) The Hill method of solubility determination. Ind. Eng. Chem. Anal. Ed. 8, 206–208. Evans, B.K., James, K.C., Luscombe, D.K. (1978) Quantitative structure-activity relationships and carminative activity. J. Pharm. Sci. 67, 277–278. Evans, W.H., David, E.J. (1974) Biodegradation of mono-, di- and triethylene glycols in river water under controlled laboratory conditions. Water Res. 8, 97–100. Foote, C.S. (1976) Free Radicals in Biology. Pryor, W.A., Editor, Academic Press, New York. Freitag, D., Ballhorn, L., Geyer, H., Körte, F. (1985) Environmental hazard profile of organic chemicals. An experimental method for the assessment of the behaviour of chemicals in the ecosphere by simple laboratory tests with C-14 labelled chemicals. Chemosphere 14, 1589–1616. Fühner, H. (1924) Water solubilities in homologous series. Ber. Dtsch. Chem. Gse. 57, 510–515. Fujita, T., Iwasa, J., Hansch, C. (1964) A new substituent constant derived from partition coefficients. J. Am. Chem. Soc. 86, 5175–5180. Fujiwara, H., Da, Y.-Z., Ito, K., Takagi, T., Mishioka, Y. (1991) The energy aspect of oil/water partition and its application to the analysis of quantitative structure-activity relationship. Aliphatic alcohols in the liposome/water partition system. Bull. Chem. Soc. Jpn. 64, 3707–3712. Funasaki, N., Hada, S., Neya, S. (1986) Prediction of retention times in reversed-phase high-performance liquid chromatography from the chemical structure. J. Chromatogr. 361, 33–45. Gallaugher, A.F., Hibbert, H.J. (1937) Reactions relating to carbohydrates and polysaccharides. LIV. The surface-tension constants of the polyethylene glycols and their derivatives. LV. Vapor pressures of the polyethylene glycols and their derivatives. J. Am. Chem. Soc. 59, 2521–2514. Garden, G.S, Brewer, J.E. (1937) Vapor pressure of commercial high-boiling organic solvents. Ind. Eng. Chem. 29, 179–181. Garriga, R., Sánchez, F., Pérez, P., Gracia, M. (1996) Excess gibbs free energies at several temperatures of butanone with 1-hexanol or 1-octanol. J. Chem. Eng. Data 41, 1091–1096. Garriga, R., Martinez, S., Pérez, P., Gracia, M. (2002) Vapor pressures at several temperature between 278.15 K and 323.15 K and excess functions at T = 298.15 K for 1-bromobutane with 1-butanol or 2-methyl-2-propanol. J. Chem. Eng. Data 47, 322–328. Garriga, R., Martinez, S., Pérez, P., Gracia, M. (2002) Vapor liquid equilibrium between (278.15 and 323.15) K and excess functions at T = 298.15 K for 1-bromobutane with 1-octanol or 1-decanol. J. Chem. Eng. Data 49, 224–230. Garst, J.E., Wilson, W.C. (1984) Accurate, wide range, automated, high performance liquid chromatographic method for the estimation of octanol/water partition coefficients. II: Effects of chromatographic method and procedure variables on accuracy and repro- ducibility of the method. J. Pharm. Sci. 73(11), 1616–1623. Geiseler, G., Suhnel, K., Quitzsch, K. (1973) Exzeßeigenschaften der binären Mischsysteme aus den isomerem Butanolen. Z. Phys. Chem. 254, 261–270. Gellman, I., Heukelekian, H. (1955) Studies of biochemical oxidation by direct methods. V. Effects of various seed materials in rates of oxidation of industrial wastes and organic compounds. Sew. Indust. Wastes 27, 793–801. GEMS (1986) Graphic Exposure Modeling System. FAP, Fate of Atmospheric Pollutants. Gerstl, Z., Helling, C.S. (1987) Evaluation of molecular connectivity as a predictive method for the adsorption of pesticides in soil. J. Environ. Sci. Health B22(1), 55–69. Geyer, H., Politzki, G., Freitag, D. (1984) Prediction of ecotoxicological behaviour of chemicals: Relationship between n-octanol/water partition coefficient and bioaccumulation of organic chemicals by alga chlorella. Chemosphere 13(2), 269–284. Gibbard, H.F., Creek, J.L. (1974) Vapor Pressure of methanol from 288.15 to 337.65 K. J. Chem. Thermodyn. 19, 308–310. Ginnings, P.M., Baum, R. (1937) Aqueous solubilities of the isomeric pentanols. J. Am. Chem. Soc. 59, 1111–1113. Gmehling, J., Onken, U., Weidlich, U. (1982) Vapour-Liquid Equilibrium Data Collection, Vol. I. Part 2s, 227. Gracia, M., Sanche, F., Prerez, P., Valero, J., Cuterrez Losa, C. (1992) Vapour pressures of (butan-1-ol + hexane) at temperatures between 283.10 K and 323.12 K. J. Chem. Thermodyn. 24, 463–471. Grayson, B.T., Fosbraey, L.A. (1982) Determination of vapour pressure of pesticides. Pestic. Sci. 13, 269–278. Gruber, D., Langenheim, D., Gmehling, J. (1997) Measurement of activity coefficients at infinite dilution using gas-liquid chroma- tography. 6. Results for systems exhibiting gas-liquid interface adsorption with 1-octanol. J. Chem. Eng. Data 42, 882–885. Gückel, W., Kästel, R., Lewerenz, J., Synnatschke, G. (1982) A method for determining the volatility of active ingredients used in plant protection. Part III: The temperature relationship between vapour pressure and evaporation rate. Pestic. Sci. 13, 161–168. Gückel, W., Synnatschke, G., Rittig, R. (1973) A method for determining the volatility of active ingredients used in plant protection. Pestic. Sci. 4, 137–147. Gupta, A.K., Teja, A.S., Chai, X.S., Zhu, J.Y. (2000) Henry’s constants of n-alkanols (methanol through n-hexanol) in water at temperatures between 40°C to 90°C. Fluid Phase Equil. 170, 183–192. Hales, J.L., Cogman, R.C., Frith, W.J. (1981) A transpiration-g.l.c. apparatus for measurement of low vapour concentration. J. Chem. Thermodyn. 13, 591–601. Hammerton, C. (1955) Observations of the decay of synthetic anionic detergents in natural water. J. Appl. Chem. 5, 517–524.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2578 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Hanai, T., Tran, C., Hubert, J. (1981) An approach to the prediction of retention times in liquid chromatography. J. HRC & CC 4, 454–460. Hansch, C., Anderson, S. (1967) The effect of intermolecular hydrophobic bonding on partition coefficients. J. Org. Chem. 32, 2583. Hansch, C., Dunn, III, W.J. (1972) Linear relationships between lipophilic character and biological activity of drugs. J. Pharm. Sci. 61(1), 1–19. Hansch, C., Leo, A. (1979) Substituent Constants for Correlation Analysis in Chemistry and Biology. John-Wiley & Sons, New York. Hansch, C., Leo, A. (1985) Medchem. Project, Pomona College, Claremont, California. Hansch, C., Leo, A., Hoekman, D. (1995) Exploring QSAR, Hydrophobic, Electronic, and Steric Constants. ACS Professional Reference Book, American Chemical Society, Washington, DC. Hansch, C., Quinlan, J.E., Lawrence, G.L. (1968) The linear free-energy relationship between partition coefficients and aqueous solubility of organic liquids. J. Org. Chem. 33, 347–350. Hansen, R.S., Fu, Y., Bartell, F.E. (1949) Multimolecular adsorption from binary liquid solutions. J. Phys. Colloid Chem. 53, 769–785. Harkins, W.D., Oppenheimer, H. (1949) Solubilization of polar-nonpolar substances in solutions of long chain electrolytes. J. Am. Chem. Soc. 71, 808–811. Hendry, D.G., Kenley, R.A. (1979) Atmospheric Reaction Products of Organic Compounds. EPA Final Report, EPA560/12–79–001. Hendry, D.G., Mill, T., Piszkiewicz, L., Howard, J.A., Eigenmann, H.K. (1974) Critical review of hydrogen-atom transfer in the liquid phase. Chlorine atom, alkyltrichloromethyl, alkoxy, and alkyl peroxy radicals. J. Phys. Chem. Ref. Data 3, 937–978. Heukelekian, H., Rand, M.C. (1955) Biochemical oxygen demand of pure organic compounds. J. Water Pollut. Control Assoc. 29, 1040–1053. Hill, A.E., Malisoff, W.M. (1926) The mutual solubility of liquids. III. The mutual solubility of phenol and water. IV. The mutual solubility of normal butyl alcohol and water. J. Am. Chem. Soc. 48, 918–927. Hill, D.J.T., White, L. R. (1974) Enthalpies of solution of 1-hexanol and 1-heptanol in water. Aust. J. Chem. 27, 1905–1916. Hine, J., Mookerjee, P.K. (1975) The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contri- butions. J. Org. Chem. 40, 292–298. Hoigné, J., Bader, H. (1983) Rate constants of reactions of ozone with organic and inorganic compounds in water - I. Non-dissociating organic compounds. Water Res. 17, 173–183. Hon, H.C., Singh, R.P., Kuochadker, A.P. (1976) Vapor pressure-boiling point measurements of five organic substances by twin ebulliometry. J. Chem. Eng. Data 21, 430–431. Hou, C.T., Patel, R., Laskin, A.I., Barnabe, N., Barist, I. (1983) Production of methyl ketones from secondary alcohols by cell suspensions

of C2 to C4 n-alkane-grown bacteria. Appl. Environ. Microbiol. 46, 178–184. Howard, J.A. (1972) Absolute rate constants for reactions of oxy radicals. Adv. Free Radical Chem. 4, 49–173. Howard, P.H., Ed. (1990) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. II, Solvents. Lewis Publishers, Chelsea, Michigan. Howard, P.H., Ed. (1993) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. IV, Solvents 2. Lewis Publishers, Chelsea, Michigan. Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., Michalenko, E.M., Editors (1991) Handbook of Environmental Degra- dation Rates. Lewis Publishers Inc., Chelsea, Michigan. Hoy, K.L. (1970) New values of solubility parameters from vapor pressure data. J. Paint Technol. 42, 76–118. Iwasa, J., Fujita, T., Hansch, C. (1965) Substituent constants for aliphatic functions obtained from partition coefficients. J. Med. Chem. 8, 150–153. Iwase, K., Komatsu, K., Hirono, S., Nakagawa, S., Moriguchi, I. (1985) Estimation of hydrophobicity based on the solvent accessible surface area of molecules. Chem. Pharm. Bull. 33(5), 2114–2121. Jones, D.C. (1929) The systems n-butyl alcohol-water and n-butyl alcohol-acetone-water. J. Chem. Soc. (London) 799–816. Jordan, T.E. (1970) Vapor Pressure of Organic Compounds. Interscience, New York. Kahlbaum, G.W.A. (1883) Ber. 16, 2476—reference in Boublik et al. 1984. Kahlbaum, G.W.A. (1898) Studien über dampfspannkraftmessungen. II. Z. Phys. Chem. 26, 577–658. Kamlet, M.J., Doherty, R.M., Abboud, J.L.M., Abraham, M.H., Taft, R.W. (1986) Linear solvation energy relationships. 36. Molecular properties governing solubilities of organic nonelectrolytes in water. J. Pharm. Sci. 75, 338–349. Kelly, T.J., Mukund, R., Spicer, C.W., Pollack, A.J. (1994) Concentration and transformations of hazardous air pollutants. Environ. Sci. Technol. 28, 378A–387A. Kemme, H.R., Kreps, S.I. (1969) Vapor pressure of primary n-alkyl chlorides and alcohols. J. Chem. Eng. Data 14(1), 98–102. Kenaga, E.E., Goring, C.A.I. (1980) Relationship between water solubility, soil sorption, octanol-water partitioning and concentration of chemicals in biota. In: Aquatic Toxicology ASTM STP 707, Eaton, J.G., Parrish, P.R., Hendricks, A.C., Editors, Am. Soc. for Testing and Materials, Philadelphia, Pa. pp.78–115. Kinoshita, K., Ishikawa, H., Shinoda, K. (1958) Solubility of alcohols in water determined by the surface tension measurements. Bull. Chem. Soc. Japan 31, 1081–1082. Klamt, A. (1996) Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds based on molecular orbital calculations. Chemosphere 32, 716–726. Kolb, B., Welter, C., Bichler, C. (1992) Determination of partition coefficients by automatic equilibrium headspace gas chromatography by vapor phase calibration. Chromatographia 34, 235–240.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2579

Kollig, H.P., Ed. (1993) Environmental Fate Constants for Organic Chemicals Under Consideration for EPA’s Hazardous Waste Identification Projects. EPA Report EPA/600/R-93/132, Environmental Research Lab., Athens, GA.

Könemann, H., Zelle, R., Busser, F., Hammers, W.E. (1979) Determination of log POCT values of chloro-substituted benzenes, toluenes and anilines by high-performance liquid chromatography on ODS-silica. J. Chromatogr. 178, 559–565. Korenman, I.M., Gorokhov, A.A., Polozenkom G.N. (1974) Salting out in a two-phase systems of higher alcohols-alkali metal chlorides- water. Zh. Fiz. Khim. 7, 1810–1812. Korenman, I.M., Gorokhov, A.A., Polozenkom G.N. (1975) Salting out in a two-phase system. II. Higher alcohols-potassium halides water. Russ. J. Phys. Chem. 49, 1490–1493. Kretschmer, C.B., Nowakowska, J., Wiebe, R. (1948) Densities and liquid-vapor equilibria of the system ethanol-isooctane (2,2,4- trimethylpentane) between 0 and 50°. J. Am. Chem. Soc. 70, 1785–1790. Kretschmer, C.B., Wiebe, R. (1949) Liquid-vapor equilibrium of ethanol-toluene solutions. J. Am. Chem. Soc. 71, 1793–1797. Kwok, E.S.C., Atkinson R. (1995) Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure-reactivity relationship: An update. Atmos. Environ. 29, 1685–1695. Laddha, G.S., Smith, J.M. (1948) The systems: Glycol-n-amyl alcohol-water and glycol-n-hexyl alcohol-water. Ing. Eng. Chem. 40, 494–496. Lande, S.S., Banerjee, S. (1981) Predicting aqueous solubility of organic nonelectrolytes from molar volume. Chemosphere 10(7), 751–759. Lavrova, O.A., Lesteva, T.M. (1976) Zh. Fiz. Khim. 50, 1617; Dep. Doc. VINITI 3818–3875. Leahy, D.E. (1986) Intrinsic molecular volume as a measure of the cavity term in linear solvation energy relationships: octanol-water partition coefficients and aqueous solubilities. J. Pharm. Sci. 75(7), 629–636. Lee, B.I., Erbar, J.H., Edmister, W.C. (1972) Thermodynamic properties at low temperatures. Chem. Eng. Prog. 68(9), 83–84. Leo, A., Hansch, C., Church, C. (1969) Comparison of parameters currently used in the study of structure-activity relationships. J. Med. Chem. 12, 766–771. Leo, A., Hansch, C., Elkins, D. (1971) Partition coefficients and their uses. Chem. Rev. 71, 525–616. Leo, A., Jow, P.Y.C., Silipo, C., Hansch, C. (1975) Calculation of hydrophobic constant (Log P) from π and f constants. J. Med. Chem. 18(9), 865–868. Letinski, D.J., Connelly, Jr., M.J., Peterson, D.R., Parkerton, T.F. (2002) Slow-stir water solubility measurements of selected alcohols and diesters. Chemosphere 48, 257–265. Li, A., Andren, A.W. (1994) Solubility of polychlorinated biphenyls in water/alcohol mixtures. 1. Experimental Data. Environ. Sci. Technol. 28, 47–52. Li, J., Carr, P.W. (1993) Measurement of water-hexadecane partition coefficients by headspace gas chromatography and calculation of limiting activity coefficients in water. Anal Chem. 65, 1443–1450. Li, A., Doucette, W.J., Andren, A.W. (1992) Solubility of polychlorinated biphenyls in binary water/organic solvent systems. Chemo- sphere 24, 1347–1360. Lide, D.R., Editor (2003) Handbook of Chemistry and Physics. 84th CRC Press, Boca Raton, Florida Lubomska, M., Malanowski, S.K. (2004) Vapor-liquid equilibrium for benzene + 2-methylpentane and allyl alcohol + 1-propanol. J. Chem. Eng. Data 49, 1488–1493. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H. (1982) Handbook on Chemical Property Estimation Methods. Environmental Behaviour of Organic Compounds. McGraw-Hill, New York. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H. (1990) Handbook on Chemical Property Estimation Methods. pp. 4–9, 5–4, 5–10, 7–14, 15–16 to 15–29., American Chemical Society, Washington DC. Mackay, D. (1982) Correlation of bioconcentration factors. Environ. Sci. Technol. 16, 274–278. Mackay, D., Bobra, A., Chan, D.W., Shiu, W.Y. (1982) Vapor pressure correlations for low-volatility environmental chemicals. Environ. Sci. Technol. 16, 645–649. Mackay, D., Shiu, W.Y., Ma, K.C. (1992a) Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Vol. 1, Monoaromatic Hydrocarbons, Chlorobenzenes and PCB’s. Lewis Publishers, Chelsea, Michigan. Mackay, D., Shiu, W.Y., Ma, K.C. (1992b) Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Vol. 2, Polynuclear Aromatic Hydrocarbons, Polychlorinated Dioxins, and Dibenzofurans. Lewis Publishers, Chelsea, Michigan. Mackay, D., Shiu, W.Y., Ma, K.C. (1995) Illustrated Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals. Vol. 4, Oxygen, Nitrogen and Sulfur-Containing Compounds. Lewis Publishers/CRC Press, Boca Raton, Florida. Mackay, D., Yuen, T.K. (1983) Mass transfer coefficients correlations for volatilization of organic solutes from water. Environ. Sci. Technol. 17, 211–217. Malaney, G.W., Gerhold, R.W. (1969) Structural determinants in the oxidation of aliphatic compounds by activated sludge. J. Water Pollut. Control Fed. 41, R18–R33. Mayer, J.M., Testa, B., van de Waterbeemd, H., Bornand-Crausaz, A. (1982) Nonadditivity and intramolecular effects in the partition coefficients of ω-functionalized alkylpyridines. Eur. J. Med. Chem. 17(5), 453–459. McBain, J.W., Richard, P.H. (1946) Solubilization of insoluble organic liquids by detergents. Ind. Eng. Chem. 38, 642–646. McGowan, J.C. (1954) The physical toxicity of chemicals. IV. Solubilities, partition coefficients and physical toxicities. J. Appl. Chem. 4, 41–47.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2580 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Meier, U., Grotheer, H.H., Riekert, G., Just, T. (1985) Temperature dependence and branching ratio of the C2H5OH + OH reaction. Chem. Phys. Let. 115, 221–225. Meylan, W., Howard, P.H., Boethling, R.S. (1992) Molecular topology/fragment contribution method for predicting soil sorption coefficients. Environ. Sci. Technol. 26(8), 1560–1567. Meylan, W., Howard, P.H. (1993) Computer estimation of the atmospheric gas-phase reaction rate of organic compounds with hydroxyl radicals and ozone. Chemosphere 26, 2293–2299. Mill, T. (1979) Structure Reactivity Correlations for Environmental Reactions. EPA Final Report, EPA-560/11–79–012. Mill, T. (1982) Hydrolysis and oxidation processes in the environment. Environ. Toxicol. Chem. 1, 135–141. Miyake, K., Kitaura, F., Mizuno, N., Tereda, H. (1987) Determination of partition coefficient and acid dissociation constant by high- performance liquid chromatography on porous polymer gel as a stationary phase. Chem. Pharm. Bull. 35(1), 377–388. Moriyoshi, T., Kaneshina, S., Aihara, K., Yabumoto, K.(1975) Mutual solubility of 2-butanol + water under high pressures. J Chem. Thermodyn. 6, 537–545. Morachevskii, A.G., Popovich, Z.P. (1965) Zh. Prikl. Khim. 38, 2129–2131. Mueller, A.J., Pugsley, L.I., Ferguson, J.B. (1931) Systems: n-butanol-methanol water. J. Phys. Chem. 35, 1314. Nelson, L., Rattigan, O., Neavyn, R., Sidebottom, H., Treacy, J., Nielsen, O.J. (1990) Absolute and relative rate constants for the reactions of hydroxyl radicals and chlorine atoms with a series of aliphatic alcohols and ethers at 298 K. Int. J. Chem. Kinet. 22, 1111–1126. Nirmalakhandan, N.N., Speece, R.E. (1988a) Prediction of aqueous solubility of organic chemicals based on molecular structure. Environ. Sci. Technol. 22(3), 328–338. Nirmalakhandan, N.N., Speece, R.E. (1988b) QSAR model for predicting Henry’s constant. Environ. Sci. Technol. 22(11), 1349–1357. Novak, J.T., Goldsmith, C.D., Benoit, R.E., O’Brien, J.H. (1985) Biodegradation of methanol and tertiary butyl alcohol in subsurface systems. Water Sci. Technol. 17, 71–85. Novak, J., Matous, J., Pick, J. (1960) Collection Czech. Chem. Commum. 25, 583—reference in Boublik et al. 1984. Ochi, K., Saito, T., Kojima, K. (1996) Measurement and correlation of mutual solubilities in 2-butanol + water. J. Chem. Eng. Data 41, 361–364. Othmer, D.F., Bergen, W.S., Shlechter, N., Bruins, P.F. (1945) Liquid-liquid extraction data. Systems used in butadiene manufacture from butylene glycol. Ind. Eng. Chem. 37. 890–894. Overend, R., Paraskevopoulos, G. (1978) Rates of OH radical reactions. 4. Reactions with methanol, ethanol, 1-propanol, and 2-propanol at 296 K. J. Phys. Chem. 82, 1329–1333. Palit, S.R. (1947) Electronic interpretations of organic chemistry. II. Interpretation of the solubility of organic compounds. J. Phys. Chem. 51, 837–857. Parks, G.S., Barton, B. (1928) Vapor pressure data for isopropyl alcohol and tertiary butyl alcohol. J. Am. Chem. Soc. 50, 24–50. Pasanen, M., Uusi-Kyyny, P., Pokki, J.-P., Pakkanen, M., Aittamaa, J. (2004) Vapor-liquid equilibrium for 1-propanol + 1-butene, + cis- 2-butene, + 2-methyl-1-propene, + trans-2-butene, + n-butane, and + 2-methyl-propane. J. Chem. Eng. Data 49, 1628–1634. Petriris, V.E., Geankopolis, C.J. (1959) Phase equilibrium in 1-butanol-water-lactic acid system. J. Chem. Eng. Data 4, 197–198. Pitter, P. (1976) Determination of biological degradability of organic substances. Water Res. 10, 231. Platford, R.F. (1983) The octanol-water partitioning of some hydrophobic and hydrophilic compounds. Chemosphere 12, 1107–1111. Polák, J., Lu, B.C.Y. (1972) Vapor-liquid equilibria of methyl propanoate-methanol and methyl propanoate-ethanol systems at 25°C. J. Chem. Eng. Data 17, 456–458. Price, K.S., Waggy, G.T., Conway, R.A. (1974) Brine shrimp bioassay and seawater BOD of petrochemicals. J. Water Poll. Control Fed. 46, 63–77. Puck, T.T., Wise, H. (1946) Studies in vapor-liquid equilibria. I. A new dynamic method for the determination of vapor pressures of liquids. J. Phys. Chem. 50, 329–339. Rao, K.S., Rao, M.V.R., Rao, C.V. (1961) J. Sci. Ind. Res. 20B, 283. Ratouis, M., Dodé, M. (1965) Bull. Soc. Chim. Fr. 1965, 3318 Ravishankara, A.R., Davis, D.D. (1978) Kinetic rate constants for the reaction of OH with methanol, ethanol, and tetrahydrofuran at 298 K. J. Phys. Chem. 82, 2852–2853. Reid, R.C., Sherwood, T.K. (1966) The Properties of Gases and Liquids-Their Estimation and Correlation. 2nd. Edition, McGraw- Hill, New York. Reid, R.C., Prausnitz, J.M., Sherwood, T.K. (1977) The Properties of Gases and Liquids. 3rd Edition, McGraw-Hill, New York. Rekker, R.F. (1977) The Hydrophobic Fragmental Constant. Its Derivation and Application. A Means of Characterizing Membrane Systems. Vol. 1, Pharmacochemistry Library, Nauta, W.T., Rekker, R.F., Editor. Elsevier Scientific Publishing Company, Oxford. Rhodes, J.M., Bhethanabotla, V.R., Campbell, S.C. (1997) Total vapor pressure measurements for heptane + 1-pentanol, + 2-pentanol, + 3-pentanol, + 2-methyl-1-butanol, + 2-methyl-2-butanol, + 3-methyl-1-butanol, and + 3-methyl-2-butanol at 313.15 K. J. Chem. Eng. Data 42, 731–734. Riddick, J., Bunger, W.B. (1955) Techniques of Organic Chemistry. Wiessberger, A., Editor, Vol. 2. Wiley-Interscience, New York. Riddick, J., Bunger, W.B. (1970) Organic Solvents: Physical Properties and Method of Purification. 3rd. Edition, Techniques of Organic Chemistry. Wiessberger, A., Editor, Vol. 2. John Wiley & Sons, New York. Riddick, J., Bunger, W.B., Sakano, T.K. (1986) Organic Solvents: Physical Properties and Method of Purification. 4th ed., John Wiley & Sons, New York.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Alcohols 2581

Riebesehl, W., Tomlinson, E. (1986) Thermodynamics of non-electrolyte transfer between octanol and water. J. Soln. Chem. 15, 141–150. Rohrschneider, L. (1973) Solvent characterization by gas-liquid partition coefficients of selected solutes. Anal. Chem. 45, 1241–1247. Russell, C.J., Dixon, S.L., Jurs, P.C. (1992) Computer-assisted study of the relationship between molecular structure and Henry’s law constant. Anal. Chem. 64, 1350–1355.

Sabljic, A., Güsten, H., Verhaar, H., Hermens, J. (1995) QSAR modelling of soil sorption. Improvement and systematics of log KOC vs. log KOW correlations. Chemosphere 31, 4489–4514. Sangster, J. (1989) Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data 18, 1111–1230. Sangster, J. (1993) LOGKOW Databank, Sangster Research Labs., Montreal, Canada. Scatchard, G., Raymond, C.L. (1938) Vapor-liquid equilibrium. II. Chloroform-ethanol mixtures at 35, 45, 55°. J. Am. Chem. Soc. 60, 1278–1287. Schantz, M.M., Martire, D.E. (1987) Determination of hydrocarbon-water partition coefficients from chromatographic data and based on solution thermodynamics and theory. J. Chromatogr. 391, 35–51. Schultz, T.W., Arnold, L.M., Wilke, T.S., Moulton, M.P. (1990) Relationships of quantitative structure-activity to normal aliphatic alcohols. Ecotoxicol. Environ. Saf. 19, 243–253. Scow, K.M. (1982) Chapter 9. Rate of biodegradation. In: Handbook on Chemical Property Estimation Methods. pp.9–1 to 9–85. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, McGraw-Hill, New York. Seidell, A. (1941) Solubilities of Organic Compounds. Vol. 2, 3rd. Edition, D. Van Nostrand Co., New York. Serjeant, E.P., Dempsey, B. (1979) Ionization Constants of Organic Acids in Aqueous Solution. Pergamon Press, Oxford, U.K. Shinoda, K., Yamanaka, T., Kinoshita, K. (1959) Surface chemical properties in aqueous solutions of non-ionic surfactants: Octyl glycol ether, α-octyl glyceryl ether and octyl glycoside. J. Phys. Chem. 63, 648–650. Shiu, W.Y., Mackay, D. (1997) Henry’s law constants of selected aromatic hydrocarbons, alcohols, and ketones. J. Chem. Eng. Data 42(1), 27–30. Sidgwick, N.V., Sutton, L.E. (1930) CLXX.-The system cyclohexanol and water. J. Chem. Soc. 1323–1326. Skrzec, A.E., Murphy, N.F. (1954) Liquid-liquid equilibria. Acetic acid in water, with 1-butanol, methyl ethyl ketone, furfural, cyclohexanol, and nitromethane. Ind. Eng. Chem. 46, 2245–2247. Smyth, C.P., Engel, E.W. (1929) Molecular orientation and the partial vapor pressures of binary mixtures. I. Systems composed of normal liquids. J. Am. Chem. Soc. 51, 2646–2660. Snider, J.R., Dawson, G.A. (1985) Tropospheric light alcohols, carbonyls, and acetonitrile: concentrations in the southwestern United States and Henry’s law data. J. Geophys. Res. 90, 3797–3805. Sobotka, H., Glick, D. (1934) J. Biol. Chem. 105, 199. Sonoda, Y., Seiko, Y. (1968) Degradation and toxicity of various compounds in anaerobic digestion. (I). Carbohydrates and alcohols. J. Ferment. Technol. 46, 796–801. Speece, R.E. (1983) Anaerobic biotechnology for industrial wastewater treatment. Environ. Sci. Technol. 17, 416A–427A. Staudinger, J., Roberts, P.V. (2001) A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions. Chemosphere 44, 561–576. Stearns, R.S., Opperheimer, H., Simon, E., Harkins, W.D. (1947) Solubilization by solutions of long-chain colloidal electrolytes. J. Chem. Phys. 15, 496-. Stephenson, R., Stuart, J. (1986) Mutual solubilities: Water-alcohols and water-esters. J. Chem. Eng. Data 31, 56–70. Stephenson, R., Stuart, J., Tabak, M. (1984) Mutual solubility of water and aliphatic alcohols. J. Chem. Eng. Data 29, 287–290. Stephenson, R.M., Malanowski, A. (1987) Handbook of the Thermodynamics of Organic Compounds. Elsevier, New York. Stockhardt, J.S., Hull, C.M. (1931) Vapor-liquid equilibria and boiling-point composition relations for systems n-butanol-water and isobutanol-water. Ind. Eng. Chem. 33, 1348. Stull, D.R. (1947) Vapor pressure of pure substances: Organic compounds. Ind. Eng. Chem. 39(4), 517–560. Taft, R.W., Abraham, M.H., Doherty, R.M., Kamlet, M.J. (1985) The molecular properties governing solubilities of organic nonelec- trolytes in water. Nature 313, 384–386. Taft, R.W., Abraham, M.H., Famini, G.R., Doherty, R.M., Abboud, J.-L.M., Kamlet, M.J. (1985) Solubility properties in polymers and biological media 5: An analysis of the physicochemical properties which influence octanol-water partition coefficients of aliphatic and aromatic solutes. J. Pharm. Sci. 74(8), 807–814. Takemoto, S., Kuge, Y., Nakamoto, M. (1981) The measurement of BOD in seawater. Suishitsu Odaku Kenkyu. 4, 80–90. Teja, A.S., Gupta, A.K., Bullock, K., Char, X.-S., Zhu, J. (2001) Henry’s constants of methanol in aqueous systems containing salts. Fluid Phase Equil. 185, 265–274. Tewari, Y.B., Miller, M.M., Wasik, S.P., Martire, D.E. (1982) Aqueous solubility and octanol/water partition coefficient of organic compounds at 25.0°C. J. Chem. Eng. Data 27, 451–454. Urano, K., Maeda, H., Ogura, K., Wada, H. (1982) Direct analytical method for aromatic compounds in water by steam carrier gas chromatography. Water Res. 16, 323–327. Urano, K., Kato, Z. (1986) Evaluation of biodegradation ranks of priority organic compounds. J. Hazard. Mat. 13, 147–159. USEPA (1987) EXAMS II Computer Simulation. U.S. Environmental Protection Agency. Verhaar, H.J.M., van Leeuwen, C.J., Hermens, J.L.M. (1992) Classifying environmental pollutants. 1: Structure-activity relationships for prediction of aquatic toxicity. Chemosphere 25(4), 471–491.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2582 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Verschueren, K. (1977) Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Co., New York. Verschueren, K. (1983) Handbook of Environmental Data on Organic Chemicals. 2nd ed., Van Nostrand Reinhold Co., New York. Vochten, R., Petre, G. (1973) Heat of reversible adsorption at the air-solution interface. II. Experimental determination of the heat of adsorption of some alcohols. J. Colloid Interface Sci. 42, 320–327. von Erichsen, L. (1952) The solubility of homologous series of organic compounds. Naturwissenschaften 39, 41–42. Wagner, R. (1976) Investigation of the biodegradation of organic substances using the dilution bottle method. II. The degradation of test substances. Vom. Wasser 47, 241–265.

Wallington, T.J., Atkinson, R., Winer, A.M., Pitts, J.N., Jr. (1987) A study of reaction NO3 + NO2 + M - N2O5 + M (M = N2, O2). Intl. J. Chem. Kinet. 19, 243–249. Wallington, T.J., Kurylo, M.J. (1987a) The gas phase reactions of hydroxyl radicals with a series of aliphatic alcohols over the temperature range 240–440 K. Int. J. Chem. Kinet. 1015–1023. Wallington, T.J., Kurylo, M.J. (1987b) Flash photolysis resonance fluorescence investigation of the gas-phase reactions of OH radicals with a series of aliphatic ketones over the temperature range 240–440 K. J. Phys. Chem. 91, 5050–5054.

Wallington, T.J., Dagaut, P., Liu, R., Kurylo, M.J. (1988a) Rate constants for the gas phase reactions of OH with C5 through C7 aliphatic alcohols and ethers: predicted and experimental values. Intl. J. Chem. Kinet. 20, 541–547. Wallington, T.J., Dagaut, P., Kurylo, M.J. (1988b) Correlation between gas-phase and solution-phase reactivities of hydroxyl radicals toward saturated organic compounds. J. Phys. Chem. 92, 5024–5028. Wallington, T.J., Dagaut, P., Liu, R., Kuoylo, M.J. (1988c) Gas-phase reactions of hydroxyl radicals with the fuel additives methyl tert-butyl ether and tert-butyl alcohol over the temperature range 240–440 K. Environ. Sci. Technol. 22, 842–844. Wang, L., Zhao, Y., Hong, G. (1992) Predicting aqueous solubility and octanol/water partition coefficients of organic chemicals from molar volume. Environ. Chem. 11, 55–70. Washburn, R., Handorf, B.H. (1935) The vapor pressure of binary solutions of ethyl alcohol and cyclohexane at 25°C. J. Am. Chem. Soc. 57, 441–443. Wasik, S.P., Tewari, Y.B., Miller, M.M., Martire, D.E. (1981) Octanol/Water Partition Coefficients and Aqueous Solubilities of Organic Compounds. NBSIR No.81–2406. U.S. Dept. of Commerce, Washington. Weast, R.C., Editor (1972–73) Handbook of Chemistry and Physics. 53rd Edition, CRC Press, Cleveland, Ohio. Weast, R.C., Editor (1982–83) Handbook of Chemistry and Physics. 63th ed., CRC Press, Boca Raton, Florida. Wiedermann, A., Zetzsch, C. (1982) presented at Bunsentagung Ulm and Neu-Ulm, May 20–22, 1982. Yalkowsky, S.H., Valvani, S.C. (1980) Solubility and partitioning I: Solubility of nonelectrolytes in water. J. Pharm. Sci. 69(8), 912–922. Yao, C.C.D., Haag, W.R. (1991) Rate constants for direct reactions of ozone with several drinking water contaminants. Water Res. 25, 761–773.

Yaws, C.L. (1994) Handbook of Vapor Pressure. Vol. 1: C1 to C4 Compounds. Vol. 2: C5 to C7 Compounds. Vol. 3: C8 to C28 Compounds. Gulf Publishing Co. Houston, Texas. Yaws, C., Yang, H.C., Hopper, J.R., Hansen, K.C. (1990) Organic chemicals: water solubility data. Chem. Eng. July, 115–118. Yaws, C., Yang, H.C., Pan, X. (1991) Henry’s law constants for 362 organic compounds in water. Chem. Eng. 98(11), 179–185. Yonezawa, Y., Urushigawa, Y. (1979) Chemico-biological interactions in biological purification systems. V. Relation between biodeg- radation rate constants of aliphatic alcohols by activated sludge and their partition coefficients in a 1-octanol-water system. Chemosphere 8, 139–142. Zellner, R., Lorenz, K. (1984) Laser-photolysis/resonance fluorescence study of the rate constants for the reactions of OH radicals with ethane and propane. J. Phys. Chem. 88, 984–989. Zhuravleva, I.K., Zhuravlev, E.F., Lomakina, N.G. (1977) Phase diagrams of ternary systems containing three binary phase separations with upper critical dissociation points. Zh. Fiz. Khim. 51, 1700–1707. Russ. J. Phys. Chem. 51, 994–998. Zil’berman, E.N. (1951) Physicochemical properties of cyclohexanol-water. (I) Mutual solubility of cyclohexanol and water. Zh. Fiz. Khim. 24, 776.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 12 Aldehydes and Ketones

CONTENTS 12.1 List of Chemicals and Data Compilations ...... 2584 12.1.1 Aldehydes ...... 2584 12.1.1.1 Methanal (Formaldehyde) ...... 2584 12.1.1.2 Ethanal (Acetaldehyde) ...... 2589 12.1.1.3 Propanal (Propionaldehyde) ...... 2595 12.1.1.4 Butanal (n-Butyraldehyde) ...... 2600 12.1.1.5 2-Propenal (Acrolein) ...... 2605 12.1.1.6 Furfural (2-Furaldehyde) ...... 2609 12.1.1.7 Benzaldehyde ...... 2613 12.1.2 Ketones ...... 2619 12.1.2.1 Acetone ...... 2619 12.1.2.2 2-Butanone (Methyl ethyl ketone) ...... 2626 12.1.2.3 2-Pentanone ...... 2634 12.1.2.4 3-Pentanone ...... 2639 12.1.2.5 Methyl isobutyl ketone (MIBK) ...... 2644 12.1.2.6 2-Hexanone (Methyl butyl ketone) ...... 2650 12.1.2.7 2-Heptanone ...... 2655 12.1.2.8 Cyclohexanone ...... 2660 12.1.2.9 Acetophenone ...... 2664 12.1.2.10 Benzophenone ...... 2670 12.2 Summary Tables and QSPR Plots ...... 2673 12.3 References ...... 2679

2583

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2584 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

12.1 LIST OF CHEMICALS AND DATA COMPILATIONS

12.1.1 ALDEHYDES 12.1.1.1 Methanal (Formaldehyde)

O

HH Common Name: Formaldehyde Synonym: formalin, methanal, oxomethane Chemical Name: formaldehyde CAS Registry No: 50-00-0

Molecular Formula: CH2O, HCHO Molecular Weight: 30.026 Melting Point (°C): –92.0 (Weast 1982–83; Dean 1985; Lide 2003) Boiling Point (°C): –19.1 (Lide 2003) Density (g/cm3): 0.815 (–20°C, Weast 1982–83) 0.815 (–20°C, Verschueren 1983; Dean 1985) Molar Volume (cm3/mol): 36.8 (–20°C, Stephenson & Malanowski 1987) 29.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K.), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 1220000 (Dean 1985) very soluble, up to 55% (Budavari 1989, Howard 1989)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 88566* (–22.29°C, static method-differential manometer, measured range –109.39 to –22.29°C, Spencer & Wild 1935) 101325* (–19.5°C, summary of literature data, temp range –88 to –19.5°C, Stull 1947) log (P/mmHg) = [–0.2185 × 5917.9/(T/K)] + 7.985746; temp range –88 to –19.5°C (Antoine eq., Weast 1972–73) 1333 (–88°C, Verschueren 1983) log (P/kPa) = 6.32524 – 972.5/(244.329 + t/°C), temp range (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/mmHg) = 7.1958 – 970.65/(244.1 + t/°C); temp range –109 to –22°C (Antoine eq., Dean 1985, 1992)

log (PL/kPa) = 6.5475 – 1062.4/(–19.92 + T/K), temp range 184–251 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.4306 – 1013.206/(–24.883 + T/K); temp range 163–251 K (Antoine eq.-II, Stephenson & Malanowski 1987) 517690 (1 atm, Howard 1989) log (P/mmHg) = 41.9603 – 2.1355 × 103/(T/K) – 13.765·log (T/K) + 9.568 × 10–3·(T/K) – 5.1101 × 10–12·(T/K)2; temp range 181–408 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.0331 (20°C, porous membrane gas-liquid equilibration system, Dong & Dasgupta 1986) 0.0169 (review, Gaffney et al. 1987) 0.0341* (gas stripping-headspace GC, measured range 15–45°C, Betterton & Hoffmann 1988)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2585

0.0298* (gas-stripping-HPLC-UV, freshwater, measured range 10–45°C, Zhou & Mopper 1990) ′ ln [KH /(M/atm)] = –6.0 + 2844/(T/K), temp range 10–45°C (gas stripping-HPLC measurements, freshwater, Zhou & Mopper 1990) ′ ln [KH /(M/atm)] = –6.7 + 3069/(T/K), temp range 25–45°C (gas stripping-HPLC measurements, seawater (salin- ity 35 ± 1‰), Zhou & Mopper 1990) 0.021 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001)

log KAW = 4.621 – 2840/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 0.35 (shake flask, Johnson & Piret 1948) –1.54 (Kenaga & Goring 1980) 0.00 (Verschueren 1983) 0.35 (recommended, Sangster 1989) 0.35 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF: no bioconcentration. in fish and shrimp observed (Howard 1989)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization:

Photolysis: sunlight photolysis t½ = 1.25–6.0 h, based on measured gas-phase photolysis by simulated sunlight (Calvert et al. 1972; Su et al. 1979; quoted, Howard et al. 1991); rate constant k = 8.0 × 10–5 s–1 in the atmosphere (Carlier et al. 1986); calculated lifetime of 4 h (Atkinson 2000).

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or Arrhenius equation see reference: –11 3 –1 –1 kOH = 1.4 × 10 cm molecule s at 298 K (discharge flow system-MS, Morris & Niki 1971) aqueous photooxidation t½ = 4813–190000 h, based on measured rate constant for the reaction with OH radical in water (Dorfman & Adams 1973; quoted, Howard et al. 1991) –11 3 –1 –1 kOH = 1.5 × 10 cm molecule s (long-path Fourier transform IR, Niki et al. 1978) –16 3 –1 –1 kNO3 = 3.2 × 10 cm molecule s at 298 ± 1 K (review, Atkinson & Lloyd 1984) k = (0.1 ± 0.03) M–1 s–1 for the reaction with ozone in water at pH 2.0–6.0 and 20–23°C (Hoigné & Bader 1983) –14 3 –1 –1 kHO2 = 4.5 × 10 cm molecule s for the vapor-phase reaction with HO2 radical at 298 K (review, Baulch et al. 1984; quoted, Carlier et al. 1986) –11 3 –1 –1 kOH = 1.1 × 10 cm molecule s at 298 K (review, Baulch et al. 1984; quoted, Carlier et al. 1986) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 7.4 × 10 cm molecule s , kOH(obs.) = 9.0 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985) atmospheric photooxidation half-life of 7.13–71.3 h, based on measured rate constant for the vapor-phase reaction with OH radical in air (Atkinson 1985; quoted, Howard et al. 1991) –12 3 –1 –1 kOH* = 9.77 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) –16 3 –1 –1 kNO3 = 5.8 × 10 cm molecule s at 298 K (recommended, Atkinson 1991) –12 3 –1 –1 kOH(calc) = 17.5 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: no hydrolyzable group (Howard et al. 1991). Biodegradation: degradation complete in 20 h under aerobic conditions and 48 h under anaerobic conditions in a die-away test using water from a stagnant lake (Howard 1989) aqueous aerobic half-life of 24–168 h, based on unacclimated aqueous aerobic biodegradation screening test data; aqueous anaerobic half-life of 96–672 h, based on unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2586 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Biotransformation:

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environmental Compartments:

Air: half-life is a few hours in the sunlit troposphere; t½ = 19 and 50 h by dry deposition and wet removal, respectively; t½ = 12 d when reacts with NO3 radical by H-atom abstraction. (Howard 1989) photooxidation t½ = 7.13–71.3 h, based on measured rate constant for the vapor-phase reaction with hydroxyl radical in air (Atkinson 1985; quoted, Howard et al. 1991);

t½ = 1.26–6.0 h, based on photolysis half-life in air (Howard et al. 1991); atmospheric transformation lifetime was estimated to be 1 to 5 d (Kelly et al. 1994);

calculated lifetimes of 1.2 d, 80 d and > 4.5 yr for reactions with OH radical, NO3 radical and O3, respectively (Atkinson 2000).

Surface water: t½ = 24–168 h, based on unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Ground water: t½ = 48–336 h, based on unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 24–168 h, based on unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

TABLE 12.1.1.1.1 Reported vapor pressures of methanal (formaldehyde) at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Spencer & Wild 1935 Stull 1947

differential manometer summary of literature data t/°CP/Pat/°CP/Pa –109.39 127 –88.0 1333 –104.39 237 –79.6 2666 –98.29 480 –70.6 5333 –95.19 647 –65.0 7999 –89.09 1157 –57.3 13332 –85.59 1633 –46.0 26664 –78.89 2802 –33.0 53329 –78.29 2946 –19.5 101325 –71.29 4720 –68.55 6190 mp/°C –92 –65.29 7859 –64.59 8219 –63.69 8693 –55.79 14799 –53.99 16625 –49.29 21745 –40.59 35544 –39.09 38743 –34.29 49182 –28.39 66208 –22.29 88566

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2587

Methanal (formaldehyde): vapor pressure vs. 1/T 8.0 Spencer & Wild 1935 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = -19.1 °C m.p. = -92 °C 0.0 0.0032 0.0036 0.004 0.0044 0.0048 0.0052 0.0056 0.006 0.0064 1/(T/K) FIGURE 12.1.1.1.1 Logarithm of vapor pressure versus reciprocal temperature for methanal.

TABLE 12.1.1.1.2 Reported Henry’s law constants of methanal (formaldehyde) at various temperatures and temperature dependence equations

ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a)

ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a)

ln (kH/atm) = A – B/(T/K) (3) ln [H/(Pa m3/mol)] = A – B/(T/K) (4) ln [H/(atm·m3/mol)] = A – B/(T/K) (4a) 2 KAW = A – B·(T/K) + C·(T/K) (5)

Betterton & Hoffmann 1988 Zhou & Mopper 1990

gas stripping-fluorescence gas stripping-HPLC/UV gas stripping-HPLC/UV t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) fresh water sea water 15 0.01386 10 0.01023 10 0.0074 15 0.01031* 17 - 17 0.0128 25 0.0341 25 0.0298 25 0.0284 35 0.0675 30 0.0507 30 0.0405 45 0.1506 35 0.0675 35 0.0533 40 0.0921 40 - ∆H/(kJ mol–1) = –59.8 45 0.125 45 0.115 ′ ′ * in 0.5 M HSO4· solution eq. 1a KH /(M/atm) eq. 1a KH /(M/atm) A –6.00 A –6.70 B –2844 B –3069

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2588 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Methanal (formaldehyde): Henry's law constant vs. 1/T -1.0

-2.0 )lom/ -3.0 3 m.aP(/H nl m.aP(/H

-4.0

-5.0

Betterton & Hoffmann 1988 Zhou & Mopper 1990 -6.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K) FIGURE 12.1.1.1.2 Logarithm of Henry’s law constant versus reciprocal temperature for methanal.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2589

12.1.1.2 Ethanal (Acetaldehyde)

O

H Common Name: Acetaldehyde Synonym: acetic aldehyde, aldehyde, ethanal, ethylaldehyde Chemical Name: acetaldehyde, ethanal CAS Registry No: 75-07-0

Molecular Formula: C2H4O, CH3CHO Molecular Weight: 44.052 Melting Point (°C): –123.37 (Lide 2003) Boiling Point (°C): 20.1 (Lide 2003) Density (g/cm3 at 20°C): 0.7834 (18°C, Lide 2003) Molar Volume (cm3/mol): 56.23 (18°C, calculated-density) 51.8 (calculated-Le Bas method at normal boiling point) Dissociation Constant:

–10.2 (pKb, Riddick et al. 1986) ∆ Enthalpy of Fusion Hfus (kJ/mol): 3.243 (Riddick et al. 1986) ∆ Entropy of Fusion Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): miscible (Palit 1947; Riddick et al. 1986) miscible (Verschueren 1983; Dean 1985) miscible (Yaws et al. 1990)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 101300* (20.2°C, summary of literature data, temp range –81.5 to 5.9°C, Stull 1947) 102125* (20.7°C, measured range –0.20 to 34.4°C, Coles & Popper 1950) 120060 (Hoy 1970) log (P/mmHg) = [–0.2185 × 7267.8/(T/K)] + 8.327803; temp range –81.5 to 20.2°C (Antoine eq., Weast 1972–73) log (P/mmHg) = [–0.2185 × 6622.1/(T/K)] + 7.82060; temp range –24.3 to 27.5°C (Antoine eq., Weast 1972–73) 98640 (20°C, Verschueren 1983) 102125, 120220 (20.7°C, quoted exptl., interpolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 7.14122 – 1606.85/(292.482 + t/°C), temp range: –0.2 to 34.3°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 120230 (calculated-Antoine eq., Dean 1985, 1992) log (P/mmHg) = 8.00552 – 1600.017/(291.809 + t/°C), temp range: liquid (Antoine eq., Dean 1985, 1992) 121300 (selected, Riddick et al. 1986) log (P/kPa) = 6.1814 – 1070.6/(236.0 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 120700 (interpolated-Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.1410 – 1034.5/(–43.15 + T/K); temp range 272–294 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.03292 – 1012.828/(–41.823 + T/K); temp range 293–377 K (Antoine eq.-I, Stephenson & Malanowski 1987) log (P/mmHg) = 87.3702 – 3.6822 × 103/(T/K) – 31.548·log (T/K) + 2.0114 × 10–2·(T/K) + 5.5341 × 10–13·(T/K)2; temp range 150–461 K (vapor pressure eq., Yaws 1994)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2590 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Henry’s Law Constant (Pa·m3/mol and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 6.692 (shake flask-concentration ratio-GC, Buttery et al. 1969)

8.924 (calculated KAWs, Buttery et al. 1969) 6.672 (exptl., Hine & Mookerjee 1975) 5.946, 5.423 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 1.336, 8.0 (0, 25°C, gas stripping-GC, Snider & Dawson 1985) 6.75 (review, Gaffney et al. 1987) 2.578* (gas stripping-headspace GC, measured range 15–35°C, Betterton & Hoffmann 1988) 6.80* (gas-stripping-HPLC-UV, measured range 10–45°C, Zhou & Mopper 1990) ′ ln [KH /(M/atm)] = –6.03 + 276/(T/K), temp range 10–45°C (gas stripping-HPLC measurements, freshwater, Zhou & Mopper 1990) ′ ln [KH /(M/atm)] = –5.21 + 1984/(T/K), temp range 10–45°C (gas stripping-HPLC measurements, seawater (salinity 35 ± 1‰), Zhou & Mopper 1990) 10.18 (calculated-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 5.47* (20°C, headspace-GC, measured range 10–40°C, Benkelberg et al. 1995) 8.72* (headspace-GC, artificial seawater, measured range 16–40°C, Benkelberg et al. 1995)

ln (kH/atm) = (20.4 ± 0.1) – (5671 ± 22)/(T/K); temp range 10–40°C (headspace-GC measurements, Benkelberg et al. 1995) 5.14 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996) 6.33 (solid-phase microextraction SPME-GC, Bartelt 1997) 6.69 (equilibrium headspace-GC, Marin et al. 1999) 5.39 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 5.324 – 2340/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 0.52 (generator column-HPLC, Wasik et al. 1981) 0.36 (generator column-GC, Tewari et al. 1982) 0.43 (calculated, Verschueren 1983) 0.45 (recommended, Sangster 1989, 1993)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: rate constant k = 2.3.0 × 10–5 s–1 in the atmosphere (Carlier et al. 1986); calculated lifetime of 6 d (Atkinson 2000)

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and or Arrhenius equation see reference: –11 3 –1 –1 kOH = 1.53 × 10 cm molecule s at 298 K (discharge flow system-MS, Morris & Niki 1971) –11 3 –1 –1 kOH = 1.6.2 × 10 cm molecule s (long-path Fourier transform IR, Niki et al. 1978) –1 –1 4 k = 0.1 M s for oxidation by RO2 radical at 30°C in aquatic systems with half-life of 8 × 10 d (Howard 1972; Hendry et al. 1974; quoted, Mill 1982) k < 2 × 102 M–1 s–1 for oxidation by singlet oxygen at 25°C in aquatic systems with half-life > 00 yr (Foote 1976; Mill 1979; quoted, Mill 1982) –12 3 –1 –1 kOH = (12.8 ± 4.3) × 10 cm molecule s (Kerr & Sheppard 1981; quoted, Atkinson 1985) k = (1.5 ± 0.2) M–1·s–1 for the reaction with ozone in water at pH 2.0–6.0 and 20–23°C (Hoigné & Bader 1983) –12 3 –1 –1 kOH = (12.2 ± 2.7) × 10 cm molecule s at 298 K (Semmes et al. 1985; quoted, Atkinson 1985) –20 3 –1 –1 kO3 = (3.4 ± 0.5) × 10 cm molecule s at 298 ± 2 K (Stedman & Niki 1973; quoted, Atkinson & Carter 1984)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2591

–12 3 –1 –1 kOH = 9.6 × 10 cm molecule s at 300 K (Lyman 1982) ≤ –21 3 –1 –1 kO3 6×10 cm molecule s 296 ± 2 K (Atkinson et al. 1981, 1982; quoted, Atkinson & Carter 1984; Atkinson 1985) –17 3 –1 –1 kHO2 = 1.0 × 10 cm ·molecule s for the gas-phase reaction with HO2 radical at 293 K in the atmosphere (Barnes et al. 1982; quoted, Carlier et al. 1986) –11 3 –1 –1 –15 3 –1 –1 kOH = 1.62 × 10 cm ·molecule s ; and kNO3 = 3.02 × 10 cm molecule s at 298 K in air (Atkinson et al. 1984) –15 3 –1 –1 kNO3 = 1.40 × 10 cm molecule s 298 ± 1 K (review, Atkinson & Lloyd 1984; quoted, Carlier et al. 1986) –11 3 –1 –1 kOH = 1.60 × 10 cm molecule s at 298 K (review, Baulch et al. 1984; quoted, Carlier et al. 1986) –12 3 –1 –1 kOH = (14.7 ± 2.8) × 10 cm molecule s at 298 K (Michael et al. 1985; quoted, Atkinson 1985) –11 3 –1 –1 –11 3 –1 –1 kOH(calc) = 1.62 × 10 cm molecule s , kOH(obs.) = 1.62 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985) –11 3 –1 –1 –1 ≤ –21 3 –1 –1 kOH = 1.6 × 10 cm molecule s with a loss rate of 0.7 d , kO3 6.0 × 10 cm molecule s with a loss ≤ –1 –15 3 –1 –1 –1 rate of 0.0004 d , kNO3 = 2.5 × 10 cm ·molecule s with a loss rate of 0.05 d (review, Atkinson 1985) –11 3 –1 –1 kOH* = 1.53 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) –12 3 –1 –1 –15 3 –1 –1 kOH = 16.22 × 10 cm molecule s , kNO3 = 3.02 × 10 cm molecule s (Sabljic & Güsten 1990; Müller & Klein 1991) –15 3 –1 –1 kNO3 = 2.78 × 10 cm molecule s at 298 K (recommended, Atkinson 1991) –12 3 –1 –1 kOH = 10.64 × 10 cm ·molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ < 0.24 h for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976); atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994);

calculated lifetimes of 8.8 h, 17 d and > 4.5 yr for reactions with OH radical, NO3 radical and O3, respectively (Atkinson 2000). Surface water: Ground water: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2592 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 12.1.1.2.1 Reported vapor pressures of ethanal (acetaldehyde) at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Coles & Popper 1950

summary of literature data isoteniscope method t/°CP/Pat/°CP/Pa –81.5 133.3 –0.20 44263 –65.1 666.6 2.70 49996 –56.8 1333 6.70 59062 –47.8 2666 9.30 65861 –37.8 5333 11.6 70794 –31.4 7999 15.3 76927 –22.6 13332 17.6 90926 –10.0 26664 20.7 102125 4.90 53329 30.8 149321 20.2 101325 34.4 167852 mp/°C –123.5 bp/°C 20.4 eq. 1 P/mmHg A 7.694 B 1413

Ethanal (acetaldehyde): vapor pressure vs. 1/T 8.0 Coles & Popper 1950 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 20.1 °C 0.0 0.003 0.0034 0.0038 0.0042 0.0046 0.005 0.0054 0.0058 1/(T/K) FIGURE 12.1.1.2.1 Logarithm of vapor pressure versus reciprocal temperature for ethanal.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2593

TABLE 12.1.1.2.2 Reported Henry’s law constants of ethanal (acetaldehyde) at various temperatures and temperature dependence equations

ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a)

ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a)

ln (kH/atm) = A – B/(T/K) (3) ln [H/(Pa m3/mol)] = A – B/(T/K) (4) ln [H/(atm·m3/mol)] = A – B/(T/K) (4a) 2 KAW = A – B·(T/K) + C·(T/K) (5) 1.

Snider & Dawson 1985 Betterton & Hoffmann 1988 Zhou & Mopper 1990

gas stripping-GC gas stripping-GC, spec. gas stripping-HPLC/UV gas stripping-HPLC/UV t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) fresh water sea water 0 1.336 5 1.829 10 2.277 10 3.147 25 8.00 10 2.578 17 - 17 5.170 25 8.888 25 6.80 25 7.735 enthalpy of transfer: 35 15.446 30 8.238 30 9.296 ∆H/(kJ mol–1) = –46.024 35 10.55 35 11.78 ∆H/(kJ mol–1) = –52.1 40 - 40 14.90 at 25°C 45 15.59 45 17.78 ′ ′ eq. 1a KH /(M/atm) eq. 1a KH /(M/atm) A –6.03 A –5.21 B –2164 B –1894 2.

Benkelberg et al. 1995

equilibrium vapor phase concentration-headspace GC t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) deionized water artificial sea water 10 2.754 16 5.070 15 3.940 25 8.718 20 5.472 30 11.69 30 10.268 40 19.716 40 18.968 for deionized and rain water:

eq. 3 kH/atm A 20.4 ± 0.1 B 5671 ± 22 ∆H/(kJ mol–1) = –47.15

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2594 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Ethanal (acetaldehyde): Henry's law constant vs. 1/T 4.0

3.0 )lom/ 2.0 3 m.aP(

/H /H 1.0 nl

Snider & Dawson 1985 0.0 Betterton & Hoffmann 1988 Zhou & Mopper 1990 Benkelberg et al. 1995 experimental data -1.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K) FIGURE 12.1.1.2.2 Logarithm of Henry’s law constant versus reciprocal temperature for ethanal.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2595

12.1.1.3 Propanal (Propionaldehyde)

O

Common Name: Propionaldehyde Synonym: propanal Chemical Name: propionaldehyde, propanal CAS Registry No: 123-38-6

Molecular Formula: C3H6O, CH3CH2CHO Molecular Weight: 58.079 Melting Point (°C): –80 (Lide 2003) Boiling Point (°C): 48 (Lide 2003) Density (g/cm3 at 20°C): 0.8058 (Weast 1982–83) 0.7970 (Riddick et al. 1986) Molar Volume (cm3/mol): 72.9 (calculated-density, Stephenson & Malanowski 1987) 74.0 (calculated-Le Bas method at normal boiling point) Dissociation Constant: ∆ Enthalpy of Fusion Hfus (kJ/mol): ∆ Entropy of Fusion Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 160000 (20°C, Seidell 1941) 200000 (20°C, Verschueren 1983) 306000 (Dean 1985; Riddick et al. 1986) 405000 (selected, Yaws et al. 1990) 310000*, 269000 (20°C, 30°C, shake flask-GC/TC, measured range 12.3–50°C, Stephenson 1993)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 67661* (39.07°C, ebulliometry, measured range 39.07–50.29°C, Dreisbach & Shrader 1949) log (P/mmHg) = 7.08683 – 1178.9/(230 + t/°C); temp range not specified (Antoine eq., Dreisbach & Martin 1949) 42300* (23°C, measured range 13.1–48.06°C, Ambrose & Sprake 1974) 42340 (interpolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.2902 – 1210.87/(234.65 + t/°C), temp range 13.1–48.06°C (Antoine eq. from reported exptl. data of Ambrose & Sprake 1974, Boublik et al. 1984) 42490, 42360 (interpolated-Antoine eq. I and II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.2047 – 1166.99/(–43.15 + T/K); temp range 290–322 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.2336 – 1180/(–42.0 + T/K); temp range 250–330 K (Antoine eq.-II, Stephenson & Malanowski 1987) 23190 (calculated-solvatochromic parameters, Banerjee et al. 1990) log (P/mmHg) = 26.1637 – 2.3059 × 103/(T/K) –6.5289·log (T/K) – 2.3065 × 10–10·(T/K) + 2.5454 × 10–6·(T/K)2; temp range 193–496 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 7.436 (shake flask, partial vapor pressure-GC, Buttery et al. 1969) 7.486 (exptl., Hine & Mookerjee 1975)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2596 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

8.40, 8.21 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 8.305* (gas stripping-HPLC/UV, measured range 10–45°C, Zhou & Mopper 1990) ′ ln [KH /(M/atm)] = –7.15 + 2467/(T/K), temp range 10–45°C (gas stripping-HPLC measurements, freshwater, Zhou & Mopper 1990) ′ ln [KH /(M/atm)] = –6.60 + 2273/(T/K), temp range 25–35°C (gas stripping-HPLC measurements, seawater (salinity 35 ± 1l), Zhou & Mopper 1990) 7.486, 13.62 (quoted, correlated-molecular structure, Russell et al. 1992) 5.48 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001)

log KAW = 5.324 – 2237/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 0.83 (calculated, Verschueren 1983) 0.59 (shake flask, Log P Database, Hansch & Leo 1987) 0.59 (recommended, Sangster 1989) 0.59 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 3.02 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: rate constant k = 3.2 × 10–5 s–1 in the atmosphere (Carlier et al. 1986).

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –11 3 –1 –1 kOH = 3.06 × 10 cm molecule s at 298 K (discharge flow system-MS, Morris & Niki 1971) photooxidation t½ < 0.24 h for the gas-phase reaction with OH radicals in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976) –11 3 –1 –1 kOH = 2.1 × 10 cm molecule s (long-path Fourier transform IR, Niki et al. 1978) –12 3 –1 –1 kOH = (18.5 ± 2.1) × 10 cm molecule s (Audley et al. 1981; quoted, Atkinson 1985), –12 3 –1 –1 kOH = (19.5 ± 1.5) × 10 cm molecule s (Kerr & Sheppard 1981; quoted, Atkinson 1985) k = (2.5 ± 0.4) M–1 s–1 for the reaction with ozone in water at pH 2.0–6.0 and 20–23°C (Hoigné & Bader 1983) –11 3 –1 –1 kOH = 1.8 × 10 cm molecule s at 298 K (review, Atkinson & Lloyd 1984; quoted, Carlier et al. 1986) –12 3 –1 –1 kOH = (17.1 ± 2.4) × 10 cm molecule s at 298 K (Semmes et al. 1985; quoted, Atkinson 1985) –11 3 –1 –1 –11 3 –1 –1 kOH(calc) = 2.2 × 10 cm molecule s , kOH(obs.) = 1.96 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985)

photooxidation t½ = 3.3–33 h in air, based on measured reaction rate constant for the vapor-phase reaction with hydroxyl radical in air (Atkinson 1987; selected, Howard et al. 1991) –11 3 –1 –1 kOH = 1.96 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) –12 3 –1 –1 kOH(calc) = 16.55 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: no hydrolyzable groups (Howard et al. 1991). Biodegradation: biodegradation rate constants k = 0.046–0.063 h–1 in 30 mg/L activated sludge after a time lag

of 5 h (Urano & Kato 1986b); aqueous aerobic t½ = 24–168 h, based on aerobic biological screening test data (Gerhold & Malaney 1966; Dore et al. 1975; Urano & Kato 1986; selected, Howard et al. 1991); aqueous

anaerobic t½ = 96–672 h, based on estimated aqueous aerobic biodegradation half-lives (Howard et al. 1991). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment:

Air: t½ < 0.24 h for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2597

photooxidation t½ = 3.3–33 h in air, based on measured reaction rate constant for the vapor-phase reaction with hydroxyl radical in air (Atkinson 1987; selected, Howard et al. 1991).

Surface water: t½ = 24–168 h, based on estimated aqueous aerobic biodegradation half-lives (Howard et al. 1991). Ground water: t½ = 48–336 h, based on estimated aqueous aerobic biodegradation half-lives (Howard et al. 1991). Sediment:

Soil: t½ = 24–168 h, based on estimated aqueous aerobic biodegradation half-lives (Howard et al. 1991). Biota:

TABLE 12.1.1.3.1 Reported aqueous solubilities and vapor pressures of propanal (propionaldehyde) at various temperatures

Aqueous solubility Vapor pressure

Stephenson 1993 Dreisbach & Shrader 1949 Dreisbach & Martin 1949 Ambrose & Sprake 1974

shake flask-GC/TC ebulliometry ebulliometry ebulliometry t/°CS/g·m–3 t/°CP/Pat/°CP/Pat/°CP/Pa 12.3 477000 39.07 67661 data presented in 13.1 25300 15.6 368000 50.29 101325 log P = A – B/(C + t/°C) 23.0 42300 20.0 310000 eq. 2 P/mmHg 29.5 51000 30.0 269000 A 7.08683 47.95 101300 40.0 235000 B 1178.9 48.06 101700 50.0 197000 C 230 bp/°C50.29

Propanal (propionaldehyde): solubility vs. 1/T -1.5 Stephenson 1993

-2.0 x

nl -2.5

-3.0

-3.5 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 12.1.1.3.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for propanal.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2598 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 12.1.1.3.2 Reported Henry’s law constants of propanal (propionaldehyde) at various temperatures and temperature dependence equations

ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a)

ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a)

ln (kH/atm) = A – B/(T/K) (3) ln [H/(Pa m3/mol)] = A – B/(T/K) (4) ln [H/(atm·m3/mol)] = A – B/(T/K) (4a) 2 KAW = A – B·(T/K) + C·(T/K) (5)

Zhou & Mopper 1990

gas stripping-HPLC/UV gas stripping-HPLC/UV t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) fresh water sea water 10 2.605 10 3.389 17 - 17 6.495 25 8.305 25 10.13 30 10.67 30 12.67 35 14.07 35 16.34 40 - 40 22.03 45 23.56 45 28.15 ′ ′ eq. 1a KH /(M/atm) eq. 1a KH /(M/atm) A –7.15 A –6.60 B –2467 B –2273

Propanal (propionaldehyde): vapor pressure vs. 1/T 8.0 Dreisbach & Shrader 1949 Ambrose & Sprake 1974 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 48 °C 0.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 12.1.1.3.2 Logarithm of vapor pressure versus reciprocal temperature for propanal.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2599

Propanal (propionaldehyde): Henry's law constant vs. 1/T 4.0

3.0 )lo

m/ 2.0 3 m.aP ( /H nl /H 1.0

0.0 Zhou & Mopper 1990 (fresh water) Zhou & Mopper 1990 (seawater) Buttery et al. 1969 Hine & Mookerjee 1975 -1.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K) FIGURE 12.1.1.3.3 Logarithm of Henry’s law constant versus reciprocal temperature for propanal.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2600 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

12.1.1.4 Butanal (n-Butyraldehyde)

O

Common Name: n-Butyraldehyde Synonym: 1-butanal, butylaldehyde, butyric aldehyde Chemical Name: butyraldehyde, butanal CAS Registry No: 123-72-8

Molecular Formula: C4H8O, CH3CH2CH2CHO Molecular Weight: 72.106 Melting Point (°C): –96.86 (Lide 2003) Boiling Point (°C): 74.8 (Lide 2003) Density (g/cm3 at 20°C): 0.8170 (Weast 1982–83; Verschueren 1983) 0.8016 (Dean 1985; Riddick et al. 1986) Molar Volume (cm3/mol): 90.0 (20°C, calculated-density) 96.2 (calculated-Le Bas method at normal boiling point) Dissociation Constant: ∆ Enthalpy of Fusion Hfus (kJ/mol): 11.088 (Riddick et al. 1986) ∆ Entropy of Fusion Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 36000 (20°C, quoted, Palit 1947) 37840 (Deno & Berkheimer 1960) 37000, 71000 (lit. values, Verschueren 1983) 71000 (Dean 1985; Riddick et al. 1986) 83700 (selected, Yaws et al. 1990) 74400*, 54800 (20°C, 30°C, shake flask-GC/TC, measured range 0–70°C, Stephenson 1993)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 19372* (30.71°C, measured range 30.71–74.03°C, Seprakova et al. 1959; quoted, Boublik et al. 1984) 9464 (20°C, Verschueren 1983) 14798 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 5.52728 – 921.802/(186.564 + t/°C); temp range 30.71–74.03°C (Antoine eq. from reported exptl. data of Seprakova et al. 1959, Boublik et al. 1984) 14785 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 6.91048 – 946.35/(246.68 + t/°C); temp range –87 to 7°C (Antoine eq., Dean 1985, 1992) 15700 (selected, Riddick et al. 1986) log (P/kPa) = 6.1461 – 1233.0/(223.0 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 14780 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 5.68618 – 994.1/(–78.05 + T/K); temp range 293–349 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 5.40874 – 1182.472/(T/K); temp range 348–423 K (Antoine eq.-II, Stephenson & Malanowski 1987) log (P/mmHg) = 66.8411 – 3.6784 × 103/(T/K) –22.609·log (T/K) + 1.1697 × 10–2·(T/K) + 2.9647 × 10–13·(T/K)2; temp range 177–525 K (vapor pressure eq., Yaws 1994)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2601

Henry’s Law Constant (Pa m3/mol or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 11.65 (shake flask, partial vapor pressure-GC, Buttery et al. 1969) 11.59, 11.594, 12.14 (exptl., calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 11.65 (gas stripping-HPLC, Zhou & Mopper 1990) 3.237, 11.65, 15.59, 20.68, 36.19 (10, 25, 30, 35, 45°C, gas-stripping-HPLC-UV, Zhou & Mopper 1990) ′ ln [KH /(M/atm)] = –8.07 + 2701/(T/K); temp range 10–45°C (gas stripping-HPLC measurements, freshwater, Zhou & Mopper 1990) ′ ln [KH /(M/atm)] = –8.20 + 2698/(T/K); temp range 10–45°C (gas stripping-HPLC measurements, seawater (salinity 35 ± 1l),. Zhou & Mopper 1990) 11.59, 11.59 (quoted, correlated-molecular structure, Russell et al. 1992) 7.26 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001)

log KAW = 6.244 – 2571/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 1.20 (Hansch & Leo 1979) 0.88 (shake flask, Log P Database, Hansch & Leo 1987) 0.88 (recommended, Sangster 1989) 0.88 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 3.39 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: rate constant k = 2.7 × 10–5 s–1 in the atmosphere (Carlier et al. 1986)

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or Arrhenius expression see reference:

photooxidation t½ = 114 d to 19 yr in water, based on measured rate constant for the reaction with OH radical in water (Anbar & Neta 1967; Dorfman & Adams 1973; selected, Howard et al. 1991) –12 3 –1 –1 kOH = (26.2 ± 3.3) × 10 cm molecule s at 298 K (relative rate method, Audley et al. 1981; quoted, Atkinson 1985) –12 3 –1 –1 kOH = (25.3 ± 0.6) × 10 cm molecule s at 298 K (relative rate method, Kerr & Sheppard 1981; quoted, Atkinson 1985) –12 3 –1 –1 kOH = 25 × 10 cm molecule s at 298 K (Atkinson & Lloyd 1984; quoted, Carlier et al. 1986) k = (2.5 ± 0.4) M–1 s–1 for the reaction with ozone in water at pH 2.0–6.0 and 20–23°C (Hoigné & Bader 1983) –12 3 –1 –1 kOH = (30.8 ± 4.2) × 10 cm molecule s at 298 K (flash photolysis-resonance fluorescence technique. Semmes et al. 1985; quoted, Atkinson 1985) –11 3 –1 –1 –11 3 –1 –1 kOH(calc) = 2.55 × 10 cm molecule s , kOH(obs.) = 2.3 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985)

photooxidation t½ = 2.8–28 h in air, based on measured rate constant for the gas-phase reaction with OH radical in air (Atkinson 1987; selected, Howard et al. 1991) –11 3 –1 –1 kOH* = 2.35 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) Hydrolysis: Biodegradation: rate constants k = 0.044–0.069 h–1 in 30 mg/L activated sludge after a time lag of 5 h (Urano & Kato 1986b);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2602 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

aqueous aerobic t½ = 24–168 h, based on aerobic biological screening test data (Lamb & Jenkins 1952; Heukelekian & Rand 1955; Dore et al. 1975; Urano & Kato 1986b; selected, Howard et al. 1991);

aqueous anaerobic t½ = 96–672 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: photooxidation t½ = 2.8–28 h, based on measured rate constant for the gas-phase reaction with OH radical in air (Atkinson 1987; selected, Howard et al. 1991); calculated lifetimes of 5.9 d for reaction with OH radical (Atkinson 2000).

Surface water: photooxidation t½ = 114 d to 19 yr, based on measured rate constant for the reaction with OH radical in water (Anbar & Neta 1967; Dorfman & Adams 1973; selected, Howard et al. 1991);

t½ = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Ground water: t½ = 48–336 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

TABLE 12.1.1.4.1 Reported aqueous solubilities and vapor pressures of butanal (n-butyraldehyde) at various temperatures

Aqueous solubility Vapor pressure

Stephenson 1993 Seprakova et al. 1959

shake flask-GC/TC in Boublik et al. 1984 t/°CS/g·m–3 t/°CP/Pa 0 118200 30.71 19372 10.0 91200 38.36 26771 20.0 74400 43.93 33584 30.0 54800 48.33 39997 40.0 47100 52.36 46663 50.0 42500 55.90 53329 60.0 41700 62.29 66661 70.0 38900 67.73 79993 74.03 97512 bp/°C75 eq in Boublik et al. 1984 log P = A – B/(C + t/°C) eq. 2 P/kPa A 5.52728 B 921.802 C 186.564 bp/°C 75.195

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2603

Butanal (n -butyraldehyde): solubility vs. 1/T -3.0 Stephenson 1993

-3.5

x nl x -4.0

-4.5

-5.0 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 12.1.1.4.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for butanal.

TABLE 12.1.1.4.2 Reported Henry’s law constants of butanal (n-butyraldehyde) at various temperatures and temperature dependence equations

ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a)

ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a)

ln (kH/atm) = A – B/(T/K) (3) ln [H/(Pa m3/mol)] = A – B/(T/K) (4) ln [H/(atm·m3/mol)] = A – B/(T/K) (4a) 2 KAW = A – B·(T/K) + C·(T/K) (5)

Zhou & Mopper 1990

gas stripping-HPLC/UV gas stripping-HPLC/UV

t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) fresh water sea water 10 3.237 10 4.312 17 - 17 8.660 25 11.65 25 16.08 30 15.83 30 20.68 35 20.68 35 28.15 40 - 40 38.97 45 36.18 45 50.66 ′ ′ eq. 1a KH /(M/atm) eq. 1a KH /(M/atm) A –8.07 A –8.20 B –2704 B –2698

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2604 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Butanal (butyraldehyde): vapor pressure vs. 1/T 8.0 Seprakova et al. 1959 7.0

6.0

5.0 /Pa) S 4.0

log(P 3.0

2.0

1.0 b.p. = 74.8 °C 0.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 12.1.1.4.2 Logarithm of vapor pressure versus reciprocal temperature for butanal.

Butanal ( n -butyraldehyde): Henry's law constant vs. 1/T 5.0

4.0 ) l o m / m o l ) 3.0 3 m . a P ( / H n l n H / ( P a . m

2.0

1.0 Zhou & Mopper 1990 (fresh water) Zhou & Mopper 1990 (seawater) Buttery et al. 1969 Hine & Mookerjee 1975 0.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K) FIGURE 12.1.1.4.3 Logarithm of Henry’s law constant versus reciprocal temperature for butanal.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2605

12.1.1.5 2-Propenal (Acrolein)

O

Common Name: Acrolein Synonym: 2-propenal, acraldehyde, acrylic aldehyde, allyaldehyde, acrylaldehyde, aqualin Chemical Name: 2-propenal CAS Registry No: 107-02-8

Molecular Formula: C3H4O, CH2=CHCHO Molecular Weight: 56.063 Melting Point (°C): –87.7 (Lide 2003) Boiling Point (°C): 52.6 (Lide 2003) Density (g/cm3 at 20°C): 0.8389 (Riddick et al. 1986) Dissociation Constant: Molar Volume (cm3/mol): 66.8 (20°C, calculated-density) 66.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0 Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 208000 (20°C, Günther et al. 1968; Callahan et al. 1979; Verschueren 1977, 1983) 102020 (shake flask-radioactive analysis, Veith et al. 1980) 208000 (selected, Riddick et al. 1986) 229000*, 230000 (20°C, 30°C, shake flask-GC/TC, measured range 0–53°C, Stephenson 1993)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 26664* (17.5°C, summary of literature data, temp range –64.5 to 52.5°C, Stull 1947) log (P/mmHg) = [–0.2185 × 7628.8/(T/K)] + 8.033866; temp range: –64.5 to 52.5°C, (Antoine eq., Weast 1972–73) 29330, 44000 (20°C, 30°C, Verschueren 1977, 1983) 35300 (Riddick et al. 1986, Howard 1989) 36610, 35360 (interpolated-Antoine eq.-I and II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.19181 – 1204.95/(–37.8 + T/K); temp range 208–326 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.2878 – 1231.003/(–38.405 + T/K); temp range 250–306 K (Antoine eq.-I, Stephenson & Malanowski 1987) log (P/mmHg) = 57.9815 – 3.0933 × 103/(T/K) –19.638·log (T/K) + 1.1486 × 10–2·(T/K) – 2.3854 × 10–14·(T/K)2; temp range 185–506 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 2.84, 13.77 (0, 25°C, headspace-GC, Snider & Dawson 1985) 12.36 (review, Gaffney et al. 1987) 0.446 (Howard 1989) 5.48 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 4.823 – 2110/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: –0.09 (quoted, Callahan et al. 1979) 0.90 (measured value, Veith et al. 1980)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2606 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

–0.10 (shake flask, Log P Database, Hansch & Leo 1987; recommended, Sangster 1993) –0.01 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF: 2.54 (bluegill sunfish, Barrows et al. 1980) 2.54 (bluegill sunfish, Veith et al. 1980)

–0.22 (estimated-KOW, Howard 1989)

Sorption Partition Coefficient, log KOC:

1.38 (estimated-KOW, Howard et al. 1989) –0.219 (calculated-KOW, Kollig 1993)

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Volatilization: t½ = 10 d from a model river (Howard 1989); Photolysis: t½ = 3.5 d, based on measured quantum yields (Howard 1989). Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –19 3 –1 –1 kO3 = 6.4 × 10 cm molecule s (Atkinson & Carter 1984) –11 3 –1 –1 kOH = (1.90 – 2.53) × 10 cm molecule s for reaction with OH radical in air (Atkinson 1985) –12 3 –1 –1 kOH = 20.4 × 10 cm molecule s at 23.5°C using propylene as reference compound, with a atmospheric lifetime of 0.56 d (Edney et al. 1986) –16 3 –1 –1 –11 3 kNO3 = 5.9 × 10 cm molecule s with a calculated atmospheric lifetime of 16 d, kOH = 2.0 × 10 cm –1 –1 –19 3 –1 –1 molecule s with a lifetime of 1.2 d; and kO3 = 2.8 × 10 cm molecule s with a lifetime of 59 d at room temp. (Atkinson et al. 1987) –11 3 –1 –1 –11 3 –1 –1 kOH(calc) = 2.29 × 10 cm molecule s , kOH(obs.) = 1.96 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –11 3 –1 –1 kOH = 1.99 × 10 cm molecule s at 298 K (recommended, Atkinson 1989, 1990) atmospheric t½ = 3.4–33.7 h, based on rate constant for reaction with OH radical (Howard et al. 1991) –12 3 –1 –1 –15 3 –1 –1 kOH = 22.9 × 10 cm molecule s , kNO3 = 1.15 × 10 cm molecule s ((Sabljic & Güsten 1990; Müller & Klein 1991) –12 3 –1 –1 kOH(calc) = 17.70 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: no hydrolyzable groups (Callahan et al. 1979).

Biodegradation: t½ = 29 h (natural unsterilized water) and t½ = 43 h in sterilized (thymol-treated) water (Bowmer & Higgins 1976, quoted, Howard 1989);

aqueous aerobic t½ = 168–672 h, based on acclimated aqueous screening test data; and aqueous anaerobic t½ = 672–2880 h, based on aqueous aerobic biodegradation half-life (Howard et al. 1991). Biotransformation: t½ < 4 d (Callahan et al. 1979) Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environmental Compartments: Air: atmospheric lifetime of 0.56 d due to reaction with OH radical (Edney et al. 1986);

calculated atmospheric lifetimes: 16 d for reaction with NO3 radical, 1.2 d with OH radical and 59 d with O3 (Atkinson et al. 1987); t½ = 10–13 h for reaction with photochemically generated hydroxyl radical, t½ = 18 d for reaction with ozone and t½ = 3.5 d for photodissociation in the atmosphere (Howard 1989); t½ = 3.4–33.7 h, based on photooxidation half-life in air (Howard et al. 1991); atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994).

Surface water: removal t½ = 2.0 to 2.5 d from water (Howard 1989); First order k = 0.163 h–1 in 8 agricultural canals and varies between 0.104 and 0.211 h–1 at pH 7.1 to 7.5 and

water temperature of 16–24°C, the mean value corresponds to t½ = 4.25 h at 21°C (Bowmer & Sainty 1977) t½ ~ 8 and 23 d for reacting with singlet oxygen and alkylperoxy radicals in natural sunlit water (estimated, Howard 1989),

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2607

aqueous aerobic t½ =168–672 h, based on acclimated aqueous screening test data; and aqueous anaerobic t½ = 672–2880 h, based on aqueous aerobic biodegradation half-life (Howard et al. 1991) –1 k = 0.015 h at 21°C and pH 7.0, corresponding to t½ = 46 h in dilute buffered solutions of acrolein in distilled water. (Nordone et al. 1996) –1 –1 Dissipation k = 0.068 h with t½ = 10.2 h and k = 0.028 h with t½ = 7.3 h in weedy (Pump Canal, 12–20°C) and non-weedy agricultural canals (Lateral 1, 12–18°C), respectively, dissipation is the result of numerous processes including degradation, volatilization, adsorption and dilution (Nordone et al. 1996)

Ground water: t½ = 336–1344 h, based on aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 168–672 h, based on aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

TABLE 12.1.1.5.1 Reported aqueous solubilities and vapor pressures of 2-propenal(acrolein) at various temperatures

Aqueous solubility Vapor pressure

Stephenson 1993 Stull 1947

shake flask-GC/TC summary of literature data t/°CS/g·m–3 t/°CP/Pa 0 197000 –64.5 133.3 10.0 209000 –46.0 666.6 20.0 229000 –36.7 1333 30.0 230000 –26.3 2666 40.0 242000 –15.0 5333 53.0 245000 –7.5 7999 2.5 13332 17.5 26664 34.5 53329 52.5 101325 mp/°C –87.7

2-Propenal (acrolein): solubility vs. 1/T -2.0 Stephenson 1993 Veith et al. 1980

-2.5

x nl x -3.0

-3.5

-4.0 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 12.1.1.5.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2-propenal.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2608 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

2-Propenal (acrolein): vapor pressure vs. 1/T 8.0 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 52.6 °C m.p. = -87.7 °C 0.0 0.003 0.0034 0.0038 0.0042 0.0046 0.005 0.0054 0.0058 1/(T/K) FIGURE 12.1.1.5.2 Logarithm of vapor pressure versus reciprocal temperature for 2-propenal.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2609

12.1.1.6 Furfural (2-Furaldehyde)

O O Common Name: Furfural Synonym: 2-furaldehyde, 2-furancarboxaldehyde; furfurole, 2-furancarbonal, fural, furfuraldehyde, furole Chemical Name: furfural CAS Registry No: 98-01-1

Molecular Formula: C5H4O2 Molecular Weight: 96.085 Melting Point (°C): –38.1 (Lide 2003) Boiling Point (°C): 161.7 (Lide 2003) Density (g/cm3 at 20°C): 1.16 (Verschueren 1983) Dissociation Constant: Molar Volume (cm3/mol): 82.9 (calculated-density, Stephenson & Malanowski 1987) 92.1 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0 Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 82000 (40°C, synthetic method, Jones 1929) 91593 (shake flask-volumetric method, Booth & Everson 1948) 92900 (26.7°C, shake flask-turbidity, Skrzec & Murphy 1954) 77830 (generator column-HPLC/UV, Tewari et al. 1982) 79400*, 84000 (20°C, 30°C, shake flask-GC/TC, measured range 0–90°C, Stephenson 1993) Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 1066.6* (39.9°C, ebulliometry, measured range 40–170.6°C, Evans & Aylesworth 1926) 220.4* (interpolated-regression of tabulated data, temp range 18.5–161.8°C, Stull 1947) 1767* (55.67°C, Ramsay-Young method, measured range 55.6–170°C, Matthews et al. 1950) log (P/mmHg) = A – B/(T/K) – C log (T/K); temp range 55.6–170°C (Kirchhoff eq., Matthews et al. 1950) log (P/mmHg) = [–0.2185 × 11614.6/(T/K)] + 8.729884; temp range 18.5–161.8°C (Antoine eq., Weast 1972–73) 133.3, 400 (20°C, 30°C, Verschueren 1983) log (P/kPa) = 5.62941 – 1124.583/(148.829 + t/°C), temp rage 92.3–170.6°C (Anotoine eq. derived from Evans & Aylesworth 1926 data, Boublik et al. 1984) log (P/kPa) = 5.76606 – 1236.745/(167.368 + t/°C), temp rage 55.87–160.8°C (Anotoine eq. derived from Matthews et al. 1950 data, Boublik et al. 1984) 208.0 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 6.91048 – 946.35/(246.68 + t/°C), temp range –87 to 7°C (Antoine eq., Dean 1985, 1992) 333.3 (Riddick et al. 1986) 313.2 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.41784 – 1663.16/(–57.88 + T/K), temp range 357–435 K (Antoine eq., Stephenson & Malanowski 1987) log (P/mmHg) = 32.0337 – 3.3161 × 103/(T/K) + 10.171·log (T/K) – 2.1115 × 10–2·(T/K) + 9.2045 × 10–6·(T/K)2; temp range 237–657 K (vapor pressure eq., Yaws 1994) Henry’s Law Constant (Pa·m3/mol): 0.375 (calculated-P/C, Howard 1993)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2610 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Octanol/Water Partition Coefficient, log KOW: 0.34 (20°C, shake flask, Korenman 1972) 0.52 (generator column-HPLC/UV, Tewari et al. 1982) 0.41, 0.52 (shake flask, Log P Database, Hansch & Leo 1987) 0.46 (recommended, Sangster 1993) 0.41 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

0.079 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1993) –2.097 (estimated-S, Lyman et al. 1982; quoted, Howard 1993)

Sorption Partition Coefficient, log KOC:

1.602 (soil, estimated-KOW, Lyman et al. 1982; quoted, Howard 1993) 0.00 (soil, estimated-S, Lyman et al. 1982; quoted, Howard 1993)

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Volatilization: based on calculated Henry’s law constant, the estimated t½ ~ 9.9 d from a model river of one meter deep flowing at 1 m/s with a wind velocity of 3 m/s (Lyman et al. 1982; quoted, Howard 1993). Photolysis: Photooxidation: Hydrolysis: Biodegradation: average rate of biodegradation 41.0 mg COD g–1 h–1 based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982). Biotransformation:

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environmental Compartments:

Air: estimated photooxidation t½ ~ 0.44 d for the vapor-phase reaction with hydroxyl radical in air (Atkinson 1985; quoted, Howard 1993). Surface water: Ground water: Sediment: Soil: Biota:

TABLE 12.1.1.6.1 Reported aqueous solubilities of furfural (2-furaldehyde) at various temperatures

Stephenson 1993

shake flask-GC/TC t/°CS/g·m–3 0 82200 10.0 78600 20.0 79400 30.0 84000 40.0 89400 50.0 95000 60.0 102800 70.0 109700 80.0 125600 90.0 147400

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2611

Furfural (2-furaldehyde): solubility vs. 1/T -3.0 Stephenson 1993 Jones 1929 Booth & Everson 1948 Skrzec & Murphy 1954 Tewari et al. 1982 -3.5

x nl x -4.0

-4.5

-5.0 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 12.1.1.6.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for furfural.

TABLE 12.1.1.6.2 Reported vapor pressures of furfural (2-furaldehyde) at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Evans & Aylesworth 1926 Stull 1947 Matthews et al. 1950

ebulliometry summary of literature data Ramsay-Young method t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa continued 92.30 9199 18.5 133.3 55.67 1767 139.95 56368 120.3 28531 42.6 666.6 56.07 1793 143.8 61635 131.6 41330 54.8 1333 64.50 2786 146.85 69034 140.2 54795 67.8 2666 67.70 3321 149.65 71727 154.4 83326 82.1 5333 75.05 4600 151.70 77247 159.0 94259 91.5 7999 76.47 5034 153.95 82473 160.9 99192 103.4 13332 84.95 7254 155.10 85459 163.8 108257 121.8 26664 87.38 8239 160.75 101885 170.6 128789 141.8 53329 92.15 9959 161.8 101325 93.05 10308 bp/K 433.8 ∆ -1 96.77 12060 HV/(kJ mol ) = 38.59 at bp mp/°C –35.6 102.13 15079 103.31 15705 Kirchhoff, Rakine, Dupre eq. 103.09 17012 eq. 4 P/mmHg 107.27 18292 A 29.3205 111.65 21651 B 3530.52 116.25 24731 C 6.9418 118.40 27184 120.85 29744 124.75 34144

(Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2612 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 12.1.1.6.2 (Continued)

Evans & Aylesworth 1926 Stull 1947 Matthews et al. 1950

ebulliometry summary of literature data Ramsay-Young method t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa 126.05 35064 126.35 35130 132.15 43583 133.80 45303 135.95 48942 138.35 53262

Furfural (2-furaldehyde): vapor pressure vs. 1/T 8.0 Evans & Aylesworth 1926 Matthews et al. 1950 7.0 Stull 1947

6.0

5.0 ) a P / P a )

S 4.0 P ( g o l o g ( P

3.0

2.0

1.0 b.p. = 161.7 °C 0.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 12.1.1.6.2 Logarithm of vapor pressure versus reciprocal temperature for furfural.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2613

12.1.1.7 Benzaldehyde

O

Common Name: Benzaldehyde Synonym: benzenecarbonal, oil of bitter almonds Chemical Name: benzaldehyde CAS Registry No: 100-52-7

Molecular Formula: C7H6O, C6H5CHO Molecular Weight: 106.122 Melting Point (°C): –57.1 (Lide 2003) Boiling Point (°C): 178.8 (Lide 2003) Density (g/cm3 at 20°C): 1.0401 (24.94°C, measured, Ambrose et al. 1975) 1.0447 (Dean 1985) 1.0446 (Riddick et al. 1986) Molar Volume (cm3/mol): 102.0 (calculated-density, Chiou 1985) 118.2 (calculated-Le Bas method at normal boiling point) Dissociation Constant: ∆ Enthalpy of Fusion Hfus (kJ/mol): 9.322 (Riddick et al. 1986) ∆ Entropy of Fusion Sfus J/mol K: ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0 Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 2991 (quoted, Deno & Berkheimer 1960) 2857 (1 in 350 parts, Merck Index 1960) 3490, 3500 (quoted Ph. D. theses from University of London, Mitchell et al. 1964) 6550, 6580 (shake flask-gravimetric method, shake flask-GC/FID, Mitchell et al. 1964) 6900–7000 (shake flask-refractive index method, Carless & Swarbrick 1964) 7200 (20°C, shake flask-GC, Tewari et al. 1982) 3000 (20–25°C, shake flask-GC, Urano et al. 1982) 3300 (Verschueren 1983) 3279 (shake flask-GC, Chiou 1985) 3000 (20°C, Riddick et al. 1986) 7200*, 7400 (20°C, 30°C, shake flask-GC/TC, measured range 0–90°C, Stephenson 1993) 3514 (calculated-group contribution method, Kühne et al. 1995) Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3*, 145.2 (26.2°C, extrapolated-regression of tabulated data, temp range 26.2–179°C, Stull 1947) log (P/mmHg) = [–0.2185 × 11657.8/(T/K)] + 8.580362; temp range 26.2–179°C (Antoine eq., Weast 1972–73) 137.0* (ebulliometry-extrapolated from Antoine eq., measured range 38.5–89.3°C, Ambrose et al. 1975b) log (P/kPa) = 6.20251 – 1611.217/(T/K – 67.984); temp range 38.5–89.3°C, mercury as reference, Ambrose et al. 1975b) log (P/kPa) = 6.22556 – 1628.007/(T/K – 66.119); temp range 74.9–190.8°C, water as reference, Ambrose et al. 1975b) 169.0 (calculated from different vapor eq., Ambrose et al. 1975) 160.5 (extrapolated-Antoine eq., Ambrose et al. 1979) 133.3 (26.0°C, Verschueren 1983) 160.5 (extrapolated-Antoine eq., Boublik et al. 1984)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2614 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (P/kPa) = 6.21282 – 1618.669/(205.994 + t/°C); temp range 38.5–208°C (Antoine eq. from reported exptl. data of Ambrose et al. 1975, Boublik et al. 1984) 169.0 (Riddick et al. 1986)

log (PL/kPa) = 5.56823 – 1197.54/(–115.829 + T/K); temp range 348–452 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.4764 – 2455.4/(T/K); temp range 273–373 K (Antoine eq.-II, Stephenson & Malanowski 1987) log (PL/kPa) = 6.20256 – 1611.255/(–67.979 + T/K); temp range 409–481 K (Antoine eq.-III, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.48764 – 1782.204/(–52.863 + T/K); temp range 311–376 K (Antoine eq.-IV, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.22745 – 1629.229/(–65.993 + T/K); temp range 370–475 K (Antoine eq.-V, Stephenson & Malanowski 1987) log (P/mmHg) = 28.4711 – 3.4489 × 103/(T/K)–6.8363·log(T/K)–2.8173×10–10·(T/K) + 9.5236 × 10–7·(T/K)2; temp range 247–695 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 2.781, 1.494 (quoted exptl., calculated-bond contribution, Hine & Mookerjee 1975) 2.815 (Gaffney et al. 1987) 2.71* (gas stripping-GC, measured range 15–45°C, Betterton & Hoffmann 1988) 2.282* (gas-stripping-HPLC-UV, measured range 10–45°C, Zhou & Mopper 1990) ′ ln [KH /(M/atm)] = –5.00 + 1977/(T/K), temp range 10–45°C (gas stripping-HPLC measurements, freshwater, Zhou & Mopper 1990) ′ ln [KH /(M/atm)] = –5.90 + 2207/(T/K), temp range 10–45°C (gas stripping-HPLC measurements, seawater (salinity 35 ± 1l), Zhou & Mopper 1990) 3.08* (EPICS-UV spectroscopy, measured range 5–25°C, Allen et al. 1998)

ln KAW = –6759/(T/K) + 15.93 (EPICS-UV, temp range 5–25°C, Allen et al. 1998) 1.94 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001)

log KAW = 4.665 – 2276/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 1.48 (Leo et al. 1971; Hansch et al. 1972) 1.45 (shake flask-UV at pH 5.62, Umeyama et al. 1971) 1.43 (shake flask-UV, Holmes & Lough 1976) 1.45 ± 0.03 (shake flask at pH 7, Unger et al. 1978) 2.33 (HPLC-RT correlation, Veith et al. 1979) 1.56 (HPLC-k′ correlation, Eadsforth 1986) 1.49 (shake flask, Eadsforth 1986) 1.44 (HPLC-RT correlation average, Ge et al. 1987) 1.54 (RP-HPLC-RT correlation, ODS column with masking agent, Bechalany et al. 1989) 1.48 (recommended, Sangster 1989, 1993) 1.72 (shake flask-UV, Kramer & Henze 1990) 1.48 (shake flask-UV spec., Alcron et al. 1993) 1.48 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: loss rate k = 3.4 × 10–4 min–1 in outdoor Teflon chambers in dark (Grosjean 1985).

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or Arrhenius expression see reference: 2 –1 –1 k < 2.0 × 10 M s for oxidation by singlet oxygen in the aquatic systems at 25°C with t½ > 100 yr (Foote 1976; Mill 1979; quoted, Mill 1982)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2615

–11 3 –1 –1 kOH = 1.3 × 10 cm ·molecule s determined by the long-path Fourier transform IR spectroscopic method with reference to that for C2H4 or C2D4 (Niki et al. 1978) 9 –1 –1 kOH = 7.6 × 10 M s at 25°C with t½ = 0.74 d (Hendry & Kenley 1979; quoted, Mill 1982) 12 3 –1 –1 kOH = 7.8 × 10 cm mol s at 300 K (Lyman 1982) k = (2.5 ± 0.5) M–1 s–1 for 2-10 mM to react with ozone in water at pH 1.7 and 20–23°C (Hoigné & Bader 1983) –15 3 –1 –1 kNO3 = < 9.6 × 10 cm molecule s at 300 ± 1 K (using relative rate technique to propene Carter et al. 1981; quoted, Atkinson 1991) –15 3 –1 –1 kNO3 = (2.55 ± 0.08) × 10 cm molecule s at 294 K (Atkinson et al. 1984; quoted, Atkinson 1991) –15 3 –1 –1 –15 kNO3 = (1.13 ± 0.25) × 10 cm molecule s , compared to a previous measured value kNO3 < 5.2 × 10 cm3 molecule–1 s–1 at 296 ± 2 K (relative rate technique, Atkinson et al. 1984) –11 3 –1 –1 kOH = .2 × 10 cm molecule s at 298 K (Atkinson & Lloyd 1984; quoted, Carlier et al. 1986) –15 3 –1 –1 kNO3 = 2.0 × 10 cm molecule s at 298 ± 2 K (reevaluated value, Atkinson et al. 1987) –11 3 –1 –1 –11 3 –1 –1 kOH(exptl) = 1.30 × 10 cm ·molecule s , kOH(calc) = 1.698 × 10 cm molecule s (SAR, Atkinson 1987, 1990; quoted, Sabljic & Güsten 1990; Müller & Klein 1991) –15 3 –1 –1 kNO3 = 2.54 × 10 cm molecule s at 298 K (Atkinson et al. 1988; quoted, Sabljic & Güesten 1990; Müller & Klein 1991) –11 3 –1 –1 kOH = 1.29 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) –12 3 –1 –1 kOH(calc) = 11.40 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation: average rate of biodegradation 119.0 mg COD g–1 h–1 based on measurements of COD decrease using activated sludge inoculum with 20 d of adaptation to the substrate (Pitter 1976), biodegradation rate constant k = 0.065–0.074 h–1 in 30 mg/L activated sludge after a lag time of 5–10 h (Urano & Kato 1986b). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment:

Air: t½ > 9.9 d for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976);

t½ = 0.74 d based on rate constants for oxidation by OH radical in the atmosphere at 25°C (Mill 1982); loss rate k = (3.4 ± 1.7) × 10–4 min–1 in outdoor Teflon chambers in the dark (Grosjean 1985);

calculated lifetimes of 11 h and18 d for reactions with OH radical, NO3 radical, respectively (Atkinson 2000). Surface water: Ground water: Sediment: Soil: Biota: TABLE 12.1.1.7.1 Reported aqueous solubilities of benzaldehyde at various temperatures

Stephenson 1993

shake flask-GC/TC t/°CS/g·m–3 0 8400 20.0 7200 30.0 7400 40.0 7900 50.0 8200 60.0 9300 70.0 10200 80.0 12400 90.0 14000

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2616 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Benzaldehyde: solubility vs. 1/T -6.0 Stephenson 1993 Mitchell et al. 1964 Tewari et al. 1982 Chiou 1985 -6.5

x nl x -7.0

-7.5

-8.0 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K)

FIGURE 12.1.1.7.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for benzaldehyde.

TABLE 12.1.1.7.2 Reported vapor pressures of benzaldehyde at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Ambrose et al. 1975b

summary of literature data comparative ebulliometry t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa mercury as reference water as reference 26.2 133.3 38.489 399 74.961 2837 25.0 169 50.1 666.6 41.273 473 77.570 3203 31.69 2000 62.0 1333 43.525 539 80.848 3723 76.85 3098 75.0 2666 45.584 608 85.231 4524 178.75 101325 90.1 5333 47.296 672 89.154 5352 213.35 225300 99.6 7999 48.838 722 93.610 6460 254.65 500000 112.5 13332 50.707 814 97.721 7644 421.65 4650000 131.7 26664 51.955 873 102.170 9124 154.1 53329 56.352 1235 106.662 10854 bp/°C 178.75 179.0 101325 63.266 1592 111.251 12894 ∆ 1 68.412 2057 115.947 15306 HV/(kJ mol– ) = mp/°C –26 75.098 2808 120.430 17945 at 25°C 50.3 77.665 3150 126.350 21995 at bp 42.6 80.998 3724 131.273 25910 83.392 4528 137.178 31339 density 89.251 5353 142.836 37379 T/K ρ/kg m–3 148.806 44737 292.94 1044.85 155.366 54140 298.09 1040.13 Antoine eq. 161.067 63540 298.03 1040.22 eq. 3 P/kPa 167.121 74923

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2617

TABLE 12.1.1.7.2 (Continued)

Stull 1947 Ambrose et al. 1975

summary of literature data comparative ebulliometry t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa A 6.20251 173.661 88998 B 1611.217 178.672 101131 C –67.984 179.710 103800 185.556 119891 190.829 136055 Antoine eq. eq. 3 P/kPa A 6.22556 B 1628.007 C –66.119

Benzaldehyde: vapor pressure vs. 1/T 8.0 Ambrose et al. 1975 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 178.8 °C 0.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 12.1.1.7.2 Logarithm of vapor pressure versus reciprocal temperature for benzaldehyde.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2618 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 12.1.1.7.3 Reported Henry’s law constants of benzaldehyde at various temperatures and temperature dependence equations

ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a)

ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a)

ln (kH/atm) = A – B/(T/K) (3) ln [H/(Pa m3/mol)] = A – B/(T/K) (4) ln [H/(atm·m3/mol)] = A – B/(T/K) (4a) 2 KAW = A – B·(T/K) + C·(T/K) (5)

Betterton & Hoffmann Zhou & Mopper 1990 Zhou & Mopper 1990 1988 Allen et al. 1998

gas stripping-HPLC/UV gas stripping-HPLC/UV gas stripping-GC, spec. EPICS-UV

t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) fresh water sea water 10 1.095 10 1.339 15 1.506 5 0.555 17 - 17 1.987 25 2.709 10 0.824 25 2.282 25 3.025 35 4.648 15 1.197 30 3.016 30 4.187 45 7.916 20 1.803 35 3.943 35 5.790 25 3.10 40 - 40 7.342 ∆ –1 45 6.413 45 9.296 H/(kJ mol ) = –42.2 eq. 1 KAW at 25°CA–6759 ′ ′ eq. 1a KH /(M/atm) eq. 1a KH /(M/atm) B 15.93 A –5.00 A –5.90 B –1977 B –2207 ∆H/(kJ mol–1) = –56.2 ∆S/(J K–1 mol–1) = 132.4

Benzaldehyde: Henry's law constant vs. 1/T 3.0

2.0 )lo

m/ 1.0 3 m.aP ( /H nl /H 0.0

-1.0 Betterton & Hoffmann 1988 Zhou & Mopper 1990 Allen et al. 1998 Hine & Mookerjee 1975 -2.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K)

FIGURE 12.1.1.7.3 Logarithm of Henry’s law constant versus reciprocal temperature for benzaldehyde.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2619

12.1.2 KETONES 12.1.2.1 Acetone

O

Common Name: Acetone Synonym: 2-propanone, dimethylketone, DMK Chemical Name: acetone, 2-propanone CAS Registry No: 67-64-1

Molecular Formula: C3H6O, CH3COCH3 Molecular Weight: 58.079 Melting Point (°C): –94.7 (Lide 2003) Boiling Point (°C): 56.05 (Lide 2003) Density (g/cm3 at 20°C): 0.7899 (Weast 1982–83) 0.7908 (Dean 1985) Molar Volume (cm3/mol): 73.5 (20°C, calculated-density) 74.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion Hfus (kJ/mol): 5.690 (Riddick et al. 1986) ∆ Entropy of Fusion Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0 Water Solubility (g/m3 or mg/L at 25°C or as indicated): miscible (20°C, Palit 1947) miscible (Dean 1985; Yaws et al. 1990) miscible (Riddick et al. 1986; Howard 1990) 217700, 453000 (pseudo-solubilities, Staples 2000) Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 29610* (interpolated-regression of tabulated data, temp range –59.4 to 56.5°C, Stull 1947) log (P/mmHg) = 7.19038 – 1233.4/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 30490 (Perry 1950) 51854* (37.68°C, temp range 37.68–56.02°C, Brown & Smith 1957) 30800 (Buttery et al. 1969) 30810 (Hoy 1970) 29923* (24.330°C, temp range –12.949 to 55.285°C, Boublik & Aim 1972; quoted, Boublik et al. 1984) log (P/mmHg) = [–0.2185 × 10577.7/(T/K)] + 9.143231; temp range –20 to 96°C (Antoine eq., Weast 1972–73) 30780, 30800 (calculated-Antoine eq., Boublik et al. 1973) log (P/mmHg) = 7.15853 – 1231.232/(231.766 + t/°C); temp range 37.6–56.02°C (Antoine eq. from reported exptl. data of Brown & Smith 1957, Boublik et al. 1973) log (P/mmHg) = 7.11714 – 1210.595/(229.664 + t/°C); temp range –12.95 to 55.3°C (Antoine eq. from reported exptl. data, Boublik et al. 1973) 30810* (ebulliometry, fitted to Antoine eq., measured range 259–350.9 K, Ambrose et al. 1974) log (P/kPa) = 6.25632 – 1217.904/(T/K – 42.692); temp range 311.7–350.9 K, or for pressure range 53–202 kPa (Antoine eq., ebulliometry, Ambrose et al. 1975a) log (P/kPa) = 6.25478 – 1216.689/(T/K – 42.875); temp range 259.17–350.9 K, or for pressure below 225 kPa (Antoine eq., ebulliometry, Ambrose et al. 1974) 30870, 31520 (quoted exptl., calculated-Antoine eq., Boublik et al. 1984)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2620 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (P/kPa) = 6.24039 – 1209.746/(229.574 + t/°C); temp range –12.95 to 55.3°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.26017 – 1214.208/(230.002 + t/°C); temp range –13.98 to 77.72°C (Antoine eq. from reported exptl. data of Ambrose et al. 1974, Boublik et al. 1984) log (P/kPa) = 6.28185 – 1230.342/(231.665 + t/°C); temp range 37.6–56.02°C (Antoine eq. from reported exptl. data of Brown & Smith 1957, Boublik et al. 1984) 30780 (calculated-Antoine eq., Dean 1985) log (P/mmHg) = 7.11714 – 1210.595/(229.664 + t/°C), temp range: liquid (Antoine eq., Dean 1985, 1992) 24227, 30806 (20, 25°C, Riddick et al. 1986) log (P/kPa) = 6.25478 – 1216.589/(230.275 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 30730 (interpolated-Antoine eq.-V, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.24204 – 1210.6/(–43.49 + T/K); temp range 261–329 K (Antoine eq.-I, Stephenson & Malanowski 1987) log (PL/kPa) = 6.75622 – 1566.69/(0.269 + T/K); temp range 329–488 K (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 3.6452 – 469.5/(–108.21 + T/K); temp range 178–243 K (Antoine eq.-III, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.19735 – 1190.382/(–45.373 + T/K); temp range 203–269 K (Antoine eq.-IV, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.26483 – 1221.852/(–42.388 + T/K); temp range 257–334 K (Antoine eq.-V, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.24554 – 1211.515/(–43.471 + T/K); temp range 323–379 K (Antoine eq.-VI, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.69966 – 1542.465/(0.447 + T/K); temp range 374–464 K (Antoine eq.-VII, Stephenson & Malanowski 1987) log (P/mmHg) = 28.5884 – 2.469 × 103/(T/K) – 7.351·log (T/K) + 2.8025 × 10–10·(T/K) + 2.7361 × 10–6·(T/K)2; temp range 178–508 K (vapor pressure eq., Yaws 1994) Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 3.34 (partial pressure, Butler & Ramchandani 1935) 3.96 (shake flask, partial vapor pressure-GC, Burnett 1963) 3.25 (28°C, concn. ratio-GC, Nelson & Hoff 1968) 3.97 (shake flask, partial vapor pressure-GC, Buttery et al. 1969) 4.02, 3.93, 2.91 (exptl., calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 4.05 (headspace-GC, Vitenberg et al. 1975) 4.10 (calculated-activity coeff and vapor pressure, γ·P, Rathbun & Tai 1982) 0.908, 3.93 (0, 25°C, headspace-GC, Snider & Dawson 1985) 3.38 (review, Gaffney et al. 1987) 2.928* (gas-stripping-HPLC-UV, measured range 10–45°C, Zhou & Mopper 1990) ′ ln [KH /(M/atm)] = –5.00 + 1977/(T/K); temp range 10–45°C (gas stripping-HPLC measurements, freshwater, Zhou & Mopper 1990) ′ ln [KH /(M/atm)] = –3.60 + 1518/(T/K); temp range 25–45°C (gas stripping-HPLC measurements, seawater (salinity 35 ± 1l), Zhou & Mopper 1990) 3.07* (gas stripping-GC, measured range –14.9 to 44.9°C, Betterton 1991) 4.33 (computed, Yaws et al. 1991) 0.722, 1.26, 2.045, 5.31, 7.514 (0.51, 9.0, 16.11, 31, 38.51°C, headspace-GC, de-ionized water, Benkelberg et al. 1995) 3.735* (headspace-GC, rain water, measured range –30 to 39.51°C, Benkelberg et al. 1995) 0.762, 2.19, 6.64, 10.30 (0, 14.51, 30, 39.51°C, headspace-GC, artificial seawater, Benkelberg et al. 1995)

ln (kH/atm) = (18.4 ± 0.3) – (5386 ± 100)/(T/K), temp range 10–40°C (headspace-GC measurements, Benkelberg et al. 1995) 2.56 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996) 9.92 (EPICS-GC, Ayuttaya et al. 2001) 2.58 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 3.742 – 1965/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2621

Octanol/Water Partition Coefficient, log KOW: –0.24 (shake flask-CR, Collander 1951) –0.24 (shake flask at pH 7, Unger et al. 1978) –0.48 (shake flask-GC, Tanii et al. 1986) –0.24 (recommended, Sangster 1989, 1993) –0.31 (CPC centrifugal partition chromatography, Gluck & Martin 1990) –0.37 (calculated-UNIFAC activity coeff., Dallos et al. 1993) –0.24 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 2.31 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF: –0.187 (calculated, Staples 2000)

Sorption Partition Coefficient, log KOC:

–0.586 (calculated-KOW, Kollig 1993) –0.523 (quoted calculated value, Staples 2000)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: using Henry’s law constant, t½ = 20 h was estimated for a model river 1 m deep flowing at 1 m/s with a wind velocity of 3 m/s (Lyman et al. 1982; quoted, Howard 1990). Photolysis: rate constant k = 1.4 × 10–5 s–1 in the atmosphere (Carlier et al. 1986); calculated lifetime τ ~ 60 d in air (Atkinson 2000)

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or Arrhenius expression see reference:

photooxidation t½ = 11.3–453 yr, based on measured data for the reaction with hydroxyl radical in aqueous solution (Dorfman & Adams 1973; selected, Howard et al. 1991)

photooxidation t½ > 9.9 d for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976) –12 3 –1 –1 kOH = (0.23 ± 0.03) × 10 cm molecule s at 300 K (flash photolysis-resonance fluorescence, Zetzsch 1982; quoted, Atkinson 1985) –12 3 –1 –1 kOH = (0.62 ± 0.09) × 10 cm molecule s at 298 K (relative rate technique to n-hexane, Chiorboli et al. 1983; quoted, Atkinson 1985) k = 0.032 ± 0.006) M–1 s–1 for the reaction with ozone in water using 1 mM propyl alcohol as scavenger at pH 2 and 20–23°C (Hoigné & Bader 1983) –13 3 –1 –1 –13 3 –1 –1 kOH(calc) = 2.2 × 10 cm molecule s , kOH(obs.) = 2.3 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985)

photooxidation t½ = 279–2790 h, based on measured data for the vapor-phase reaction with hydroxyl radical in air (Atkinson 1985; selected, Howard et al. 1991) –13 3 –1 –1 –13 3 –1 –1 kOH = 2.16 × 10 cm molecule s at 296 K and k = 1.80 × 10 cm molecule s for the aqueous- phase reaction with hydroxyl radical in solution (Wallington & Kurylo 1987) –13 3 –1 –1 –13 3 –1 –1 kOH = 2.16 × 10 cm molecule s ; k(soln) = 1.8 × 10 cm molecule s for reaction with OH radical in aqueous solution (Wallington et al. 1988) –11 3 –1 –1 kOH* = 2.26 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) –12 3 –1 –1 kOH(calc) = 0.18 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation: biodegradation rate constants, k = 0.016–0.020 h–1 in 30 mg/L activated sludge after a time lag of 20–25 h (Urano & Kato 1986b);

t½(aq. aerobic) = 24–168 h, based on unacclimated aqueous screening test data (Bridie et al. 1979; Dore et al. 1975; selected, Howard et al. 1991);

t½(aq. anaerobic) = 96–672 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2622 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

k(exptl) = 0.0440 h–1 compared to predicted rate constants by group contribution method: k = 0.0433 h–1 (nonlinear) and k = 0.043 h–1 (linear) (Tabak & Govind 1993). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ > 9.9 d for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976);

photooxidation t½ = 279–2790 h, based on measured data for the vapor-phase reaction with hydroxyl radical in air (Howard et al. 1991); τ τ calculated lifetimes = 53 d and > 11 yr for reactions with OH radical, NO3 radical, respectively (Atkinson 2000);

photooxidation and photolysis t½ = 36 h (Staples 2000). Surface water: photooxidation t½ = 11.3–453 yr, based on measured data for the reaction with hydroxyl radicals in aqueous solution (Dorfman & Adams 1973; quoted, Howard et al. 1991);

t½ = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991);

aerobic biodegradation t½ = 96–168 h (Staples 2000). Ground water: t½ = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Sediment: anaerobic biodegradation t½ = 384 h or 16 d (Staples 2000). Soil: t½ = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991);

aerobic biodegradation t½ = 96–168 h (Staples 2000). Biota:

TABLE 12.1.2.1.1 Reported vapor pressures of acetone at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4) 1.

Stull 1947 Brown & Smith 1957 Boublik & Aim 1972

summary of literature data Austr. J. Chem. 10, 423- ref. in Boublik et al. 1984* t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa –59.4 133.3 37.68 51854 –12.949 4524 36.649 49704 –40.5 666.6 41.58 60127 –5.424 6967 42.094 61295 –31.1 1333 44.96 68271 –0.103 9306 48.344 77125 –20.8 2666 45.0 68367 4.882 12046 55.285 98572 –9.40 5333 47.01 73603 8.666 14549 bp/°C 56.102 –2.0 7999 49.31 79969 13.019 17921 Antoine eq. 7.7 13332 51.91 87727 16.831 21314 eq. 2 P/kPa 22.7 26664 56.02 101199 20.939 25780 A 6.24039 39.5 53329 24.330 29923 B 1209.746 56.5 101325 28.351 35493 C 229.574 32.138 41470 mp/°C –94.6

*ref. Collection Czech. Chem. Commun 37, 3513 (1972)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2623

TABLE 12.1.2.1.1 (Continued) 2.

Ambrose et al. 1974

comparative ebulliometry t/°CP/Pat/°CP/Pa cont’d –13.975 4257 55.876 100666 –11.019 5076 56.646 103344 –8.106 6005 60.963 119433 –4.982 7186 64.859 135602 –1.388 8691 69.512 157101 0.288 9497 73.943 180024 1.972 10376 77.724 201571 2.007 10391 25.0 30806 5.493 12417 5.511 12432 eq. 3 P/kPa 9.077 14840 A 6.25478 9.093 14851 B 1216.689 12.473 17480 C –42.875 16.928 21525 20.717 25544 25.045 30867 Ambrose et al 1975a 29.275 36912 33.720 44267 bp/°C 56.067 28.601 53675 42.834 63079 eq. 3 P/kPa 47.320 74449 A 6.25632 52.170 88536 B 1217.904 C –42.692 equation for vapor pressures below 200 kPa ∆ –1 HV/(kJ mol ) = at 25°C 31.3 at bp 29.6

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2624 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Acetone: vapor pressure vs. 1/T 8.0 Brown & Smith 1957 Boublik & Aim 1972 7.0 Ambrose et al. 1974 Stull 1947 6.0

5.0 ) aP / S 4.0 P(gol

3.0

2.0

1.0 b.p. = 56.05 °C m.p. = -94.7 °C 0.0 0.0028 0.0032 0.0036 0.004 0.0044 0.0048 0.0052 0.0056 0.006 1/(T/K) FIGURE 12.1.2.1.1 Logarithm of vapor pressure versus reciprocal temperature for acetone.

TABLE 12.1.2.1.2 Reported Henry’s law constants of acetone at various temperatures and temperature dependence equations

ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a)

ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a)

ln (kH/atm) = A – B/(T/K) (3) ln [H/(Pa m3/mol)] = A – B/(T/K) (4) ln [H/(atm·m3/mol)] = A – B/(T/K) (4a) 2 KAW = A – B·(T/K) + C·(T/K) (5) 1.

Snider & Dawson 1985 Zhou & Mopper 1990 Betterton 1991

gas stripping-GC/FID gas stripping-HPLC/UV gas stripping-HPLC/UV gas stripping-GC/FID t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) fresh water sea water 0 0.908 10 1.421 10 1.735 14.9 2.303 25 3.935 17 - 17 2.356 25 3.070 25 2.846 25 3.311 25 3.269 30 3.658 30 4.037 25 3.897 enthalpy of transfer 35 4.585 35 4.825 25 3.753 ∆H = 37.24 kJ/mol 40 - 40 5.537 25 3.958 45 6.178 45 6.846 35.1 7.794 44.9 11.92 ′ ′ eq. 1a KH /(M/atm) eq. 1a kH /(M/atm) A –5.00 A –3.60 B –1977 B –1518

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2625

TABLE 12.1.2.1.2 (Continued) 2.

Benkelberg et al. 1995

equilibrium vapor phase concentration-headspace GC t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) deionized water rain water 0.51 0.7222 –28.0 0.742 9.0 1.260 25.0 3.735 16.61 2.0445 39.51 8.328 31.0 5.313 38.51 7.514 artificial sea water 0 0.757 for deionized and rain water: 14.51 2.189

eq. 3 kH/atm 30.0 6.639 A 18.4 ± 0.3 39.51 10.305 B 5286 ± 100

Acetone: Henry's law constant vs. 1/T 4.0

3.0 )lo

m/ 2.0 3 m.aP ( /H nl /H 1.0

Snider & Dawson 1985 0.0 Zhou & Mopper 1990 Betterton 1991 Benkelberg et al. 1995 experimental data -1.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K) FIGURE 12.1.2.1.2 Logarithm of Henry’s law constant versus reciprocal temperature for acetone.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2626 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

12.1.2.2 2-Butanone (Methyl ethyl ketone)

O

Common Name: Methyl ethyl ketone Synonym: 2-butanone, butan-2-one, MEK Chemical Name: 2-butanone, methyl ethyl ketone CAS Registry No: 78-93-3

Molecular Formula: C4H8O, CH3CH2COCH3 Molecular Weight: 72.106 Melting Point (°C): –86.64 (Lide 2003) Boiling Point (°C): 79.59 (Lide 2003) Density (g/cm3 at 20°C): 0.8054 (Weast 1982–83) 0.7997 (25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 89.9 (calculated-density, Rohrschneider 1973) 96.2 (calculated-Le Bas method at normal boiling point) Dissociation Constant:

14.7 (pKa, Riddick et al. 1986) + –7.2 (pKBH , Riddick et al. 1986) ∆ Enthalpy of Fusion Hfus (kJ/mol): 8.439 (Riddick et al. 1986) ∆ Entropy of Fusion Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 240000 (20°C, synthetic method, Jones 1929; quoted, Palit 1947; Dean 1985; Riddick et al. 1986) 255700* (shake flask-volumetric method, measured range 20–30°C Ginnings et al. 1940) 343550 (shake flask-volumetric, Ginnings et al. 1940) 228020 (estimated, McGowan 1954) 12420 (20°C, Amidon et al. 1975) 136280 (generator column-GC, Wasik et al. 1981; Tewari et al. 1982) 353000 (20°C, Verschueren 1983) 249000 (selected, Yaws et al. 1990) 276000*, 235000 (19.3°C, 29.7°C, shake flask-GC, measured range 0–70.2°C, Stephenson 1992)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 12954* (interpolated-regression of tabulated data, temp range –48.3 to 79.6°C, Stull 1947) log (P/mmHg) = 7.22200 – 1343.6/(230 + t/°C), (Antoine eq., Dreisbach & Martin 1949) 16500* (31.84°C, ebulliometry, measured range 31.84–79.5°C, Dreisbach & Shrader 1949) 25158* (41.46°C, flow calorimetry, measured range 41.46–79.5°C, Nickerson et al. 1961) 26568* (42.778°C, ebulliometry, measured range 42.778–88.444°C, Collerson et al. 1965) log (P/mmHg) = 7.06376 – 1261.455/(221.982 + t/°C); temp range 42.778–88.444°C (Antoine eq., ebulliometric measurements, Collerson et al. 1965) log (P/mmHg) = 19.48322 – 2328.0/(T/K) – 3.92657·log (T/K); temp range 42.778–88.444°C (Kirchhoff eq., ebulliometric measurements, Collerson et al. 1965) log (P/mmHg) = [–0.2185 × 8149.5/(T/K)] + 7.959295; temp range –48.3 to 79.6°C (Antoine eq., Weast 1972–73)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2627

12079* (ebulliometry, Ambrose et al. 1975a; quoted, Riddick et al. 1986; Howard 1990) 12000, 12060, 12640 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.02273 – 1167.861/(211.199 + t/°C); temp range 41.46–97.42°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.18397 – 1258.948/(221.725 + t/°C); temp range 42.78–86.44°C (Antoine eq. from reported exptl. data of Ambrose et al. 1975, Boublik et al. 1984) log (P/kPa) = 6.18838 – 1261.297/(222.964 + t/°C); temp range 42.79–88.4°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 12020 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.06356 – 1261.34/(221.97 + t/°C); temp range 43–88°C (Antoine eq., Dean 1985, 1992) 12700 (Howard et al. 1986; quoted, Banerjee et al. 1990) 12120 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.24715 – 1294.53/(–47.442 + T/K); temp range 294–352 K (Antoine eq-I., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.18479 – 1259.519/(–51.359 + T/K); temp range 315–363 K (Antoine eq-II., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.22518 – 1286.794/(–47.766 + T/K); temp range 353–403 K (Antoine eq-III., Stephenson & Malanowski 1987) 5425 (calculated-solvatochromic parameters, Banerjee et al. 1990) log (P/mmHg) = 47.706 – 3.0965 × 103/(T/K) – 15.184·log (T/K) + 7.4846 × 10–3·(T/K) – 1.7084 × 10–13·(T/K)2; temp range 186–536 K (vapor pressure eq., Yaws 1994) 12071* (static method-manometry, measured range 0–50°C, Garriga et al. 1996)

Henry’s Law Constant (Pa m3/mol or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 4.710 (shake flask, partial vapor pressure-GC, Buttery et al. 1969) 4.723 (quoted, exptl., Hine & Mookerjee 1975) 5.549, 4.408 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 3.87 (headspace-GC, Vitenberg et al. 1975) 6.191, 4.215 (calculated-γ·P, calculated-MW, Rathbun & Tai 1982) 0.987, 5.76 (0, 25°C, gas stripping-GC, Snider & Dawson 1985) 13.17* (EPICS-GC/FID, measured range 10–30°C, Ashworth et al. 1988) ln [H/(atm·m3/mol)] = –26.32 – 5214/(T/K), temp range 10–30°C, (EPICS measurements, Ashworth et al. 1988) 5.210 (gas stripping-HPLC/UV, Zhou & Mopper 1990) 5.117* (gas-stripping-HPLC-UV, measured range 10–45°C, Zhou & Mopper 1990) ′ ln [KH /(M/atm)] = –6.03 + 2184/(T/K), temp range 10–45°C (gas stripping-HPLC measurements, freshwater, Zhou & Mopper 1990) ′ ln [KH /(M/atm)] = –5.97 + 2138/(T/K), temp range 10–45°C (gas stripping-HPLC measurements, seawater (salinity 35 ± 1 l), Zhou & Mopper 1990) 18.28* (45°C, equilibrium headspace-GC, measured range 45–80°C, Ettre et al. 1993)

log (1/KAW) = –3.7973482 + 1889.5294/(T/K), temp range 45–80°C (equilibrium headspace-GC measurements, Ettre et al. 1993) 3.85 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996) 3.95 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 4.764 – 2213/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001) 5.04 – 3.54 (27°C, equilibrium headspace-GC, solute concn 10.01–85.10 mg/L, measured range 300–315 K, Cheng et al. 2003) 5.04* (27°C, equilibrium headspace-GC, measured range 27–42°C, Cheng et al. 2003)

Octanol/Water Partition Coefficient, log KOW: 0.26 (shake flask-CR, Collander 1957) 0.28 (shake flask-UV, Fujita et al. 1964, Hansch & Leo 1979) 0.32 ± 0.01 (shake flask-UV, calculated, Iwasa et al. 1965) 0.29 (shake flask-UV, GC, Hansch & Anderson 1967; Hansch et al. 1968; Leo et al. 1969, 1971) 0.28 ± 0.02 (shake flask at pH 7, Unger et al. 1978)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2628 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

0.69 (generator column-GC, Wasik et al. 1981; Tewari et al. 1982) 0.26 (shake flask-GC, Tanii et al. 1986) 0.62 (calculated-activity coeff. γ from UNIFAC, Banerjee & Howard 1988) 0.29 (recommended, Sangster 1989, 1993) 0.29 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 2.77 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

0.00 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1990)

Sorption Partition Coefficient, log KOC:

1.53 (soil, estimated-KOW, Lyman et al. 1982; quoted, Howard 1990) 1.47 ± 0.55, 1.53 ± 0.88; 1.50 (Captina silt loam, McLaurin sandy loam; weighted mean, batch equilibrium- sorption isotherm, Walton et al. 1992)

0.070 (predicted-KOW, Walton et al. 1992) –0.03 (calculated-KOW, Kollig 1993)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: based on lab. data for evaporation relative to the reaeration rate of 0.27 (Mackay et al. 1982; Rathbun & Tai 1982; quoted, Howard 1990) and typical reaeration rates of rivers and lakes (Mill et al. 1982; quoted, Howard 1990),

t½ = 3 d for evaporation from a river and t½ = 12 d from lake (Howard 1990). Photolysis: rate constant k = 1.4 × 10–5 s–1 in the atmosphere (Carlier et al. 1986); calculated lifetime τ ~4 d in air (Atkinson 2000)

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression see reference:

photooxidation t½ = 48.8 – 81.4 yr, based on measured rate data for the reaction with hydroxyl radical in aqueous solution (Anbar & Neta 1967; selected, Howard et al. 1991)

photooxidation t½ = 2.4 – 24 h in air for the gas-phase reaction with hydroxyl radical, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radicals (Darnall et al. 1976) 10 3 –1 –1 kOH = (0.20 ± 0.06) × 10 cm M s at 1 atm and 305 ± 2 K (relative rate method, Winer et al. 1976) 2 –1 –1 k < 2.0 × 10 M s for oxidation with singlet oxygen at 25°C in aquatic systems with t½ > 00 yr (Foote 1976; Mill 1979; quoted, Mill 1982) 9 –1 –1 kOH = 1.9 × 10 M s at 25°C with t½ = 2.9 d (Hendry & Kenley 1979; quoted, Mill 1982) –12 3 –1 –1 kOH = (0.95 ± 0.09) × 10 cm molecule s at (295 ± 2) K in air (relative rate technique to ethene Cox et al. 1981; quoted, Atkinson 1985) –12 3 –1 –1 kOH = (1.20 ± 0.20) × 10 cm molecule s at 300 K in air (flash photolysis-resonance fluorescence, Zetzsch 1982; quoted, Atkinson 1985) k = (0.12 ± 0.02) M–1 s–1 for the reaction with ozone in water using 20–300 mM t-BuOH as scavenger at pH 2 and 20–23°C (Hoigné & Bader 1983) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 1.38 × 10 cm molecule s , kOH(obs.) = 1.0 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985) –12 3 –1 –1 τ kOH = 0.97 × 10 cm molecule s at 24°C with an atmospheric lifetime = 12 d (Edney et al. 1986) –13 3 –1 –1 –13 3 –1 –1 kOH = 1.15 × 10 cm molecule s at 296 K and k(soln) = 1.50 × 10 cm molecule s for the aqueous- phase reaction with OH radical in solution (Wallington & Kurylo 1987; quoted, Wallington et al. 1988) –12 3 –1 –1 kOH* = 1.15 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) photooxidation t½ = 64.2 – 642 h, based on measured rate data for the vapor phase reaction with hydroxyl radical (Howard et al. 1991) –12 3 –1 –1 kOH(calc) = 1.65 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: first-order hydrolysis t½ > 0 yr, based on nonreactive hydrolysis from pH 5 to 9 at 15°C (Kollig et al. 1987; selected, Howard et al. 1991).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2629

Biodegradation: k = 0.021 – 0.025 h–1 in 30 mg/L activated sludge after a time lag of 5 h (Urano & Kato 1986b)

t½(aq. aerobic) = 24 – 168 h, based on unacclimated grab sample of aerobic freshwater (Dojilido 1979; selected, Howard et al. 1991) and aerobic aqueous screening test data (Takemoto et al. 1981; selected, Howard et al. 1991)

t½(aq. anaerobic) = 96 – 672 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991)

t½(aerobic) = 1 d, t½(anaerobic) = 28 d in natural waters (Capel & Larson 1995) Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 2.4–24 h in air for the gas-phase reaction with hydroxyl radical, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976);

photodecomposition t½ = 9.8 h under simulated atmospheric conditions, with NO (Dilling et al. 1976) t½ = 2.3 d for the atmospheric reaction with photochemically produced hydroxyl radical (Cox et al. 1981; quoted, Howard 1990);

photooxidation t½ = 64.2–642 h, based on measured rate data for the vapor phase reaction with hydroxyl radical (Atkinson 1985; selected, Howard et al. 1991); calculated atmospheric lifetime τ = 12 d due to reaction with OH radical (Edney et al. 1986) atmospheric transformation lifetime τ < 1 d (estimated, Kelly et al. 1994); calculated lifetime τ = 10 d for reaction with OH radical (Atkinson 2000).

Surface water: photooxidation t½ = 48.8–81.4 yr, based on measured rate data for the reaction with hydroxyl radical in aqueous solution (Anbar & Neta 1967; quoted, Howard et al. 1991); t½ = 24–168 h, based on unacclimated grab sample of aerobic freshwater (Dojlido 1979; selected, Howard et al. 1991) and aerobic aqueous screening test data (Takemoto et al. 1981; selected, Howard et al. 1991)

t½(aerobic) = 1 d, t½(anaerobic) = 28 d in natural waters (Capel & Larson 1995). Ground water: t½ = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: calculated t½ = 4.9 d from first-order kinetic of degradation under both sterile and nonsterile conditions (Anderson et al. 1991);

t½ = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

TABLE 12.1.2.2.1 Reported aqueous solubilities of 2-butanone (methyl ethyl ketone) at various temperatures

Ginnings et al. 1940 Stephenson 1992

volumetric method shake flask-GC/TC t/°CS/g·m–3 t/°CS/g·m–3 20 273300 0 367000 25 255700 9.6 310000 30 240700 19.3 276000 29.7 245000 bp/°C 80.7–80.8 39.6 220000 d25 0.8007 49.7 206000 60.6 180000 70.2 182000

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2630 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

2-Butanone (methyl ethyl ketone): solubility vs. 1/T -1.5 Ginnings et al. 1940 Stephenson 1992 Jones 1929 Wasik et al. 1981 -2.0

x nl x -2.5

-3.0

-3.5 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 12.1.2.2.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2-butanone.

TABLE 12.1.2.2.2 Reported vapor pressures of 2-butanone (methyl ethyl ketone) at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) ln P = A – B/(C + T/K) (3a) log P = A – B/(T/K) – C·log (T/K) (4) 1.

Stull 1947 Dreisbach & Shrader 1949 Nickerson et al. 1961 Collerson et al. 1965

summary of literature data ebulliometry flow calorimetry ebulliometry t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa –48.3 133.3 31.84 16500 41.46 25158 42.778 26568 –28.0 666.6 54.29 42066 65.54 63368 48.148 33024 –17.7 1333 67.36 67661 79.39 101098 53.026 39963 –6.50 2666 79.5 101325 89.43 137282 57.08 46591 6 5333 97.42 173212 60.821 53469 14 7999 64.005 59954 25 13332 eq. 4 P/mm Hg 67.009 66625 41.6 26664 A 21.78963 69.734 73184 60 53329 B 2441.9 72.343 79933 79.6 101325 C 4.70504 74.839 86849 76.95 93063 mp/°C –85.9 79.221 100135 81.268 106887 83.161 113428 85.013 120126 86.715 126547 88.44 133353

mp/°C –86.69 bp/°C 79.589

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2631

TABLE 12.1.2.2.2 (Continued)

Stull 1947 Dreisbach & Shrader 1949 Nickerson et al. 1961 Collerson et al. 1965

summary of literature data ebulliometry flow calorimetry ebulliometry t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa Antoine eq. eq. 2 P/mmHg A 7.06376 B 1261.455 C 221.982 Kirchhoff eq. eq. 4 P/mmHg A 19.48322 B 2328 C 3.92657 ∆ –1 HV/(kJ mol ) = 31.67 2.

Ambrose et al. 1975(a) Garriga et al. 1996

comparative ebulliometry static method-manometry

t/°C P/Pa t/°C P/Pa 25 12079 5 4277 42.778 26568 10 5644 48.137 33023 15 7334 53.016 39963 20 9435 57.07 46591 25 12071 60.812 53468 30 15281 63.996 59953 35 19110 67.001 66625 40 23682 69.726 73184 45 29132 72.335 79933 50 35540 74.832 86848 76.944 93063 Antoine eq. 79.215 100136 eq. 3a P/kPa 81.262 106887 A 14.133009 83.156 113427 B 2843.871 85.009 120125 C –53.875 86.711 126545 88.444 133352 bp/°C 79.583 eq. 2 P/kPa A 6.18444 B 1259.223 C –51.392 ∆ –1 HV/(kJ mol ) = at 25°C 34.7 at bp 31.8

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2632 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

2-Butanone (methyl ethyl ketone): vapor pressure vs. 1/T 8.0 experimental data Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 79.59 °C 0.0 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 1/(T/K) FIGURE 12.1.2.2.2 Logarithm of vapor pressure versus reciprocal temperature for 2-butanone.

TABLE 12.1.2.2.3 Reported Henry’s law constants of 2-butanone (methyl ethyl ketone) at various temperatures and temperature dependence equations

ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a)

ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a)

ln (kH/atm) = A – B/(T/K) (3) ln [H/(Pa m3/mol)] = A – B/(T/K) (4) ln [H/(atm·m3/mol)] = A – B/(T/K) (4a) 2 KAW = A – B·(T/K) + C·(T/K) (5)

Snider & Dawson 1985 Ashworth et al. 1988 Zhou & Mopper 1990

gas stripping-GC EPICS-GC gas stripping-HPLC/UV gas stripping-HPLC/UV t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) fresh water sea water 0 0.9873 10 28.37 10 2.068 10 2.702 25 5.765 15 39.52 17 - 17 3.943 20 19.25 25 5.117 25 6.666 enthalpy of transfer: 25 13.17 30 7.186 30 8.735 ∆H/(kJ mol–1) = 46.024 30 11.15 35 9.296 35 10.78 40 - 40 14.07 eq. 4a H/(atm m3/mol) 45 14.27 45 18.09 A –26.32 ′ ′ B –5214 eq. 1a KH /(M/atm) eq. 1a KH /(M/atm) A –6.03 A –5.97 B –2184 B –2138

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2633

2-Butanone (methyl ethyl ketone): Henry's law constant vs. 1/T 6.0

5.0

4.0 )lom/

3 3.0 m.aP(/H nl m.aP(/H

2.0

1.0 Snider & Dawson 1985 Ashworth et al. 1988 Zhou & Mopper 1990 0.0 Ettre et al. 1993 Cheng et al. 2003 experimental data -1.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 12.1.2.2.3 Logarithm of Henry’s law constant versus reciprocal temperature for 2-butanone.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2634 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

12.1.2.3 2-Pentanone

O

Common Name: 2-Pentanone Synonym: 2-pentanone, methyl propyl ketone, methyl n-propyl ketone, ethylacetone Chemical Name: 2-pentanone, methyl propyl ketone CAS Registry No: 107-87-9

Molecular Formula: C5H10O, CH3CH2CH2COCH3 Molecular Weight: 86.132 Melting Point (°C): –77.80 (Stull 1947; Weast 1982–83; Dean 1985; Howard 1990) –76.8 (Lide 2003) Boiling Point (°C): 102.0 (Weast 1982–83; Verschueren 1983) 101.7 (Dean 1985; Howard 1990) 102.26 (Lide 2003) Density (g/cm3 at 20°C): 0.8089 (Weast 1982–83) 0.8064, 0.8015 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 118.4 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion Hfus (kJ/mol): 2.541 (Riddick et al. 1986) ∆ Entropy of Fusion Sfus J/mol K: ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 54268* (30°C, shake flask-interferometer, measured range 10–50°C, Gross et al. 1939) 30150 (30°C, Gross et al. 1939) 55100 (shake flask-volumetric, Ginnings et al. 1940) 59500 (20°C, shake flask-volumetric, Ginnings et al. 1940) 64010 (shake flask-interferometer, Donahue & Bartell 1952) 54350 (McGowan 1954; Deno & Berkheimer 1960) 43000 (Verschueren 1977, 1983) 59500 (20°C, Riddick et al. 1986) 55400 (selected, Yaws et al. 1990) 59000* (19.7°C, shake flask-GC, measured range 0–90.5°C, Stephenson 1992)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 2088* (interpolated-regression of tabulated data, temp range –12.7 to 102.7°C, Stull 1947) 2666 (28.5°C, Stull 1947) 20440* (56.649°C, ebulliometry, measured range 56.5–111.655°C, Collerson et al. 1965) log (P/mmHg) = 7.01753 – 1311.145/(214.693 + t/°C); temp range 56.5–111.65°C (Antoine eq., ebulliometric measurements, Collerson et al. 1965) log (P/mmHg) = 21.71880 – 2694.12/(T/K) – 4.63307·log (T/K); temp range 56.5–111.65°C (Kirchhoff eq., ebulliometric measurements, Collerson et al. 1965) log (P/mmHg) = 6.13916 – 1379.06/(221.41 + t/°C); temp range –5 to 100°C (data fitted to Antoine eq., static method-Ramsey-Young apparatus measurements, Meyer & Wagner 1966) log (P/mmHg) = [–0.2185 × 11240.6/(T/K)] + 9.432089; temp range –12–103.3°C (Antoine eq., Weast 1972–73) 4720* (ebulliometry-fitted to Antoine eq., Ambrose et al. 1975a) 2133 (quoted, Verschueren 1983)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2635

1621 (quoted, Mackay & Yuen 1983) 4648 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.14908 – 1311.372/(214.222 + t/°C), temp range 61.72–121.4°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/mmHg) = 7.02193 – 1313.85/(215.01 + t/°C), temp range 56–111°C (Antoine eq., Dean 1985, 1992) 4702 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.14243 – 1311.145/(–58.457 + T/K), temp range 329–386 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.1404 – 1310.269/(–58.514 + T/K), temp range 336–422 K, (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.47975 – 1569.596/(–24.035 + T/K), temp range 416–501 K (Antoine eq.-III, Stephenson & Malanowski 1987) log (P/mmHg) = 18.3056 – 2.3477 × 103/(T/K) – 3.6667·log (T/K) + 7.1502 × 10–4·(T/K) + 1.0912 × 10–13·(T/K)2; temp range 196–561 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C): 10.91 (28°C, concn. ratio-GC, Nelson & Hoff 1968) 6.44 (partial vapor pressure-GC, Buttery et al. 1969) 6.52 (quoted, exptl., Hine & Mookerjee 1975) 7.66, 6.52 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 3.83 (calculated-γ·P, Rathbun & Tai 1982) 5.876 (gas-stripping, Hawthorne 1984) 10.13 (modified gas-stripping, Hawthorne et al. 1985) 8.47, 6.83 (gas stripping-GC, calculated-P/C, Shiu & Mackay 1997)

Octanol/Water Partition Coefficient, log KOW: 0.91 ± 0.03 (shake flask-UV at pH 7, Unger et al. 1978) 0.91 (Hansch & Leo 1985) 0.78 (shake flask-GC, Tanii et al. 1986)

0.87 (calculated-VI and solvatochromic parameters, Kamlet et al. 1988) 0.95 (calculated-activity coeff. γ from UNIFAC, Banerjee & Howard 1988) 0.84 (recommended, Sangster 1989; 1993) 0.91 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 3.19 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

0.477 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1990)

Sorption Partition Coefficient, log KOC:

1.869 (soil, estimated-KOW, Lyman et al. 1982; quoted, Howard 1990)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: using Henry’s law constant, t½ = 15.5 h was estimated for a model river of 1 m deep flowing at 1 m/s with a wind velocity of 3 m/s, and t½ = 14.5 h in a wind-wave tank with a 6m/s wind speed (Howard 1990). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation t½ = 2.4–24 h for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976) –12 3 –1 –1 kOH = (4.64 ± 0.14) × 10 cm molecule s at (299 ± 2) K (relative rate technique to cyclohexane Atkinson et al. 1982; quoted, Atkinson 1985) k ~0.02 M–1·s–1 for the reaction with ozone in water at pH 2 and 20–23°C (Hoigné & Bader 1983)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2636 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

–12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 4.8 × 10 cm molecule s , kOH(obs.) = 4.64 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985) –12 3 –1 –1 –12 3 –1 –1 kOH = 4.0 × 10 cm molecule s at 296 K and k(soln) = 3.20 × 10 cm molecule s for the aqueous- phase reaction with OH radical in solution (Wallington & Kurylo 1987; quoted, Wallington et al. 1988) –12 3 –1 –1 kOH = 4.9 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) –12 3 –1 –1 kOH(calc) = 5.79 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) –12 3 –1 –1 τ kOH = (4.56 ± 0.30) × 10 cm molecule s at 298 ± 2 K with calculated tropospheric lifetime = 2.5 d (relative rate method, Atkinson et al. 2000) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 2.4–24 h for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976);

t½ = 3.5 d for reactions with photochemically produced OH radical (Howard 1990); calculated lifetime τ = 2.5 d for reaction with OH radical (Atkinson 2000).

Surface water: volatilization t½ = 11–17 h from a model river (Howard 1990). Ground water: Sediment: Soil: Biota:

TABLE 12.1.2.3.1 Reported aqueous solubilities of 2-pentanone at various temperatures

Gross et al. 1939 Ginnings et al. 1940 Stephenson 1992

shake flask-IR volumetric method shake flask-GC/TC t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 10 76406 20 59500 0 87000 30 54268 25 55100 9.7 69000 50 44362 30 51800 19.7 59000 31.0 50000 bp/°C 102.2–102.3 39.6 46000 d25 0.8018 49.8 42000 60.1 40000 70.2 40000 80.0 38000 90.5 34000

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2637

2-Pentanone: solubility vs. 1/T -3.5 Gross et al. 1939 Ginnings et al. 1940 Stephenson 1992 Donahue & Bartell 1952

-4.0

x nl x -4.5

-5.0

-5.5 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 12.1.2.3.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2-pentanone.

TABLE 12.1.2.3.2 Reported vapor pressures of 2-pentanone (methyl propyl ketone) at various temperatures and the coefficients for the vapor pressure equations

log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Collerson et al. 1965 Ambrose et al. 1975(a)

summary of literature data ebulliometry comparative ebulliometry t/°CP/Pat/°CP/Pat/°CP/Pa –12.0 133.3 56.649 20440 63.175 26546 8 666.6 63.184 26546 68.889 33040 17.9 1333 68.897 33040 74.069 39992 28.5 2666 74.077 39991 78.333 46568 39.8 5333 78.34 46568 82.321 53466 47.3 7999 82.326 53466 85.703 59946 56.8 13332 85.708 59947 88.889 66611 71 26664 88.893 66527 91.832 73283 86.8 53329 91.834 73303 95.547 79906 103.3 101325 94.549 79905 97.178 86760 97.179 86760 99.47 93107 mp/°C –77.8 99.47 93107 101.845 100063 101.345 100062 104.032 106831 104.031 106831 106.116 113611 106.114 113612 108.026 120112 108.023 120113 109.834 126533 109.83 126535 111.659 133292 111.655 133283 25 4720 mp/°C –76.86 bp/°C 102.262 bp/°C 102.26

(Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2638 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 12.1.2.3.2 (Continued)

Stull 1947 Collerson et al. 1965 Ambrose et al. 1975(a)

summary of literature data ebulliometry comparative ebulliometry t/°CP/Pat/°CP/Pat/°CP/Pa Antoine eq. eq. 3 P/kPa eq. 2 P/mmHg A 6.13925 A 7.01753 B 1309.592 B 1311.145 C –58.589 C 214.693 ∆ -1 Kirchhoff eq HV/(kJ mol ) = eq. 4 P/mmHg at 25°C 38.4 A 21.7188 at bp 33.6 B 2594.12 C 4.63307 ∆ -1 HV/(kJ mol ) = 33.64

2-Pentanone: vapor pressure vs. 1/T 8.0 Collerson et al. 1965 Ambrose et al. 1974a 7.0 Stull 1947

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 102.26 °C 0.0 0.0024 0.0028 0.0032 0.0036 0.004 0.0044 1/(T/K) FIGURE 12.1.2.3.2 Logarithm of vapor pressure versus reciprocal temperature for 2-pentanone.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2639

12.1.2.4 3-Pentanone

O

Common Name: 3-Pentanone Synonym: diethyl ketone, ethylketone, propione, sym-dimethylacetone Chemical Name: 3-pentanone, diethyl ketone CAS Registry No: 96-22-0

Molecular Formula: C5H10O, CH3CH2COCH2CH3 Molecular Weight: 86.132 Melting Point (°C): –39 (Lide 2003) Boiling Point (°C): 101.7 (Gross et al. 1933; Weast 1982–83; Lide 2003) Density (g/cm3 at 20°C): 0.8138 (Weast 1982–83) 0.8143, 0.8095 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 92.6 (calculated-density, Jaworska & Schultz 1993) 118.4 (calculated-Le Bas method at normal boiling point) Dissociation Constant:

27.1 (pKa, Riddick et al. 1986; Howard 1993) ∆ Enthalpy of Fusion Hfus (kJ/mol): 11.593 (Riddick et al. 1986) ∆ Entropy of Fusion Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 46900 (30°C, shake flask-interferometer, Gross et al. 1933) 49617* (30°C, shake flask-interferometer, measured range 10–50°C, Gross et al. 1939) 49620 (30°C, shake flask-interferometer, Gross et al. 1933) 48100* (shake flask-volumetric method, measured range 20–30°C, Ginnings et al. 1940) 48100 (shake flask-volumetric, Ginnings et al. 1940) 44520 (shake flask-centrifuge, Booth & Everson 1948) 43170 (estimated, McGowan 1954) 47330 (Deno & Berkheimer 1960) 45650 (generator column-GC, Wasik et al. 1981; Tewari et al. 1982) 47000, 38000 (20°C, 100°C, Verschueren 1983) 34000 (20°C, Riddick et al. 1986) 48440 (calculated-fragment solubility const., Wakita et al. 1986) 53000* (19.3°C, shake flask-GC, measured range 0–80°C, Stephenson 1992)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 2169* (interpolated-regression of tabulated data, temp range –12.0 to 103.3°C, Stull 1947) 2666 (27.9°C, Stull 1947) log (P/mmHg) = 7.25223 – 1450.0/(230 + t/°C), (Antoine eq., Dreisbach & Martin 1949) 10114* (36.36°C, ebulliometry, measured range 36.36–101.7°C, Dreisbach & Shrader 1949) 20441* (56.649°C, ebulliometry, measured range 56.5–111.3°C, Collerson et al. 1965) log (P/mmHg) = 7.027427 – 1309.655/(214.118 + t/°C); temp range 56.5–111.3°C (Antoine eq., ebulliometric measurements, Collerson et al. 1965) log (P/mmHg) = 22.02258 – 2614.85/(T/K) – 4.72805·log (T/K); temp range 56.5–111.3°C (Kirchhoff eq., ebul- liometric measurements, Collerson et al. 1965)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2640 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (P/mmHg) = [–0.2185 × 11183.0/(T/K)] + 9.406280; temp range –12.7–102.7°C, (Antoine eq., Weast 1972–73) 4723* (ebulliometry-fitted to Antoine eq., Ambrose et al. 1975a) 1733 (20°C, Verschueren 1983) 5316, 4714 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.1467 – 1307.941/(213.968 + t/°C), temp range 56.53–111.3°C (Antoine eq. from reported exptl. data of Ambrose et al. 1975, Boublik et al. 1984) log (P/kPa) = 6.13703 – 1349.358/(224.351 + t/°C), temp range 36.36–101.7°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 4693 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.02529 – 1310.28/(214.19 + t/°C), temp range 56–111°C (Antoine eq., Dean 1985, 1992) 4723 (Riddick et al. 1986)

log (PL/kPa) = 6.14917 – 1309.657/(–59.032 + T/K), temp range 329–384 K, (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.14635 – 1308.327/(–59.137 + T/K), temp range 329–426 K, (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.45505 – 1544.596/(–27.379 + T/K), temp range 421–502 K, (Antoine eq.-III, Stephenson & Malanowski 1987) 4932 (Daubert & Danner 1989) log (P/mmHg) = 32.265 – 2.9431 × 103/(T/K) – 8.5068·log (T/K) – 4.572 × 10–10·(T/K) + 2.5177 × 10–6·(T/K)2; temp range 234–561 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol): 3.617 (calculated-γ·P, Rathbun & Tai 1982) 5.340 (calculated-MW, Rathbun & Tai 1982) 8.834 (calculated-P/C, Howard 1993)

Octanol/Water Partition Coefficient, log KOW: 0.99 (generator column-GC, Wasik et al. 1981; Tewari et al. 1982) 0.75 (calculated-activity coeff. γ, Wasik et al. 1981) 0.67 (calculated- activity coeff. γ, Berti et al. 1986) 1.15 (calculated-activity coeff. γ from UNIFAC, Banerjee & Howard 1988) 0.82 (recommended, Sangster 1989, 1993) 0.99 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 3.20 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

0.519 (estimated-KOW, Lyman et al. 1990; quoted, Howard 1993) 0.146 (estimated-S, Lyman et al. 1990; quoted, Howard 1993)

Sorption Partition Coefficient, log KOC:

1.914 (soil, estimated-KOW, Lyman et al. 1990; quoted, Howard 1993) 1.08 (soil, estimated-S, Lyman et al. 1990; quoted, Howard 1993)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: estimated half-life from a model pond of two meter deep is 5.6 d (USEPA 1987; quoted, Howard 1993);

based on calculated Henry’s law constant, estimated t½ ~12 h from a model river of 1 m deep flowing at 1 m/s with a wind velocity of 3 m/s (Lyman et al. 1990; quoted, Howard 1993). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation t½ = 2.4–24 h for the gas-phase reaction with OH radical in air, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2641

–12 3 –1 –1 kOH = (1.82 ± 0.33) × 10 cm molecule s at 299 ± 2 K in air (relative rate technique to cyclohexane Atkinson et al. 1982) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 2.5 × 10 cm molecule s , kOH(obs.) = 1.82 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985) –12 3 –1 –1 –12 3 kOH(exptl) = 2.74 × 10 cm ·molecule s at 296 K; experimentally determined k(soln) = 2.30 × 10 cm molecule–1 s–1 for the solution-phase reaction with OH radical in aqueous solution (Wallington & Kurylo 1987; quoted, Wallington et al. 1988) –12 3 –1 –1 kOH = 2.0 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) –12 3 –1 –1 kOH(calc) = 3.23 × 10 cm ·molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: not expected to be important (Howard 1993).

Biodegradation: t½ ~ 5 to 10 d in acclimated cultures during screening tests (Howard 1993). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 2.4–24 h for the gas-phase reaction with OH radical in air, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976);

photooxidation t½ = 5.9 d, based on an experimentally determined rate constant for the vapor-phase reaction with OH radical in air (Wallington & Kurylo 1987; quoted, Howard 1993).

Surface water: estimated volatilization t½ ~ 12 h in a model river (1 m deep flowing at 1 m/s with a 3 m/s wind) and t½ = 5.6 d in a model environmental pond (2 m deep) (Howard 1993). Ground water: Sediment: Soil: Biota:

TABLE 12.1.2.4.1 Reported aqueous solubilities of 3-pentanone at various temperatures

Gross et al. 1939 Ginnings et al. 1940 Stephenson 1992

shake flask-IR volumetric method shake flask-GC/TC t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 10 67275 20 50800 0 76800 30 49617 25 48100 9.7 62500 50 39280 30 45000 19.3 53000 30.6 42400 bp/°C 101.6–101.9 40.3 38600 D25 0.8116 50 36200 60.1 34300 70.1 33000 80.2 31500

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2642 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

3-Pentanone: solubility vs. 1/T -3.5 Gross et al. 1939 Ginnings et al. 1940 Stephenson 1992 Booth & Everson 1948 Wasik et al. 1981 -4.0

x nl x -4.5

-5.0

-5.5 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 12.1.2.4.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 3-pentanone.

TABLE 12.1.2.4.2 Reported vapor pressures of 3-pentanone at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Dreisbach & Shrader 1949 Collerson et al. 1965 Ambrose et al. 1975(a)

summary of literature data ebulliometry ebulliometry comparative ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa –12.7 133.3 36.36 10114 56.544 20441 56.534 20441 7.5 666.6 51.24 16500 63.032 26530 63.023 26529 17.2 1333 76.04 42066 68.735 33041 68.727 33041 27.9 2666 88.91 67661 73.908 40009 73.901 40009 39.4 5333 101.7 101325 78.158 46590 78.152 46589 46.7 7999 82.114 53473 82.109 53473 56.2 13332 85.494 59947 85.489 59979 70.6 26664 88.612 66532 88.608 66532 86.2 53329 91.605 74147 91.602 73348 102.7 101325 94.314 79985 94.312 79985 96.897 86752 96.896 86752 mp/°C –42 99.177 93092 99.176 93093 101.566 100129 101.567 100129 103.724 106835 103.725 106834 105.737 113413 105.739 113412 107.682 120061 107.685 120059 109.486 126495 109.489 126493 111.303 133254 111.307 133252 25 4723 mp/°C –38.97 bp/°C 101.959 bp/°C 101.96

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2643

TABLE 12.1.2.4.2 (Continued)

Stull 1947 Dreisbach & Shrader 1949 Collerson et al. 1965 Ambrose et al. 1975(a)

summary of literature data ebulliometry ebulliometry comparative ebulliometry t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa

Antoine eq eq. 3 P/kPa eq. 2 P/mmHg A 6.1457 A 7.02427 B 1307927 B 1309.653 C –59.184 C 214.118 ∆ –1 Kirchhoff eq. 4, P/mmHg HV/(kJ mol ) = A 22.02258 at 25°C 38.6 B 2614.85 at bp 33.7 C 4.72085 ∆ –1 HV/(kJ mol ) = 33.72

3-Pentanone: vapor pressure vs. 1/T 8.0 Dreisbach & Shrader 1949 Collerson et al. 1965 7.0 Ambrose et al. 1975a Stull 1947

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 101.7 °C m.p. = -39 °C 0.0 0.0024 0.0028 0.0032 0.0036 0.004 0.0044 1/(T/K) FIGURE 12.1.2.4.2 Logarithm of vapor pressure versus reciprocal temperature for 3-pentanone.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2644 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

12.1.2.5 Methyl isobutyl ketone (MIBK)

O

Common Name: Methyl isobutyl ketone Synonym: hexone, hexanone, 4-methyl-2-pentanone, MIBK Chemical Name: methyl isobutyl ketone, 4-methyl-2-pentanone CAS Registry No: 108-10-1

Molecular Formula: C6H12O, (CH3)2CHCH2COCH3 Molecular Weight: 100.158 Melting Point (°C): –84 (Lide 2003) Boiling Point (°C): 116.5 (Lide 2003) Density (g/cm3 at 20°C): 0.7978 (Weast 1982–83) 0.8010 (Riddick et al. 1986) Molar Volume (cm3/mol): 125.0 (20°C, calculated-density) 140.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion Hfus (kJ/mol): ∆ Entropy of Fusion Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 16630* (30°C, shake flask-interferometer, measured range 0–75°C, Gross et al. 1939) 19100* (shake flask-volumetric method, measured range 20–30°C, Ginnings et al. 1940) 19100 (shake flask-volumetric, Ginnings et al. 1940) 18200 (shake flask-turbidimeter, McBain & Richards 1946) 19085 (Deno & Berkheimer 1960) 17700 (shake flask-radiometric method, Lo et al. 1986) 17000 (Dean 1985; Riddick et al. 1986) 19200* (19.4°C, shake flask-GC/TC, measured range 0–90.4°C, Stephenson 1992)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 666.6* (19.7°C, summary of literature data, temp range –1.40 to119°C, Stull 1947) 2200* (21.7°C, isoteniscope method, measured range 21.7–116.2°C, Fuge et al. 1952) log (P/mmHg) = 31.1616 – 7.7701·log (273.1 + t/°C) – 3173.11/(273.11 + t/°C); temp range 21.7–116.2°C (isoteniscope method, Fuge et al. 1952) log (P/mmHg) = [–0.2185 × 11669.6/(T/K)] + 9.407655; temp range: –1.4 to119°C, (Antoine eq., Weast 1972–73) 800; 1333 (20°C, 30°C, Verschueren 1983) 2200 (21.7°C, quoted exptl., Boublik et al. 1984; Howard 1990) 2587 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 5.81291 – 1176.833/(192.925 + t/°C), temp range 21.7–116.2°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 2575 (calculated-Antoine eq., Dean 1985) log (P/mmHg) = 6.6727 – 1168.4/(191.9 + t/°C), temp range 22–116°C (Antoine eq., Dean 1985, 1992) 2510 (Riddick et al. 1986) log (P/kPa) = 6.0976 – 1190.69/(195.45 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 2581, 2581 (interpolated-Antoine eq.-I and II, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2645

log (PL/kPa) = 5.79768 – 1168.443/(–81.202 + T/K), temp range 294–390 K, (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 5.83311 – 1188.115/(–79.265 + T/K), temp range 281–400 K, (Antoine eq.-II, Stephenson & Malanowski 1987) 2687* (comparative ebulliometry, extrapolated-Antoine eq., measured range 309.7–416 K, Ambrose et al. 1988) ln (p/kPa) = 14.07841 – 3103.029/(T/K – 61.104); temp range 309.7–416 K (comparative ebulliometry, Ambrose et al. 1988) log (P/mmHg) = 64.1919 – 4.3577 × 103/(T/K) – 19.766·log (T/K) – 3.9997 × 10–10·(T/K)+7.102×10–6·(T/K)2; temp range 189–571 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 39.5* (EPICS-GC/FID, measured range 10–30°C, Ashworth et al. 1988) ln [H/(atm m3/mol)] = –7.157 + 160.6/(T/K), temp range 10–30°C, (EPICS measurements, Ashworth et al. 1988) 9.523 (calculated-P/C, Howard 1990) 47.95* (40°C, equilibrium headspace-GC, measured range 40–80°C, Kolb et al. 1992)

ln (1/KAW) = –9.56 + 4237/(T/K), temp range: 40–80°C (equilibrium headspace-GC measurements, Kolb et al. 1992) 45.57 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996, 2001)

log KAW = –1.924 + 57/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 1.38 (shake flask-GC, Iwasa et al. 1965) 1.09 (calculated-π constant, Hansch et al. 1968) 1.19 (Hansch & Leo, 1979) 1.39 (HPLC-RT correlation, Haky & Young 1984) 1.31 (shake flask-GC, Tanii et al. 1986) 1.38 (recommended, Sangster 1993) 1.31 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

0.301–0.699 (estimated-KOW and S, Lyman et al. 1982; quoted, Howard 1990)

Sorption Partition Coefficient, log KOC:

1.279–2.025 (soil, estimated-KOW and S, Lyman et al. 1982; quoted, Howard 1990) 0.87 (calculated-KOW, Kollig 1993)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: t½ = 15–33 h from water of 1 m deep, based on lab. mass-transfer coefficient for volatilization from a stirred 557–2020 rpm water bath at 25°C (Rathbun & Tai 1982; quoted, Howard 1990).

Photolysis: direct photolysis t½ = 15 h in air (Howard 1990). Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation t½ = 0.24–2.4 h for the gas-phase reaction with OH radical in air, based on the disappearance rate of hydrocarbon due to reaction with OH radical (Darnall et al. 1976) 10 3 –1 –1 kOH = (0.9 ± 0.3) × 10 cm M s at 1 atm and 305 ± 2 K (relative rate method, Winer et al. 1976) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 9.4 × 10 cm molecule s , kOH(obs.) = 14.1 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985)

photooxidation t½ = 4.6–45.5 h, based on measured rate data for the vapor phase reaction with hydroxyl radical (Atkinson 1985; selected, Howard et al. 1991) –12 3 –1 –1 kOH = 14.1 × 10 cm molecule s at 298 K (recommended, Atkinson 1989)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2646 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

–11 3 –1 –1 5 –3 kOH = (1.31 – 1.45) × 10 cm molecule s (OH radical concn. of 8.0 × 10 molecule·cm ) at 22–27°C, estimated t½ = 16–17 h (Howard 1990) –12 3 –1 –1 kOH(calc) = 3.92 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: not expected to undergo chemical hydrolysis (Howard 1990).

Biodegradation: aqueous aerobic t½ = 24–168 h, based on unacclimated aerobic aqueous screening test data (Bridie et al. 1979; Takemoto et al. 1981; selected, Howard et al. 1991);

aqueous anaerobic t½ = 96–672 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 0.24–2.4 h for the gas-phase reaction with hydroxyl radical in air, based on the disappearance rate of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976);

photodecomposition t½ = 3.5 h under simulated atmospheric conditions, with NO (Dilling et al. 1976); direct photolysis t½ = 15 h and photooxidation t½ = 16–17 h for reactions with hydroxyl radical in air (Howard 1990);

photooxidation t½ = 4.6–45.5 h, based on measured rate data for the vapor phase reaction with hydroxyl radical (Atkinson 1985; selected, Howard et al. 1991); atmospheric transformation lifetime was estimated to be 1 to 5 d (Kelly et al. 1994).

Surface water: estimated volatilization t½ = 15–33 h (Howard 1990); t½ = 24–168 h, based on unacclimated aerobic aqueous biodegradation half-life (Howard et al. 1991). Ground water: t½ = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

TABLE 12.1.2.5.1 Reported aqueous solubilities of 4-methyl-2-pentanone (methyl isobutyl ketone) at various temperatures

Gross et al. 1939 Ginnings et al. 1940 Stephenson 1992

shake flask-IR volumetric method shake flask-GC/TC t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 0 30749 10 20400 0 29200 10 23137 24 19100 9.5 22100 30 16630 30 17800 19.4 19200 50 14123 30.8 16600 75 13721 bp/°C 115.6–115.7 39.6 14700 D25 0.7969 50.1 13800 60.4 12900 70.2 12400 80.1 11800 90.4 12200

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2647

4-Methyl-2-pentanone (MIBK): solubility vs. 1/T -4.5 Gross et al. 1939 Ginnings et al. 1940 Stephenson 1992 McBain & Richards 1946 Lo et al. 1986 -5.0

x nl x -5.5

-6.0

-6.5 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 12.1.2.5.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 4-methyl-2- pentanone.

TABLE 12.1.2.5.2 Reported vapor pressures of 4-methyl-2-pentanone (methyl isobutyl ketone) at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) ln P = A – B/(C + T/K) (3a) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Fuge et al. 1952 Ambrose et al. 1988

summary of literature data isoteniscope method comparative ebulliometry t/°CP/Pat/°CP/PaT/KP/Pa –1.40 133.3 21.7 2200 309.676 4922 19.7 666.6 32.7 3933 314.495 6239 30.0 1333 41.4 6266 318.766 7638 40.8 2666 50.2 9266 324.624 9984 52.8 5333 60.0 14999 328.196 11607 60.4 7999 70.0 21598 334.215 15105 70.4 13332 80.1 31997 339.189 18512 85.6 26664 90.9 46396 343.458 21914 102.0 53329 116.2 101325 347.213 25314 119.0 101325 352.107 30381 bp/K 389.35 K 359.039 38940 mp/°C –84.7 365.854 49155 eq. 4 P/mmHg 369.784 55938 A 31.1616 373.360 62819 B 3173.11 379.656 76425 C –7.7701 383.817 86848 389.378 101960 400.202 137928

(Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2648 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 12.1.2.5.2 (Continued)

Stull 1947 Fuge et al. 1952 Ambrose et al. 1988

summary of literature data isoteniscope method comparative ebulliometry t/°CP/Pat/°CP/PaT/KP/Pa 408.620 172120 415.823 206364 298.15 2687 (extrapolated) eq. 3a P/kPa A 14.07841 B 3103.029 C –61.104

4-Methyl-2-pentanone (MIBK): vapor pressure vs. 1/T 8.0 Fuge et al. 1952 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 116.5 °C 0.0 0.0024 0.0028 0.0032 0.0036 0.004 0.0044 1/(T/K) FIGURE 12.1.2.5.2 Logarithm of vapor pressure versus reciprocal temperature for 4-methyl-2-pentanone.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2649

TABLE 12.1.2.5.3 Reported Henry’s law constants of 4-methyl-2-pentanone (methyl isobutyl ketone) at various temperatures and temperature dependence equations

ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a)

ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a)

ln (kH/atm) = A – B/(T/K) (3) ln [H/(Pa m3/mol)] = A – B/(T/K) (4) ln [H/(atm·m3/mol)] = A – B/(T/K) (4a) 2 KAW = A – B·(T/K) + C·(T/K) (5)

Ashworth et al. 1988 Kolb et al. 1992

EPICS-GC equilibrium headspace-GC t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) 10 66.87 40 47.95 15 37.49 60 121.5 20 29.38 70 176 25 39.52 80 248.8 30 68.90

eq. 2 1/KAW A –9.56 eq. 4a H/(atm·m3/mol) B 4237 A –7.157 B 160.6

4-Methyl-2-pentanone (MIBK): Henry's law constant vs. 1/T 7.0

6.0 )lom/ 5.0 3 m.aP(/H nl m.aP(/H

4.0

3.0

Ashworth et al. 1988 Kolb et al. 1992 2.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 12.1.2.5.3 Logarithm of Henry’s law constant versus reciprocal temperature for 4-methyl-2-pentanone.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2650 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

12.1.2.6 2-Hexanone (Methyl butyl ketone)

O

Common Name: Methyl butyl ketone Synonym: 2-hexanone, methyl n-butyl ketone Chemical Name: 2-hexanone, methylbutyl ketone CAS Registry No: 591-78-6

Molecular Formula: C6H12O, CH3COCH2CH2CH2CH3 Molecular Weight: 100.158 Melting Point (°C): –55 (Lide 2003) Boiling Point (°C): 127.6 (Lide 2003) Density (g/cm3 at 20°C): 0.8113 (Weast 1982–83) 0.8113, 0.8067 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 124.2 (calculated-density, Hoy 1970; Amidon & Williams 1982) 140.6 (calculated-Le Bas method at normal boiling point) Dissociation Constant:

–8.30 (pKa, Riddick et al. 1986) 25.30 (pKs, Riddick et al. 1986) ∆ Enthalpy of Fusion Hfus (kJ/mol): 3.56 (Riddick et al. 1986) ∆ Entropy of Fusion Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 14523* (30°C, shake flask-interferometer, measured range 10–50°C, Gross et al. 1939) 16400* (shake flask-volumetric method, measured range 20–30°C, Ginnings et al. 1940) 16400 (shake flask-volumetric, Ginnings et al. 1940) 16000 (Erichsen 1952) 23930 (shake flask-interferometer, Donahue & Bartell 1952) 15870 (estimated, McGowan 1954) 16620 (Deno & Berkheimer 1960) 35000 (20°C, Verschueren 1983) 17500 (20°C, Riddick et al. 1986) 15100*, 13700 (19.8°C, 29.7°C, shake flask-GC, measured range 0–91.5°C, Stephenson 1992)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 514.4* (interpolated-regression of tabulated data, temp range 7.7–212.6°C, Stull 1947) log (P/mmHg) = [–0.2185 × 12358.3/(T/K)] + 9.642791; temp range 7.7–127.5°C, (Antoine eq., Weast 1972–73) 1549* (ebulliometry-fitted to Antoine eq., Ambrose et al. 1975a) 509.8 (calculated-Cox eq., Chao et al. 1983) 266.6 (20°C, Verschueren 1983) 1540 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.15217 – 1395.406/(208.946 + t/°C), temp range 34.61–154.6°C (Antoine eq. from reported exptl. data of Ambrose et al. 1975, Boublik et al. 1984) 1549 (Riddick et al. 1986) log (P/kPa) = 6.16230 – 1401.738/(209.646 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 1715, 1540 (interpolated-Antoine eq.-I and II, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2651

log (PL/kPa) = 6.4127 – 1575.5/(–43.15 + T/K), temp range 293–411 K, (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.14816 – 1392.968/(–64.465 + T/K), temp range 279–423 K, (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.15949 – 1399.959/(–63.704 + T/K), temp range 310–427 K, (Antoine eq.-III, Stephenson & Malanowski 1987) 1600 (computed-expert system SPARC, Kolling 1995) log (P/mmHg) = 4.0508 – 2.6276 × 103/(T/K) + 3.7783·log (T/K) – 1.4342 × 10–2·(T/K) + 8.0592 × 10–6·(T/K)2; temp range 217–587 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol): 9.69 (calculated-P/C, Meylan & Howard 1991) 11.8 (calculated-bond contribution, Meylan & Howard 1991) 9.70 (calculated-P/C, Howard 1993) 8.82 (computed-expert system SPARC, Kolling 1995)

Octanol/Water Partition Coefficient, log KOW: 1.38 (shake flask-UV, Iwasa et al. 1965; Leo et al. 1971; Hansch & Leo 1979) 1.29 (calculated-π constant, Hansch et al. 1968) 1.39 (HPLC-k′ correlation, Haky & Young 1984) 1.19 (shake flask-GC, Tanii et al. 1986) 1.38 (recommended, Sangster 1989, 1993) 1.38 (recommended, Hansch et al. 1995) 1.30 (computed-expert system SPARC, Kolling 1995)

Octanol/Air Partition Coefficient, log KOA: 3.68 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

0.778 (estimated-KOW, Lyman et al. 1990)

Sorption Partition Coefficient, log KOC:

1.322 (soil, estimated-KOW, Lyman et al. 1990) 2.127 (soil, estimated-S, Lyman et al. 1990)

1.10 (computed-KOW, Kolling 1995)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: t½ ~ 135 h from a model environmental pond of 2 m deep (USEPA 1987; quoted, Howard 1993); using Henry’s law constant, t½ ~ 12.1 H from a model river of 1 m deep flowing at 1 m/s with a wind speed of 3 m/s (Lyman et al. 1990; quoted, Howard 1993). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation half-life of 2.4–24 h for the gas-phase reaction with OH radical in air, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976) –12 3 –1 –1 kOH = (6.81 ± 0.29) × 10 cm molecule s at (299 ± 2) K (relative rate technique to cyclohexane, Atkinson et al. 1982; quoted, Atkinson 1985) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 7.0 × 10 cm molecule s , kOH(obs.) = 8.97 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985) –12 3 –1 –1 kOH = 9.1 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) –12 3 –1 –1 kOH = 9.1 × 10 cm molecule s at 25°C, which corresponds to a half-life of 42 h at an atmospheric OH- concn of 5 × 105 molecule cm–3 (quoted, Howard 1993) –12 3 –1 –1 kOH(calc) = 10.57 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation: half-life of approximately 5 d in acclimated mixed microbial culture (Howard 1993).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2652 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 2.4–24 h for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976);

estimated t½ ~ 42 h for the vapor-phase reaction with OH radical is 42 h at an atmospheric OH- concentration of 5 × 105 molecule·cm–3 (Atkinson 1985; quoted, Howard 1993).

Surface water: volatilization t½ = 12.1 h from a model river, 135 h from a model environmental pond (Howard 1993). Ground water: Sediment: Soil: Biota:

TABLE 12.1.2.6.1 Reported aqueous solubilities of 2-hexanone at various temperatures

Gross et al. 1939 Ginnings et al. 1940 Stephenson 1992

shake flask-IR volumetric method shake flask-GC/TC t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 10 20433 20 17500 0 24600 30 14523 25 16400 9.6 19100 50 12420 30 15300 19.8 15100 29.7 13700 bp/°C 127.5–127.6 39.6 12400 d25 0.8072 50.0 11600 60.5 11200 70.3 11200 80.7 11500 91.5 11900

2-Hexanone: solubility vs. 1/T -4.5 Gross et al. 1939 Ginnings et al. 1940 Stephenson 1992 Donahue & Bartell 1952 -5.0

x nl x -5.5

-6.0

-6.5 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 12.1.2.6.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2-hexanone.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2653

TABLE 12.1.2.6.2 Reported vapor pressures of 2-hexanone at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Ambrose et al. 1975(a)

summary of literature data comparative ebulliometry t/°CP/Pat/°CP/Pat/°CP/Pa cont’d 7.7 133.3 34.612 2656 128.935 105328 28.8 666.6 37.070 3024 133.789 120447 38.8 1333 41.117 3737 138.034 135072 50.0 2666 44.498 4434 143.528 156043 62.0 5333 48.033 5277 149.390 181140 69.8 7999 51.799 6319 154.613 206034 79.8 13332 55.414 7476 25.0 1549 94.3 26664 59.402 8955 111.0 53329 63.784 10853 bp/°C 127.583 127.5 101325 67.976 12972 72.537 15657 Antoine eq. for full range: mp/°C –56.9 77.315 18944 eq. 3 P/kPa 82.256 22918 A 6.16230 86.138 26494 B 1401.738 91.579 32278 C –63.504 ∆ –1 96.410 38230 HV/(kJ mol ) = 101.664 45683 at 25°C 42.9 106.935 54287 at bp 36.0 112.320 64383 117.459 75365 Antoine eq. for restricted range of 122.839 88399 of atmospheric pressure: 127.231 100312 eq. 3 P/kPa 127.653 101527 A 6.14801 128.362 103586 B 1392.870 C –64.477

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2654 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

2-Hexanone: vapor pressure vs. 1/T 8.0 Ambrose et al. 1975a Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 127.6 °C 0.0 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 1/(T/K) FIGURE 12.1.2.6.2 Logarithm of vapor pressure versus reciprocal temperature for 2-hexanone.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2655

12.1.2.7 2-Heptanone

O

Common Name: 2-Heptanone Synonym: methyl n-amyl ketone, methyl pentyl ketone Chemical Name: 2-heptanone CAS Registry No: 110-43-0

Molecular Formula: C7H14O, CH3(CH2)4COCH3 Molecular Weight: 114.185 Melting Point (°C): –35 (Lide 2003) Boiling Point (°C): 151.05 (Lide 2003) Density (g/cm3): 0.81537, 0.81123 (20°C, 25°C, Riddick et al. 1986) Dissociation Constant: Molar Volume (cm3/mol): 141.5 (30°C, Stephenson & Malanowski 1987) 162.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 4300* (25°C, volumetric method, measured range 20–30°C, Ginnings et al. 1940) 4054* (30°C, shake flask-interferometer, measured range 10–75°C, Saylor et al. 1942) 4546 (estimated, McGowan 1954) 4300 (Riddick et al. 1986) 4360* (19.7°C, shake flask-GC/TC, measured range 0–90.5°C, Stephenson 1992)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 521 (interpolated-vapor pressure eq., temp range 4–75°C, Stuckey & Saylor 1940) log (P/mmHg) = 7.36537 – 1650.47/(T/K – 54.48); temp range 4–75°C (Antoine eq., Ramsay-Young method- Hg manometer, Stuckey & Saylor 1940) 709* (30°C, measured range 10–75°C, Saylor et al. 1942) 133.3* (19.3°C, summary of literature data, temp range 19.3–150.2°C, Stull 1947) log (P/mmHg) = 5.95166 – 1408.13/(194.84 + t/°C); temp range 36 to 151°C (data fitted to Antoine eq., static method-Ramsey-Young apparatus measurements, Meyer & Wagner 1966) log (P/mmHg) = [–0.2185 × 12478.9/(T/K)] + 9.305642, temp range 19.3–150.2°C, (Antoine eq., Weast 1972–73) 427* (ebulliometry-fitted to Antoine eq., Ambrose et al. 1975a) log (P/mmHg) = [1– 400.348/(T/K)] × 10^{0.934881 – 4.87941 × 10–4·(T/K) + 4.16258 × 10–7·(T/K)2}; temp range 280.85–400.65 K, (Cox eq., Chao et al. 1983) 514 (Abraham 1984; Riddick et al. 1986) 504 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.14611 – 1460.276/(201.636 + t/°C), temp range 94.7–179.3°C (Antoine eq. from reported exptl. data of Ambrose et al. 1975, Boublik et al. 1984) 469 (extrapolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.07656 – 1408.73/(–78.31 + T/K), temp range 303–424 K, (Antoine eq.-I, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2656 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (PL/kPa) = 6.15178 – 1464.092/(–71.076 + T/K), temp range 327–457 K, (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.56718 – 1810.283/(–26.944 + T/K), temp range 449–580 K, (Antoine eq.-III, Stephenson & Malanowski 1987) log (P/mmHg) = –13.0256 – 2.6425 × 103/(T/K) + 11.879·log (T/K) – 2.7571 × 10–2·(T/K)+1.456×10–5·(T/K)2; temp range 238–612 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C): 14.63 (partial vapor pressure-GC, Buttery et al. 1969) 14.6; 14.94, 14.6 (exptl.; calculated-group contribution, bond contribution, Hine & Mookerjee 1975) 5.715 (calculated-activity coefficient γ·P, Rathbun & Tai 1982) 9.120 (calculated-P/C, Mackay & Yuen 1983) 16.0 (correlated-molecular structure, Russell et al. 1992) 17.1 (gas stripping-GC, Shiu & Mackay 1997)

Octanol/Water Partition Coefficient, log KOW: 2.08 (calculated-activity coefficients, Wasik et al. 1981) 1.98 (generator column-HPLC, Tewari et al. 1982) 2.00 (shake flask-GC, Tanii et al. 1986) 2.03 (calculated-UNIFAC activity coefficients, Dallos et al. 1993) 1.98 (recommended, Sangster 1993) 1.98 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 4.15 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –12 3 –1 –1 kOH = (8.67 ± 8.4) × 10 cm molecule s at 296 K (Wallington et al. 1987; quoted, Atkinson 1989) –12 3 –1 –1 kOH(calc) = 13.10 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) –11 3 –1 –1 τ kOH = (1.17 ± 0.11) × 10 cm molecule s at 298 ± 2 K with calculated tropospheric lifetime = 1.0 d (relative rate method, Atkinson et al. 2000) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: calculated tropospheric lifetime τ = 1.0 d, based on gas-phase reaction with OH radical (relative rate method, Atkinson et al. 2000) Surface water: Ground water: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2657

TABLE 12.1.2.7.1 Reported aqueous solubilities of 2-heptanone at various temperatures

Ginnings et al. 1940 Saylor et al. 1942 Stephenson 1992

volumetric method shake flask-interferometer shake flask-GC/TC t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 20 4400 10 5390 0 6490 25 4300 30 4054 9.7 5350 30 4000 50 3643 19.8 4360 60 3517 30.7 3580 bp/°C 151.2–151.3 65 3597 39.7 3430 d25 0.8115 75 3871 49.8 3360 60.2 3330 70.1 3140 80.2 3480 90.5 3530

2-Heptanone: solubility vs. 1/T -6.0 Ginnings et al. 1940 Saylor et al. 1942 Stephenson 1992

-6.5

x nl x -7.0

-7.5

-8.0 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 12.1.2.7.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2-heptanone.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2658 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 12.1.2.7.2 Reported vapor pressures of 2-heptanone at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stuckey & Saylor 1940 Stull 1947 Ambrose et al. 1975(a)

static method-Hg manometer summary of literature data comparative ebulliometry t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa cont’d data presented as 19.3 133.3 54.687 2818 151.949 103789 eq. 3 P/mmHg 43.5 666.6 57.076 3180 157.300 119605 A 7.36537 55.5 1333 60.142 3697 162.280 136005 B 1650.47 67.7 2666 64.213 4500 168.137 157388 C –54.48 81.2 5333 67.814 5324 173.697 180116 89.8 7999 71.989 6433 179.267 205316 100.0 13332 71.991 6436 25.0 427 Saylor et al. 1942 116.1 26664 75.736 7617

Stuckey & Saylor data 133.2 53329 79.945 9127 bp/°C 151.058 10 188 150.2 101325 84.035 10826 30 709 88.302 12873 Antoine eq. for full range: 50 1973 mp/°C – 92.564 15282 eq. 3 P/kPa 60 3733 95.832 17932 A 6.15034 65 4720 102.322 21975 B 1462.981 75 7413 107.012 25997 C –71.24 ∆ –1 112.377 31321 HV/(kJ mol ) = 117.486 37167 at 25°C 38.3 117.629 37361 at bp 33.2 123.186 44713 129.297 54129 Antoine eq. for restricted 134.589 63526 range of atm. pressure: 140.221 74904 eq. 3 P/kPa 146.323 88989 A 6.15033 150.976 101114 B 1463.072 C –71.200

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2659

2-Heptanone: vapor pressure vs. 1/T 8.0 Stuckey & Saylor 1940 Ambrose et al. 1975a 7.0 Stull 1947

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 151.05 °C 0.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 12.1.2.7.2 Logarithm of vapor pressure versus reciprocal temperature for 2-heptanone.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2660 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

12.1.2.8 Cyclohexanone

O

Common Name: Cyclohexanone Synonym: Chemical Name: cyclohexanone CAS Registry No: 108-94-1

Molecular Formula: C6H10O Molecular Weight: 98.142 Melting Point (°C): –27.9 (Lide 2003) Boiling Point (°C): 155.43 (Lide 2003) Density (g/cm3 at 20°C): 0.9478 (Weast 1982–83; Dean 1985) 0.9452 (Riddick et al. 1986) Molar Volume (cm3/mol): 106.2 (calculated-density, Stephenson & Malanowski 1987) 118.2 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion Hfus (kJ/mol): ∆ Entropy of Fusion Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 23000 (Riddick et al. 1986) 93200 (selected, Yaws et al. 1990) 97000*, 82000 (19.5°C, 29.8°C, shake flask-GC, measured range 0–90.7°C, Stephenson 1992)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 666.6* (26.4°C, summary of literature data, temp range 1.4–155.6°C, Stull 1947) log (P/mmHg) = [–0.2185 × 10037.6/(T/K)] + 8.019908; temp range 1.4–155.6°C, (Antoine eq., Weast 1972–73) 533* (ebulliometry-fitted to Antoine eq., temp range 89.6–165.8°C, Meyer & Hotz 1973) log (P/mmHg) = 5.978401 – 1495.511/(209.5517 + t/°C); temp range 89.6–165.8°C (Antoine eq. ebulliometric measurements, Meyer & Hotz 1973) 614 (interpolated-Cox eq., Chao et al. 1983) log (P/mmHg) = [1– 428.587/(T/K)] × 10^{0.833332 – 6.42578 × 10–4·(T/K) + 7.09855 × 10–7·(T/K)2}; temp range: 274.55–438.92 K (Cox eq., Chao et al. 1983) 533 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.10133 – 1494.166/(209.399 + t/°C), temp range 89.29–165.8°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 640 (Riddick et al. 1986) log (P/kPa) = 6.103304 – 1495.511/(209.5517 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 620, 534 (calculated-Antoine eq.-I, extrapolated-Antoine eq.-II, Stephenson & Malanowski 1987)

log (PS/kPa) = 8.434 – 2576.6/(T/K); temp range not specified (Antoine eq., solid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.103304 – 1495.511/(–63.5983 + T/K), temp range 362–439 K (Antoine eq.-II, liquid, Stephenson & Malanowski 1987) log (P/mmHg) = 70.5022 – 4.412 × 103/(T/K) – 23.605·log (T/K) + 1.1205 × 10–2·(T/K) – 1.5648 × 10–13·(T/K)2; temp range 242–629 K (vapor pressure eq., Yaws 1994)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2661

Henry’s Law Constant (Pa m3/mol at 25°C): 1.216 (Hawthorne et al. 1985) 2.266 (calculated-P/C, Meylan & Howard 1991) 5.179 (estimated-bond contribution, Meylan & Howard 1991)

Octanol/Water Partition Coefficient, log KOW: 0.81 (shake flask, Hansch & Leo 1979, 1985, 1987) 0.81 (recommended, Sangster 1989, 1993) 0.81 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

0.39 (calculated-KOW with regression eq., Lyman et al. 1982; quoted, Howard 1990)

Sorption Partition Coefficient, log KOC:

1.00 (calculated-S, KOW with regression eq., Roy & Griffin 1985; quoted, Howard 1990)

Environmental Fate Rate Constants, k, or Half-Lives, t½: –1 Volatilization: using Henry’s law constant, t½ ~ 3.1 d from a model river 1-m deep flowing 1 m s with wind velocity of 3 m s–1 (Lyman et al. 1982; quoted, Howard 1990). –1 Photolysis: direct sunlight photolysis rate constant of about 0.16 d corresponding to t½ = 4.3 d (Mill & Davenport 1986; quoted, Howard 1990).

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation t½ = 24 h to 9.9 d in air for the gas-phase reaction with OH radical, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976) –11 3 –1 –1 kOH = 1.56 × 10 cm molecule s at 25°C with t½ ~ 1 d (Atkinson 1985; quoted, Howard 1990) –12 3 –1 –1 kOH = 6.39 × 10 cm molecule s at 298 K (Atkinson 1989) –12 3 –1 –1 –12 3 kOH = 12.55 × 10 cm molecule s from Atmospheric Oxidation Program, kOH(exptl) = 6.39 × 10 cm –1 –1 –12 3 –1 –1 molecule s and kOH(calc) = 2.92 × 10 cm molecule s from Fate of Atmospheric Pollutants Program, (Meylan & Howard 1993) –12 3 –1 –1 kOH(calc) = 5.09 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation: average rate of biodegradation 51.5 mg COD g–1 h–1 based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 24 h to 9.9 d in air for the gas-phase reaction with hydroxyl radicals, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radicals (Darnall et al. 1976);

degrade rapidly by reaction with sunlight produced hydroxyl radicals with t½ ~ 1 d and by direct sunlight photolysis with t½ ~ 4.3 d (Howard 1990). Surface water: estimated t½ ~ 0.003 yr at Noordwijk (Zoeteman et al. 1981). Ground water: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2662 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 12.1.2.8.1 Reported vapor aqueous solubilities and vapor pressures of cyclohexanone at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4) ′ 2 log (P/atm) = A [1 – (TB/T)] (5) where A′= (a + bT +cT )

Aqueous solubility Vapor pressure

Stephenson 1992 Stull 1947 Meyer & Hotz 1973

shake flask-GC/TC summary of literature data comparative ebulliometry

t/°CS/g·m–3 t/°CP/Pat/°CP/Pa 0 137000 1.40 133.3 89.628 12725 9.8 115000 26.4 666.6 94.986 15528 19.5 97000 38.7 1333 100.807 19257 29.8 82000 52.5 2666 107.664 24477 40.1 75000 67.8 5333 114.303 30580 50.2 70000 77.5 7999 119.712 36416 60.5 67000 90.4 13332 125.282 43337 71.1 65000 110.3 26664 130.659 50990 80.2 68000 132.5 53329 135.774 59239 90.7 69000 155.6 101325 141.742 70181 145.880 78656 mp/°C –45.0 151.916 92474 151.969 92593 156.917 105300 156.988 105417 165.769 131422 bp/°C 155.422 Antoine eq. eq. 2 P/cmHg A 5.978401 B 1495.511 C 209.5517 Cox eq. eq. 5 P/atm a 0.852046 –b × 103 0.612660 c × 106 0.504661

TB/K 428.5716

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2663

Cyclohexanone: solubility vs. 1/T -3.0 Stephenson 1992

-3.5 x

nl -4.0

-4.5

-5.0 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 12.1.2.8.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for cyclohexanone.

Cyclohexanone: vapor pressure vs. 1/T 8.0 Meyer & Hotz 1973 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(g ol 3.0

2.0

1.0 b.p. = 155.43 °C 0.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 12.1.2.8.2 Logarithm of vapor pressure versus reciprocal temperature for cyclohexanone.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2664 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

12.1.2.9 Acetophenone

O

Common Name: Acetophenone Synonym: 1-phenylethanone, methyl phenyl ketone, acetylbenzene, phenylmethylketone, hypnone Chemical Name: acetophenone, methyl phenyl ketone CAS Registry No: 98-86-2

Molecular Formula: C8H8O, C6H5COCH3 Molecular Weight: 120.149 Melting Point (°C): 20.5 (Stull 1947; Weast 1982–83; Lide 2003) Boiling Point (°C): 202 (Lide 2003) Density (g/cm3 at 20°C): 1.0281 (Dreisbach 1955; Weast 1982–83; Riddick et al. 1986) 1.02382 (25°C, Dreisbach 1955; Riddick et al. 1986) Molar Volume (cm3/mol): 117.1 (calculated-density, Rohrschneider 1973) 140.4 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 42.0, 53.41 (normal bp, 25°C, Dreisbach 1955) ∆ Enthalpy of Fusion Hfus (kJ/mol): 16.65 (Tsonopoulos & Prausnitz 1971) ∆ Entropy of Fusion Sfus (J/mol K): 42.26 (Tsonopoulos & Prausnitz 1971) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 5530 (shake flask-centrifuge, Booth & Everson 1948) 6300 (shake flask-UV, Andrews & Keefer 1950) 6022 (estimated, McGowan 1954) 5540 (24°C, shake flask-LSC, Means et al. 1980) 5500 (Verschueren 1983; Dean 1985, 1992) 6130 (Southworth & Keller 1986) 5620* (19.9°C, shake flask-GC/TC, measured range 19.9–80.1°C, Stephenson 1992)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 266.6* (50.2°C, static method-manometer, measured range 50.2–201.5°C, Kahlbaum 1898) 66.21* (extrapolated-regression of tabulated data, temp range 37.1–202.4°C, Stull, 1947) 49.53 (calculated-Antoine eq., Dreisbach 1955) log (P/mmHg) = 7.15738 – 1723.46/(201.0 + t/°C); temp range 102–330°C (Antoine eq. for liquid state, Dreisbach 1955) 41.30 (Hoy 1970) log (P/mmHg) = [–0.2185 × 11731.5/(T/K)] + 8.293248; temp range 37.1–202.4°C (Antoine eq., Weast 1972–73) 57.48 (extrapolated-Cox eq., Chao et al. 1983) log (P/mmHg) = [1 – 474.823/(T/K)] × 10^{0.859974 – 6.15392 × 10–4·(T/K) + 6.99110 × 10–7·(T/K)2}; temp range 310.25–475.55 K (Cox eq., Chao et al. 1983) 52.92 (Daubert & Danner 1985) 40.23 (extrapolated-Antoine eq., Dean 1985)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2665

log (P/mmHg) = 9.1352 – 2878.8/(T/K); temp range 20–100°C (Antoine eq., Dean 1985, 1992) 49.0 (Riddick et al. 1986) log (P/kPa) = 6.28228 – 1723.46/(201.0 + t/°C), temp range not specify (Antoine eq., Riddick et al. 1986) 45.3 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.28228 – 1723.46/(–72.15 + T/K); temp range 375–603 K (Antoine eq., Stephenson & Malanowski 1987) 45.00 (selected, Mackay et al. 1992, 1995; quoted, Shiu & Mackay 1997) log (P/mmHg) = 55.5798 – 4.5101 × 103/(T/K) –17.284·log (T/K) + 6.4184 × 10–3·(T/K) + 6.5557 × 10–13·(T/K)2; temp range 293–701 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section):

1.082 (calculated-1/KAW, CW/CA, reported as exptl., Hine & Mookerjee 1975) 0.784 (calculated-bond contribution, Hine & Mookerjee 1975) 0.921* (25.1°C, gas stripping-GC, measured range 14.9–35°C, Betterton 1991) 0.753 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996) 1.080, 0.982 (gas stripping-GC, calculated-P/C, Shiu & Mackay 1997) 1.06* (EPICS-UV spectroscopy, measured range 5–25°C, Allen et al. 1998)

ln KAW = –9100/(T/K) + 22.47 (EPICS-UV, temp range 5–25°C, Allen et al. 1998) 0.560 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 7.307 – 3202/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 1.58 (shake flask-UV, Fujita et al. 1964; quoted, Leo et al. 1969, 1971; Hansch & Leo 1985) 1.58 (calculated-π const., Iwasa et al. 1965) 1.73 (shake flask-UV, Chapman et al. 1972) 1.58 (HPLC-RT correlation, Lazare et al. 1974) 1.68 (shake flask-UV, Holmes & Lough 1976) 1.66 ± 0.08 (shake flask at pH 7, Unger et al. 1978) 1.66 (Hansch & Leo 1979) 1.59 (shake flask-GC, Khan et al 1979) 1.59 (shake flask-LSC, Means et al. 1980) 1.58 (shake flask-HPLC, Nahum & Horvath 1980) 1.75 (calculated-f const., Rekker’s method, Hanai et al. 1981) 1.77, 1.56 (HPLC-k′ correlation, McDuffie 1981) 1.80 (HPLC-RT correlation, Hammers et al. 1982) 1.83 (RP-LC-RT correlation, Hanai & Hubert 1982) 1.56 (RP-HPLC-k′ correlation, Miyake & Terada 1982) 1.63 (inter-laboratory studies, shake flask average, Eadsforth & Moser 1983) 1.65 (inter-laboratory studies, HPLC average, Eadsforth & Moser 1983) 1.65; 1.68 ± 0.02 (selected best lit. value; exptl.-ALPM, Garst & Wilson 1984) 1.59; 1.72 (HPLC-RT correlation; HPLC average, Eadsforth 1986) 1.71 (HPLC-RT correlation, Ge et al. 1987) 1.65 (calculated-activity coeff. γ from UNIFAC, Banerjee & Howard 1988) 1.60 (shake flask-CPC, Berthod et al. 1988) 1.58 (RP-HPLC-k′ correlation, Minick et al. 1988) 1.63 (recommended, Sangster 1989, 1993) 1.59 (CPC centrifugal partition chromatography, Gluck & Martin 1990) 1.56 (shake flask-UV spec., Alcorn et al. 1993) 1.58 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

0.699–0.954 (estimated-KOW and S, Lyman et al. 1982; quoted, Howard 1993)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2666 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Sorption Partition Coefficient, log KOC: 1.544 (average of 3 sediments and soil samples, equilibrium sorption isotherm, Means et al. 1980) 1.380 (calculated, Means et al. 1980) 1.89 (calculated-MCI χ, Gerstl & Helling 1987) 1.630 (soil, quoted, Sabljic 1987) 1.73 (RP-HPLC-k′ correlation, cyanopropyl column, Hodson & Williams 1988) 1.34–2.43 (soils and sediments, quoted exptl. and estimated values, Howard 1993)

1.26 (calculated-KOW, Kollig 1993) 1.54 (soil, calculated-MCI 1χ, Sabljic et al. 1995) 1.79, 1.63 (RP-HPLC-k′ correlation including MCI related to non-dispersive intermolecular interactions, hydrogen-bonding indicator variable, Hong et al. 1996) 1.61, 1.50, 1.80 (soils: organic carbon OC ≥ 0.1%, OC ≥ 0.5%, 0.1 ≤ OC < 0.5%, average, Delle Site 2001) 1.56, 1.55 (sediments: organic carbon OC ≥ 0.1%, OC ≥ 0.5%, average, Delle Site 2001)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: based on calculated Henry’s law constant, t½ ~ 3.8 d from a model river of 1-m deep flowing at 1 m s–1 with a wind velocity of 3 m s–1 (Lyman et al. 1982; quoted, Howard 1993). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –12 3 –1 –1 kOH = (2.74 ± 0.15) × 10 cm molecule s at 298 K (Atkinson 1989) –12 3 –1 –1 kOH(calc) = 1.61 × 10 cm molecule s estimated from Atmospheric Oxidation Program; kOH(exptl) = 2.74 × 10–12 cm3 molecule–1 s–1 estimated from Fate of Atmospheric Pollutants Program with OH radical in vapor phase (Meylan & Howard 1993) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 0.74 × 10 cm molecule s , kOH(exptl) = 2.74 × 10 cm molecule s at 298 K (SAR structure-activity relationship, Kwok & Atkinson 1995) Hydrolysis: Biodegradation: biodegradation rate constant k = 0.029–0.042 h–1 in 30 mg L–1 activated sludge after a time lag of 15–20 h (Urano & Kato 1986b); rate constants: k = 0.022 d–1 in ground water, k = 0.083 d–1 in river waters and k = 0.155 d–1 in Superior harbor waters (Vaishnav & Babeu 1987). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: estimated photooxidation t½ ~ 22 d in atmosphere, based on the vapor-phase reaction with photochemically produced hydroxyl radical in air (Atkinson 1988; quoted, Howard 1993); atmospheric transformation lifetime was estimated to be 1 to 5 d (Kelly et al. 1994).

Surface water: biodegradation t½ = 8 d in river water and t½ = 4.5 d in lake water (Vaishnav & Babeu 1986, 1987; quoted, Howard 1993) and t½ = 4 d in Superior harbor waters (Vaishnav & Babeu 1987). Ground water: biodegradation t½ = 32 d (Vaishnav & Babeu 1986, 1987; quoted, Howard 1993); estimated t½ ~ 0.01 yr at Noordwijk (Zoeteman et al. 1981). Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2667

TABLE 12.1.2.9.1 Reported aqueous solubilities and Henry’s law constants of acetophenone at various temperatures

Aqueous solubility Henry’s law constant

Stephenson 1992 Betterton 1991 Allen et al. 1998

shake flask-GC/TC gas stripping-GC EPICS-UV t/°CS/g·m–3 t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) 19.9 5620 14.9 0.582 15 0.263 29.5 7100 25.1 0.921 17.5 0.362 39.5 8330 35.0 2.068 20 0.463 49.8 8140 45.0 4.053 25 1.065 60.1 8880 ∆ –1 70.2 9920 H/(kJ mol ) = –50.5 ln KAW = A – B/(T/K)

80.1 12040 eq. 1 KAW A –9100 B 22.47 ∆H/(kJ mol–1) = –75.6 ∆S/(J K–1 mol–1) = 186.9

Acetophenone: solubility vs. 1/T -5.5 Stephenson 1992 Booth & Everson 1948 Andrews & Keefer 1950 Means et al. 1980 -6.0

x n x -6.5 l

-7.0

-7.5 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 12.1.2.9.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for acetophenone.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2668 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 12.1.2.9.2 Reported vapor pressures of acetophenone at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Kahlbaum 1898 Stull 1947

static method-manometer* summary of literature data t/°CP/Pat/°CP/Pa 50.2 266.6 37.1 133.3 56.0 400.0 64.0 666.6 61.0 533.3 78.0 1333 65.0 666.6 92.4 2666 79.0 1333.2 109.4 5333 87.3 1999.8 119.8 7999 93.4 2666.4 133.6 13332 102.4 3999.7 154.2 26664 109.7 5332.9 178.0 53329 114.7 6666.1 202.4 101325 125.2 9999.2 133.2 13332 mp/°C 20.5 154.1 26664 167.6 39997 177.7 53329 185.7 66661 192.5 79993 198.5 93326 201.5 101325 *complete list see ref.

Acetophenone: Henry's law constant vs. 1/T 2.0

1.0 )lom/ 0.0 3 m.aP(/H nl m.aP(/H

-1.0

-2.0 Betterton 1991 Allen et al. 1998 Hine & Mookerjee 1975 -3.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 1/(T/K) FIGURE 12.1.2.9.2 Logarithm of Henry’s law constant versus reciprocal temperature for acetophenone.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2669

Acetophenone: vapor pressure vs. 1/T 8.0 Kahlbaum 1898 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(g ol 3.0

2.0

1.0 m.p. = 20.5 °C b.p. = 202 °C 0.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 12.1.2.9.3 Logarithm of vapor pressure versus reciprocal temperature for acetophenone.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2670 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

12.1.2.10 Benzophenone

O

Common Name: Benzophenone Synonym: diphenyl ketone, diphenyl methanone Chemical Name: benzophenone, diphenyl ketone CAS Registry No: 119-61-9

Molecular Formula: C13H10O, C6H5COC6H5 Molecular Weight: 182.217 Melting Point (°C): 48.1 (α, Weast 1982–83; Dean 1985) 26.0 (β, Weast 1982–83; Dean 1985) 47.9 (Lide 2003) Boiling Point (°C): 305.4 (Lide 2003) Density (g/cm3 at 20°C): 1.6077 (α, 19°C, Weast 1982–83) 1.6059 (β, 23°C, Weast 1982–83) 1.111 (18°C, Lide 2003) Molar Volume (cm3/mol): 206.8 (calculated-Le Bas method at normal boiling point) Dissociation Constant: ∆ Enthalpy of Vaporization, HV (kJ/mol): 53.38, 81.90 (normal bp, 25°C, Dreisbach 1955) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 16.99 (Dreisbach 1955) 13.36 (Yalkowsky & Valvani 1980) ∆ Entropy of Fusion Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus =56 J/mol K), F: 0.596 (mp at 47.9°C)

Water Solubility (g/m3 or mg/L at 25°C): ∆ 20720, 21000 (calculated- Sfus and mp, estimated, Yalkowsky & Valvani 1980) 276 (calculated-intrinsic molar volume VI and solvatochromic parameters, Leahy 1986) 77.7 (calculated-group contribution method, Kühne et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 33330* (257.15°C, temp range 257.15–302.85°C, Jaquerod & Wassher 1904; quoted, Boublik et al. 1984) 0.617* (extrapolated-regression tabulated data, temp range 108.3–305.5°C, Stull 1947) log (P/mmHg) = 7.81086 – 2643.0/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 6287* (200.50°C, ebulliometry, measured range 200.50–306.1°C, Dreisbach & Shrader 1949) 1.242 (calculated by formula, Dreisbach 1955) log (P/mmHg) = 7.28937 – 2144.6/(181.0 + t/°C); temp range 1980–600°C (Antoine eq. for liquid state, Dreisbach 1955) log (P/mmHg) = [–0.2185 × 14725.4/(T/K)] + 8.456678; temp range 108.2–305.4°C (Antoine eq., Weast 1972–73) 3.146* (55.9°C, effusion method, measured range 55.9–71.2°C, DePablo 1976) 0.086, 0.0115 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.2931 – 2056.386/(173.545 + t/°C), temp range 200.5–306.1°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.37814 – 2127.915/(181.209 + t/°C), temp range 257.1–302.8°C (Antoine eq. from reported exptl. data, Boublik et al. 1984)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2671

0.080 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.34966 – 2331.4/(195.0 + t/°C), temp range 48–202°C (Antoine eq., Dean 1985, 1992) log (P/mmHg) = 7.16294 – 2051.855/(173.074 + t/°C); temp range 200–306°C (Antoine eq., Dean 1985, 1992) 0.086, 0.095 (interpolated-eq.-I and II, Stephenson & Malanowski 1987)

log (PS/kPa) = 12.44989 – 4924.329/(T/K); temp range 293–318 K (Antoine eq.-I, solid, Stephenson & Malanowski 1987)

log (PS/kPa) = 11.736 – 4698/(T/K); temp range 298–318 K (Antoine eq.-II, solid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.41427 – 2144.6/(–92.15 + T/K); temp range 433–673 K (Antoine eq.-III, liquid, Stephenson & Malanowski 1987) log (P/mmHg) = 16.4144 – 3.8064 × 103/(T/K) – 2.3984·log (T/K) – 7.4544 × 10–4·(T/K) + 2.9345 × 10–7·(T/K)2; temp range 321–816 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol):

Octanol/Water Partition Coefficient, log KOW: 3.18 (shake flask-UV, Leo et al. 1971) 3.58 (shake flask-UV, Holmes & Lough 1976) 3.10 (shake flask-UV, Unger & Chiang 1981) 3.02 (HPLC-k′ correlation, McDuffie 1981) 3.03 (RP-HPLC-RT correlation, ODS column with masking agent, Bechalany et al. 1989) 3.18 (recommended, Sangster 1989, 1993) 3.18 (recommended, Hansch et al. 1995) 3.09 (microemulsion electrokinetic chromatography-retention factor correlation, Poole et al. 2000) 3.32 (RP-HPLC-RT correlation using short ODP column, Donovan & Pescatore 2002)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 2.63 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2672 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 12.1.2.10.1 Reported vapor pressures of benzophenone at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Jaquerod & Wassher 1904 Stull 1947 Dreisbach & Shrader 1949 DePablo 1976 in Boublik et al. 1984# summary of lit. data ebulliometry effusion method t/°CP/Pat/°CP/Pa°CP/Pt/ a°CP/Pat/ 257.15 33330 108.2 133.3 200.50 6287 55.9 3.146 260.05 35997 141.7 666.6 206.42 7605 60.7 4.280 265.56 41330 157.6 1333 211.76 8851 66.9 7.146 270.65 46663 175.8 2666 215.46 10114 71.2 9.533 275.23 51996 195.7 5333 231.57 16500 280.40 58662 208.2 7999 266.87 42066 285.11 65328 224.4 13332 287.23 67661 290.26 73327 249.8 26664 306.1 101325 295.00 81326 276.8 53329 300.11 91992 305.4 101325 302.85 95992 Antoine eq. given by mp/°C 48.5 Dreisbach & Martin 1949 complete data set see ref. Eq. 2 P/mmHg A 7.81086 eq. in Boublik et al. 1984 B 2643.0 eq. 2 P/kPa C 230 A 6.37841 B 2127.915 bp/°C 306.10 C 181.209 mp/°C47.93 bp/°C 3035.428

# Jaquerod, A. Wassher, E. Ber. 3, 2531 (1904)

Benzophenone: vapor pressure vs. 1/T 7.0 Dreisbach & Shrader 1949 DePablo 1976 6.0 Stull 1947

5.0

4.0 )aP/

S 3.0 P(g ol 2.0

1.0

0.0 b.p. = 305.4 °C m.p. = 47.9 °C -1.0 0.0016 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 12.1.2.10.1 Logarithm of vapor pressure versus reciprocal temperature for benzophenone.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2673 /mol 3 M 66.6 96.2 92.1 74.0 96.2 51.8 74.0 96.2 88.8 99.5 29.6 118.2 118.2 162.8 118.4 140.6 118.4 118.4 140.6 140.6 185.0 162.8 185.0 140.4 206.8 Le Bas cm /mol 3 cm at 20°C Molar volume, V Molar volume, ρ MW/ 1 82.30 ratio, F Fugacity at 25°C* C ° b.p. 171 1 156.15 C ° m.p. 56.063 –87.7 52.6 1 66.83 86.132 –91.5 103 1 106.40 72.106 –65.9 64.5 1 91.38 72.106 –96.86 74.8 1 89.95 44.052 –123.37 20.1 1 56.23# 58.079 –80 48 1 72.87 98.142 –27.9 155.43 1 103.83 84.117 –51.90 130.57 1 88.67 96.085 –38.158.07972.10686.132 161.7 –94.786.132 –86.64 –76.8 1 56.05 –39 79.59 102.26 1 101.7 82.83 1 1 73.53 1 89.53 106.81 105.77 30.026 –92 –19.1 1 g/mol 114.185 –43.4 152.8 1 140.41** 106.122 –57.1 178.8 1 101.59 100.158 –56 131 1 120.17 128.212 128.212 –16128.212 172.5 1 156.36 100.158100.158114.185 –84 –55 –35 116.5 20.5120.149 127.6182.217 151.05 202 1 1 47.9 1 125.04 1 305.4 123.45 140.04 0.596 116.87 164.01# Molecular weight, MW 3 3 3 CH 5 3 3 3 3 3 2 H 6 COCH 2 2 COCH O CO CO 4 CO 4 CHO CHO CHO CHO ) 8 CHO CHO CHO CHO 16 10 CHO 7 2 5 7 9 5 3 11 13 15 COCH COCH COCH COCH H COCH COCH COC H 5 5 7 9 5 H H H 3 2 5 4 H H H H 7 5 H H H 3 2 3 4 6 HCHO C 5 6 7 H H H H C H CHCH C=CHCHO CH=CHCHO 70.0902 –763 102.2 4 6 CH C formula (CH 6 2 2 3 i 3 CH ) Molecular 3 3 78-84-2 75-07-0 66-25-1 C 98-01-1 67-64-1 CH 98-86-2 C 96-22-0 CH 50-00-0 78-93-3 C 110-43-0 CH 120-92-3 123-73-9 CH 100-52-7 C 108-94-1 C 124-13-0 C 107-02-8 H 110-62-3 C 111-71-7 C 123-72-8 C 111-13-7 C 119-61-9 C 107-87-9 C 591-78-6 C 108-10-1 (CH 123-38-6 C CAS no. CAS = J/mol K; # 56 at 25°C. at 18°C; ** fus S ∆ -Valeraldehyde) : n n -Butyraldehyde) : © 2006 by Taylor & Francis Group, LLC 2-Propenal (Acrolein) Pentanal ( Ethanal (Acetaldehyde) Ethanal Heptanal Furfural (2-Furaldehyde) 2-Pentanone (MIBK) ketone isobutyl Methyl Cyclopentanone Acetophenone Octanal Benzaldehyde ketone) ethyl (Methyl 2-Butanone 3-Pentanone TABLE 12.2.1 TABLE and ketones of aldehydes properties of physical Summary Compound * Assuming Ketones Acetone Butanal ( Isobutraldehyde Hexanal 2-Hexanone 2-Heptanone 2-Octanone Benzophenone Cyclohexanone 2-Butenal Aldehydes Methanal (Formaldehyde) Propanal (Propionaldehyde) 12.2 PL AND QSPR TABLES SUMMARY OTS

© 2006 by Taylor & Francis Group, LLC 2674 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals l (c) 2.71 0.92 0.0341 5.76 3.93 3.07 13.17 /mol) 3 m 0.0298 · 11.65 H/(Pa Henry's law constant law Henry's 6.69 6.80 8.00 8.90 3.97 14.87 15.59 21.57 19.49 988. 0.059 22.91 15.32 calcd P/C (a) exptl (b) exptl (c) exptl expt OW 0.59 7.944 7.44 8.40 7.51 1.78 –0.24 /Pa log K L 45 45 1.63 0.983 620 620 0.81 2.646 500 500 2.08 13.28 14.73 174 174 1.48 6.155 2.28 310 310 0.41 0.3751 180 180 2.37 20.42 19.09 1540 1540 5100 5100 2180 2180 4700 4700 0.82 11.91 1600 1600 1.38 9.157 4720 4720 0.84 6.833 6.44 2600 2600 /Pa P Vapor pressure Vapor S 36500 36500 –0.10 9.838 13.37 12100 12100 0.29 3.635 9.71 15200 15200 0.88 15.44 11.65 )P 3 Selected properties per 1990; (c) Snider & Dawson 1985; (d) Betterton & Hoffmann 1 & Hoffmann Betterton (d) 1985; & Dawson Snider (c) 1990; per operties of aldehydes and and ketones at 25°C of aldehydes operties cible 121300 121300 0.45 /(mol/m L )C Solubility 3 276 2.541 0.09 0.151 3.18 4300 37.66 3000 28.27 5500 45.78 1130 8.814 5020 50.12 23000 234.4 79400 826.4 15600 222.6 71000 984.7 17500 174.7 34000 394.7 59500 690.8 240000 3328.4 310000 5338 42400 42400 miscible miscible 517000 517000 0.35 miscible miscible 30806 30800 miscible mis S/(g/m : : © 2006 by Taylor & Francis Group, LLC Benzophenone 3-Pentanone 2-Heptanone Acetophenone 2-Octanone Cyclohexanone Cyclopentanone 2-Pentanone Methyl isobutyl ketone ketone isobutyl Methyl 17000 169.7 2-Hexanone 2-Butanone Ketones Acetone Ethanal Benzyldehyde TABLE 12.2.2 TABLE pr of selected physical-chemical Summary Compound Mop & Zhou (b) 1969; et al. Buttery 1935, et al. Butler (a) Aldehydes Methanal Propanal Butanal n- Valeraldehyde 2-Propenal (Aroclein) 208000 3710 Hexanal 2-Butenal Furfural

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2675

TABLE 12.2.3 Suggested half-life classes for aldehydes and ketones at various environmental compartments at 25°C

Compound Air class Water class Soil class Sediment class Aldehydes: Methanal (Formaldehyde)1334 Ethanal (Acetaldehyde)1334 Propanal (Propionaldehyde)1334 Butanal (n-Butyraldehyde)1334 2-Propenal (Acrolein) 1334 2-Butenal 1334 Furfural (2-Furaldehyde)1334 Benzaldehyde 1334 Ketones: Acetone 4345 2-Butanone (Methyl ethyl ketone)4335 2-Pentanone 3445 3-Pentanone 3445 Methyl isobutyl ketone (MIBK)3445 2-Hexanone 3445 2-Heptanone 3445 Cyclohexanone 3445 Acetophenone 5445 Benzophenone 5445 where, Class Mean half-life (hours) Range (hours) 15< 10 2 17 (~ 1 day) 10–30 3 55 (~ 2 days) 30–100 4 170 (~ 1 week) 100–300 5 550 (~ 3 weeks) 300–1,000 6 1700 (~ 2 months) 1,000–3,000 7 5500 (~ 8 months) 3,000–10,000 8 17000 (~ 2 years) 10,000–30,000 9 ~ 5 years > 30,000

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2676 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

solubility vs. Le Bas molar volume 5 Aldehydes Ketones 4

) 3 3 mc/lom(/

2 L C gol C

1

0

-1 20 40 60 80 100 120 140 160 180 200 220 3 Le Bas molar volume, VM/(cm /mol) FIGURE 12.2.1 Molar solubility (liquid or supercooled liquid) versus Le Bas molar volume for aldehydes and ketones.

vapor pressure vs. Le Bas molar volume 6 Aldehydes Ketones 5

4

aP/ 3 L P gol P 2

1

0

-1 20 40 60 80 100 120 140 160 180 200 220 3 Le Bas molar volume, VM/(cm /mol) FIGURE 12.2.2 Vapor pressure (liquid or supercooled liquid) versus Le Bas molar volume for aldehydes and ketones.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2677

log K vs. Le Bas molar volume 4 OW Aldehydes Ketones 3

2 WO K gol K

1

0

-1 20 40 60 80 100 120 140 160 180 200 220 3 Le Bas molar volume, VM/(cm /mol) FIGURE 12.2.3 Octanol-water partition coefficient versus Le Bas molar volume for aldehydes and ketones.

Henry's law constant vs. Le Bas molar volume 2

1 )lom / 3 m .aP(/H gol .aP(/H 0

-1

Aldehydes Ketones -2 20 40 60 80 100 120 140 160 180 200 220 3 Le Bas molar volume, VM/(cm /mol) FIGURE 12.2.4 Henry’s law constant versus Le Bas molar volume for aldehydes and ketones.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2678 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log K vs. solubility 4 OW Aldehydes Ketones

3

2 WO K gol K

1

0

-1 -1 0 1 2 3 4 5 3 log CL/(mol/cm ) FIGURE 12.2.5 Octanol-water partition coefficient versus molar solubility (liquid or supercooled liquid) for aldehydes and ketones.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2679

12.3 REFERENCES Abraham, M.H., Le J., Acree, Jr., W.E., Carr, P.W., Dallas, A.J. (2001) The solubility of gases and vapours in dry octan-1-ol at 298 K. Chemosphere 44, 855–863. Alcorn, C., Simpson, R.J., Leahy, D.E., Peters, T. (1993) Partition and distribution coefficients of solutes and drugs in brush border membrane vesicles. Biochem. Pharm. 45, 1775–1782. Allen, J.M., Balcavage, W.X., Ramachandran, B.R., Shrout, A.L. (1998) Determination of Henry’s law constants by equilibrium partitioning in a closed system using a new in situ optical absorbance method. Environ. Toxicol. Chem. 17, 1216–1221. Ambrose, D., Ellender, J.H., Lees, E.B., Sprake, C.H.S., Townsend, R. (1975a) Thermodynamic properties of organic oxygen compounds. XXXVIII. Vapour pressures of some aliphatic ketones. J. Chem. Thermodyn. 7, 453–472. Ambrose, D., Connett, J.E., Green, J.H.S., Hales, J.L., Head, A.J., Martin, J.F. (1975b) Thermodynamic properties of organic oxygen compounds. 42. Physical and thermodynamic properties of benzaldehyde. J. Chem. Thermodyn. 7, 1143–1157. Ambrose, D., Ghiassee, N.B., Tuckerman, R. (1988) Vapour pressure and critical temperature and critical pressure of 4-methylpentan- 2-one. J. Chem. Thermodyn. 20, 767–768. Ambrose, D., Sprake, C.H.S. (1974) Thermodynamic properties of organic oxygen compounds. 32. Vapour pressure and second virial coefficient of propanal. J. Chem. Thermodyn. 6, 453–456. Ambrose, D., Sprake, C.H.S., Townsend, R. (1974) Thermodynamic properties of organic oxygen compounds. XXXIII. The vapour pressure of acetone. J. Chem. Thermodyn. 6, 693–700. Amidon, G.L., Williams, N.A. (1982) A solubility equation for non-electrolytes in water. Int. J. Pharm. 11, 249–256. Anbar, M., Neta, P. (1967) A compilation of specific bimolecular rate and hydroxyl radical with inorganic and organic compounds in aqueous solution. Int. J. Appl. Radiation Isotopes 18, 493–523. Anderson, T.A., Beauchamp, J.J., Walton, B.T. (1991) Organic chemicals in the environment. J. Environ. Qual. 20, 420–424. Andrews, L.J., Keefer, R.M. (1950) Cation complexes of compounds containing carbon-carbon double bonds. VI. The argentation of substituted benzenes. J. Am. Chem. Soc. 72, 3113–3116. Ashworth, R.A., Howe, G.B., Mullins, M.E., Rogers, T.N. (1988) Air-water partition coefficients of organics in dilute solutions. J. Haz. Materials 18, 25–36. Atkinson, R. (1985) Kinetics and mechanisms of the gas-phase reactions of hydroxyl radical with organic compounds under atmospheric conditions. Chem. Rev. 85, 69–201. Atkinson, R. (1987) A structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds. Int. J. Chem. Kinetics 19, 799–828. Atkinson, R. (1989) Kinetics and Mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J. Phys. Chem. Data Monograph No. 1. Atkinson, R. (1990) Gas-phase tropospheric chemistry of organic compounds: A review. Atmos. Environ. 24A(1), 1–41.

Atkinson, R. (1991) Kinetics and mechanisms of the gas-phase reactions of NO3 radical with organic compounds. J. Phys. Chem. Ref. Data 20, 459–507.

Atkinson, R. (2000) Atmospheric chemistry of VOCs and Nox. Atmos. Environ. 34, 2063–2101. Atkinson, R., Aschmann, S.M., Carter, W.P.L., Pitts, J.N. Jr. (1982) Rate constants for the gas-phase reaction of hydroxyl radicals with a series of ketones at 299 ± 2 K. Int. J. Chem. Kinet. 14, 839–847.

Atkinson, R., Aschmann, S.M., Fitz, D.R., Winer, A.M., Pitts, J.N. Jr. (1982) Rate constants for the gas-phase reactions of O3 with selected organics at 296 K. Int. J. Chem. Kinet. 14, 13–18.

Atkinson, R., Aschmann, S.M., Goodman, M.A. (1987) Kinetics of the gas-phase reactions of NO3 radicals with a series of alkynes, haloalkenes, and α, β-unsaturated aldehydes. Int. J. Chem. Kinet. 19, 299–307.

Atkinson, R., Aschmann, S.M., Winer, A.M. (1987) Kinetics of the reactions of NO3 radicals with a series of aromatic compounds. Environ. Sci. Technol. 21, 1123–1126. Atkinson, R., Carter, W.P.L. (1984) Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem. Rev. 84, 437–470.

Atkinson, R., Carter, W.P.L., Plum Ch. N., Winer, A.M., Pitts, J.N. Jr. (1984) Kinetics of the gas-phase reactions of the NO3 radicals with a series of aromatics at 296 ± 2 K. Int. J. Chem. Kinet. 16, 887–898. Atkinson, R., Lloyd, A.C. (1984) Evaluation of kinetic and mechanistic data for modeling of photochemical smog. J. Phys. Chem. Ref. Data 13, 315–444. Atkinson, R., Tuazon, E.C., Aschmann, S.M. (2000) Atmospheric chemistry of 2-pentanone and 2-heptanone. Environ. Sci. Technol. 34. 623–631. Ayuttaya, P.C.N., Rogers, T.N., Mullins, M.E., Kline, A.A. (2001) Henry’s law constants derived from equilibrium static cell measurements for dilute organic-water mixtures. Fluid Phase Equil. 185, 359–377. Banerjee, S., Howard, P.H. (1988) Improved estimation of solubility and partitioning through correction of UNIFAC-derived activity coefficients. Environ. Sci. Technol. 22, 839–841. Banerjee, S., Howard, P.H., Lande, S.S. (1990) General structure-vapor pressure relationships for organics. Chemosphere 21(10/11), 1173–1180.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2680 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Barrows, M.E., Petrocelli, S.R., Macek, K.J. (1980) Bioconcentration and elimination of selected water pollutants by bluegill sunfish (Lepomis machrochirus). In: Dynamic, Exposure, Hazard Assessment Toxic Chemicals. Haque, R., Editor, pp. 379–392, Ann Arbor Science Publishers, Ann Arbor, MI. Bartelt, R.J. (1997) Calibration of a commercial solid-phase microextraction device for measuring headspace concentrations of organic volatiles. Anal. Chem. 69, 364–372. Baulch, D.L., Cox, R.A., Hampson, R.F., Jr., Kerr, J.A., Troe, J., Watson, R.T. (1984) Evaluated kinetic and photochemical data for atmospheric chemistry (Supplement II). J. Phys. Chem. Ref. Data 13, 1255–1380. Bechalany, A., Röthlisberger, T., El Tayler, N., Testa, B. (1989) Comparison of various non-polar stationary phases used for assessing lipophilicity. J. Chromatog. 473, 115–124. Benkelberg, H.-J., Hamm, S., Warneck, P. (1995) Henry’s law coefficients for aqueous solutions of acetone, acetaldehyde and acetonitrile, and equilibrium constants for the addition compounds of acetone and acetaldehyde with bisulfite. J. Atmos. Chem. 20, 17–34. Berthod, A., Han, Y.I., Armstrong, D.W. (1988) Centrifugal partition chromatography. V. Octanol-water partition coefficients, direct and indirect determination. J. Liq. Chromatogr. 11(7), 1441–1456. Berti, P., Cabani, S., Conti, G., Mollica, V. (1986) Thermodynamic study of organic compounds in octan-1-ol. J. Chem. Soc. Farad. Trans. 182, 2547–2556. Betterton, E.A. (1991) The partitioning of ketones between the gas and aqueous phases. Atmos. Environ. 25A, 1473–1477. Betterton, E.A., Hoffmann, M.R. (1988) Henry’s law constants of some environmental important aldehydes. Environ. Sci. Technol. 22, 1415–1418. Booth, H.S., Everson, H.E. (1948) Hydrotropic solubilities. Solubilities in 40 per cent sodium xylenesulfonate. Ind. Eng. Chem. 40(8), 1491–1493. Boublik, T., Aim, K. (1972) Collection Cze. Chem. Commun. 36. ref. see Boulik et al. 1984. Boublik, T., Fried, V., Hala, E. (1973) The Vapour Pressures of Pure Substances. Elsevier, Amsterdam, The Netherlands. Boublik, T., Fried, V., Hala, E. (1984) The Vapour Pressures of Pure Substances. 2nd ed., Elsevier, Amsterdam, The Netherlands. Bowmer, K.H., Sainty, G.R. (1977) J. Aquatic Plant Manage. 15, 40. Bridie, A.L., Wolff, C.J.M., Winter, M. (1979) BOD and COD of some petrochemicals. Water Res. 13, 627–630. Brown, I., Smith, F. (1957) Austral. J. Chem. 10, 423. Burnett, M.G. (1963) Determination of partition coefficients at infinite dilution by gas chromatographic analysis of vapor above dilute solutions. Anal. Chem. 35, 1567–1569. Budarvari, S., Ed.(1989) An Encyclopedia of Chemicals, Drugs and Biologicals. Budavari, S., Editor, Merck & Co., Rahway, NJ, 11th Edition. Butler, J.A.V., Ramchandani, C.N. (1935) The solubilities of nonelectrolytes. Part II. The influence of the polar group on the free energy of hydration of aliphatic compounds. J. Chem. Soc. 952–955. Buttery, R.G., Ling, L.C., Guadagni, D.G. (1969) Food volatiles. Volatilities of aldehydes, ketones, and esters in dilute water solution. J. Agric. Food Chem. 17, 385–389. Callahan, M.A., Slimak, M.W., Gabel, N.W., May, I.P., Fowler, C.F., Freed, J.R., Jennings, P., Durfee, R.L., Whitemore, F.C., Maestri, B., Mabey, W.R., Holt, B.R., Gould, C. (1979) Water Related Environmental Fate of 129 Priority Pollutants. U.S. EPA-440- 4-79-029a,b. Versar, Springfield, VA. Calvert, J.G., Demeyan, K.L., Kerr, J.A., McQuigg, R.D. (1972) Photolysis of formaldehyde as a hydrogen atom source in the lower atmosphere. Science 175, 751–752. Capel, P.D., Larson, S.J. (1995) A chemodynamic approach for estimating losses of target organic chemicals from water during sample holding time. Chemosphere 30, 1097–1107. Carless, J.E., Swarbrick, J. (1964) The solubility of benzaldehyde in water as determined by refractive index measurements. J. Pharm. Pharmacol. 16, 633–634. Carlier, P., Hannachi, H., Mouvier, G. (1986) The chemistry of carbonyl compounds in the atmosphere-A review. Atmos. Environ. 20, 2079–2099. Carter, W.P.L., Winer, A.M., Pitts, J.N. Jr. (1981) Major atmospheric sink for phenol and the cresols. Reaction with nitrate radical. Environ. Sci. Technol. 15, 829–831. Chapman, J.D., Raleigh, J.A., Borsa, J., Webb, R.G., Whitehorse, R. (1972) Radiosensitization of mammalian cells by p-nitroace- tophenone. II. Effectiveness of analogs. Int. J. Radiat. Biol. 21, 475–482. Cheng, W.-H., Chu, F.-S., Liou, J.-J. (2003) Air-water interface equilibrium partitioning coefficients of aromatic hydrocarbons. Atmos. Environ. 17, 4807–4815. Chiou, C.T. (1985) Partition coefficients of organic compounds in lipid water system and correlations with fish bioconcentration factors. Environ. Sci. Technol. 19, 57–62. Coles, K.F., Popper, F. (1950) Vapor-liquid equilibria. Ind. Eng. Chem. 42, 13\434–1438. Collander, R. (1951) Partition of organic compounds between higher alcohols and water. Acta. Chem. Scand. 5, 774–780. Collerson, R.R., Counsell, J.F., Handley, R., Martin, J.F., Sprake, H.C. (1965) Thermodynamic properties of organic oxygen com- pounds. Part XV. Purification and vapour pressures of some ketones, and ethers. J. Chem. Soc. 3697–3700. Cox, R.A., Patrick, K.F., Chant, S.A. (1981) Mechanism of atmospheric photooxidation of organic compounds. Reactions of alkoxy radicals in oxidation of n-butanol and simple ketones. Environ. Sci. Technol. 15, 587–592. Dallos, A., Wienke, G., Ilchman, A., Gmehlong, J. (1993) Vauausberechnung von octanol/wasser-vertilungskoeffizienten mit hilfe der UNIFAC-method. Chem.-Ing.-Tech. 65(2), 201–203.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2681

Darnall, K.R., Lloyd, A.C., Winer, A.M., Pitts, Jr., J.N. (1976) Reactivity scale for the atmospheric hydrocarbons based on reaction with hydroxyl radical. Environ. Sci. Technol. 10(7), 692–696. Daubert, T.E., Danner, R.P. (1989) Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation. Hemisphere Publication Corporation, New York. Dean, J. (1985) Lange’s Handbook of Chemistry. 13th ed., McGraw-Hill, New York. Delle Site, A. (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J. Phys. Chem. Ref. Data 30, 187–439. DePablo, R.S. (1976) Determination of saturated vapor pressure in range 10–1 – 10–4 torr by effusion method. J. Chem. Eng. Data 21, 141–143. Deno, N.C., Berkheimer, H.E. (1960) Phase equilibria molecular transport thermodynamics: activity coefficients as a function of structure and media. J. Chem. Eng. Data 5, 1–5. Dilling, W.L., Bredweg, C.J., Tefertiller, N.B. (1976) Organic photochemistry. Simulated atmospheric photodecomposition rate of methylene chloride, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and other compounds. Environ. Sci. Technol. 10, 351–356. Dojilido, J.R. (1979) Investigations of biodegradability and toxicity of organic compounds. Final Report 1975–79. U.S. EPA-600/2- 79-163. Cincinnati, Ohio: Municipal Environment Research Laboratory, 118 pp. Dojlido, J., Stodja, A., Gantz, E., Kowaslski, J. (1984) Biodegradation of methyl ethyl ketone, cyclohexanone, and cyclohexanol in sewage and surface water. Arch. Ochr. Srodowiska. 1, 115–123. Donahue, D.J., Bartell, F.E. (1952) The boundary tension at water-organic liquid interfaces. J. Phys. Chem. 56, 480–484. Dong, S., Dasgupta, P.K. (1986) Solubility of gaseous formaldehyde in liquid water and generation of trace standard gaseous formaldehyde. Environ. Sci. Technol. 6(20), 637–640. Donovan, S.F., Pescatore, M.C. (2002) Method for measuring the logarithm of the octanol-water partition coefficient by using short octadecyl-poly(vinyl alcohol) high-performance liquid chromatographic columns. J. Chromatogr. A 952, 47–61. Dore, M., Brunet, N., Legube, B. (1975) Participation of various organic compounds in the evaluation of global pollution criteria. Trib. Cebedeau. 28, 3–11. Dorfman, L.M., Adams, G.E. (1973) Reactivity of the Hydroxyl radical in Aqueous Solution. NSRD-NDB-46. NTIS COM-73-50623. National Bureau of Standards, Washington D.C. 51 pp. Dreisbach, R.R. (1955) Physical Properties of Chemical Compounds. Advances in Chem. Series 15, Am. Chem. Soc., Washington DC. Dreisbach, R.,R., Martin, A.A.I. (1949) Physical data on some organic compounds. Ind. Eng. Chem. 41, 2875–2878. Dreisbach, R.R., Shrader, A.A.I. (1949) Vapor pressure-temperature data on some organic compounds. Ind. Eng. Chem. 41, 2879–2880. Eadsforth, C.V. (1986) Application of reverse-phase HPLC for the determination of partition coefficients. Pest. Sci. 17, 311–325. Eadsforth, C.V., Moser, P. (1983) Assessment of reversed phase chromatographic methods for determining partition coefficients. Chemosphere 12, 1459–1475. Edney, E.O., Kleindienst, T.E., Corse, E.W. (1986) Room temperature rate constants for the reaction of OH with selected chlorinated and oxygenated hydrocarbons. Int. J. Chem. Kinet. 18, 1355–1371. Erichsen, R. (1952) Naturwissenschaften 39, 41–42. Ettre, L.S., Welter, C., Kolb, B. (1993) Determination of gas-liquid partition coefficients by automatic equilibrium headspace - gas chromatography utilizing the phase ratio variation method. Chromatographia 35, 73–84. Evans, W.V., Aylesworth, M.B. (1926) Some critical constants of furfural. Ind. Eng. Chem. 16, 24–27. Foote, C.S. (1976) Free Radicals in Biology. Academic Press, New York. Fuge, E.T.J., Bowden, S.T., Jones, W.J. (1952) Some physical properties of diacetone alcohol, mesityl oxide and methyl isobutyl ketone. J. Phys. Chem. 56, 1013–1016. Fujita, T., Iwasa, J., Hansch, C. (1964) A new substituent constant derived from partition coefficients. J. Am. Chem. Soc. 86, 5175–5180.

Gaffney, J.S., Streit, G.E., Spall, W.D., Hall, J.H. (1987) Beyond acid rain. Do soluble oxidants and organic toxins interact with SO2 and NO2 to increase ecosystem effects? Environ. Sci. Technol. 21(6), 519–524. Garriga, R., Sáhcnez, F., Párez, P., Gracia, M. (1996) Excess Gibbs free energies at several temperature of butanone with 1-hexanol or 1-octanol. J. Chem. Eng. Data 41, 1091–1096. Garst, J.E., Wilson, W.C. (1984) Accurate, wide-range, automated, high-performance liquid chromatographic method for the estima- tion of octanol/water partition coefficients. I: Effects of chromatographic conditions and procedure variables on accuracy and reproducibility of the method. J. Pharm. Sci. 73, 1616–1622. Ge, J., Liu, W., Dong, S. (1987) Determination of partition coefficient with chemically bonded omega-hydroxysilica as HPLC column packing. Sepu 5, 182. Gerhold, R.M., Malaney, G.W. (1966) Structural determinants in the oxidation of aliphatic compounds by activated sludge. J. Water Pollut. Control Fed. 38, 562–579. Gerstl, Z., Helling, C.S. (1987) Evaluation of molecular connectivity as a predictive method for the adsorption of pesticides in soil. J. Environ. Sci. Health B22(1), 55–69. Ginnings, P.M., Plonk, D., Carter, E. (1940) Aqueous solubilities of some aliphatic ketones. J. Am. Chem. Soc. 62, 1923–1924. Gluck, S.J., Martin, E.J. (1990) Assessment of centrifugal partition chromatography for determination of octanol-water partition coefficients. J. Liq. Chromatogr. 13, 2529–1551. Grosjean, D. (1985) Wall loss of gaseous pollutants in outdoor Teflon chambers. Environ. Sci. Technol. 19, 1059–1065.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2682 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Gross, P., Rintelen, J.C., Saylor, J.H. (1939) Energy and volume relations in the solubilities of some ketones in water. J. Phys. Chem. 43, 197–205. Gross, P.M., Saylor, J.H., Gorman, M.A. (1933) Solubilities studies. IV. The solubilities of certain slightly soluble organic compounds in water. J. Am. Chem. Soc. 55, 650–652. Günther, F.A., Westlake, W.E., Jaglan, P.S. (1968) Reported solubilities of 738 pesticide chemicals in water. Residue Rev. 20, 1–148. Haky, J.E., Young, A.M. (1984) Evaluation of a simple correlation method for the estimation of octanol-water partition coefficients of organic compounds. J. Liq. Chromatogr. 7, 675–689. Hammers, W.E., Meurs, G.J., DeLigny, C.L. (1982) Correlations between liquid chromatographic capacity factors ratio data on Lichrosorb RP-18 and partition coefficients in the octanol-water system. J. Chromatogr. 247, 1–13. Hanai, T., Hubert, J. (1982) Hydrophobicity and chromatographic behaviour of aromatic acids found in urine. J. Chromatogr. 239, 527–536. Hanai, T., Tran, C., Hubert, J. (1981) An approach to the prediction of retention times in liquid chromatography. J. HRC & CC 4, 454–460. Hansch, C., Anderson, S. (1967) The effect of intermolecular hydrophobic bonding on partition coefficients. J. Org. Chem. 32, 2583. Hansch, C., Leo, A. (1979) Substituent Constants for Correlation Analysis in Chemistry and Biology. John-Wiley & Sons, New York. Hansch, C., Leo, A. (1987) Medchem. Project, Pomona College, Claremont, CA. Hansch, C., Leo, A., Nikaitani, D. (1972) On the additive-constitutive character of partition coefficients. J. Org. Chem. 37, 3090–3092. Hansch, C., Leo, A., Hoekman, D. (1995) Exploring QSAR, Hydrophobic, Electronic, and Steric Constants. ACS Professional Reference Book, American Chemical Society, Washington, DC. Hansch, C., Quinlan, J.E., Lawrence, G.L. (1968) The linear free-energy relationship between partition coefficients and aqueous solubility of organic liquids. J. Org. Chem. 33, 347–350. Hawthorne, S.B. (1984) Ph.D. Thesis. University of Colorado, Boulder, CO. Hawthorne, S.B., Sievers, R.E., Barkley, R.M. (1985) Organic emissions from shale oil waste waters and their implications for air quality. Environ. Sci. Technol. 19, 992–997. Hendry, D.G., Mill, T., Piszkiewicz, L., Howard, J.A., Eigenmann, H.K. (1974) Critical review of hydrogen-atom transfer in the liquid phase. Chlorine atom, alkylchloromethyl, alkoxy, and alkyl peroxy radicals. J. Phys. Chem. Ref. Data 3, 937–978. Heukelekian, H., Rand, M.C. (1955) Biochemical oxygen demand for pure organic compounds. J. Water Pollut. Control Assoc. 29, 1040–1053. Hine, J., Mookerjee, P.K. (1975) The intrinsic hydrophilic character of organic compounds. Correlations in term of structural contributions. J. Org. Chem. 40, 292–298.

Hodson, J., Williams, N. A. (1988) The estimation of the adsorption coefficient (KOC) for soils by high performance liquid chroma- tography. Chemosphere 17, 67–77. Hoigné, J., Bader, H. (1983) Rate constants of reactions of ozone with organic and inorganic compounds in water-I. Non-dissociating organic compounds. Water Res. 17, 173–183. Holmes, H.L., Lough, C.E. (1976) Effect of Intramolecular Hydrogen bonding on Partition Coefficients. Suffield Technical Note No. DRES-TN-365. Defence Research Establishment Suffield-Information Canada. U.S. NTIS Report No. AD-A030683. Hong, H., Wang, L., Han, S. (1996) Prediction adsorption coefficients (KOC) for aromatic compounds. by HPLC retention factors (K’). Chemosphere 32, 343–351. Howard, J.A. (1972) Absolute rate constants for reactions of oxy radicals. Adv. Free Radical Chem. 4, 49–173. Howard, P.H., Ed. (1989) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. I-Large Production and Priority Pollutants. Lewis Publishers, Chelsea, MI. Howard, P.H., Ed. (1990) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. II, Solvents. Lewis Publishers, Inc., Chelsea, MI. Howard, P.H., Ed. (1993) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. IV, Solvents 2. Lewis Publishers, Inc., Chelsea, MI. Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., Michalenko, E.M., Editors (1991) Handbook of Environmental Degra- dation Rates. Lewis Publishers, Chelsea, MI. Howard, P.H., Hueber, A.E., Mulesky, B.C., Crisman, J.S., Meylan, W., Crosby, E., Gray, D.A., Sage, G.W., Howard, K.P., LaMacchia, A., Boethling, R.S., Troast, R. (1986) BIOLOG, BIODEG, and FATE/EXPOS: New files on microbial degradation and toxicity as well as environmental fate/exposure of chemicals. Environ. Toxicol. Chem. 5, 977–988. Hoy, K.L. (1970) New values of the solubility parameters from vapor pressure data. J. Paint Technol. 42(541) 76–118. Iwasa, J., Fujita, T., Hansch, C. (1965) Substituent constants for aliphatic functions obtained from partition coefficients. J. Med. Chem. 8, 150–153. Jaquerod, A., Wassher, E. (1904) Ber. 3, 2531. -reference from Boublik et al. 1984. Jaworska, J.S., Schultz, T.W. (1993) Quantitative relationships of structure-activity and volume fraction for selected nonpolar and polar narcotic chemicals. SAR & QSAR in Environ. Res. 1, 3–19. Johnson, H.G., Piret, E.L. (1948) Partition coefficients of formaldehyde solution. Ind. Eng. Chem. 40, 743. Jones, D.C. (1929) The systems n-butyl alcohol-water and n-butyl alcohol-acetone-water. J. Chem. Soc. (London) 799–816. Kahlbaum, G.W.A. (1898) Studien über dampfspannkraftmessungen. II. Z. Phys. Chem. 26, 577–658.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2683

Kamlet, M.J., Doherty, R.M., Abraham, M.H., Marcus, Y., Taft, R.W. (1988) Linear solvation energy relationships. 46. An improved equation for correlation and prediction of octanol/water partition coefficients of organic nonelectrolytes (including strong hydrogen bond donor solutes). J. Phys. Chem. 92, 5244–5255. Kelly, T.J., Mukund, R., Spicer, C.W., Pollack, A.J. (1994) Concentrations and transformations of hazardous air pollutants. Environ. Sci. Technol. 28, 378A–387A. Kenaga, E.E., Goring, C.A.I. (1980) Relationship between water solubility, soil sorption, octanol-water partitioning, and concentration of chemicals in biota. In: Aquatic Toxicology. Eaton, J.G., Parrish, P.R., Hendricks, A.C. Eds., Am. Soc. for Testing and Materials, STP 707, pp. 78–115. Kerr, J.A., Sheppard, D.W. (1981) Kinetics of the reactions of hydroxyl radicals with aldehydes studied under atmospheric conditions. Environ. Sci. Technol. 15, 960–962. Khan, A., Hassett, J.J., Banwart, W.L., Means, J.C., Wood, S.G. (1979) Sorption of acetophenone by sediments and soils. Soil Sci. 128, 297–302. Klamt, A. (1996) Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds based on molecular orbital calculations. Chemosphere 32, 716–726. Kolb, B., Welter, C., Bichler, C. (1992) Determination of partition coefficients by automatic equilibrium headspace gas chromatography by vapor phase calibration. Chromatographia 34, 235–240. Kollig, H.P., Ed. (1993) Environmental Fate Constants for Organic Chemicals Under Consideration for EPA’s Hazardous Waste Identification Projects. EPA Report EPA/600/R-93/132, Environmental Research Lab., U.S. EPA, Athens, GA. Kolling, H.P. (1995) Environmental Fate Constants for Additional 27 Organic Chemicals under Consideration for EPA’s Hazardous Water Identification Projects. EPA/600/R-95/039. Environmental Research Laboratory, Office of Research and Development, U.S. EPA, Athens, GA. Kollig, H.P., Ellington, J.J., Hamrick, K.J., Jafverts, C.T., Weber, E.J., Wolfe, N.L. (1987) Hydrolysis Rate Constants, Partition Coefficients, and Water Solubilities for 129 Chemicals. A summary of fate constants provided for the concentration-based Listing Program of 1987. U.S. EPA Environ. Res. Lab., Off. Res. Development Prepublication, Athens, GA. Kramer, C.-R., Henze, U. (1990) Partitioning properties of benzene derivatives. I. Temperature dependence of the partitioning of monosubstituted benzenes and nitrobenzenes in the n-octanol/water system. Z. Phys. Chem. (Leipzig), 271(3), 503–513. Kühne, R., Ebert, R.-U., Kleint, F., Schmidt, G., Schüürmann, G. (1995) Group contribution methods to estimate water solubility of organic chemicals. Chemosphere 30, 2061–2077. Kwok, W.S.C., Atkinson, R. (1995) Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure reactivity relationship: an update. Atmos. Environ. 29, 1685–1695. Lamb, C.B., Jenkins, G.F. (1952) BOD of synthetic organic chemicals. Proc. 8th Indust. Waste Conf., pp. 326–329. Purdue University. Lazare, A., Lazare, C., Bastide, J., Couquelet, J. (1974) Hypnotic activity and physicochemical parameters. Application to some acetophenone derivatives. Ann. Pharm. France 32, 677–684. Leahy, D.E. (1986) Intrinsic molecular volume as a measure of the cavity term in linear solvation energy relationships: octanol-water partition coefficients and aqueous solubilities. J. Pharm. Sci. 75, 629–636. Leo, A., Hansch, C., Church, C. (1969) Comparison of parameters currently used in the study of structure-activity relationships. J. Med. Chem. 12, 766–771. Leo, A., Hansch, C., Elkins, D. (1971) Partition coefficients and their uses. Chem. Rev. 71, 525–616. Lide, D.R., Editor (2003) Handbook of Chemistry and Physics. 84th Edition, CRC Press, Boca Raton, FL. Lo, J.M., Tseng, C.L., Yang, J.Y. (1986) Radiometric method for determining solubility of organic solvents in water. Anal. Chem. 58, 1896–1897. Lyman, W.J. (1982) Chapter 4. Adsorption coefficient for soils and sediments. In: Handbook of Chemical Property Estimation Methods. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, McGraw-Hill, New York. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H. (1982) Handbook of Chemical Property Estimation Methods. Environmental Behaviour of Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, McGraw-Hill, New York. Mackay, D., Shiu, W.Y., Bobra, A., Billington, J., Chau, E., Yeun, A., Ng, C., Szeto, F. (1982) Volatilization of Organic Pollutants from Water. U.S. EPA-600/53-82-019, NTIS PB 82-230 939. U.S. Environmental Protection Agency, Athens, GA. Mackay, D., Bobra, A.M., Chan, D.W., Shiu, W.Y. (1982) Vapor pressure correlation for low volatility environmental chemicals. Environ. Sci. Technol. 16, 645–649. Mackay, D., Yuen, A.T.K. (1983) Mass transfer coefficient correlations for volatilization of organic solutes from water. Environ. Sci. Technol. 17, 211–217. Marin, M., Baek, I., Taylor, A.J. (1999) Volatile release from aqueous solutions under dynamic headspace dilution conditions. J. Agric. Food Chem. 47, 4750–4755. Matthews, J.B., Sumner, J.F., Moelwyn-Huges, E.A. (1950) The vapor pressure of certain liquid. Trans. Farad. Soc. 46, 797–803. McBain, J.W., Richards, P.H. (1946) Solubilization of insoluble organic liquids by detergents. Ind. Eng. Chem. 38(6), 642–644. McDuffie, D. (1981) Estimation of octanol/water partition coefficients for organic pollutants using reversed-phase HPLC. Chemo- sphere 10, 73–83. McGowan, J.C. (1954) The physical toxicity of chemicals. IV. Solubilities, partition coefficients and physical toxicities. J. Appl. Chem. 4, 41–47.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2684 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Means, J.C., Hassett, J.J., Wood, S.G., Banwart, W.L., Ali, S., Khan, A. (1980) Sorption properties of polynuclear aromatic hydrocarbons and sediments: Heterocyclic and substituted compounds. In: Polynuclear Hydrocarbons: Chemistry and Biological Effects. Bjorseth, A., Dennis, A.J., Editors, pp. 395–404, Ann Arbor Sci. Publ., Ann Arbor, MI. Meyer, E.F., Hotz, R.D. (1973) High-precision vapor-pressure data for eight organic compounds. J. Chem. Eng. Data 18(4), 359–362. Meyer, E.F., Wagner, R.E. (1966) Cohesive energies in polar organic liquid. J. Phys. Chem. 71, 3162–3168. Meylan, W.M., Howard, P.H. (1991) Bond contribution method for estimating Henry’s law constants. Environ. Toxicol. Chem. 10, 1283–1293. Meylan, W.M., Howard, P.H. (1993) Computer estimation of the atmospheric gas-phase reaction rate of organic compounds with hydroxyl radicals and ozone. Chemosphere 26, 2293–2299. Michael, J.V., Keil, D.G., Klemm, R.B. (1985) J. Chem. Phys. 90, 173. Mill, T., Davenport, J. (1986) ACS Environ. Chem. Div. 192nd Nat’l Meeting 26, 59–63. Mill, T. (1979) Structure Reactivity Correlations for Environmental Reactions. EPA Final Report, EPA 560/11-79-012. Mill, T. (1982) Hydrolysis and oxidation processes in the environment. Environ. Toxicol. Chem. 1, 135–141. Minick, D.J., Frenz, J.H., Patrick, M.A., Brent, D.A. (1988) A comprehensive method for determining hydrophobicity constants by reversed-phase high-performance liquid chromatography. J. Med. Chem. 31, 1923–1933. Mitchell, A.G., Wan, L.S.C., Bjaastad, S.G. (1964) The solubility of benzaldehyde in water. J. Pharm Pharmacol. 16, 632–633. Miyake, K., Terada, H. (1982) Determination of partition coefficients of very hydrophobic compounds by high-performance liquid chromatography on glyceryl-coated controlled-pore glass. J. Chromatogr. 240, 9–20. Morris, E.D., Jr., Niki, H. (1971) Mass spectrometric study of the reaction of hydroxyl radical with formaldehyde. J. Chem. Phys. 55, 1991–1992. Morris, E.D., Jr., Niki, H. (1971) Reactivity of hydroxyl radicals with olefins. J. Phys. Chem. 75, 3640–3641. Müller, M., Klein, W. (1991) Estimating atmospheric degradation processes by SARs. Sci. Total Environ. 109/110, 261–273. Nahum, A. Horvath, C. (1980) Evaluation of octanol-water partition coefficients by using high-performance liquid chromatography. J. Chromatogr. 192, 315–322. Nelson, P.E., Hoff, J.E. (1968) Food volatiles: gas chromatographic determination of partition coefficient in water-lipid systems. J. Food Sci. 33, 479–482. Nickerson, J.K., Kove, K.A., McKetta, J.J. (1961) The thermodynamic properties of the methyl ketone series. J. Am. Chem. Soc. 65, 1037–1043. Niki, H., Maker, P.D., Savage, C.M., Breitenbach, L.P. (1978) Relative rate constants for the reaction of hydroxyl radical with aldehydes. J. Phys. Chem. 82, 132–134. Nordone, A.J., Matherly, R., Bonnivier, B., Donane, R., Caravello, H., Paakonen, S., Parent, R. (1996) The mobility and degradation of acrolein in agricultural canals treated with manacide HR herbicide. Chemosphere 32, 807–814. Palit, S.R. (1947) Electronic interpretations of organic chemistry. II. Interpretation of the solubility of organic compounds. J. Phys. Chem. 51, 837–857. Perry, J.H., Editor (1950) Chemical Engineer’s Handbook. 3rd Edition, McGraw-Hill, New York. Pitter, P. (1976) Determination of biological degradability of organic substances. Water Res. 10, 231.

Poole, S.K., Durham, D., Kibbey, C. (2000) Rapid method for estimation the octanol-water partition coefficient (log POW) by microemulsion electrokinetic chromatography. J. Chromatog. B, 745, 117–126. Rathbun, R.E., Tai, D.Y. (1982) Volatilization of ketones from water. Water Air Soil Pollut. 17, 281–293. Riddick, J., Bunger, W.B., Sakano, T.K. (1986) Organic Solvents: Physical Properties and Method of Purification. 4th Edition, John Wiley & Sons, New York. Rohrschneider, L. (1973) Solvent characterization of gas-liquid partition coefficients of selected solutes. Anal. Chem. 45(7), 1241–1247. Roy, W.R., Griffin, R.A. (1985) Mobility of organic solvents in water-saturated soil materials. Environ. Geol. Water Sci. 7, 241–247. Russell, C.J., Dixon, S.L., Jurs, P.C. (1992) Computer-assisted study of the relationship between molecular structure and Henry’s law constant. Anal. Chem. 64, 1350–1355.

Sabljic, A., Güesten, H. (1990) Predicting the night-time NO3 radical reactivity in the troposphere. Atmos. Environ. 24A(1), 73–78. Sangster, J. (1989) Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data 18, 1111–1230. Sangster, J. (1993) LOGKOW databank. Sangster Research Laboratory, Montreal, QC. Saylor, J.H., Baxt, V.J., Gross, P.M. (1942) Solubility studies. VII. The solubilities of some isomeric ketones in water. J. Am. Chem. Soc. 64, 2742–2744. Scow, K.M. (1982) Chapter 9, Rate of biodegradation. In: Handbook of Chemical Property Estimation Methods. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, McGraw-Hill, New York. pp. 9–1 to 9–85. Seidell, A. (1941) Solubility of Organic Compounds. Vol. 2, Van Nostrand, New York. Semmes, D.H., Ravishankara, A.R., Gump-Perkins, C.A., Wine, P.H. (1985) Kinetics of the reactions of hydroxyl radical with aliphatic aldehydes. Int’l. J. Chem. Kinetics 17, 303–313. Seprakova, M., Parlech, J., Dykyl, J. (1959) J. Chem. Svesti 13, 313.-reference from Boublik et al. 1984. Shiu, W.Y., Mackay, D. (1997) Henry’s law constants of selected aromatic hydrocarbons, alcohols, and ketones. J. Chem. Eng. Data 42, 27–30.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Aldehydes and Ketones 2685

Skrzec, A.E., Murphy, N.F. (1954) Liquid–Liquid Equilibria. Acetic acid in water, with 1-butanol, methyl ethyl ketone, furfural, cyclohexanol, and nitromethane. Ind. & Eng. Chem. 46(10), 2245–2247. Snider, J.R., Dawson, G.A. (1985) Tropospheric light alcohols, carbonyls, and acetonitrile: concentrations in the southwestern United States and Henry’ law data. J. Geophys. Res. 90, 3797–3805. Southworth, G.R., Keller, J.L. (1986) Hydrophobic sorption of polar organics by low organic carbon soils. Water Air Soil Pollut. 28, 239–248. Spencer, R., Wild, W. (1935) The vapour-pressure curve of formaldehyde, and some related data. J. Chem. Soc. 138, 506–509. Staudinger, J., Roberts, P.V. (1996) A critical review of Henry’s law constants for environmental applications. Crit. Rev. Environ. Sci. Technol. 26, 205–297. Staudinger, J., Roberts, P.V. (2001) A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions. Chemosphere 44, 561–576. Staples, C.A. (2000) A screening level examination of the potential risks of acetone in aquatic and terrestrial environments using multi-media modeling. Chemosphere 41, 1529–1533. Stephenson, R.M. (1992) Mutual solubilities: water-ketones, water-ethers, and water-gasoline-alcohols. J. Chem. Eng. Data 37, 80–95. Stephenson, R.M. (1993) Mutual solubility of water and aldehydes. J. Chem. Eng. Data 38, 630–633. Stephenson, R.M., Malanowski, A. (1987) Handbook of the Thermodynamics of Organic Compounds. Elsevier, New York. Stuckey, J.M., Saylor, J.H. (1940) The vapor pressures of some organic compounds. I. J. Am. Chem. Soc. 62, 2922–2925. Stull, D.R. (1947) Vapor pressure of pure substances: Organic compounds. Ind. Eng. Chem. 39(4), 517–560. Tabak, H.H., Govind, R. (1993) Prediction of biodegradation kinetics using a nonlinear group contribution method. Environ. Toxicol. Chem. 12, 251–260. Takemoto, S., Kuge, Y., Nakamoto, M. (1981) The measurement of BOD in seawater. Suishitsu Odaku Kenkyu. 4, 80–90. Taft, R.W., Abraham, M.H., Famini, G.R., Doherty, R.M., Abboud, J.-L.M., Kamlet, M.J. (1985) Solubility properties in polymers and biological media 5: An analysis of the physicochemical properties which influence octanol-water partition coefficients of aliphatic and aromatic solutes. J. Pharm. Sci. 74(8), 807–814. Tanii, H., Tsuji, H., Hashimoto, K. (1986) Structure-toxicity relationship of monoketones. Toxicol. Letters 30, 13–17. Tewari, Y.B., Miller, M.M., Wasik, S.P., Martire, D.E. (1982) Aqueous solubility and octanol/water partition coefficient of organic compounds at 25.0°C. J. Chem. Eng. Data 27, 451–454. Tsonopoulos, C., Prausnitz, J.M. (1971) Activity coefficients of aromatic solutes in dilute aqueous solutions. Ind. Eng. Chem. Fundam. 10, 593–600. Umeyama, H., Nagai, T., Nogami, H. (1971) Mechanism of adsorption of phenols by carbon black from aqueous solution. Chem. Pharm. Bull. 19(8), 1714–1721. Unger, S.H., Chiang, G.H. (1981) Octanol-physiological buffer distribution coefficients of lipophilic amines by reversed-phase high- performance liquid chromatography and their correlation with biological activity. J. Med. Chem. 24(3), 262–270. Unger, S.H., Cook, J.R., Hollenberg, J.S. (1978) Simple procedure for determining octanol-aqueous partition, distribution, and ionization coefficients by reversed-phase high-pressure liquid chromatography. J. Pharm. Sci. 67, 1364–1367. Urano, K., Kato, Z. (1986) Evaluation of biodegradation ranks of priority organic compounds. J. Hazardous Materials 13, 135–145. Urano, K., Maeda, H., Ogura, K., Wada, H. (1982) Direct analytical method for aromatic compounds in water by steam carrier gas chromatography. Water, Res. 16, 323–327. USEPA (1987) EXAMS II Computer Simulation. Vaishnav, D.D., Babeu, L. (1986) Occurrence and rates of chemical biodegradation in Superior harbor water. J. Great Lakes Res. 12, 184–191. Vaishnav, D.D., Babeu, L. (1987) Comparison of occurrence and rates of chemical biodegradation in natural waters. Bull. Environ. Contam. Toxicol. 39, 237–244. Vaishnav, D.D., Boethling, R.S., Babeu, L. (1987) Quantitative structure-biodegradability relationships for alcohols, ketones and alicyclic compounds. Chemosphere 16, 695–703. Veith, G.D., DeFoe, D.L., Bergstedt, B.V. (1979) Measuring and estimating the bioconcentration factors of chemicals in fish. J. Fish. Res. Board. Can. 36, 1040–1048. Veith, G.D., Macek, K.J., Petrocelli, S.R., Carroll, J. (1980) An evaluation of using partition coefficients and solubility to estimate bioconcentration factors for organic chemicals in fish. In: Aquatic Toxicology. ASTM STP 707, Eaton, J.G., Parish, P.R., Hendrick, A.C., Eds., pp. 116–129. Am. Soc. for Testing Materials, Philadelphia, PA. Verschueren, K. (1977) Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Co., New York. Verschueren, K. (1983) Handbook of Environmental Data on Organic Chemicals. 2nd ed., Van Nostrand Reinhold Co., New York. Vitenberg, A.G., Ioffe, B.V., St. Dimitrova, Z., Butaeva, I.L. (1975) Determination of gas-liquid partition coefficients by means of gas chromatographic analysis. J. Chromatogr. 112, 319–327. Wakita, K., Yoshimoto, M., Miyamoto, S. (1986) A method for calculation of the aqueous solubility of organic compounds by using new fragment constants. Chem. Pharm. Bull. 34, 4663–4681. Wallington, T.J., Dagaut, P., Liu, R., Kuoylo, M.J. (1988) Gas-phase reactions of hydroxyl radicals with the fuel additives methyl tert-butyl ether and tert-butyl alcohol over the temperature range 240–440 K. Environ. Sci. Technol. 22, 842–844. Wallington, T.J., Daganet, P., Kurylo, M.J. (1988b) Correlation between gas-phase and solution phase reactivities of hydroxyl radicals toward saturated organic compounds. J. Phys. Chem. 92, 5024–5028.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2686 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Wallington, T.J., Kurylo, M.J. (1987) Flash photolysis resonance fluorescence investigation of the gas-phase reactions of OH radicals with a series of aliphatic ketones over the temperature range 240–440 K. J. Phys. Chem. 91, 5050–5054. Walton, B.T., Hendricks, M.S., Anderson, T.A., Griest, W.H., Merriweather, R., Beauchamp, J.J., Francis, C.W. (1992) Soil sorption and semivolatile organic compounds in a mixture. J. Environ. Qual. 21, 552–558. Wasik, S.P., Tewari, Y.B., Miller, M.M., Martire, D.E. (1981) Octanol/Water Partition Coefficients and Aqueous Solubilities of Organic Compounds. NBSIR No. 81-2406. U.S. Dept. of Commerce, Washington. Weast, R.C., Editor (1972–73) Handbook of Chemistry and Physics. 53rd Edition, CRC Press, Cleveland, Ohio. Weast, R.C., Editor (1982–83) Handbook of Chemistry and Physics. 62th Edition, CRC Press, Boca Raton, FL. Yalkowsky, S.H. (1987) - Aquasol database. Yalkowsky, S.H., Valvani, S.C. (1980) Solubility and partitioning. I. Solubility of nonelectrolytes in water. J. Pharm. Sci. 69, 912–922.

Yaws, C.L. (1994) Handbook of Vapor Pressure. Vol. 1: C1 to C4 Compounds. Vol. 2: C5 to C7 Compounds. Vol. 3: C8 to C28 Compounds. Gulf Publishing Co. Houston, TX. Yaws, C.L., Yang, H.-C., Hopper, J.R., Hansen, K.C. (1990) Organic chemicals: water solubility data. Chem. Eng. Jul, 115–118. Yaws, C., Yang, H.C., Pan, X. (1991) Henry’s law constants for 362 organic compounds in water. Chem. Eng. 98(11), 179–185. Zetzsch, C., (1982) 7th International Symposium on Gas Kinetics, August 23–28, 1982. University of Göttingen, Göttingen, Germany. Zhou, X., Mopper, K. (1990) Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; implications for air-sea exchange. Environ. Sci. Technol. 24, 1864–1869. Zoeteman, B.C.J., De Greef, E., Brinkmann, F.J.J. (1981) Persistency of organic contaminants in ground water, lessons from soil pollution incidents in The Netherlands. Chemosphere 21, 187–202.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 13 Carboxylic Acids

CONTENTS 13.1 List of Chemicals and Data Compilations ...... 2688 13.1.1 Aliphatic acids ...... 2688 13.1.1.1 Formic acid ...... 2688 13.1.1.2 Acetic acid ...... 2692 13.1.1.3 Propionic acid ...... 2697 13.1.1.4 Butyric acid ...... 2701 13.1.1.5 Isobutyric acid ...... 2705 13.1.1.6 n-Valeric acid ...... 2708 13.1.1.7 Hexanoic acid (Caproic acid) ...... 2712 13.1.1.8 Stearic acid (Octadecanoic acid) ...... 2716 13.1.1.9 Oleic acid ...... 2717 13.1.1.10 Acrylic acid (2-Propenoic acid) ...... 2718 13.1.1.11 Chloroacetic acid ...... 2720 13.1.1.12 Dichloroacetic acid ...... 2723 13.1.1.13 Trichloroacetic acid ...... 2725 13.1.2 Aromatic acids ...... 2728 13.1.2.1 Benzoic acid ...... 2728 13.1.2.2 2-Methyl benzoic acid (o-Toluic acid) ...... 2735 13.1.2.3 3-Methyl benzoic acid (m-Toluic acid) ...... 2738 13.1.2.4 4-Methyl benzoic acid (p-Toluic acid) ...... 2741 13.1.2.5 Phenylacetic acid ...... 2745 13.1.2.6 Phthalic acid ...... 2748 13.1.2.7 2-Chlorobenzoic acid ...... 2751 13.1.2.8 3-Chlorobenzoic acid ...... 2753 13.1.2.9 4-Chlorobenzoic acid ...... 2755 13.1.2.10 Salicylic acid ...... 2757 13.1.2.11 2,4-Dichlorophenoxyacetic acid (2,4-D) ...... 2761 13.2 Summary Tables and QSPR Plots ...... 2764 13.3 References ...... 2771

2687

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2688 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

13.1 LIST OF CHEMICALS AND DATA COMPILATIONS

13.1.1 ALIPHATIC ACIDS 13.1.1.1 Formic acid

O

HOH

Common Name: Formic acid Synonym: methanoic acid Chemical Name: formic acid CAS Registry No: 64-18-6

Molecular Formula: CH2O2, HCOOH Molecular Weight: 46.026 Melting Point (°C): 8.3 (Lide 2003) Boiling Point (°C): 101 (Lide 2003) Density (g/cm3 at 20°C): 1.21961, 1.21328 (20°C, 25°C, Dreisbach & Martin 1949) 1.2200 (Weast 1982–83; Dean 1985) 1.2141 (25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 37.7 (calculated-density, Stephenson & Malanowski 1987) 46.2 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 3.751 (pKa, Dean 1985) 3.752 (pKa, Riddick et al. 1986) 3.740 (pKa, Sangster 1989) 3.800 (Kollig 1993) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 12.68 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 13.5 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): miscible (Dean 1985) miscible (Riddick et al. 1986)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 4344* (24.6°C, temp range 21.8–100.6°C, Kahlbaum 1894) 5333* (24°C, compiled and evaluated data, temp range –20 to 100.6°C, Stull 1947) log (P/mmHg) = 7.15689 – 1414.1/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 10114* (37.75°C, ebulliometry, measured range 37.75–100.7°C, Dreisbach & Shrader 1949) log (P/mmHg) = [–0.2185 × 9896.5/(T/K)] + 8.779337; temp range –20 to 100.6°C (Antoine eq., Weast 1972–73) 4666, 7198 (20°C, 30°C, Verschueren 1983) 5720, 5744, 4420 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 4.09278 – 539.775/(136.826 + t/°C); temp range 0.5–34.2°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.69157 – 1689.096/(259.726 + t/°C); temp range 37.35–100.7°C (Antoine eq. from reported exptl. data of Dreisbach & Shrader 1949, Boublik et al. 1984) log (P/kPa) = 3.7279 – 295.021/(70.7 + t/°C); temp range 21–100.6°C (Antoine eq. from reported exptl. data, Boublik et al. 1984)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2689

5744 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.5818 – 1699.2/(260.7 + t/°C); temp range: 37–101°C (Antoine eq., Dean 1985, 1992) 5750 (selected, Riddick et al. 1986) log (P/kPa) = 6.50280 – 1563.28/(247.06 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 5733* (comparative ebulliometry, measured range 299.8–393 K, Ambrose & Ghiassee 1987) ln (P/kPa) = 15.40560 – 3894.764/[(T/K) – 13.0]; temp range 299.8–393 K (Antoine eq. from comparative ebulliometry measurements, Ambrose & Ghiassee 1987) 5711 (interpolated-Antoine eq.-II, Stephenson & Malanowski 1987)

log (PS/kPa) = 11.611 – 3160/(T/K); temp range 268–281 K (Antoine eq.-I, solid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.5028 – 1563.28/(–26.09 + T/K); temp range 283–384 K (Antoine eq.-II, liquid, Stephenson & Malanowski 1987) 5680, 67850 (measured, calculated-solvatochromic parameters, Banerjee et al. 1990) log (P/mmHg) = 27.9278 – 2.5976 × 103/(T/K) – 7.2489·log (T/K) + 6.411 × 10–10·(T/K) + 3.9421 × 10–6·(T/K)2; temp range 282–580 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): 0.0181 (calculated, Keene & Galloway 1986) 0.0274 (calculated, Jacob 1986) 0.017 (pH 4, Gaffney et al. 1987) 0.112 (computed-vapor liquid equilibrium VLE data, Yaws et al. 1991) 0.0076, 0.0098, 0.0178 (24°C, bubble column technique, concn: of 1, 10, 105 ppm, Servant et al. 1991) 0.0281 (Betterton 1992) 0.018 (equilibrium partial pressure, pH 1.6–1.9, Khan & Brimblecombe 1992) –1 –1 ln [kH/(mol kg atm )] = –10.31 + 5634/(T/K), temp range 178.15–308.15 K (equilibrium partial pressure, Khan & Brimblecombe 1992) 0.0183 (equilibrium partial pressure, pH 5.4, Khan et al. 1995) 0.018–0.028 (calculated-thermodynamic data, Johnson et al. 1996) 0.0118, 0.00921 (counter-flow packed column technique-ion chromatography; “best” exptl. value, Johnson et al. 1996)

ln [kH/(M/atm)] = –11.04 + 6100/(T/K); temp range 2–35°C (counter-flow packed column measurements, Johnson et al. 1996) 0.0137 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 1996) 0.0107 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 2.914 – 2425/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: –0.54 (shake flask-titration, Collander 1951; quoted, Leo et al. 1971; Hansch et al. 1972; Hansch & Leo 1979) –0.54 (shake flask-titration, Whitehead & Geankoplis 1955) –0.46 (calculated-f const., Rekker & de Kort 1979) –0.54 (recommended, Sangster 1989) –0.54 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

–0.27 (calculated-KOW, Kollig 1993)

Environmental Fate Rate Constants, k or Half-Lives, t½: Volatilization: Photolysis: Hydrolysis:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2690 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or the Arrhenius expression see reference: –13 3 –1 –1 kOH = (3.2 ± 1.0) × 10 cm molecule s at 298 K (flash photolysis-resonance fluorescence, Zetzsch & Stuhl 1982) k = (100 ± 20) M–1 s–1 at pH 8; (5 ± 5) M–1 s–1 for protonated species; (100 ± 20) M–1 s–1 for non-protonated species for the reaction with ozone in water using 1 mM propyl alcohol as scavenger at pH 2.0–4.0 and 20–23°C (Hoigné & Bader 1983b) –13 3 –1 –1 kOH* = 4.5 × 10 cm molecule s at 298 K, measured range 298–430 K (flash photolysis-resonance fluorescence, Wine et al. 1985) 11 3 –1 –1 –13 3 –1 –1 kOH = (2.95 ± 0.07) × 10 cm mol s or 4.9 × 10 cm molecule s at 296 K (flash photolysis-resonance absorption, Jolly et al. 1986) –13 3 –1 –1 kOH = (3.7 ± 0.4) × 10 cm molecule s at 298 K (flash photolysis-RF, Dagaut et al. 1988) 11 3 –1 –1 –13 3 –1 –1 kOH* = (2.69 ± 0.17) × 10 cm mol s or 4.47 × 10 cm molecule s at 297 K, measured range 297–445 K (laser photolysis-resonance absorption, Singleton et al. 1988) –13 3 –1 –1 –13 3 –1 –1 kOH = 3.7 × 10 cm molecule s , and k(soln) = 2.2 × 10 cm molecule s for the solution-phase reaction with hydroxyl radical in aqueous solution (Wallington et al. 1988) –13 3 –1 –1 kOH* = 4.5 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) –13 3 –1 –1 kOH(calc) = 7.0 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

TABLE 13.1.1.1.1 Reported vapor pressures of formic acid at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) ln (P/Pa) = A – B/(C + T/K) (3a) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Kahlbaum 1894 Stull 1947 Dreisbach & Shrader 1949 Ambrose & Ghiassee 1987

Ber. 16, 2476 summary of literature data ebulliometry comparative ebulliometry t/°CP/Pat/°CP/Pat/°CP/PaT/KP/Pa 21.8 3312 –20.0 133 37.75 10114 299.789 6188 22.6 3688 –5.0 666.6 48.79 16500 302.006 6876 24.6 4344 2.10 1333 73.55 42066 307.578 8881 27.9 5520 10.3 2666 87.82 67661 308.389 9230 30.5 6621 24.0 5333 100.7 101325 310.035 9896 37.8 9938 32.4 7999 313.764 11668 100.6 101325 43.8 13332 bp/°C 100.7 316.803 13293 61.4 26664 319.729 15031 80.3 53329 324.842 18432 100.6 101325 326.895 20105 329.030 21830 mp/°C 8.2 332.807 25236 336.159 28640 342.086 35456 344.582 38845 346.997 43226 349.134 45630

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2691

TABLE 13.1.1.1.1 (Continued)

Kahlbaum 1894 Stull 1947 Dreisbach & shrader 1949 Ambrose & Ghiassee 1987

Ber. 16, 2476 summary of literature data ebulliometry comparative ebulliometry t/°CP/Pat/°CP/Pat/°CP/PaT/KP/Pa 350.313 47321 353.362 52449 355.215 55868 ↓↓ 392.654 172035 298.15 5733 Antoine eq. eq. 3a P/kPa A 15.40560 B 3894.764 C–13.0 bp/K 374.04

Formic acid: vapor pressure vs. 1/T 8.0 Kahlbaum 1894 Dreisbach & Schrader 1949 7.0 Ambrose & Ghiassee 1987 Stull 1947 6.0

5.0 /Pa) S 4.0

log(P 3.0

2.0

1.0 b.p. = 101 °C m.p. = 8.3 °C 0.0 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 13.1.1.1.1 Logarithm of vapor pressure versus reciprocal temperature for formic acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2692 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

13.1.1.2 Acetic acid

O

OH Common Name: Acetic acid Synonym: ethanoic acid, methanecarboxylic acid, glacial acetic, vinegar acid Chemical Name: acetic acid CAS Registry No: 64-19-7

Molecular Formula: CH3COOH Molecular Weight: 60.052 Melting Point (°C): 16.64 (Lide 2003) Boiling Point (°C): 117.9 (Weast 1982–83; Dean 1985; Riddick et al. 1986; Stephenson & Malanowski 1987; Lide 2003) Density (g/cm3 at 20°C): 1.04923, 1.04365 (20°C, 25°C, Dreisbach & Martin 1949) 1.0492 (Weast 1982–83; Dean 1985) Molar Volume (cm3/mol): 57.1 (calculated-density, Rohrschneider 1973) 68.4 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 4.733 (pKa, Korman & La Mer 1936) 4.760 (pKa, Fieser & Fieser 1958; Sangster 1989) 4.750 (pKa, Weast 1982–83; Howard 1990) 4.756 (pKa, Dean 1985; Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 11.72 (Ambrose et al. 1977; Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): miscible (Dean 1985; Riddick et al. 1986) miscible (Yaws et al. 1990)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 2040* (interpolated-regression of tabulated data, temp range –17.2–118°C, Stull 1947) log (P/mmHg) = 7.45144 – 1589.3/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 10114* (55.75°C, ebulliometry, measured range 55.75–117.72°C, Dreisbach & Shrader 1949) 2666* (29.8°C, static method-manometer, measured range 29.8–126.45°C, Potter & Ritter 1954) 8297* (52.36°C, ebulliometry, measured range 52.36–118.14°C, McDonald et al. 1959) log (P/mmHg) = 7.55716 – 1642.54/(233.386C + t/°C); temp range 52–118°C (ebulliometry, McDonald et al. 1959) 2105 (calculated by formula, Dreisbach 1961) log (P/mmHg) = 7.18807 – 1416.7/(211 + t/°C), temp range 36–170°C, (Antoine eq. for liquid state, Dreisbach 1961) 2030 (Hoy 1970) log (P/mmHg) = [–0.2185 × 9963.9/(T/K)] + 8.50200; temp range –35 to 10°C (Antoine eq., Weast 1972–73) log (P/mmHg) = [–0.2185 × 9486.6/(T/K)] + 8.142405; temp range –17.2 to 312.5°C (Antoine eq., Weast 1972–73) 2079* (ebulliometry, fitted to Antoine eq., measured range 304.065–415.041 K, Ambrose et al. 1977) log (P/kPa) = 6.66686 – 1633.288/{(T/K) – 40.626}; temp range 351.347–415.041 K (Antoine eq.-I, ebulliom- etry, Ambrose et al. 1977)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2693

log (P/kPa) = 6.59795 – 1587.182/{(T/K) – 45.392}; temp range 304.065–415.041 K (Antoine eq.-II, ebulliom- etry, Ambrose et al. 1977) 1520, 2666 (20°C, 30°C, Verschueren 1983) 2088 (extrapolated average-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.5039 – 1527.764/(221.742 + t/°C), temp range 29.8–126.45°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.72515 – 1670.427/(236.091 + t/°C), temp range 52.36–118.1°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 2050 (calculated-Antoine eq., Dean 1985) log (P/mmHg) = 7.38782 – 1533.313/(222.309 + t/°C), temp range: liquid (Antoine eq., Dean 1985, 1992) 2079 (Riddick et al. 1986) log (P/kPa) = 6.66686 – 1633.288/(232.885 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 2076 (comparative ebulliometry data, Ambrose & Ghiassee 1987) ln (P/kPa) = 15.19234 – 3654.622/[(T/K) – 45.392] (Antoine eq. Ambrose & Ghiassee 1987) 2114 (calculated-Antoine eq.-III, Stephenson & Malanowski 1987)

log (PS/kPa) = 7.672 – 2177/(T/K), temp range: 238–283 K, (solid, Antoine eq.-I, Stephenson & Malanowski 1987)

log (PS/kPa) = 9.9268 – 2847/(T/K); temp range 243–289 K (solid, Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.68206 – 1642.54/(–39.764 + T/K); temp range 289–392 K (Antoine eq.-III, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.39226 – 2258.22/(2762 + T/K); temp range 391–550 K (Antoine eq.IV, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.5729 – 1572.32/(–46.777 + T/K); temp range 290–396 K (Antoine eq.-V, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.82561 – 1748.572/(–28.259 + T/K); temp range 391–447 K (Antoine eq.-VI, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.22638 – 2010.805/(12.244 + T/K); temp range 437–535 K (Antoine eq.-VII, Stephenson & Malanowski 1987)

log (PL/kPa) = 8.44129 – 3628.409/(182.674 + T/K); temp range 525–593 K (Antoine eq.-VIII, Stephenson & Malanowski 1987) 1520, 32660 (measured, calculated-solvatochromic parameters., Banerjee et al. 1990) log (P/mmHg) = 28.3756 – 2.9734 × 103/(T/K) – 7.032·log (T/K) – 1.5051 × 10–9·(T/K) + 2.1806 × 10–6·(T/K)2; temp range 290–593 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol) at 25°C and reported temperature dependence equations): 0.0303 (partial pressure, Butler & Ramchandani 1935) 0.0305 (exptl., Hine & Mookerjee 1975) 0.0300, 0.0280 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 0.0115 (calculated, Keene & Galloway 1986) 0.0101 (effective Henry’s law constant, pH 4, Gaffney et al. 1987) 0.0254 (calculated-MCI χ, Nirmalakhandan & Speece 1988) 0.121 (computed-vapor liquid equilibrium VLE data, Yaws et al. 1991) 0.0101, 1.01 × 10–4 (at pH 4, pH 7, Howard 1990) 0.0109, 0.00905, 0.0158 (23°C, bubble column technique, concn: 1, 10, 105 ppm. Servant et al. 1991) 0.0184 (equilibrium partial pressure, pH 1.6–1.9, Khan & Brimblecombe 1992) –1 –1 ln [KH/(mol kg atm )] = –25.67 + 8322/(T/K), temp range 278.15–303.15 K (equilibrium partial pressure, Khan & Brimblecombe 1992) 0.0285 (calculated-bond contribution, Brimblecombe et al. 1992) 0.0431 (calculated-molecular structure, Russell et al. 1992) 0.0182 (equilibrium partial pressure, pH 5.4, Khan et al. 1995) 0.0115–0.0195 (calculated-thermodynamic data, Johnson et al. 1996) 0.0245, 0.0145 (counter-flow packed column technique-ion chromatography; “best” exptl value, Johnson et al. 1996)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2694 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

ln [KH/(M/atm)] = –12.5 + 6200/(T/K), temp range 2–35°C (counter-flow packed column measurements, Johnson et al. 1996) 0.0130 (20°C, selected from literature, experimentally measured data, Staudinger & Roberts 1996) 0.0154 (20°C, selected from literature, experimentally measured data, Staudinger & Roberts 2001)

log KAW = 3.650 – 2596/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: –0.30 (shake flask-titration, Leonard et al. 1948) –0.31 (shake flask-titration, Collander 1951) –0.29; –0.17 (calculated-fragment const.; calculated-π const., Rekker 1977) –0.29 (shake flask-radiochemical method, pH 1, Wolfenden 1978) –0.17, –0.31 (Hansch & Leo 1979) –0.17 (shake flask, Log P Database, Hansch & Leo 1987) –0.17 (recommended, Sangster 1989, 1993) –0.17 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 4.31 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

< 0.0 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1990)

Sorption Partition Coefficient, log KOC: no detectable sorption (Podzol soil, Alfisol soil, sediment, von Oepen et al. 1991) 0.00 (soil, quoted exptl., Meylan et al. 1992) –0.21 (soil, calculated-MCI χ and fragment contribution, Meylan et al. 1992) 0.00 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –12 3 –1 –1 5 kOH = (0.6 ± 0.2) × 10 cm molecule s with t½ = 26.7 d for the vapor-phase reaction with 5 × 10 hydroxyl radical/cm3 in air at 25°C (flash photolysis-resonance fluorescence technique, Zetzsch & Stuhl 1982; quoted, Atkinson 1985) k(aq.) ≤ 3×10–5 M–1 s–1 for reaction with ozone at pH 8 in water; k ≤ 3×10–5 M–1 s–1 for protonated species, and k ≤ 3×10–5 M–1 s–1 for non-protonated species for the reaction with ozone in water at pH 2.0–5.5 and 20–23°C (Hoigné & Bader 1983b) –13 3 –1 –1 kOH* = (7.4 ± 0.6) × 10 cm molecule s at 298 K, measured range 298–440 K (flash photolysis- resonance fluorescence, Dagaut et al. 1988) –13 3 –1 –1 –14 3 –1 –1 kOH = 7.4 × 10 cm molecule s in air, and k(soln) = 2.70 × 10 cm molecule s for the solution- phase reaction with OH radical in aqueous solution (Wallington et al. 1988) –13 3 –1 –1 kOH = 7.4 × 10 cm molecule s at 298 K (Atkinson 1990) –12 3 –1 –1 kOH(calc) = 0.70 × 10 cm molecule s (molecular orbital calculations, Klamt 1996). Hydrolysis: Biodegradation: > 90% degradation in 3 d using an activated sludge inoculum; in 24 h in batch aeration in sewage and 14 d using sediment from the Rhine river as inocula (Howard 1990). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: –12 3 –1 –1 Air: t½ = 26.7 d, based on measured rate constant of 0.6 × 10 cm molecule s for the vapor-phase reaction with 5 × 105 hydroxyl radicals/cm3 in air at 25°C (Atkinson 1985; quoted, Howard 1990). –17 Surface water: t½ = 26–46 yr, based on OH radical concn. in sunlit natural water of 1 × 10 mol/L (Howard 1990).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2695

Groundwater: Sediment: > 90% degradation in 14 d using Rhine River sediment as inocula (Kool 1984; quoted, Howard 1990). Soil: Biota:

TABLE 13.1.1.2.1 Reported vapor pressures of acetic acid at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Dreisbach & Shrader McDonald et al. Stull 1947 1949 Potter & Ritter 1954 1959

summary of literature data ebulliometry static method-manometer ebulliometry t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa –17.2 133 55.75 10114 29.8 2666 52.36 8297 6.3 666.6 66.07 16500 40.25 4693 55.63 9998 17.5 1333 91.13 42066 51.08 8013 67.20 16517 29.9 2666 117.72 101325 55.54 9866 91.49 42302 43 5333 60.93 12599 105.49 68210 51.7 7999 bp/°C 100.79 65.50 15332 115.51 94156 63 13332 71.04 19345 116.83 98175 80 26664 75.70 23105 117.27 99584 99 53329 80.41 28038 117.71 110901 118.1 101325 85.69 34224 118.14 102318 90.59 40930 mp/°C 16.7 95.66 48982 eq. 2 P/mmHg 100.29 57488 A 7.55716 105.45 68314 B 1642.54 110.0 79193 C 233.386 115.12 92992 118.41 102978 mp/°C 16.34 122.44 116137 123.86 121256 126.45 130669 Antoine eq. eq. 2 P/mmHg A 7.4275 B 1558.03 C 224.79

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2696 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Acetic acid: vapor pressure vs. 1/T 8.0 experimental data Stull 1947 7.0

6.0

5.0 ) aP/

S 4.0 P(go

l 3.0

2.0

1.0 b.p. = 117.9 °C m.p. = 16.64 °C 0.0 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 13.1.1.2.1 Logarithm of vapor pressure versus reciprocal temperature for acetic acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2697

13.1.1.3 Propionic acid

O

OH Common Name: Propionic acid Synonym: methylacetic acid, propanoic acid Chemical Name: propanoic acid, propionic acid CAS Registry No: 79-09-4

Molecular Formula: C3H6O2, CH3CH2COOH Molecular Weight: 74.079 Melting Point (°C): –20.5 (Lide 2003) Boiling Point (°C): 141.15 (Lide 2003) Density (g/cm3 at 20°C): 0.99336, 0.98797 (20°C, 25°C, Dreisbach & Martin 1949) 0.9930 (Weast 1982–83) Molar Volume (cm3/mol): 74.6 (20°C, calculated-density) 90.6 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: –6.80 (pK value, Perrin 1972) 4.874 (Dean 1985; Riddick et al. 1986) 4.870 (Sangster 1989) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 10.66 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): miscible (Dean 1985) miscible (Riddick et al. 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 550* (interpolated-regression of tabulated data, temp range 4.6–141.4°C, Stull 1947) log (P/mmHg) = 7.92234 – 1869.4/(230 + t/°C), (Antoine eq., Dreisbach & Martin 1949) 7605* (72.39°C, ebulliometry, measured range 72.39–140.80°C, Dreisbach & Shrader 1949) 446 (calculated by formula, Dreisbach 1961) log (P/mmHg) = 7.35027 – 1497.775/(194.12 + t/°C), temp range 60–185°C (Antoine eq., Dreisbach 1961) log (P/mmHg) = [–0.2185 × 12454.4/(T/K)] + 9.647835; temp range 4.6–238°C (Antoine eq., Weast 1972–73) 435* (comparative ebulliometry, fitted to Antoine eq., Ambrose et al. 1981) log (P/kPa) = 6.64344 – 1594.723/[(T/K) – 70.545]; temp range 328–438 K (Antoine eq., ebulliometry, Ambrose et al. 1981) 500, 442 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.84202 – 1736.007/(218.032 + t/°C), temp range 72.39–128.34°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.67457 – 1615.227/(204.788 + t/°C), temp range 55.11–164.9°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 257 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 6.403 – 950.2/(130.3 + t/°C), temp range 56–139.5°C (Antoine eq., Dean 1985, 1992) 451 (Riddick et al. 1986) log (P/kPa) = 6.64334 – 1594.273/(202.605 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 452 (comparative ebulliometry, Ambrose & Ghiassee 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2698 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

ln (P/kPa) = 15.29686 – 3670.949/[(T/K) – 70.545], (Antoine eq., Ambrose & Ghiassee 1987)

log (PL/kPa) = 6.60267 – 1577.96/(–79.844 + T/K), temp range 343–419 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 9.24101 – 12835.99/(–23.07 + T/K), temp range 414–511 K (Antoine eq.-II, Stephenson & Malanowski 1987) 453, 8758 (measured, calculated-solvatochromic parameters, Banerjee et al. 1990) log (P/mmHg) = 20.2835 – 3.1165 × 103/(T/K) – 3.6015·log (T/K) – 1.3892 × 10–3·(T/K) + 7.1801 × 10–7·(T/K)2; temp range 252–604 K (vapor pressure eq., Yaws 1994) 14560* (88.37°C, VLE still-manometry, measured range 88.37–140.59°C, Clifford et al. 2004) ln (P/kPa) = 18.105654 – 5640.3443/[(t/°C) + 277.46143]; temp range 88.37–140.59°C (Antoine eq., VLE still- manometry, Clifford et al. 2004)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.0445 (partial pressure, Butler & Ramchandani 1935) 0.0450 (exptl., Hine & Mookerjee 1975) 0.0420, 0.0430 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 0.0298 (calculated-MCI χ, Nirmalakhandan & Speece 1988) 0.0163, 0.00151, 0.0289 (23.1°C, bubble column technique, concn: 1, 10, 105 ppm. Servant et al. 1991) 0.0180 (equilibrium partial pressure, Khan & Brimblecombe 1992) 0.0431 (calculated-bond contribution, Brimblecombe et al. 1992) 0.0177 (equilibrium partial pressure, pH 5.4, Khan et al. 1995)

Octanol/Water Partition Coefficient, log KOW: 0.25 (shake flask-titration, Collander 1951) 0.23, 0.24 (calculated-π const., calculated-fragment const., Rekker 1977) 0.33, 0.25 (Hansch & Leo 1979) 0.27 (shake flask-titration, Umland 1983) 0.33 (recommended, Sangster 1989; 1994) 0.33 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –12 3 –1 –1 kOH = (1.6 ± 0.5) × 10 cm molecule s at 298 K (flash photolysis-resonance fluorescence, Zetzsch & Stuhl 1982; quoted, Atkinson 1985) k = 2.0 × 10–3 M–1 s–1 for reaction with ozone at pH 8 in water, k ≤ 4.0 × 10–4 M–1 s–1 for protonated species, and k = (1 ± 0.5) × 10–3 M–1 s–1 for non-protonated species for the reaction with ozone in water at pH 2–5 and 20–23°C (Hoigné & Bader 1983b) –12 3 –1 –1 kOH* = (1.22 ± 0.12) × 10 cm molecule s at 298 K, measured range 298–440 K (flash photolysis-RF, Dagaut et al. 1988) –12 3 –1 –1 –12 3 –1 –1 kOH = 1.22 × 10 cm molecule s in air and k(soln) = 1.0 × 10 cm molecule s for the solution- phase reaction with OH radical in aqueous solution (Wallington et al. 1988) –12 3 –1 –1 kOH = (1.22 - 1.60) × 10 cm molecule s at 298 K (Atkinson 1989) –12 3 –1 –1 kOH(calc) = 1.35 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2699

TABLE 13.1.1.3.1 Reported vapor pressures of propionic acid at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) ln P = A – B/(C + T/K) (3a) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Dreisbach & Shrader 1949 Ambrose et al. 1981 Clifford et al. 2004

summary of literature data ebulliometry comparative ebulliometry VLE still-Hg manometer t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa 4.60 133.3 72.39 7605 55.174 2891 88.37 14560 28.0 666.6 76.75 8851 57.414 3274 95.22 19580 39.7 1333 79.68 10114 60.143 3787 105.80 29650 52.0 2666 90.73 16500 63.850 4594 113.59 39730 65.8 5333 114.62 42066 67.094 5417 119.78 49790 74.1 7999 128.34 67661 70.860 6529 125.94 59860 85.8 13332 140.80 101325 74.311 7713 129.50 69920 102.5 26664 78.096 9217 133.65 79990 122.0 53329 81.787 10917 137.18 90070 141.5 101325 85.630 12961 138.82 95100 89.553 15372 140.59 101210 mp/°C –22 93.303 18022 98.207 22058 Antoine eq. 102.401 26085 eq. 3a P/kPa 107.174 31400 A 18.105654 111.847 37437 B 56403343 116.747 44780 C 277.46143 122.130 54180 126.788 63579 data also fitted to Wagner eq. 131.723 74946 137.045 89022 141.105 101143 25.0 451 eq. 3 P/kPa A 6.64334 B 1594.273 C –70.545 data also fitted to Chebyshev and Wagner equations bp/K 436.868

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2700 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Propionic acid: vapor pressure vs. 1/T 8.0 Dreisbach & Shrader 1949 Ambrose et al. 1981 7.0 Clifford et al. 2004 Stull 1947 6.0

5.0 )aP/

S 4.0 P( go l 3.0

2.0

1.0 b.p. = 141.15 °C m.p. = -20.5 °C 0.0 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 1/(T/K) FIGURE 13.1.1.3.1 Logarithm of vapor pressure versus reciprocal temperature for propionic acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2701

13.1.1.4 Butyric acid

O

OH

Common Name: Butyric acid Synonym: butanoic acid, n-butyric acid, ethylacetic acid Chemical Name: n-butyric acid, butyric acid CAS Registry No: 107-92-6

Molecular Formula: C4H8O2, CH3CH2CH2COOH Molecular Weight: 88.106 Melting Point (°C): –5.1 (Lide 2003) Boiling Point (°C): 163.75 (Lide 2003) Density (g/cm3 at 20°C): 0.95767, 0.95273 (20°C, 25°C, Dreisbach & Martin 1949) 0.9582 (Dean 1985; Riddick et al. 1986) Molar Volume (cm3/mol): 92.0 (20°C, calculated-density) 112.8 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 4.817 (Dean 1985) 4.822 (Riddick et al. 1986) 4.820 (Sangster 1993) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 11.6 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): miscible (Dean 1985) miscible (Riddick et al. 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (25.5°C, temp range 25.5–163.5°C, Stull 1947) log (P/mmHg) = 8.19524 – 2089.9/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 4716* (90.92°C, ebulliometry, measured range 90.92–163.25°C, Dreisbach & Shrader 1949) 95.77 (calculated by formula, Dreisbach 1961) log (P/mmHg) = 7.38423 – 1542.6/(179.0 + t/°C), temp range 82–210°C, (Antoine eq. for liquid state, Dreisbach 1961) log (P/mmHg) = [–0.2185 × 11881.2/(T/K)] + 8.773450; temp range 25.5–352°C (Antoine eq., Weast 1972–73) 83.95* (comparative ebulliometry, fitted to Antoine eq., measured range 340–452 K, Ambrose et al. 1981) log (P/kPa) = 6.55643 – 1563.444/[(T/K) – 93.307]; temp range 339.7–452 K (Antoine eq., ebulliometry, Ambrose et al. 1981) 104, 92 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.8682 – 1766.906/(200.097 + t/°C), temp range 90.2–163.25°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.67596 – 1642.683/(188.013 + t/°C); temp range 76.53–178.9°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 104.3 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.7399 – 1764.7/(199.9 + t/°C); temp range 90–163°C (Antoine eq., Dean 1985, 1992) 102.0 (selected, Riddick et al. 1986) log (P/kPa) = 6.55643 – 1563.444/(179.843 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2702 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

101 (comparative ebulliometry, Ambrose & Ghiassee 1987) ln (P/kPa) = 15.09674 – 3599.963/[(T/K) – 93.307], (Antoine eq. from previous comparative ebulliometry mea- surements, Ambrose & Ghiassee 1987)

log (PL/kPa) = 6.50913 – 1542.6/(–94.15 + T/K); temp range 355–453 K (Antoine eq.-I, Stephenson & Mal- anowski 1987)

log (PL/kPa) = 7.3554 – 2180.05/(–29.337 + T/K); temp range 437–592 K (Antoine eq.-II, Stephenson & Mal- anowski 1987)

log (PL/kPa) = 11.53324 – 5291.631/(128.778 + T/K); temp range 301–358 K (Antoine eq.-III, Stephenson & Malanowski 1987) log (P/mmHg) = 8.0847 – 3.3219 × 103/(T/K) + 2.4312·log (T/K) – 1.1734 × 10–2·(T/K) + 5.7992 × 10–6·(T/K)2; temp range 268–628 K (vapor pressure eq., Yaws 1994) 14560* (110.4°C, VLE still-manometry, measured range 110.4–162.9°C, Clifford et al. 2004) ln (P/kPa) = 14.511627 – 3164.4707/[(t/°C) + 156.56122]; temp range 110.4–162.9°C (Antoine eq., VLE still- manometry, Clifford et al. 2004)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.0542 (partial pressure, Butler & Ramchandani 1935) 0.0542; 0.0590; 0.0650 (exptl.; calculated-group contribution; calculated-bond contribution, Hine & Mookerjee 1975) 0.0375 (calculated-MCI χ, Nirmalakhandan & Speece 1988) 0.0222 (equilibrium partial pressure, Khan & Brimblecombe 1992) 0.0654 (calculated-bond contribution, Brimblecombe et al. 1992) 0.358 (calculated-molecular structure, Russell et al. 1992) 0.0211 (equilibrium partial pressure, pH 5.4, Khan et al. 1995)

Octanol/Water Partition Coefficient, log KOW: 0.79 (shake flask-TN, Collander 1951) 0.94 (calculated-TSA, Iwase et al. 1985) 0.824, 0.70 (calculated-CLOGP, calculated-M.O., Bodor et al. 1989) 0.79 (recommended, Sangster 1993) 0.79 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Hydrolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –12 3 –1 –1 kOH = (2.4 ± 0.7) × 10 cm molecule s at 298 K was determined using (flash photolysis-resonance fluorescence, Zetzsch & Stuhl 1982; quoted, Atkinson 1985, 1989) k(apparent) ≤ 4×10–2 M–1 s–1 for reaction with ozone at pH 8 in water, k ≤ 6.0 × 10–3 M–1 s–1 for protonated species, and k ≤ 6.0 × 10–3 M–1 s–1 for non-protonated species for the reaction with ozone in water at pH 2–4 and 20–23°C (Hoigné & Bader 1983b) –12 3 –1 –1 –12 3 –1 –1 kOH = 1.80 × 10 cm molecule s in air and k(soln) = 3.70 × 10 cm molecule s for the solution- phase reaction with OH radical in aqueous solution (Wallington et al. 1988) –12 3 –1 –1 kOH(calc) = 3.11 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2703

Half-Lives in the Environment: Air: Surface water: Groundwater: Sediment: Soil: Biota:

TABLE 13.1.1.4.1 Reported vapor pressures of butyric acid at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) ln P = A – B/(C + T/K) (3a) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Dreisbach & Shrader 1949 Ambrose et al. 1981 Clifford et al. 2004

summary of literature data ebulliometry comparative ebulliometry VLE still-manometry t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa 25.5 133.3 90.92 4716 76.524 2939 110.4 14560 49.8 666.6 95.01 5704 78.773 3305 117.72 19580 61.5 1333 98.35 6639 81.494 3818 128.17 29650 74.0 2666 101.32 7586 85.202 4614 135.85 39720 88.0 5333 112.57 16500 88.517 5443 141.84 40790 95.5 7999 136.57 42066 92.350 6558 147.07 59860 108.0 13332 150.70 67661 95.880 7754 151.66 69920 125.5 26664 163.25 101326 99.708 9255 155.81 79990 144.5 53329 103.451 10955 159.46 90070 163.5 101325 107.241 13000 161.36 95100 111.319 15409 162.90 100040 mp/°C –4.70 115.124 18601 120.102 22098 Antoine eq. 124.357 26126 eq. 3a P/kPa 129.207 31448 A 14.511627 133.944 37489 B 3164.4707 144.392 54256 C 156.56122 149.125 63651 154.135 75000 data also fitted to Wagner eq. 159.367 89123 163.687 101252 164.110 102558 164.553 103927 169.357 120015 173.698 136172 178.873 157694 Antoine eq. eq. 3 P/kPa A 6.55643 B 1563.444 C –1563.444 data also fitted to Chebyshev and Wagner equations

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2704 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Butyric acid: vapor pressure vs. 1/T 8.0 Dreisbach & Shrader 1949 Ambrose et al. 1981 7.0 Clifford et al. 2004 Stull 1947 6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 163.75 °C m.p. = -5.1 °C 0.0 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 1/(T/K) FIGURE 13.1.1.4.1 Logarithm of vapor pressure versus reciprocal temperature for butyric acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2705

13.1.1.5 Isobutyric acid

O

OH

Common Name: Isobutyric acid Synonym: isobutanoic acid, i-butyric acid, 1-butyric acid, dimethylacetic acid, 2-methylpropionic acid, isopropylformic acid Chemical Name: i-butyric acid, isobutyric acid CAS Registry No: 79-31-2

Molecular Formula: C4H8O2, (CH3)2CHCOOH Molecular Weight: 88.106 Melting Point (°C): –46.0 (Dean 1985; Riddick et al. 1986; Lide 2003) Boiling Point (°C): 154.45 (Lide 2003) Density (g/cm3 at 20°C): 0.9490 (Verschueren 1983) 0.9682 (Riddick et al. 1986) Molar Volume (cm3/mol): 92.7 (20°C, calculated-density, Stephenson & Malanowski 1987) 112.8 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 4.860 (Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 5.02 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 228000 (20°C, synthetic method, Jones 1929) 200000 (20°C, quoted, Verschueren 1983) 170000 (Dean 1985) 228000 (20°C, Riddick et al. 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 273.8* (interpolated-regression of tabulated data, temp range 14.7–154.5°C, Stull 1947) 185 (calculated by formula, Dreisbach 1961) log (P/mmHg) = 7.40246 – 1529.2/(185.0 + t/°C), temp range 73–190°C, (Antoine eq. for liquid state, Dreisbach 1961) log (P/mmHg) = [–0.2185 × 11182.8/(T/K)] + 8.55228; temp range 14.7–336°C (Antoine eq., Weast 1972–73) 185.0 (Riddick et al. 1986) 184* (comparative ebulliometry, measured range 344.3–445.6 K, Ambrose & Ghiassee 1987) ln (P/kPa) = 15.31143 – 3695.332/[(T/K) – 82.0]; temp range 344.3–447 K (Antoine eq. from comparative ebulliometry measurements, Ambrose & Ghiassee 1987) 257.2 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.20794 – 2023.52/(–38.649 + T/K); temp range 288–428 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.11635 – 2006.61/(–35.297 + T/K), temp range 428–562 K (Antoine eq.-II, Stephenson & Malanowski 1987) log (P/mmHg) = 11.3037 – 3.1625 × 103/(T/K) + 0.7263·log (T/K) – 8.9331 × 10–3·(T/K) + 4.8215 × 10–6·(T/K)2; temp range 227–609 K (vapor pressure eq., Yaws 1994) 14550* (102.6°C, VLE still-manometer, measured range 102.6–153.01°C, Clifford et al. 2004)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2706 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

ln (P/kPa) = 15.176238 – 3527.8614/[(t/°C) + 180.5140]; temp range 102–153.01°C (Antoine eq., VLE still- manometry, Clifford et al. 2004)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 0.0178, 0.0289, 0.0633 (23.7°C, bubble column technique, concn: 1, 10, 105 ppm. Servant et al. 1991) 0.0897 (equilibrium partial pressure, Khan & Brimblecombe 1992) 0.0899 (equilibrium partial pressure, pH 5.4, Khan et al. 1995)

Octanol/Water Partition Coefficient, log KOW: 0.50, 1.13 (calculated, Verschueren 1983) 0.94 (recommended, Sangster 1993) 1.10 (at pH 3.5, quoted, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –12 3 –1 –1 kOH* = (2.0 ± 0.2) × 10 cm molecule s at 298 K, measured range 298–440 K (flash photolysis-RF, Dagaut et al. 1988; Atkinson 1989) –12 3 –1 –1 kOH(calc) = 1.36 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment:

TABLE 13.1.1.5.1 Reported vapor pressures of isobutyric acid (2-methyl propanoic acid) at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) ln P = A – B/(C + T/K) (3a) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Ambrose & Ghiassee 1987 Clifford et al. 2004

summary of literature data comparative ebulliometry VLE still-manometry t/°C P/Pa T/K P/Pa t/°CP/Pa 14.7 133.3 344.287 3425 102.06 14550 39.3 666.6 347.850 4128 108.99 18580 51.2 1333 350.797 4801 118.62 29650 64.0 2666 355.776 6153 126.28 39720 77.8 5333 357.992 6852 132.29 49790 86.3 7999 360.006 7548 137.60 59850 98.0 13332 361.903 8260 142.36 69920 115.8 26664 365.785 9886 146.62 79990

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2707

TABLE 13.1.1.5.1 (Continued)

Stull 1947 Ambrose & Ghiassee 1987 Clifford et al. 2004

summary of literature data comparative ebulliometry VLE still-manometry t/°C P/Pa T/K P/Pa t/°CP/Pa 134.5 53329 369.394 11370 150.21 90070 154.5 101325 375.207 15006 151.71 95100 380.090 18440 153.01 100590 mp/°C –47 384.218 21842 387.840 25241 Antoine eq. 392.544 30312 eq. 3(a) P/kPa 399.095 38759 A 15.176238 405.577 48959 B 3527.8614 409.363 55877 C 180.5140 412.692 62629 ↓↓data also fitted to Wagner eq. 445.602 172068 298.15 184 Antoine eq. eq. 3(a) P/kPa A 15.31143 B 3695.332 C –82.0 bp/K 427.57 data also fitted to Wagner eq.

Isobutyric acid: vapor pressure vs. 1/T 8.0 Ambrose & Ghiassee 1987 Clifford et al. 2004 7.0 Stull 1947

6.0

5.0 )aP/

S 4.0 P(go

l 3.0

2.0

1.0 b.p. = 154.45 °C 0.0 0.0022 0.0026 0.003 0.0034 0.0038 0.0042 1/(T/K) FIGURE 13.1.1.5.1 Logarithm of vapor pressure versus reciprocal temperature for isobutryic acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2708 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

13.1.1.6 n-Valeric acid

O

OH

Common Name: n-Valeric acid Synonym: pentanoic acid, valeric acid Chemical Name: n-valeric acid, valeric acid CAS Registry No: 109-52-4

Molecular Formula: C5H10O2, CH3CH2CH2CH2COOH Molecular Weight: 102.132 Melting Point (°C): –33.6 (Lide 2003) Boiling Point (°C): 186.1 (Lide 2003) Density (g/cm3 at 20°C): 0.9391 (Weast 1982–83) 0.9390 (Dean 1985; Riddick et al. 1986) Molar Volume (cm3/mol): 108.4 (20°C, calculated-density, Stephenson & Malanowski 1987) 135.0 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 4.820 (18°C, Weast 1982–83) 4.860 (Riddick et al. 1986) 4.830 (Sangster 1989, 1993) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 14.17 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 26000 (20°C, quoted, Amidon et al. 1975) 24000 (Verschueren 1983; Dean 1985) 24000 (20°C, Riddick et al. 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 39.6* (extrapolated-regression of tabulated data, temp range 42.2–184.4°C, Stull 1947) 18.75 (calculated by formula, Dreisbach 1961) log (P/mmHg) = 7.57366 – 1694.37/(175.0 + t/°C), temp range 102–250°C, (Antoine eq. for liquid state, Dreisbach 1961) log (P/mmHg) = [–0.2185 × 13370.3/(T/K)] + 9.271178; temp range 42.2–184.4°C (Antoine eq., Weast 1972–73) 20.0 (20°C, Verschueren 1983) 4.33, 6.37 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 4.58366 – 609.613/(62.754 + t/°C); temp range 72.4–173.7°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 5.0835 – 878.669/(95.711 + t/°C); temp range 81.1–116.8°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/mmHg) = 5.412 – 591/(60 + t/°C); temp range 72–174°C (Antoine eq., Dean 1985, 1992) 19.0 (Riddick et al. 1986) log (P/kPa) = 6.7818 – 1777.2/(186.6 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 21.0* (comparative ebulliometry, measured range 372.5–465.3 K, Ambrose & Ghiassee 1987) ln (P/kPa) = 15.25555 – 3811.202/[(T/K) – 101.0], temp range 372.5–456.3 K (Antoine eq. from comparative ebulliometry measurements, Ambrose & Ghiassee 1987) 16.9 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2709

log (PL/kPa) = 6.69856 – 1694.37/(–98.15 + T/K), temp range 375–523 K (Antoine eq., Stephenson & Mal- anowski 1987) log (P/mmHg) = 15.3454 –3.9024 × 103/(T/K) – 0.024353·log (T/K) – 1.1099 × 10–2·(T/K) + 5.6315 × 10–6·(T/K)2; temp range 239–651 K (vapor pressure eq., Yaws 1994) 14560 (130°C, VLE still-manometer, measured range 130–178.77°C, Clifford et al. 2004) ln (P/kPa) = 36.410366 – 30029.229/[(t/°C) + 760.44819]; temp range 130–178.77°C (Antoine eq., VLE still- manometry, Clifford et al. 2004)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 0.0478 (equilibrium partial pressure, pH 1.6–1.9, Khan & Brimblecombe 1992) ′ –1 –1 ln [KH /(mol kg atm )] = –15.37 + 6879/(T/K); temp range 278.15–308.15 K. (equilibrium partial pressure, Khan & Brimblecombe 1992) 0.0618, 0.0989 (calculated-P/C, calculated-bond contribution, Brimblecombe et al. 1992) 0.0448* (equilibrium partial pressure, pH 5.4, measured range 5–35°C, Khan et al. 1995) ′ –1 –1 ln [KH /(mol kg atm )] = –14.3371 + 6582.96/(T/K); temp range 5–35°C (equilibrium partial pressure mea- surements, Khan et al. 1995) 0.0310 (20°C, selected from literature, experimentally measured data, Staudinger & Roberts 1996) 0.030 (20°C, selected from literature, experimentally measured data, Staudinger & Roberts 2001)

log KAW = 4.861 – 2865/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 1.42 (Scherrer & Howard 1979) 0.99, 1.69 (calculated, Verschueren 1983) 1.39 (recommended, Sangster 1993) 1.39 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Half-Lives in the Environment:

TABLE 13.1.1.6.1 Reported vapor pressures and Henry’s law constants of n-valeric acid at various temperatures log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) ln P = A – B/(C + T/K) (3a) log P = A – B/(T/K) – C·log (T/K) (4)

Vapor pressure Henry’s law constant

Stull 1947 Ambrose & Ghiassee 1987 Clifford et al. 2004 Khan et al. 1995

summary of literature data comparative ebulliometry VLE still-manometry gas stripping

t/°C P/Pa T/K P/Pa t/°CP/Pat/°CH/(Pa m3/mol) 42.2 133.3 372.543 3410 130.0 14560 5 0.00823 67.7 666.6 376.278 4112 137.56 19590 15 0.018 79.8 1333 379.415 4801 143.92 24630 25 0.0448 93.1 2666 384.489 6125 149.04 29650 35 0.0878

(Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2710 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 13.1.1.6.1 (Continued) Vapor pressure Henry’s law constant

Stull 1947 Ambrose & Ghiassee 1987 Clifford et al. 2004 Khan et al. 1995

summary of literature data comparative ebulliometry VLE still-manometry gas stripping t/°C P/Pa T/K P/Pa t/°CP/Pat/°CH/(Pa m3/mol) 116.6 7999 398.670 11637 163.33 49780 ln H = A ! B/(T/K) 128.3 13332 404.759 15006 168.74 59850 H/(mol kg!1 146.0 26664 414.079 21807 173.30 69920 A !14.3371 165.0 53329 422.753 30285 175.33 74960 B 6582.96 184.4 101325 429.637 55786 17720 79990 443.796 62659 17877 86030 mp/EC !34.5 449.980 76308 454.060 86528 Antoine eq. 460.052 101592 eq. 2a P/Pa 405.378 120678 A 36.410366 B 30029.229 Antoine eq. C 760.44819 eq. 2a P/kPa A 15.2555 data also fitted to Wagner eq. B 3811.202 C !101.0 data also fitted to Wagner eq.

n -Valeric acid: vapor pressure vs. 1/T 8.0 Stull 1947 Ambrose & Ghiassee 1987 7.0 Clifford et al. 2004

6.0

5.0 )a P/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 186.1 °C 0.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 13.1.1.6.1 Logarithm of vapor pressure versus reciprocal temperature for n-valeric acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2711

n -Valeric acid: Henry's law constant vs. 1/T 0.0

-1.0

)lom/ -2.0 3 m .

aP(/H nl aP(/H -3.0

-4.0

-5.0

Khan et al. 1995 -6.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K)

FIGURE 13.1.1.6.2 Logarithm of Henry’s law constant versus reciprocal temperature for n-valeric acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2712 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

13.1.1.7 Hexanoic acid (Caproic acid)

O

OH

Common Name: Hexanoic acid Synonym: butylacetic acid, caproic acid, n-hexanoic acid Chemical Name: butylacetic acid, hexanoic acid, n-hexanoic acid CAS Registry No: 142-62-1

Molecular Formula: C6H12O2, CH3(CH2)3CH2COOH Molecular Weight: 116.158 Melting Point (°C): –3 (Lide 2003) Boiling Point (°C): 205.2 (Lide 2003) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): 125.0 (20°C, calculated-density, Stephenson & Malanowski 1987) 157.2 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 4.850 (Dean 1985; Bintein & Devillers 1994) 4.879 (Riddick et al. 1986) 4.870 (Sangster 1989, 1993) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 15.4 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 9887 (Valvani et al. 1981) 11000 (Verschueren 1983) 10816 (Windholz 1983) 6391 (calculated-activity coefficient γ from UNIFAC, Banerjee 1985) 9580 (20°C, Riddick et al. 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (71.4°C, summery of literature data, temp range 71.4–202°C, Stull 1947) log (P/mmHg) = [–0.2185 × 16189.4/(T/K)] + 10.431464; temp range 71.4–202°C (Antoine eq., Weast 1972–73) 4.40 (comparative ebulliometry, fitted to Antoine eq., Ambrose et al. 1981) log (P/kPa) = 6.76323 – 1789.425/(T/K) – 101.930; temp range: 386.3–441.8 K (Antoine eq., ebulliometry, Ambrose et al. 1981) 26.7 (20°C, Verschueren 1983) 9.92, 1.65 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.74777 – 1779.677/(178.361 + t/°C), temp range 113.1–168.6°C (Antoine eq. from reported exptl. data of Ambrose et al. 1981, Boublik et al. 1984) log (P/kPa) = 6.06182 – 1347.897/(127.391 + t/°C), temp range 98.1–179.1°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/mmHg) = 6.9249 – 1340.8/(126.6 + t/°C), temp range 98–179°C (Antoine eq., Dean 1985, 1992) 5.00 (Riddick et al. 1986) log (P/kPa) = 6.76323 – 1789.425/(171.22 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 6.0 (calculated from Wagner eq. derived from experimental data, Ambrose & Ghiassee 1987) ln (P/kPa) = 15.30352 – 3957.396/[(T/K) – 108] (Antoine eq., Ambrose & Ghiassee 1987)

log (PL/kPa) = 7.08241 – 2009.93/(–82.69 + T/K); temp range 335–487 K (Antoine eq., Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2713

log (P/mmHg) = 55.7058 – 5.6602 × 103/(T/K) – 15.458·log (T/K) + 1.0823 × 10–9·(T/K) + 1.8718 × 10–13·(T/K)2; temp range 270–667 K (vapor pressure eq., Yaws 1994) 9520 (140.25°C, VLE still-manometer, measured range 140.25–178.28°C, Clifford et al. 2004) ln (P/kPa) = 13.46595 – 2642.198/[t/°C + 95.20133]; temp range 140.25–178.28°C (Antoine eq., VLE still- manometry, Clifford et al. 2004)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.0768 (equilibrium partial pressure, pH 1.6–1.9, Khan & Brimblecombe 1992) –1 –1 ln [KH/(mol kg atm )] = –12.69 + 5988/(T/K); temp range 278.15–303.15 K (equilibrium partial pressure, Khan & Brimblecombe 1992) 0.0873, 0.149 (calculated-P/C, calculated-bond contribution, Brimblecombe et al. 1992) 0.0720* (equilibrium partial pressure, pH 5.4, measured range 5–35°C, Khan et al. 1995) ′ –1 –1 ln [KH /(mol kg atm )] = –13.9424 + 6303.73/(T/K); temp range 5–35°C (equilibrium partial pressure mea- surements, Khan et al. 1995) 0.0583 (20°C, selected from literature, experimentally measured data, Staudinger & Roberts 1996) 0.0556 (20°C, selected from literature, experimentally measured data, Staudinger & Roberts 2001)

log KAW = 3.955 – 2520/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 1.88 (Scherrer & Howard 1979) 1.87 (HPLC-RT correlation, D’Amboise & Hanai 1982) 1.92 (shake flask-titration, Umland 1983) 2.09 (shake flask-fluorescence, Nishimura et al. 1985) 1.32 (calculated-activity coefficient γ from UNIFAC, Banerjee & Howard 1988) 2.03 ± 0.01 (potentiometric titration, Hersey et al. 1989) 1.92 (recommended, Sangster 1989, 1993) 1.92 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 1.38; 1.42; 1.57 (Alfisol soil; Podzol soil; sediment, von Oepen et al. 1991) 1.46; 0.88 (soil, quoted exptl.; calculated-MCI χ and fragment contribution, Meylan et al. 1992) 1.46 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k or Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2714 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 13.1.1.7.1 Reported vapor pressures and Henry’s law constants of hexanoic acid (caproic acid) at various temperatures

Vapor pressure Henry’s law constant

Stull 1947 Ambrose et al. 1981 Clifford et al. 2004 Khan et al. 1995

summary of literature data comparative ebulliometry VLE still-manometer gas stripping t/°CP/PaT/K P/Pa t/°CP/Pat/°CH/(Pa m3/mol) 71.4 133.3 386.270 2952 140.25 9520 5 0.0167 89.5 666.6 388.571 3314 149.73 14560 15 0.036 99.5 1333 391.485 3831 156.77 19590 25 0.072 111.8 2666 395.428 4638 162.47 24630 35 0.150 125.0 5333 398.865 5459 166.88 29640 133.3 7999 402.913 6576 171.11 34680 ln H = A ! B/(T/K) 144.0 13332 406.610 7762 174.73 39720 H/(mol kg!1 160.8 26664 410.665 9267 178.28 44750 A !13.9424 181.0 53329 414.581 10963 B 6303.73 202.0 101325 418.705 13001 Antoine eq. 422.887 15422 eq. 2a P/Pa mp/EC !1.5 432.157 22112 A 13.46595 441.779 31458 B 2642.198 C 95.20133 eq. 2 P/kPa A 6.76323 data also fitted to Wagner eq. B 1789.425 C !101.930

data also fitted to Wagner eq.

Hexanoic acid (caproic acid): vapor pressure vs. 1/T 7.0 Stull 1947 Ambrose et al. 1981 6.0 Clifford et al. 2004 Ambrose & Ghiassee 1987 5.0

4.0 )aP/

S 3.0 P(gol

2.0

1.0

0.0 b.p. = 205.2 °C m.p. = -3 °C -1.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 13.1.1.7.1 Logarithm of vapor pressure versus reciprocal temperature for hexanoic acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2715

Hexanoic acid (n -caproic acid): Henry's law constant vs. 1/T 0.0

-1.0

)lom/ -2.0 3 m.aP(/H nl m.aP(/H -3.0

-4.0

-5.0

Khan et al. 1995 -6.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K) FIGURE 13.1.1.7.2 Logarithm of Henry’s law constant versus reciprocal temperature for hexanoic acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2716 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

13.1.1.8 Stearic acid (Octadecanoic acid)

O

OH

Common Name: Stearic acid Synonym: octadecanoic acid Chemical Name: stearic acid, ocatadecanoic acid, n-octadecylic acid CAS Registry No: 57-11-4

Molecular Formula: C18H36O2, CH3(CH2)16COOH Molecular Weight: 284.478 Melting Point (°C): 69.3 (Lide 2003) Boiling Point (°C): 350 (dec., Lide 2003) Density (g/cm3 at 20°C): 0.9408 (Weast 1982–83) Molar Volume (cm3/mol): 335.9 (70°C, Stephenson & Malanowski 1987) 423.6 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 4.50 (estimated, Sangster 1989) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 39.57; 43.5 (observed, estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.368 (mp at 69.3°C)

Water Solubility (g/m3 or mg/L at 25°C): 340 (Verschueren 1983)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 133.3 (173.7°C, summary of literature data, temp range:173.7–370°C, Stull 1947) log (P/mmHg) = [–0.2185 × 19306.6/(T/K)] + 9.457471; temp range:173.7–370°C, (Antoine eq., Weast 1972–73) 1.69 × 10–12 (extrapolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.17126 – 2157.5/(–153.78 + T/K); temp range 349–415 K (Antoine eq-I., Stephenson & Malanowski 1987)

log (PL/kPa) = 5.85188 – 1717.93/(–201.829 + T/K); temp range 447–649 K (Antoine eq-II., Stephenson & Malanowski 1987) log (P/mmHg) = –40.3638 – 4.7724 × 103/(T/K) + 24.502·log (T/K) – 3.7665 × 10–2·(T/K) + 1.4595 × 10–5·(T/K)2; temp range 343–799 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol):

Octanol/Water Partition Coefficient, log KOW: 8.23 (HPLC-RT correlation, D’Amboise & Hanai 1982) 8.23 (recommended, Sangster 1989, 1993)

Octanol/Air Partition Coefficient, log KOA: Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k or Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2717

13.1.1.9 Oleic acid

O

OH

Common Name: Oleic acid Synonym: cis-9-octadecenoic acid, (Z)-9-octadecenoic acid Chemical Name: oleic acid CAS Registry No: 112-80-1

Molecular Formula: C18H34O2, CH3(CH2)7CH=CH(CH2)6CH2COOH Molecular Weight: 282.462 Melting Point (°C): 13.4 (Lide 2003) Boiling Point (°C): 360 (Lide 2003) Density (g/cm3 at 20°C): 0.8870 (25°C, Riddick et al. 1986) 0.8935 (Lide 2003) Molar Volume (cm3/mol): 314.7 (Stephenson & Malanowski 1987) 416.2 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 5.02 (Riddick et al. 1986) 4.50 (Sangster 1989) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): insoluble (McBain & Richards 1946; Riddick et al. 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 133 (178.5°C, summary of literature data, temp range 176.5–360°C, Stull 1947) 0.00144 (extrapolated-Antoine eq., Weast 1972–73) log (P/mmHg) = [–0.2185 × 20326.7/(T/K)] + 9.930301; temp range 176.5–360°C (Antoine eq., Weast 1972–73) 0.00113 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 8.22018 – 3711.59/(–36.125 + T/K); temp range 444–635 K (Antoine eq., Stephenson & Mal- anowski 1987) log (P/mmHg) = 78.6973 – 8.8227 × 103/(T/K) –22.472·log (T/K) + 4.8353 × 10–11·(T/K) + 2.6578 × 10–6·(T/K)2; temp range 287–633 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol):

Octanol/Water Partition Coefficient, log KOW: 7.64 (RP-HPLC-k′ correlation, D’Amboise & Hanai 1982) 7.64 (recommended, Sangster 1989, 1993)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2718 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

13.1.1.10 Acrylic acid (2-Propenoic acid)

O

OH

Common Name: Acrylic acid Synonym: acroleic acid, ethylenecarboxylic acid, 2-propenoic acid, propenoic acid Chemical Name: acrylic acid, 2-propenoic acid, propenoic acid CAS Registry No: 79-10-7

Molecular Formula: C3H4O2, CH2=CHCOOH Molecular Weight: 72.063 Melting Point (°C): 12.5 (Lide 2003) Boiling Point (°C): 141 (Lide 1003) Density (g/cm3 at 20°C): 1.0511 (Weast 1982–83; Dean 1985; Riddick et al. 1986) Molar Volume (cm3/mol): 68.9 (calculated-density, Stephenson & Malanowski 1987)\ 83.2 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: –4.41 (Perrin 1972)

4.25 (pKa, Weast 1982–83) 4.26 (pKa, Dean 1985) 4.255 (pKa, Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 11.13 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): miscible (Dean 1985) miscible (Riddick et al. 1986) miscible (Yaws et al. 1990)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 570.8 (interpolated-regression of tabulated data, temp range 3.5–141°C, Stull 1947) 506.5 (Hoy 1970) 570 (interpolated-Antoine eq., Weast 1972–73) log (P/mmHg) = [–0.2185 × 10955.1/(T/K)] + 8.659704; temp range 3.5–141°C (Antoine eq., Weast 1972–73) 426.6 (20°C, Verschueren 1983) log (P/mmHg) = 5.65204 – 648.629/(154.683 + t/°C); temp range 20–70°C (Antoine eq., Dean 1985, 1992) 533.0 (Howard et al. 1986) 1030 (20°C, Riddick et al. 1986) 581.7 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.93296 – 1827.9/(–43.15 + T/K); temp range 341–414 K (Antoine eq., Stephenson & Malanowski 1987) 533, 12530 (measured, calculated-solvatochromic parameters, Banerjee et al. 1990) log (P/mmHg) = 23.0607 – 3.1347 × 103/(T/K) – 4.8813·log (T/K) + 4.369 × 10–4·(T/K) – 4.9161 × 10–13·(T/K)2; temp range 287–615 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol): 0.042 (computed-vapor liquid equilibrium VLE data, Yaws et al. 1991)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2719

Octanol/Water Partition Coefficient, log KOW: 0.43 (Leo et al. 1971) 0.31, 0.43 (calculated, Verschueren 1983) 0.35 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: photooxidation t½t½ = 2.5–23.8 h in air, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radical and ozone in air (Atkinson & Carter 1984; Atkinson 1987; selected, Howard et al. 1991) Hydrolysis: no hydrolyzable groups (Howard et al. 1991).

Biodegradation: aqueous aerobic t½ = 24–168 h, based on unacclimated aqueous screening test data (Dore et al. 1975; Sasaki 1978; selected, Howard et al. 1991); aqueous anaerobic t½ = 672–4320 h, based on unacclimated anaerobic reactor test data (Chou et al. 1979; selected, Howard et al. 1991)

t½(aerobic) = 1 d, t½(anaerobic) = 28 d in natural waters (Capel & Larson 1995) Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: photooxidation t½ = 2.5–23.8 h, based on an estimated rate constant for the vapor-phase reaction with hydroxyl radical and ozone in air (Atkinson & Carter 1984; Atkinson 1987; selected, Howard et al. 1991); atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994).

Surface water: t½ = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991)

t½(aerobic) = 1 d, t½(anaerobic) = 28 d in natural waters (Capel & Larson 1995) Groundwater: t½ = 48–4320 h, based on estimated unacclimated aqueous aerobic and anaerobic biodegradation half-lives (Howard et al. 1991). Sediment:

Soil: t½ = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2720 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

13.1.1.11 Chloroacetic acid

O Cl OH

Common Name: Chloroacetic acid Synonym: Chemical Name: chloroacetic acid (α or β) CAS Registry No: 79-11-8

Molecular Formula: C2H3ClO2, ClCH2COOH Molecular Weight: 94.497 Melting Point (°C): 61.2 (α, Stull 1947; Yalkowsky & Valvani 1980) 56.0 (β, Yalkowsky & Valvani 1980) 56–63 (Weast 1982–83; Dean 1985) 63 (Lide 2003) Boiling Point (°C): 189.3 (Lide 2003) Density (g/cm3 at 20°C): 1.4043 (40°C, Weast 1982–83) Molar Volume (cm3/mol): 68.8 (63°C, Stephenson & Malanowski 1987) 89.3 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 2.85 (Weast 1982–83) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 56 (estimated, Yalkowsky & Valvani 1980) 36.73, 42.22 (observed for α, observed for β, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.424 (mp at 63°C)

Water Solubility (g/m3 or mg/L at 25°C): α ∆ 120835 ( , calculated- Sfus and mp, calculated-mp, Yalkowsky & Valvani 1980) β ∆ 107200 ( , calculated- Sfus and mp, calculated-mp, Yalkowsky & Valvani 1980) 109000 (shake flask-titrimetric assay, Bowden et al. 1998)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 39.70* (extrapolated-regression of tabulated data, temp range 43.0–189.5°C, Stull 1947) log (P/mmHg) = 8.28534 – 2263.7/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 6301* (112.8°C, ebulliometry, measured range 112.8–187.55°C, Dreisbach & Shrader 1949) 4141* (104.47°C, ebulliometry, measured range 104.47–190.27°C, McDonald et al. 1959) log (P/mmHg) = 7.56597 – 1733.96/(180.996 + t/°C); temp range: 104–190°C (Antoine eq. from ebulliometry measurement, McDonald et al. 1959) log (P/mmHg) = [–0.2185 × 13134.5/(T/K)] + 9.099371; temp range 43–189°C (Antoine eq., Weast 1972–73) 18.52, 12.9 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.67559 – 1723.714/(180.01 + t/°C); temp range 104–190.27°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.29612 – 1468.443/(154.397 + t/°C); temp range 123.19–187.9°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 18.52 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.55016 – 1723.365/(179.98 + t/°C); temp range 104–190°C (Antoine eq., Dean 1985, 1992) 8.51, 11.5 (extrapolated-Antoine eq.-I and II, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2721

log (PL/kPa) = 6.69087 – 1733.96/(–92.154 + T/K); temp range 336–463 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.67975 – 1727.293/(–97.742 + T/K); temp range 377–464 K (Antoine eq.-II, Stephenson & Malanowski 1987) log (P/mmHg) = 42.6726 – 4.597 × 103/(T/K) – 11.348·log (T/K) – 2.8515 × 10–10·(T/K) + 1.7995 × 10–6·(T/K)2; temp range 333–686 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): 0.000938 (partial pressure equilibrium, Bowden et al. 1998) ′ –1 –1 ln [(KH /(mol kg atm )] = –21.087 + 9742.6/(T/K), temp range 5–35°C (partial pressure equilibrium measure- ments, Bowden et al. 1998) 0.000536 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 7.343 – 4104/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 0.22 (shake flask, Hansch & Leo 1987; recommended, Hansch et al. 1995) 0.22 (recommended, Sangster 1993) 0.22 (calculated-fragment const. with correction factors in multiCASE program, Dambrosky et al. 2001)

Octanol/Air Partition Coefficient, log KOA: Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization:

Photolysis: aqueous photolysis t½ = 1900–19000 h, based on experimental photolysis data utilizing an artificial light source (Draper & Crosby 1983; quoted, Howard et al. 1991);

atmospheric photolysis t½ = 1900–19000 h, based on estimated aqueous photolysis half-life (Howard et al. 1991);

photocatalyzed mineralization by the presence of TiO2 with the rate of 5.5 ppm/min per gram of catalyst (Ollis 1985).

Hydrolysis: first-order hydrolysis t½ = 23000 h, based on losses in dark control tests during photolysis experiments (Draper & Crosby 1983; quoted, Howard et al. 1991).

Oxidation: photooxidation t½ = 230–2300 h, based on estimated rate constant for the reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991).

Biodegradation: aqueous aerobic t½ = 24–168 h, based on river die-away tests using radio-labeled material (Boethling & Alexander 1979; quoted, Howard et al. 1991); aqueous anaerobic t½ = 96–672 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment:

Air: photooxidation t½ = 230–2300 h, based on estimated rate constant for the reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991); atmospheric transformation lifetime was estimated to be 5 d (Kelly et al. 1994).

Surface water: aqueous photolysis t½ = 1900–19000 h, based on experimental photolysis data utilizing an artificial light source (Draper & Crosby 1983; quoted, Howard et al. 1991); t½ = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Groundwater: t½ = 48–336 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2722 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 13.1.1.11.1 Reported vapor pressures of chloroacetic acid at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Dreisbach & Shrader 1949 McDonald et al. 1959

summary of literature data ebulliometry ebulliometry t/°CP/Pat/°CP/Pat/°CP/Pa 43.0 133 112.8 6301 104.47 4141 68.3 666.6 123.19 10114 114.60 6675 81.0 1333 134.67 16468 128.32 12103 94.2 2666 159.95 42066 146.78 25198 109.2 5333 174.44 67661 167.51 38583 118.3 7999 187.55 101325 187.59 97205 130.7 13332 189.35 102165 140.0 26664 190.27 104738 169.0 53329 189.5 101325 mp/°C 62.65 mp/°C 61.2 eq. 2 P/mmHg A 7.56597 B 1733.96 C 180.996

Chloroacetic acid: vapor pressure vs. 1/T 8.0 Dreisbach & Shrader 1949 McDonald et al. 1959 7.0 Stull 1947

6.0

5.0 )a P/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 189.3 °C m.p. = 63 °C 0.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 13.1.1.11.1 Logarithm of vapor pressure versus reciprocal temperature for chloroacetic acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2723

13.1.1.12 Dichloroacetic acid

O Cl OH Cl

Common Name: Dichloroacetic acid Synonym: dichloroethanoic acid Chemical Name: dichloroacetic acid CAS Registry No: 79-43-6

Molecular Formula: C2H2Cl2O2, Cl2CHCOOH Molecular Weight: 128.942 Melting Point (°C): 13.5 (Lide 2003) Boiling Point (°C): 194.0 (Weast 1982–83; Verschueren 1983; Lide 2003) Density (g/cm3 at 20°C): 1.5634 (Weast 1982–83) 1.5630 (Verschueren 1983; Dean 1985) Molar Volume (cm3/mol): 82.50 (20°C, calculated-density, Stephenson & Malanowski 1987) 110.2 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 1.26 (Dean 1985) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): miscible (Dean 1985)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 37.94* (extrapolated-regression of tabulated data, temp range 44–194.4°C, Stull 1947) 133.3 (44°C, Stull 1947; quoted, Verschueren 1983) log (P/mmHg) = [–0.2185 × 12952.9/(T/K)] + 8.946605; temp range 44–194.4°C (Antoine eq., Weast 1972–73) 34.3 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 7.47122 – 2385.6/(–31.197 + T/K), temp range 317–468 K (Antoine eq., Stephenson & Malanowski 1987) log (P/mmHg) = –7.2806 – 3.3706 × 103/(T/K) + 9.3771·log (T/K) – 2.0832 × 10–2·(T/K) + 9.5091 × 10–6·(T/K)2; temp range 287–686 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.00085 (partial pressure equilibrium, Bowden et al. 1998) ′ –1 –1 ln .[(KH /(mol kg atm )] = –15.1776 + 8010.6/(T/K); temp range 5–35°C (partial pressure equilibrium mea- surements, Bowden et al. 1998) 0.000536 (20°C, selected from literature, experimentally measured data, Staudinger & Roberts 2001)

log KAW = 4.776 – 3352/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 0.92 (shake flask, Log P Database, Hansch & Leo 1987) 0.92 (recommended, Sangster 1993) 0.92 (recommended, Hansch et al. 1995)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2724 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Octanol/Air Partition Coefficient, log KOA: Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization:

Photolysis: photocatalyzed mineralization by the presence of TiO2 with the rate of 8.5 ppm/min per gram catalyst (Ollis 1985).

Half-Lives in the Environment:

TABLE 13.1.1.12.1 Reported vapor pressures of dichloroacetic acid at various temperatures

Stull 1947

summary of literature data t/°CP/Pa 44.0 133 69.8 666.6 82.6 1333 96.3 2666 111.8 5333 121.5 7999 134.0 13332 152.3 26664 173.7 53329 194.4 101325 mp/°C9.7

Dichloroacetic acid: vapor pressure vs. 1/T 8.0 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 194 °C m.p. = 13.5 °C 0.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 13.1.1.12.1 Logarithm of vapor pressure versus reciprocal temperature for dichloroacetic acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2725

13.1.1.13 Trichloroacetic acid

O Cl OH Cl Cl Common Name: Trichloroacetic acid Synonym: TCA Chemical Name: trichloroacetic acid (α or β) CAS Registry No: 76-03-9

Molecular Formula: Cl3CCOOH Molecular Weight: 163.39 Melting Point (°C): 59.2 (Lide 2003) Boiling Point (°C): 196.5 (Lide 2003) Density (g/cm3 at 20°C): 1.620 (25°C, Weast 1982–83) Molar Volume (cm3/mol): 100.3 (61°C, Stephenson & Malanowski 1987) 131.1 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 0.70 (Weast 1982–83) 0.52 (Dean 1985) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): 17.78, 56 (observed, estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.462 (mp at 59.2°C)

Water Solubility (g/m3 or mg/L at 25°C): ∆ 114550 (calculated- Sfus and mp, Yalkowsky & Valvani 1980) 191860 (calculated-mp, Yalkowsky & Valvani 1980) 13000 (Verschueren 1983) 1200000 (120 in 100 parts solvent, Dean 1985) 38300 (calculated-group contribution method, Kühne et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 21.88* (extrapolated-regression of tabulated data, temp range 51–195.6°C, Stull 1947) 4620* (112.62°C, ebulliometry, measured range 112.62–197.93°C, McDonald et al. 1959) log (P/mmHg) = 7.31057 – 1618.97/(167.882 + t/°C); temp range 112.6–197.94°C (Antoine eq. from ebulliom- etry measurement, McDonald et al. 1959) log (P/mmHg) = [–0.2185 × 13817.0/(T/K)] + 9.341430; temp range 51–195.6°C (Antoine eq., Weast 1972–73) 10.63 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.4026 – 1597.434/(165.711 + t/°C); temp range 112.6–197.93°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 66.14 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.2730 – 1594.3/(165.4 + t/°C); temp range 112–198°C (Antoine eq., Dean 1985, 1992) 133.3 (Howard et al. 1986; quoted, Banerjee et al. 1990) 11.01 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.43547 – 1618.97/(–105.268 + T/K); temp range 326–473 K (Antoine eq., Stephenson & Malanowski 1987) 133.3, 491 (measured, calculated-solvatochromic parameters, Banerjee et al. 1990) log (P/mmHg) = 63.4449 – 3.6769 × 103/(T/K) – 21.13·log (T/K) + 1.0777 × 10–2·(T/K) + 4.8481 × 10–12·(T/K)2; temp range 258–491 K (vapor pressure eq., Yaws 1994)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2726 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.000137 (partial pressure equilibrium, Bowden et al. 1998) ′ –1 –1 ln [(KH /(mol kg atm )] = –17.836 + 8660.09/(T/K); temp range 5–35°C (partial pressure equilibrium mea- surements, Bowden et al. 1998) 0.000834 (20°C, selected from literature, experimentally measured data, Staudinger & Roberts 2001)

log KAW = 5.931 – 3634/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 1.33 (shake flask, Log P Database, Hansch & Leo 1987) 1.33 (recommended, Sangster 1993) 1.33 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization:

Photolysis: no photocatalyzed mineralization by the presence of TiO2 as compared to both dichloroacetic acid and trichloroacetic acid (Ollis 1985).

Half-Lives in the Environment:

TABLE 13.1.1.13.1 Reported vapor pressures of trichloroacetic acid at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 McDonald et al. 1959

summary of literature data ebulliometry t/°CP/Pat/°CP/Pa 51.0 133 112.62 4620 76.0 666.6 118.13 5949 88.2 1333 122.75 7326 101.8 2666 129.99 9998 116.3 5333 168.75 42302 125.9 7999 183.92 68210 137.8 13332 194.91 94156 155.4 26664 196.49 98175 175.2 53329 197.02 99584 195.6 101325 197.48 100901 197.93 102318 mp/°C 57.0 mp/°C 59.16 eq. 2 P/mmHg A 7.31057 B 1618.97 C 167.882

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2727

Trichloroacetic acid: vapor pressure vs. 1/T 8.0 McDonald et al. 1959 Stull 1947 7.0

6.0

5.0 )aP / S 4.0 P(gol

3.0

2.0

1.0 b.p. = 196.5 °C m.p. = 59.2 °C 0.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K)

FIGURE 13.1.1.13.1 Logarithm of vapor pressure versus reciprocal temperature for trichloroacetic acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2728 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

13.1.2 AROMATIC ACIDS 13.1.2.1 Benzoic acid

OOH

Common Name: Benzoic acid Synonym: Chemical Name: benzoic acid CAS Registry No: 65-85-0

Molecular Formula: C7H6O2, C6H5COOH Molecular Weight: 122.122 Melting Point (°C): 122.35 (Lide 2003) Boiling Point (°C): 249.2 (Lide 2003) Density (g/cm3 at 20°C): 1.2659 (15°C, Weast 1982–83) 1.0800 (Dean 1985) Molar Volume (cm3/mol): 113.6 (130°C, Stephenson & Malanowski 1987) 134.8 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 4.20 (McDaniel & Brown 1958) 4.33 ± 0.02, 4.38 ± 0.03 (HPLC, Unger et al. 1978) 4.08 (shake flask-TN, Clarke 1984) 4.05 ± 0.01 (equilibrium titration, Clarke & Cahoon 1987) 4.204 (Dean 1985; Lee et al. 1993) ∆ Enthalpy of Vaporization, HV (kJ/mol): 69.2 (395.2 K, de Kruif & Block 1982) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): 94.5 (25°C, average value, Malaspina et al. 1973) 90.6 (Colomina et al. 1982) 90.51 (Ribeiro da Silva et al. 1995) 89.71 (Li et al. 2002) 90.1 (Li et al. 2004) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 18.0 (Tsonopoulos & Prausnitz 1971) 18.2 (395.2 K, de Kruif & Block 1982) ∆ Entropy of Fusion, Sfus (J/mol K): 45.61 (Tsonopoulos & Prausnitz 1971) 43.81 (Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.111 (mp at 122.35°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 3340* (24.6°C, shake flask-synthetic method, Ward & Cooper 1930) 3298* (shake flask-thermostatic and synthetic methods, measured range 25–88.6°C, Morrision 1944) 4200 (shake flask-liquid scintillation counting, Lu & Metcalf 1975) 3600 (shake flask-UV, Yalkowsky et al. 1983) 3416* (shake flask-weight titration, measured temp range 5–65°C, Strong et al. 1989)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2729

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 799.9* (122.2°C, static method-manometer, measured range 122.2–249.0°C, Kahlbaum 1898) 6.893* (60.1°C, isoteniscope method, measured range 60.1–247°C, Klosky et al. 1927)

log (PS/mmHg) = 11.956 – 4409/(T/K); temp range 61–121°C (solid, isoteniscope, Klosky et al. 1927) log (PL/mmHg) = 30.172 –4714/(T/K) – 6.720·log (T/K); temp range 128–247°C (liquid, isoteniscope, Klosky et al. 1927) 0.840* (extrapolated-regression of tabulated data, temp range 96–227°C, Stull 1947) 12.35* (70.48°C, transpiration method, measured range 70.48–114.11°C, Davies & Jones 1954) log (P/mmHg) = 12.8699 – 4775.7/(T/K), temp range 70.48–114.11°C (transpiration, Davies & Jones 1954) 0.160* (298.3 K, Knudsen effusion, measured range 290.4–315.5 K, Wiedemann 1971) log (P/mmHg) = [–0.2185 × 15253.3/(T/K)] + 9.03300; temp range 60–110°C (Antoine eq., Weast 1972–73) log (P/mmHg) = [–0.2185 × 16295.1/(T/K)] + 9.741362; temp range 96–249.2°C (Antoine eq., Weast 1972–73) 0.160* (Knudsen effusion weight-loss method, fitted to Antoine eq., measured range 65.05–110.25°C, Malaspina et al. 1973) log (P/mmHg) = (12.175 ± 0.040) – (4501 ± 17)/(T/K); temp range 338–383 K (Antoine eq., Knudsen effusion, Malaspina et al. 1973) 0.108* (effusion method, measured range 25–70.5°C, DePablo 1976) 16.8* (71.25°C, isoteniscope method, measured range 344.4–393.8 K, Sachinidis & Hill 1980) log (P/mmHg) = 12.45 – 4605/(T/K); temp range 344.4–393.8 K (isoteniscope method, Sachinidis & Hill 1980) 0.070*, 0.050* (20°C, gas saturation method, vapor pressure balance, OECD 1981) 0.112* (25.25°C, Knudsen effusion method, temp range 20.25–40.25°C, Colomina et al. 1982) log (P/Pa) = (14.87 ± 0.02) – (4719.6 ± 7.1)/(T/K); temp range 293.4–313.4 K (Antoine eq., Knudsen effusion, Colomina et al. 1982) 0.0907 (20°C, evaporation method, Gückel et al. 1982) 0.105* (diaphragm manometer/torsion mass-loss effusion, extrapolated from measured range 316–391 K, de Kruif & Block 1982) 0.109 ± 0.005 (gas saturation-HPLC/UV, Sonnefeld et al. 1983) 0.9505 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 9.033 – 3333.3/(T/K), temp range 60–110°C (Antoine eq., Dean 1985, 1992)

0.105 (solid PS, interpolated-Antoine eq.-I, Stephenson & Malanowski 1987) log (PS/kPa) = 15.94025 – 7420.596/(74.333 + T/K); temp range 294–321 K (Antoine eq.-I, solid, Stephenson & Malanowski 1987)

log (PS/kPa) = 11.8285 – 4719.5/(T/K); temp range 343–373 K (Antoine eq.-II, solid, Stephenson & Malanowski 1987)

0.772 (liquid PL, extrapolated-Antoine eq., Stephenson & Malanowski 1987) log (PL/kPa) = 7.80911 – 2776.12/(–43.978 + T/K); temp range 405–523 K (Antoine eq.-III, liquid, Stephenson & Malanowski 1987) 0.600 (20°C, OECD 1981; quoted, Howard 1989) log (P/mmHg) = –140.0388 + 80.479/(T/K) + 62.611·log (T/K) – 6.5321 × 10–2·(T/K) + 2.4596 × 10–5·(T/K)2; temp range 396–751 K (vapor pressure eq., Yaws 1994) 0.13* (26°C, Knudsen effusion, measured range 26–50°C, Li et al. 2002) ln (P/Pa) = (34.031 ± 0.30) – (10790 ± 93)/(T/K); temp range 299–323 K (Knudsen effusion technique, Li et al. 2002) ln (P/Pa) = 34.320 – 10866/(T/K); temp range 304–317 K (regression eq. of Ribeiro da Silva et al. 1995 data, Li et al. 2004) ln (P/Pa) = (34.181 ± 0.446) – (10836 ± 140)/(T/K); temp range 299–328 K (Knudsen effusion technique, Li et al. 2004)

Henry’s Law Constant (Pa m3/mol at 25°C): 0.00709 (Howard 1989) 0.00575; 0.0110 (calculated-P/C, calculated-bond contribution, Meylan & Howard 1991) 0.00415 (computed-vapor liquid equilibrium VLE data, Yaws et al. 1991)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2730 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Octanol/Water Partition Coefficient, log KOW: 1.87 (shake flask-UV, Fujita et al. 1964) 1.68 (shake flask-UV, Halmekoski & Hannikainen 1964) 1.85 ± 0.01 (shake flask-UV, Iwasa et al. 1965) 2.03 (shake flask-LSC, Lu & Metcalf 1975) 1.78 ± 0.01, 1.77 ± 0.01 (HPLC-k′ correlation, Unger et al. 1978) 1.79 (RP-HPLC-k′ correlation, D’Amboise & Hanai 1982) 1.86, 1.87 (calculated-fragment const., Rekker 1977) 1.94 (RP-HPLC correlation, Hanai & Hubert 1982) 1.95 (HPLC-k′ correlation; Miyake & Terada 1982) 1.87 (microelectrometric titration, Clarke 1984) 2.18 ± 0.03; 2.03 (exptl.-ALPM, selected best lit. value, Garst & Wilson 1984) 1.44, 1.87 (HPLC-k′ correlation, Haky & Young 1984) 1.88 (shake flask-UV at pH 0.5, Nishimura et al. 1985) 1.97 (microelectrometric titration, Clarke & Cahoon 1987) 1.94 (shake flask-radiochemical method, at pH 0.5, Laznicek et al. 1987) 1.93 (HPLC-k′ correlation, Miyake et al. 1987) 1.88 (CPC, Berthod et al. 1988) 1.85 ± 0.04 (“Filter Chamber”-UV, Hersey et al. 1989) 1.87 (recommended, Sangster 1989, 1993) 1.88 (back flashing-CPC centrifugal partition chromatography, Menges et al. 1990) 1.87 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF: 1.32, 2.00, 2.14 (fish, algae, mosquito, Lu & Metcalf 1975) 3.26, 3.45 (daphnia, snail, Lu & Metcalf 1975) 0.48 (alga Chlorella fusca, wet wt. basis, Geyer et al. 1984)

1.43 (alga Chlorella fusca, calculated-KOW, Geyer et al. 1984) < 1.0 (golden ide, Freitag et al. 1985) < 1.0 (algae, Freitag et al. 1985) 3.11 (activated sludge, Freitag et al. 1985)

1.15 (trout muscle, calculated-KOW, Branson 1978)

Sorption Partition Coefficient, log KOC: 1.26; 1.86; 0.602 (Alfisol soil; Podzol soil; sediment, von Oepen et al. 1991) 1.50 (soil, quoted exptl., Meylan et al. 1992) 1.16 (soil, calculated-MCI χ and fragment contribution, Meylan et al. 1992) 1.50 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: rate of evaporation k = 1.89 × 10–8 mol cm–2 h–1 at 20°C determined by evaporation method (Gückel et al. 1982). Photolysis:

Oxidation: photooxidation t½ = 2.0 d, based on estimated vapor-phase reaction with hydroxyl radical in air (Howard 1989). Hydrolysis: k = 4.3 × 109 L mol–1 s–1 for reactions of hydroxyl radical in aqueous solution (Buxton et al. 1986) k = 1.15 × 1013 M–1 h–1 (Mabury & Crosby 1996); k(exptl) = 1.2 × 1013 M–1 h–1 for reaction with hydroxy radical (Armbrust 2000) Biodegradation: completely degraded by a soil microflora after 24 h (Alexander & Lustigman 1966; quoted, Verschueren 1983); completely degraded for 16 mg/L concn. within one day by soil and by wastewater (Haller 1978);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2731

t½ ~ 0.2–3.6 d if released into water, should readily biodegrade (Howard 1989); average k(exptl) = 0.11533 h–1 compared to group method predicted k = 0.0993 h–1 (nonlinear) and k = 0.0263 h–1 (linear) (Tabak & Govind 1993). Biotransformation: degradation k = 6.84 × 10–17 mol cell–1 h–1 in pure culture system (Banerjee et al. 1984).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ ~ 2.0 d for reactions with photochemically produced hydroxyl radical (Howard 1989). Surface water: if released into water, should readily biodegrade with an estimated t½ = 0.2–3.6 d (Howard 1989). Groundwater: Sediment: Soil: Biota:

TABLE 13.1.2.1.1 Reported aqueous solubilities of benzoic acid at various temperatures

Ward & Cooper 1930 Morrison 1944 Strong et al. 1989

shake flask-synthetic method thermostatic and synthetic shake flask-weight titration t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 24.6 3340 25.0 3298 5 1830 42.4 6280 35.0 4641 15 2482 57.8 10930 45.0 6167 25 3416 74.1 20670 55.4 10137 35 4776 83.1 31300 60.2 12213 45 6656 88.3 39660 64.6 14533 55 9629 68.5 16976 65 14325 75.1 22838 ∆ –1 79.3 26991 Hsol/(kJ mol ) = 23.29 82.1 31021 25°C 88.6 43356

Benzoic acid: solubility vs. 1/T -4.5 Ward & Cooper 1930 Morrison 1944 -5.0 Strong et al. 1989 Lu & Metcalf 1975 -5.5 Yalkowsky et al. 1983

-6.0

x nl x -6.5

-7.0

-7.5

-8.0

-8.5 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 13.1.2.1.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for benzoic acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2732 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 13.1.2.1.2 Reported vapor pressures of benzoic acid at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4) 1. Kahlbaum 1898 Klosky et al. 1927 Stull 1947 Davies & Jones 1954 static method-manometer* isoteniscope method summary of literature data Knudsen effusion t/°CP/Pat/°CP/Pa°CP/Pt/ a°CP/Pat/ solid 122.2 799.9 60.1 6.893 96.0 133.3 70.48 12.35 132.5 1333 80.4 41.06 119.5 666.6 75.14 19.33 146.5 2666 100.2 190.1 132.1 1333 80.43 31.02 155.5 4000 121.0 777.3 146.7 2666 84.47 44.0 161.9 5333 162.6 5333 89.88 68.66 167.2 6666 eq. 1 P/mmHg 172.8 7999 95.35 108.9 178.5 9999 A 11.956 186.2 13332 100.59 149.2 185.9 13332 B 4409 205.8 26664 105.05 230.8 196.5 19998 227.0 53329 109.85 341.0 204.9 26664 liquid 249.2 101325 114.11 458.1 211.5 33331 128.6 1120 217.0 39997 134.5 1573 mp/°C 121.7 eq. 1 P/mmHg 225.8 53329 148.0 2960 A 12.8699 233.8 66661 158.2 4533 B 4775.7 239.8 79993 172.8 8506 ∆ 245.5 93326 187.6 14772 Hsubl/(kJ/mol) = 91.42 249.0 101325 199.7 22238 at 365.5 K ∆ 216.2 38224 Hsubl/(kJ/mol) = 94.37 *complete list see ref. 233.0 63835 at 298.15 K 247.0 95739 eq. 4 P/mmHg A 30.172 B 4714 C 6.720 2. Wiedemann 1971 Malaspina et al. 1973 Sachinidis & Hill 1980 OECD 1981

Knudsen effusion Knudsen effusion isoteniscope-manometer gas saturation/effusion T/K P/Pa t/°CP/PaT/KP/Pat/°CP/Pa gas saturation 290.4 0.0613 65.05 9.879 344.4 16.80 10 0.02 294.4 0.118 71.35 16.72 352.8 37.73 20 0.07 298.3 0.160 74.65 23.91 373.7 167.6 30 0.24 299.8 0.205 77.95 29.69 393.8 733.5 40 0.76 300.5 0.244 85.25 55.02 50 2.20 301.1 0.220 89.15 76.1 eq. 1 P/mmHg vapor pressure balance 304.4 0.337 94.05 112.5 A 12.45 10 0.012 315.5 1.173 99.75 169.2 B 4605 20 0.05

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2733

TABLE 13.1.2.1.2 (Co nt in ) ued

Wiedemann 1971 Malaspina et al. 1973 Sachinidis & Hill 1980 OECD 1981

Knudsen effusion Knudsen effusion isoteniscope-manometer gas saturation/effusion T/K P/Pa t/°CP/Pa T/K P/Pat/°CP/Pa 293.36 0.0889* 105.05 255.3 30 0.17 ∆ 293.56 0.0907* 110.25 362.7 Hsubl/(kJ/mol) = 88.1 40 0.56 293.36 0.0893* 50 1.70 ∆ –1 Hsubl/(kJ mol ) = 86.92 eq. 1 P/mmHg at 298.15 K ∆ –1 A 12.2937 Hsubl/(kJ mol ) = 86.18 DePablo 1976 B 4530.02 at 360.8 K effusion method t/°CP/Pa ∆ Hsubl/(kJ/mol) = 86.61 eq. 1 P/mmHg A 12.175 25 0.108 *different orifice areas of B 4501 45 1.03 Knudsen effusion cell temp range 338.2–383.4 K 70.25 11.92 calculated average value ∆ Hsubl/(kJ/mol) = 94.5 at 298 K 3.

Colomina et al. 1982 de Kruif & Block 1982 Li et al. 2002

Knudsen effusion manometer/effusion Knudsen effusion

T/K P/Pa T/K P/Pa T/K P/Pa 293.4 0.0604 316.4 0.89 299.15 0.13 293.67 0.063 321.01 1.44 303.25 0.22 295.5 0.0781 321.25 1.48 308.15 0.38 295.75 0.0814 323.58 1.9 313.15 0.66 296.59 0.09 328.73 3.25 318.15 1.13 298.38 0.112 329.01 3.34 323.15 1.86 298.95 0.119 335.67 6.44 301.19 0.157 338.66 8.6 eq. 1a P/Pa 301.71 0.167 344.64 14.74 A 34.031 304.47 0.23 347.6 19.6 B 10790 305.15 0.25 350.01 24.17 307.6 0.334 353.14 31.79 308.11 0.354 359.05 52.37 308.34 0.365 361.41 63.5 310.14 0.445 364.96 84.69 311.17 0.503 367.77 106.4 311.29 0.508 368.43 111.9 313.38 0.64 383.04 334.8 390.93 588.4 eq. 1 P/Pa A 14.87 Data fitted to 3-parameter B 4719.6 vapor-pressure eq. see ref. at 395.52K ∆ ∆ Hsubl/(kJ/mol) = 90.6 ± 0.2 HV/(kJ/mol) = 69.2 ∆ temp range 293–313 K Hsubl/(kJ/mol) = 87.4 ∆ Hfus/(kJ/mol) = 18.0

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2734 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Benzoic acid: vapor pressure vs. 1/T 6.0 experimental data Stull 1947 5.0

4.0

3.0 )aP/

S 2.0 P(gol

1.0

0.0

-1.0 b.p. = 249.2 °C m.p. = 122.35 °C -2.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 13.1.2.1.2 Logarithm of vapor pressure versus reciprocal temperature for benzoic acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2735

13.1.2.2 2-Methyl benzoic acid (o-Toluic acid)

OOH

Common Name: o-Toluic acid Synonym: 2-methyl benzoic acid Chemical Name: o-toluic acid, 2-methyl benzoic acid CAS Registry No: 118-90-1

Molecular Formula: C8H8O2, CH3C6H4COOH Molecular Weight: 136.149 Melting Point (°C): 103.5 (Lide 2003) Boiling Point (°C): 259 (Lide 2003) Density (g/cm3 at 20°C): 1.062 (115°C, Weast 1982–83; Verschueren 1983) Molar Volume (cm3/mol): 157.0 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 3.91 (McDaniel & Brown 1958; quoted, Pearce & Simkins 1968) 3.91 (Weast 1982–83) 3.90 (Dean 1985) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 20.17 (Tsonopoulos & Prausnitz 1971) ∆ Entropy of Fusion, Sfus (J/mol K): 53.56 (Tsonopoulos & Prausnitz 1971) 53.5, 56 (observed, estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.170 (mp at 103.5°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 22300* (85.1°C, shake flask-residue volume, measured range 85.1–102.4°C, Sidgwick et al. 1915) 1185 (shake flask, Fühner 1924) 1162* (shake flask-weight titration, measured range 5–65°C, Strong et al. 1989) 1074* (shake flask-UV, Sugunan & Thomas 1993)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): log (P/mmHg) = –35.8816 – 3.2354 × 103/(T/K) + 21.133·log (T/K) –3.0165 × 10–2·(T/K) + 1.1587 × 10–5·(T/K)2; temp range 377–751 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol):

Octanol/Water Partition Coefficient, log KOW: 2.18 (shake flask-UV, Tomida et al. 1978) 2.81 (Scherrer & Howard 1979) 2.46 (shake flask at pH 1, Hansch & Leo 1987) 2.27 (shake flask-UV at pH 2, Da et al. 1992) 2.46 (recommended, Sangster 1993) 2.46 (recommended, pH 1, Hansch et al. 1995) 1.72 (RP-HPLC-RT correlation on short ODP column, pH 2, Donovan & Pescatore 2002)

Octanol/Air Partition Coefficient, log KOA:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2736 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants or Half-Lives: Volatilization: Photolysis: Oxidation: Hydrolysis: Biodegradation: decomposition by a soil microflora in 16 d (Alexander & Lustigman 1966; quoted, Verschueren 1983). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment: Air: Surface water: Groundwater: Sediment: Soil: Biota:

TABLE 13.1.2.2.1 Reported aqueous solubilities of 2-methylbenzoic acid (o-toluic acid) at various temperatures

Sidgwick et al. 1915 Strong et al. 1989 Sugunan & Thomas 1993

shake flask-residue volume shake flask-titration shake flask-UV t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 85.1 22300 5 568.3 20 825 109.1 36600 15 806.6 25 1074 118.3 50000 25 1162 35 1620 130.4 69900 35 1695 40 1883 143.7 102000 45 2522 156.5 202300 55 3778 160.2 314700 65 5775 161.2 399200 ∆ –1 160.2 486300 Hsol/(kJ mol ) = 28.92 154.6 601600 25°C 147.4 701200 119.8 846400 97.2 905300 93.7 918800 94.4 938300 96.0 959500 102.4 1000000 critical solution temp 161.2°C triple point 93.5°C mp 102.4°C

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2737

2-Methylbenzoic acid (o -Toluic acid): solubility vs. 1/T -1.0 Sidgwick et al. 1915 -2.0 Strong et al. 1989 Sugunan & Thomas 1993 -3.0

-4.0

-5.0

x nl x -6.0

-7.0

-8.0

-9.0 critical solution -10.0 temp. = 161.2 °C m.p. = 103.5 °C -11.0 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 13.1.2.2.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2-methylbenzoic acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2738 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

13.1.2.3 3-Methyl benzoic acid (m-Toluic acid)

OOH

Common Name: m-Toluic acid Synonym: 3-methyl benzoic acid Chemical Name: m-toluic acid, 3-methyl benzoic acid CAS Registry No: 99-04-7

Molecular Formula: C8H8O2, CH3C6H4COOH Molecular Weight: 136.149 Melting Point (°C): 109.9 (Lide 2003) Boiling Point (°C): 263.0 (sublimation, Weast 1982–83) Density (g/cm3 at 20°C): 1.054 (112°C, Weast 1982–83; Verschueren 1983) Molar Volume (cm3/mol): 129.2 (112°C, Stephenson & Malanowski 1987) 157.0 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 4.270 (Weast 1982–83) 4.269 (Dean 1985) 4.220 (Sangster 1993) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 15.73 (Tsonopoulos & Prausnitz 1971) ∆ Entropy of Fusion, Sfus (J/mol K): 10.96 (Tsonopoulos & Prausnitz 1971) 41.17, 56 (observed, estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.147 (mp at 109.9°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 11600* (80°C, shake flask-residue volume, measured range 80–110.5°C, Sidgwick et al. 1915) 982 (shake flask-residue volume method, Fühner 1924) 1700 (20–25°C, shake flask-GC, Urano et al. 1982) 872* (shake flask-weight titration, measured range 5–65°C, Strong et al. 1989) 1246* (shake flask-UV, Sugunan & Thomas 1993)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations):

log (PL/kPa) = 8.1472 – 3280.8/(T/K), temp range 473–533 K (Antoine eq., liquid, Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa·m3/mol):

Octanol/Water Partition Coefficient, log KOW: 2.37 (shake flask-UV, Fujita et al. 1964; quoted, Leo et al. 1971; Hansch & Leo 1979) 2.43 (HPLC-k′ correlation, Miyake & Terada 1982) 2.41 (shake flask-AS, Miyake et al. 1987) 2.39 (centrifugal partition chromatography CPC, Terada et al. 1987) 2.44; 2.47 (shake flask at pH 1, HPLC-RT correlation, Wang et al. 1989) 2.38 (shake flask-UV at pH 2, Da et al. 1992)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2739

2.37 (recommended, Sangster 1993) 2.37 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants or Half-Lives: Volatilization: Photolysis: Oxidation: Hydrolysis: Biodegradation: decomposition by a soil microflora in 2 d (Alexander & Lustigman 1966; quoted, Verschueren 1983). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

TABLE 13.1.2.3.1 Reported aqueous solubilities of 3-methylbenzoic acid (m-toluic acid) at various temperatures

Sidgwick et al. 1915 Strong et al. 1989 Sugunan & Thomas 1993

shake flask-residue volume shake flask-titration shake flask-UV t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 80 11600 5 449.3 20 1070 89.8 15300 15 621 25 1246 118.6 31300 25 872 35 1544 140.5 58800 35 1270 40 1720 153.3 99600 45 1852 162.2 299400 55 2754 162.1 401100 65 4115 160.7 501000 75 6492 157.7 601500 ∆ –1 145.1 711700 Hsol/(kJ mol ) = 26.15 129.6 795700 25°C 121.8 820600 105.9 866700 96.4 893200 94.2 924500 101.9 969300 110.5 1000000 critical solution temp 162.2°C triple point 142.0°C mp 110.5°C

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2740 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

3-Methylbenzoic acid ( m -toluic acid): solubility vs. 1/T -1.0 Sidgwick et al. 1915 -2.0 Strong et al. 1989 Sugunan & Thomas 1993 -3.0

-4.0

-5.0

x n l n x -6.0

-7.0

-8.0

-9.0 critical solution -10.0 temp. = 162.2 °C m.p. = 109.9 °C -11.0 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 13.1.2.3.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 3-methylbenzoic acid (m-toluic acid).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2741

13.1.2.4 4-Methyl benzoic acid (p-Toluic acid)

OOH

Common Name: p-Toluic acid Synonym: 4-methyl benzoic acid Chemical Name: p-toluic acid, 4-methyl benzoic acid CAS Registry No: 99-94-5

Molecular Formula: C8H8O2, CH3C6H4COOH Molecular Weight: 136.149 Melting Point (°C): 179.6 (Lide 2003) Boiling Point (°C): 275.0 (sublimation, Weast 1982–83) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): 157.0 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 4.37, 4.30 ± 0.09 (quoted, HPLC, Unger et al. 1978) 4.37, 4.41 ± 0.01 (quoted, HPLC, Unger et al. 1978) 4.36 (Weast 1982–83) 4.37, 4.26 (quoted, shake flask-TN, Clarke 1984) 4.362 (Dean 1985) 4.39 (Sangster 1993) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 22.72 (Tsonopoulos & Prausnitz 1971) 23.81 (differential scanning calorimetry, Li et al. 2001) ∆ Entropy of Fusion, Sfus (J/mol K): 50.21 (Tsonopoulos & Prausnitz 1971) 50.21, 56 (observed, estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.0304 (mp at 179.6°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 11600* (100, shake flask-residue volume, measured range 100–176.8°C, Sidgwick et al. 1915) 383 (selected, Tsonopoulos & Prausnitz 1971) 343* (shake flask-weight titration, measured range 5–65°C, Strong et al. 1989) 331* (shake flask-UV, Sugunan & Thomas 1993) 378.5* (shake flask-titration, measured range 278.15–343.15 K, Apelblat & Manzurola 1999) ln [m/(mol kg–1)] = –264.605 – 9059.53/(T/K) + 40.069·ln (T/K); temp range 278–343K (shake flask-titration, Apelblat & Manzurola 1999) 371* (shake flask-laser monitoring observation technique, measured range 288.35–370.95 K, Li et al. 2001) 393* (26.4°C, synthetic method-laser technique, measured range 290.25–348.45 K, Chen & Ma 2004)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 30.93* (95.20°C, Knudsen effusion, measured range 95.2–134.96°C (Davies & Jones 1954) log (P/mmHg) = 128585 – 4968.7/(T/K); temp range 95.2–134.96°C (Knudsen effusion, Davies & Jones 1954) log (P/mmHg) = –67.6587 – 2.2339 × 103/(T/K) + 33.347·log (T/K) – 3.7709 × 10–2·(T/K)+1.313×10–5·(T/K)2; temp range 453–773 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol):

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2742 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Octanol/Water Partition Coefficient, log KOW: 2.27 (shake flask-UV, Fujita et al. 1964; Leo et al. 1971) 2.22 ± 0.02, 2.26 ± 0.01 (HPLC-RT correlation, Unger et al. 1978) 2.36 (shake flask-UV at pH 2, Ezumi & Kubota 1980) 2.43 (calculated-HPLC-k′ correlation, Miyake & Terada 1982) 2.34 (electrometric titration, Clarke 1984) 2.67 (HPLC-RT correlation, Garst 1984) 2.66 (centrifugal partition chromatography CPC, Terada et al. 1987) 2.38; 2.41 (shake flask at pH 1, HPLC-RT correlation, Wang et al. 1989) 2.35 (HPLC-RT correlation, Jenke et al. 1990) 2.26 (shake flask-UV at pH 2, Da et al. 1992) 2.34 (recommended, Sangster 1994) 2.27 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 2.15, 1.15, 1.30 (Podzol soil, Alfisol soil, sediment, von Oepen et al. 1991) 1.77 (soil, quoted exptl., Meylan et al. 1992) 1.37 (soil, calculated-MCI χ and fragment contribution, Meylan et al. 1992)

Environmental Fate Rate Constants or Half-Lives: Volatilization: Photolysis: Oxidation: Hydrolysis: Biodegradation: decomposition by a soil microflora in 8 d (Alexander & Lustigman 1966; quoted, Verschueren 1983). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

TABLE 13.1.2.4.1 Reported aqueous solubilities of 4-methylbenzoic acid (p-toluic) acid at various temperatures 1.

Sidgwick et al. 1915 Strong et al. 1989 Sugunan & Thomas 1993 Apelblat & Manzurola 1999

shake flask-residue volume shake flask-titration shake flask-UV shake flask-titration t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 100 11600 5 177.8 20 263 5.0 201.5 110 13600 15 243.5 25 331 11.0 249.2 114.4 15100 25 343 35 466 17.0 271.0 133.7 29600 35 486 40 534 21.5 309.1 141.4 49700 45 695 25.0 378.5 150.9 100800 55 1008 25.5 318.6 157.9 202700 65 1485 30.0 469.8 159.1 301400 30.0 488.8 ∆ –1 158.5 405700 Hsol/(kJ mol ) = 26.74 35.0 499.7 158.0 503800 25°C 35.0 501.1 152.6 605500 35.0 502.4 145.1 796800 40.0 593.7

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2743

TABLE 13.1.2.4.1 (Continued)

Sidgwick et al. 1915 Strong et al. 1989 Sugunan & Thomas 1993 Apelblat & Manzurola 1999

shake flask-residue volume shake flask-titration shake flask-UV shake flask-titration t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 156.5 925200 40.0 595.0 176.8 1000000 40.0 638.6 45.0 721.7 Critical solution temp 159.1°C 50.0 887.8 Triple point 142°C 52.0 912.3 mp 176.8°C 55.0 1062 58.0 1185 60.0 1283 61.0 1389 65.0 1525 67.0 1702 70.0 1865 ∆ –1 Hsol/(kJ mol ) = 24.0 at 298.15 K ln S = A +B/T + C ln T S mol·kg–1 A –264.605 B 9059.53 C 40.069 2.

Li et al. 2001 Chen & Ma 2004

shake flask-laser monitor synthetic method

t/°C S/g·m–3 T/K S/g·m–3 15.2 272.3 290.25 185.0 17.8 295 299.55 292.7 17.9 295 301.25 315.3 21.3 347.6 311.25 448.6 25.2 370.7 317.25 596.4 29.4 423.6 320.05 657.0 34.7 506.8 327.75 857.8 37.8 567.3 335.35 1109 42.1 650.5 339.85 1190 46.0 756.4 344.95 1465 49.8 869.9 348.35 1570 55.1 1051 55.3 1074 58.6 1210 64.4 1520 69.1 1838 73.7 2201 79.1 2723 83.3 3260 87.7 3911 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2744 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 13.1.2.4.1 (Continued)

Li et al. 2001 Chen & Ma 2004

shake flask-laser monitor synthetic method t/°C S/g·m–3 T/K S/g·m–3 93.1 4834 95.5 5204 97.8 5726 ∆ –1 Hfus/(kJ mol ) = 23.81

4-Methylbenzoic acid (p -Toluic acid): solubility vs. 1/T -1.0 Sidgwick et al. 1915 -2.0 Strong et al. 1989 Sugunan & Thomas 1993 -3.0 Apelblat & Manzurola 1999 Li et al. 2001 -4.0 Chen & Ma 2004 -5.0

x nl x -6.0

-7.0

-8.0 m.p. = 179.6 °C -9.0 critical solution -10.0 temp. = 159.1 °C

-11.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 13.1.2.4.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 4-methylbenzoic acid (p-toluic acid).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2745

13.1.2.5 Phenylacetic acid

OH

O

Common Name: Phenylacetic acid Synonym: phenylethanoic acid, α-toluic acid, benzeneacetic acid Chemical Name: phenylacetic acid CAS Registry No: 103-82-2

Molecular Formula: C8H8O2, C6H5CH2COOH Molecular Weight: 136.149 Melting Point (°C): 76.5 (Lide 2003) Boiling Point (°C): 265.5 (Stull 1947; Weast 1982–83; Dean 1985; Stephenson & Malanowski 1987; Lide 2003) Density (g/cm3 at 20°C): 1.081 (Verschueren 1983) Molar Volume (cm3/mol): 124.8 (77°C, Stephenson & Malanowski 1987) 157.0 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 4.28 (18°C, Weast 1982–83) 4.31 (Sangster 1989) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 17.11 (Tsonopoulos & Prausnitz 1971) ∆ Entropy of Fusion, Sfus (J/mol K): 48.95 (Tsonopoulos & Prausnitz 1971) 41.42, 56 (observed, estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.312 (mp at 76.5°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 17700* (thermostatic and synthetic methods, measured range 25–86.7°C, Morrison 1944) 16600 (20°C, Hodgman 1952) 17790 (selected, Tsonopoulos & Prausnitz 1971) 16600 (20°C, quoted, Verschueren 1983)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 0.835 (extrapolated-regression of tabulated data, temp range 97–265°C, Stull 1947) log (P/mmHg) = [–0.2185 × 15568.7/(T/K)] + 9.206178; temp range 97–265.5°C (Antoine eq., Weast 1972–73) 0.827 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 8.00148 – 3144.95/(–14.408 + T/K); temp range 370–539 K (Antoine eq., Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.0056 (calculated-P/C)

Octanol/Water Partition Coefficient, log KOW: 1.41 (shake flask-AS, Fujita et al. 1964; Leo et al. 1971) 1.41 ± 0.01 (shake flask-UV, Iwasa et al. 1965) 1.51 (shake flask-UV, Yaguzhinskii et al. 1973) 1.94 (RP-LC-RT correlation, Hanai & Hubert 1982) 1.45 (shake flask-UV at pH 3.5, Kuchar et al. 1982) 1.95 ± 0.04; 1.51 (exptl.-ALPM, selected best lit. value, Garst 1984)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2746 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

1.41 (recommended, Sangster 1989, 1993) 1.34 ± 0.14, 1.07 ± 0.49 (solvent generated liquid-liquid chromatography SGLLC-correlation, RP-HPLC-k′ correlation, Cichna et al. 1995) 1.41 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 1.49, 1.42, 1.45 (Podzol soil, Alfisol soil, sediment, von Oepen et al. 1991) 1.45 (soil, quoted exptl., Meylan et al. 1992) 1.42 (soil, calculated-MCI χ and fragment contribution, Meylan et al. 1992) 1.45 (soil, quoted or calculated-QSAR MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k or Half-Lives, t½: Volatilization: Photolysis: Oxidation: Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: Surface water: Groundwater: Sediment: Soil: Biota:

TABLE 13.1.2.5.1 Reported aqueous solubilities of phenylacetic acid at various temperatures:

Morrison 1944

thermostatic and synthetic t/°CS/g·m–3 25.0 17700 35.0 26005 45.0 39484 41.5 39211 58.4 49695 68.8 59225 76.5 69845 83.0 83188 86.7 93399

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2747

Phenylacetic acid: solubility vs. 1/T -3.0 Morrison 1944 -3.5

-4.0

-4.5

x nl x -5.0

-5.5

-6.0

-6.5

-7.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 13.1.2.5.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for phenylacetic acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2748 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

13.1.2.6 Phthalic acid

O

OH OH

O

Common Name: Phthalic acid Synonym: 1,2-benzene dicarboxylic acid, o-phthalic acid Chemical Name: 1,2-benzene dicarboxylic acid, o-phthalic acid CAS Registry No: 88-99-3

Molecular Formula: C8H6O4, C6H4-1,2-(COOH)2 Molecular Weight: 166.132 Melting Point (°C): 230 (dec., Lide 2003) Boiling Point (°C): dec (Lide 2003) Density (g/cm3 at 20°C): 1.593 (Weast 1982–83; Verschueren 1983; Dean 1985) Molar Volume (cm3/mol): 173.6 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 2.89, 5.51 (pK1, pK2, Weast 1982–83) 2.95, 5.408 (pK1, pK2, Dean 1985) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section) 7014* (shake flask-synthetic method, measured range 25–85°C, McMaster et al. 1921): 7160* (25.8°C, shake flask-synthetic method, measured range 25.8–113.8°C, Ward & Cooper 1930) 5400 (14°C, Verschueren 1983) 6300 (Dean 1985) 7024* (shake flask, measured range 283.65–338.15 K, Apelblat & Manzurola 1989)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): log (P/mmHg) = –90.3221 – 3.2214 × 103/(T/K) + 44.109·log (T/K) – 5.0056 × 10–2·(T/K) + 1.6895 × 10–5·(T/K)2; temp range 464–800 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol):

Octanol/Water Partition Coefficient, log KOW: 0.79 (shake flask-UV, Tomida et al. 1978) 0.15 (electrometric titration, Freese et al. 1979) 0.73 (shake flask at pH 1, Log P Database, Hansch & Leo 1987) 0.71 (30°C, shake flask-UV at pH 1, Patrunkey & Pflegel 1992) 0.73 (recommended, Sangster 1993) 0.73 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2749

Sorption Partition Coefficient, log KOC: 0.301, 1.49, 0.301 (sediment, Podzol soil, Alfidol soil, von Oepen et al. 1991) 1.07 (soil, quoted exptl., Meylan et al. 1992) 1.87 (soil, calculated-MCI χ and fragment contribution, Meylan et al. 1992) 1.07 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Hydrolysis: Oxidation: Biodegradation: decomposition by a soil microflora in 2 d (Alexander & Lustigman 1966; quoted, Verschueren 1983); average rate of biodegradation 78.4 mg COD g–1·h–1 based on measurements of COD decrease using activated sludge inoculum with 20 d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: Surface water: Groundwater: Sediment:

Soil: degradation t½ = 2 d in initial phase, t½ = 15 d in late phase in sludge -amended soil (Roslev et al. 1998) Biota:

TABLE 13.1.2.6.1 Reported aqueous solubilities of o-phthalic acid at various temperatures

McMaster et al. 1921 Ward & Cooper 1930 Apelblat & Manzurola 1989

shake flask-synthetic method shake flask-synthetic method shake flask-titration t/°CS/g·m–3 t/°CS/g·m–3 T/K S/g·m–3 25 7014 25.8 7160 283.65 2617 35 10125 43.7 13210 296.15 6546 45 14460 48.9 16470 298.15 7026 55 21680 58.0 22760 302.65 8633 65 32460 63.7 28970 307.15 9839 75 49260 77.8 53220 309.15 11020 85 78870 85.7 75940 311.15 11638 94.8 118500 315.15 13936 . 101.1 157900 317.15 15146 113.8 294600 318.15 15164 319.15 16705 323.15 18893 323.15 20554 327.15 22926 334.15 29783 338.15 36955 ∆ –1 Hsol/(kJ mol ) = 29.0

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2750 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Phthalic acid: solubility vs. 1/T -3.0 McMaster et al. 1921 -3.5 Ward & Cooper 1930 Apelblat & Manzurola 1989 -4.0

-4.5

-5.0

x nl x -5.5

-6.0

-6.5

-7.0

-7.5

-8.0 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 1/(T/K) FIGURE 13.1.2.6.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for phthalic acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2751

13.1.2.7 2-Chlorobenzoic acid

OOH

Cl

Common Name: 2-Chlorobenzoic acid Synonym: o-chlorobenzoic acid Chemical Name: 2-chlorobenzoic acid, o-chlorobenzoic acid CAS Registry No: 118-91-2

Molecular Formula: C7H5ClO2, ClC6H4COOH Molecular Weight: 156.567 Melting Point (°C): 140.2 (Lide 2003) Boiling Point (°C): sublimation (Verschueren 1983; Lide 2003) Density (g/cm3 at 20°C): 1.5440 (Weast 1982–83, Verschueren 1983) 1.5440 (25°C, Dean 1985) Molar Volume (cm3/mol): 101.4 (20°C, calculated-density) 155.7 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 2.920 (McDaniel & Brown 1958; quoted, Pearce & Simkins 1968; Weast 1982–83) 2.877 (Dean 1985) 3.850 (Sangster 1993) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 25.73 (Tsonopoulos & Prausnitz 1971) ∆ Entropy of Fusion, Sfus (J/mol K): 62.34 (Tsonopoulos & Prausnitz 1971) 62.26, 56 (observed, estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.0741 (mp at 140.2°C)

Water Solubility (g/m3 or mg/L at 25°C): 2130 (Osol & Kilpatrick 1933) 2114 (selected, Tsonopoulos & Prausnitz 1971) 2100 (Verschueren 1983) 1100 (Dean 1985)

Vapor Pressure (Pa at 25°C): log (P/mmHg) = –42.9847 –3.1867 × 103/(T/K) + 23.694·log (T/K) – 3.0284 × 10–2·(T/K) + 1.0828 × 10–5·(T/K)2; temp range 415–792 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 1.98 (shake flask, unpublished result, Leo et al. 1971; Hansch & Leo 1979, 1987) 2.63; 2.56 (calculated-fragment const., calculated-π const. Rekker 1977) 2.66 (shake flask-UV, Tomida et al. 1978) 1.99 (centrifugal partition chromatography, Berthod et al. 1988) 2.02 (shake flask-UV at pH 2, Da et al. 1992) 1.99 (recommended, Sangster 1993) 2.05 (recommended, Hansch et al. 1995)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2752 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Oxidation: Hydrolysis:

Biodegradation: decomposition by soil microflora: t½ > 64 d, biodegradation by waste water at pH 7.3 and 30°C, t½ > 25 d, and degradation by soil suspension at pH 7.3 and 30°C; t½ = 7–14 d (Alexander & Lustigman 1966; quoted, Verschueren 1983); complete degradation of 16 mg/L by soil in 7–14 d (Haller 1978). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: Surface water: Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2753

13.1.2.8 3-Chlorobenzoic acid

OOH

Cl

Common Name: 3-Chlorobenzoic acid Synonym: m-chlorobenzoic acid Chemical Name: 3-chlorobenzoic acid, m-chlorobenzoic acid CAS Registry No: 535-80-8

Molecular Formula: C7H5ClO2, ClC6H4COOH Molecular Weight: 156.567 Melting Point (°C): 158 (Weast 1982–83; Verschueren 1983; Lide 2003) Boiling Point (°C): sublimation (Weast 1982–83; Verschueren 1983; Lide 2003) Density (g/cm3 at 20°C): 1.4960 (25°C, Weast 1982–83; Verschueren 1983; Dean 1985) Molar Volume (cm3/mol): 104.7 (25°C, calculated-density) 155.7 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 3.82 (Weast 1982–83) 3.83 (Dean 1985) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 23.85 (Tsonopoulos & Prausnitz 1971) ∆ Entropy of Fusion, Sfus (J/mol K): 55.65 (Tsonopoulos & Prausnitz 1971) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.0496 (mp at 158°C)

Water Solubility (g/m3 or mg/L at 25°C): 385 (Osol & Kilpatrick 1933) 398 (selected, Tsonopoulos & Prausnitz 1971) 400 (0°C, Verschueren 1983) 400 (Dean 1985)

Vapor Pressure (Pa at 25°C):

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 2.68 (shake flask-UV, Fujita et al. 1964; Leo et al. 1971; Hansch & Leo 1979) 2.65, 2.52 (calculated-fragment const., calculated-π const, Rekker 1977) 0.89 (HPLC-RT correlation, Veith et al. 1979) 2.57 (HPLC-k′ correlation, Miyake & Terada 1982) 2.62 (centrifugal partition chromatography, Terada et al. 1987) 2.51; 2.58 (shake flask at pH 1; HPLC-RT correlation, Wang et al. 1989) 2.72 (shake flask-UV at pH 2, Da et al. 1992) 2.60 (recommended, Sangster 1993) 2.68 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2754 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: –1 Photolysis: direct aqueous photolysis k = 0.013 ± 0.001 min with t½ = 55 min (Stegeman et al. 1993). Oxidation: Hydrolysis:

Biodegradation: decomposed by soil microflora, t½ = 32 d (Alexander & Lustigman 1966; quoted, Verschueren 1983); complete degradation of 16 mg/L by soil and by wastewater in 7–14 d (Haller 1978). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: Surface water: Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2755

13.1.2.9 4-Chlorobenzoic acid

OOH

Cl

Common Name: 4-Chlorobenzoic acid Synonym: p-chlorobenzoic acid Chemical Name: 4-chlorobenzoic acid, p-chlorobenzoic acid CAS Registry No: 74-11-3

Molecular Formula: C7H5ClO2, ClC6H4COOH Molecular Weight: 156.567 Melting Point (°C): 243.0 (Weast 1982–83; Verschueren 1983; Lide 2003) Boiling Point (°C): sublimation (Verschueren 1983) Density (g/cm3 at 20°C): 1.541 (24°C, Verschueren 1983) Molar Volume (cm3/mol): 155.7 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 3.98 (McDaniel & Brown 1958; quoted, Pearce & Simkins 1968) 3.98 (Weast 1982–83) 3.98, 3.85 (quoted, shake flask-TN, Clarke 1984) 3.986 (Dean 1985) 3.850 (Sangster 1993) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 32.26 (Tsonopoulos & Prausnitz 1971) ∆ Entropy of Fusion, Sfus (J/mol K): 62.76 (Tsonopoulos & Prausnitz 1971) 62.9, 56 (observed, estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.00726 (mp at 243°C)

Water Solubility (g/m3 or mg/L at 25°C): 68.0 (Osol & Kilpatrick 1933) 72.6 (selected, Tsonopoulos & Prausnitz 1971) 77.0 (Verschueren 1983) 200 (Dean 1985)

Vapor Pressure (Pa at 25°C):

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 2.65 (shake flask-UV, Fujita et al. 1964; quoted, Leo et al. 1971; Hansch & Leo 1979) 2.65; 2.52 (calculated-fragment const., calculated-π const., Rekker 1977) 2.53; 2.65 (HPLC-k′ correlation, Miyake & Terada 1982) 2.66 (electrometric titration, Clarke 1984) 2.72 (shake flask-OECD 1981 Guidelines., Geyer et al. 1984) 2.65 (centrifugal partition chromatography, Terada et al. 1987) 2.60; 2.67 (shake flask at pH 1, HPLC-RT correlation, Wang et al. 1989) 2.67 (HPLC-RT correlation, Wang et al. 1989)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2756 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

2.65 (HPLC-RT correlation, Hayward et al. 1990) 2.71 (countercurrent chromatography, average value, Vallat et al. 1990) 2.66 (centrifugal partition chromatography; El Tayar et al. 1991) 2.62 (shake flask-UV at pH 2, Da et al. 1992) 2.65 (recommended, Sangster 1994) 2.65 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF: < 1.0, 1.80, 2.23 (golden orfe, algae, activated sludge, Freitag et al. 1982)

1.80, 1.99 (alga chlorella fusca, wet wt. basis, calculated-KOW, Geyer et al. 1984) < 1.0, 1.78, 2.23 (golden ide, algae, activated sludge, Freitag et al. 1985)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Oxidation: ≤ –1 –1 ≥ k(aq.) 0.15 M s for direct reaction with ozone in water at pH 2–6 and 22 ± 1°C, with t½ 3 d at pH 7 (Yao & Haag 1991). Hydrolysis:

Biodegradation: decomposition by a soil microflora, t½ = 64 d; degradation by waste water or soil suspension at pH 7.3 and 30°C, t½ > 25 d (quoted, Verschueren 1983). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: ≥ Surface water: t½ 3 d at pH 7 based on reaction rate with ozone in water (Yao & Haag 1991) Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2757

13.1.2.10 Salicylic acid

OOH

OH

Common Name: Salicylic acid Synonym: 2-hydroxybenzoic acid, o-hydroxybenzoic acid Chemical Name: salicylic acid, 2-hydroxybenzoic acid CAS Registry No: 69-72-7

Molecular Formula: C7H6O3, HOC6H4COOH Molecular Weight: 138.121 Melting Point (°C): 159.0 (Weast 1982–83; Lide 2003) Boiling Point (°C): 256 (Verschueren 1983) Density (g/cm3 at 20°C): 1.443 (Weast 1982–83; Verschueren 1983) Molar Volume (cm3/mol): 95.7 (20°C, calculated-density) 147.4 (158.6°C, Stephenson & Malanowski 1987) 142.2 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 3.009 (Korman & La Mer 1936) 3.52 ± 0.03 (HPLC, Unger et al. 1978) 3.29 ± 0.03 (HPLC, Unger et al. 1978) 2.96 (equilibrium titration, Clarke & Cahoon 1987) 2.97 (Sangster 1993) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.0484 (mp at 159°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 5570* (50°C, synthetic method, measured range 50–159°C, critical solution temp. 89.5°C, Sidgwick & Ewbank 1921) 1840* (20°C, synthetic method, measured, range 10–87°C, Bailey 1925) 1800 (20°C, Hodgman 1952; Verschueren 1983) 1550 (shake flask-UV, Yalkowsky et al. 1983) 2555* (shake flask-TN, measured range 283.15–339.15 K, Apelblat & Manzurola 1989)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (113.7°C, summary of literature data, temp range 113.7–159°C, Stull 1947) 30.93* (95.20°C, transpiration method, measured range 95.2–134.96°C, Davies & Jones 1954) log (P/mmHg) = 12.8585 – 4968.7/(T/K), temp range 70.48–114.11°C (transpiration, Davies & Jones 1954) log (P/mmHg) = [–0.2185 × 18920.7/(T/K)] + 10.822961; temp range 113.7–256.0°C (Antoine eq., Weast 1972–73) 2.85 (70.5°C, effusion method, DePablo 1976) 0.0208 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PS/kPa) = 11.9834 – 4968.7/(T/K); temp range 368–408 K (Antoine eq.-I, solid, Stephenson & Malanowski 1987)

log (PL/kPa) = 5.53812 – 1049.95/(–228.144 + T/K); temp range 445–504 K (Antoine eq.-II, liquid, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2758 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (P/mmHg) = 177.3858 – 1.2871 × 104/(T/K) – 56.301·log (T/K) – 1.6667 × 10–7·(T/K) + 1.1353 × 10–5·(T/K)2; temp range 432–739 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.00144 (calculated-P/C)

Octanol/Water Partition Coefficient, log KOW: 2.26 (shake flask-GC, Hansch & Anderson 1967; quoted, Leo et al. 1971) 2.21 (shake flask, unpublished result, Leo et al. 1971) 2.24 (shake flask, pH 2, Korenman 1975) 2.38 (shake flask-UV, Tomida et al. 1978) 2.00 ± 0.01, 2.18 ± 0.01 (HPLC-RT correlation, Unger et al. 1978) 2.26, 2.21, 2.24, 2.25, 0.95 (quoted lit. values; Hansch & Leo 1979) 1.90 (HPLC-RT correlation, Butte et al. 1981) 2.25 ± 0.03 (exptl.-ALPM, Garst & Wilson 1984) 1.13, 1.92 (HPLC-k′ correlation, Haky & Young 1984) 2.21 (shake flask-HPLC at pH 2, Bundgaard et al. 1986; Bundgaard & Nielsen 1988) 2.34 (electrometric titration, Clarke & Cahoon 1987) 2.24 (shake flask-radiochemical method, at pH 0.5, Laznicek et al. 1987) 1.08 (RP-TLC retention time correlation, Jack et al. 1988) –0.78 (shake flask-UV, Kuban 1991) 2.64 (centrifugal partition chromatography, Ilchmann et al. 1993) 2.26 (recommended, Sangster 1993) –2.11 (recommended, pH 7.4, Hansch et al. 1995) –1.70 (pH 7.0), –0.90 (pH 7.4); 2.26 (literature values; Hansch et al. 1995) 2.02 (shake flask-micro-volume liquid-liquid flow extraction system, Carlsson & Karlberg 2000) –1.44 (shake flask, buffered with 20 mM phosphate buffer pH 7.4, Carlsson & Karlberg 2000)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Oxidation: rate constants k < 600 M–1 s–1 at pH 1.3–3, k = (30 ± 10) × 103 M–1 s–1 at pH 4–7 using 4 mM t-BuOH as scavenger for the reaction with ozone in water and 20–23°C (Hoigné & Bader 1983a); rate constants k < 500 M–1 s–1 for protonated species, k = (2.8 ± 3) × 103 M–1 s–1 for non-protonated species for the reaction with ozone in water using 4 mM t-BuOH as scavenger at pH 1.5–7 and 20–23°C (Hoigné & Bader 1983b). Hydrolysis: Biodegradation: decomposition by a soil microflora in 2 d (Alexander & Lustigman 1966; quoted, Verschueren 1983); average rate of biodegradation 95.0 mg COD g–1·h–1 based on measurements of COD decrease using activated sludge inoculum with 20 d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: Surface water: Groundwater: Sediment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2759

Soil: Biota:

TABLE 13.1.2.10.1 Reported aqueous solubilities of salicylic acid at various temperatures

Sidgwick & Ewbank 1921 Bailey 1925 Apelblat & Manzurola 1989

synthetic method synthetic method shake flask-titration t/°CS/g·m–3 t/°CS/g·m–3 T/K S/g·m–3 50.0 5570 10 1310 283.15 1533 56.0 7170 20 1840 298.15 2555 80.0 20260 30 2610 307.15 3385 97.9 52700 40 3950 317.15 4393 101.4 80200 50 5920 318.15 5196 105.6 168200 60 8640 320.15 5156 106.7 340200 323.15 5697 107.2 488180 324.15 6027 109.5 65400 325.15 6502 119.5 80000 327.15 7166 131.8 89750 328.15 7401 159.0 100000 330.65 8502 334.65 10021 critical solution temp 89.5°C 339.15 11433 ∆ –1 Hsol/(kJ mol ) = 24.0 for temp range 288–313 K

Salicylic acid: solubility vs. 1/T -5.5 Apelblat & Manzurola 1989 Yalkowsky et al. 1983 -6.0

-6.5

-7.0

x nl x -7.5

-8.0

-8.5

-9.0

-9.5 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 13.1.2.10.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for salicylic acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2760 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 13.1.2.10.2 Reported vapor pressures of salicylic acid at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Davies & Jones 1954

summary of literature data Knudsen effusion t/°CP/Pat/°CP/Pa 113.7 133.3 95.20 30.93 136.0 666.6 100.49 48.66 146.2 1333 105.18 70.79 156.8 2666 109.96 103.7 172.2 5333 115.01 153.3 182.0 7999 119.98 220.4 193.4 13332 125.13 322.9 210.0 26664 134.96 649.3 230.5 53329 256.0 101325 mp/°C 158.0–158.6 mp/°C 159 eq. 1 P/mmHg A 12.8585 B 4968.7 ∆ –1 Hsubl/(kJ mol ) = 95.144

Salicylic acid: vapor pressure vs. 1/T 7.0 Davies & Jones 1954 Stull 1947 6.0 DePablo 1976

5.0

4.0 )aP/

S 3.0 P(gol

2.0

1.0

0.0 m.p. = 159 °C -1.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 13.1.2.10.2 Logarithm of vapor pressure versus reciprocal temperature for salicylic acid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2761

13.1.2.11 2,4-Dichlorophenoxyacetic acid (2,4-D) (See also Chapter 17, Herbicides)

O O OH

Cl Cl

Common Name: 2,4-Dichlorophenoxyacetic acid Synonym: 2,4-D Chemical Name: 2,4-dichlorophenoxyacetic acid CAS Registry No: 94-75-7

Molecular Formula: C8H6Cl2O3, Cl2C6H3OCH2COOH Molecular Weight: 221.038 Melting Point (°C): 140.5 (Hartley & Kidd 1987; Howard 1991; Lide 2003) Boiling Point (°C): 160 (at 0.4 mmHg, Dean 1985; Howard 1991) 215 (Neely & Blau 1985) Density (g/cm3 at 30°C): 1.565 (Neely & Blau 1985) Molar Volume (cm3/mol): 206.2 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: 2.77 (potentiometric, Nelson & Faust 1969) 2.87 (spectrophotometric, Cessna & Grover 1978) 2.80 (Reinert & Rogers 1984) 2.64–3.31 (Howard 1991) 2.80 (selected, Wauchope et al. 1992) 2.97 (Sangster 1993) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.0736 (mp at 140.5°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated): 522 (shake flask-UV, Leopold et al. 1960) 725 (Bailey & White et al. 1965) 725, 400, 900, 550 (review, Günther et al. 1968) 890 (Hamaker 1975) 900 (Kenaga 1980a,b; Kenaga & Goring 1980) 600 (20°C, Khan 1980) 470 (20–25°C, pH 5.6, Geyer et al. 1981) 633, 812 (15, 25°C, shake flask method, average values of 5 laboratories, OECD 1981) 620 (20°C, Kidd & Hartley 1987; Worthing 1983) 609 (Gerstl & Helling 1987) 682 (Yalkowsky et al. 1987; quoted, Howard 1991) 703 (Gustafson 1989) 900, 600, 890, 703, 1072 (quoted, Wauchope et al. 1992) 890 (20–25°C, selected, Wauchope et al. 1992)

Vapor Pressure (Pa at 25°C or as indicated): 8.0 × 10–5 (Hamaker 1975) 0.180–1.69 (transpiration method, Spencer 1976) 53.0 (160°C, Kidd & Hartley 1983, 1987) 8.0 × 10–5 (recommended, Neely & Blau 1985; Lyman 1985) 1.00 (20°C, selected, Suntio et al. 1988)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2762 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

0.0032 (estimated from Henry’s law constant, Howard 1991) 5.6 × 10–5 (selected, Mackay & Stiver 1991) 1.3 × 10–5, 8.0 × 10–5, 1.07 × 10–3 (quoted, Wauchope et al. 1992) 0.00107 (20–25°C, selected, Wauchope et al. 1992)

Henry’s Law Constant (Pa·m3/mol): 0.55 (calculated-P/C, Suntio et al. 1988) 1.03 × 10–3 (calculated-bond contribution, Howard 1991)

Octanol/Water Partition Coefficient, log KOW: 2.81 (shake flask-AS, Fujita et al. 1964; Leo et al. 1971; Hansch & Leo 1979; Hansch & Leo 1985) 2.59 (electrometric titration, Freese et al. 1979) 1.57 (Kenaga & Goring 1980, Kenaga 1980b) 1.57, 4.88 (shake flask-OECD 1981 Guidelines, Geyer et al. 1984) –1.36 (Gerstl & Helling 1987) 2.65 (shake flask, Hansch & Leo 1987) 2.65 (centrifugal chromatography, Ilchmann et al. 1993) 2.81 (recommended, Sangster 1993) 2.81 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

1.11, –0.097 (calculated-S, KOW, Kenaga 1980a) –2.46, 1.30 (beef fat, fish, Kenaga 1980b) 0.778, 1.94 (alga Chlorella fusca: exptl. 24 h exposure, calculated-S, Geyer et al. 1981) 0.778, < 1.0, 1.23 (algae, golden orfe, activated sludge, Freitag et al. 1982) 0.00 (fish, microcosm conditions, Garten & Trabalka 1983)

0.778, 1.23 (algae, calculated-KOW, Geyer et al. 1984) 1.11 (calculated, Isensee 1991) –5.0 (bluegill sunfish and channel catfish, Howard 1991) –2.70 (frog tadpoles, Howard 1991) –3.0, –2.52 (pH 7.8, seaweeds, Howard 1991) 0.778, 0.85 (quoted: alga, fish, Howard 1991)

Sorption Partition Coefficient, log KOC: 1.30, 2.0 (quoted, calculated, Kenaga 1980a) 1.30, 2.11 (quoted, Kenaga & Goring 1980) 1.68, 1.86, 1,68; 1.76 (commerce soil, Tracy soil, Catlin soil; average value of 3 soils, McCall et al. 1981) 2.25, 2.04, 2.35 (soil I-very strongly acid sandy soil pH 4.5–5.5, soil II-moderately or slightly acid loamy soil pH 5.6–6.5, soil III-slightly alkaline loamy soil pH 7.1–8.0, OECD 1981) 1.29 (soil, Neely & Blau 1985) 1.61 (soil, quoted, Sabljic 1987) 1.75, 2.00 (quoted, calculated-MCI χ, Gerstl & Helling 1987) 1.29–2.13 (soil, quoted values, Howard 1991) 1.30 (selected, Mackay & Stiver 1991) 1.00, 1.23, 2.29 (sediment, Alfisol soil, Podzol soil, von Oepen et al. 1991) 1.30, 1.78, 1.51, 1.26, 1.72, 1.75, 1.76 (soil, quoted, Wauchope et al. 1992) 1.30 (soil, selected, Wauchope et al. 1992)

0.68 (calculated-KOW, Kollig 1993)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: volatilization from water is negligible, calculated volatilization t½ = 660 d from soil of 1 cm deep and t½ = 7.1 yr from 10 cm deep (Howard 1991). Photolysis: aqueous photolysis t½ = 2–4 d when irradiated at 356 nm, t½ = 50 min in water when irradiated at 254 nm, and t½ = 29–43 d when exposed to September sunlight (Howard 1991).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2763

Oxidation: photooxidation t½ = 1.8–18 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl radicals in air (Howard et al. 1991). Hydrolysis: no hydrolyzable groups and rate constant at neutral pH is zero (Kollig et al. 1987; selected, Howard et al. 1991); generally resistant to hydrolysis, may become important at pH > 8 (Howard 1991).

Biodegradation: degradation kinetics not first-order, time for 50% decomposition in six soils: t½ = 5 d in Commerce soil, t½ = 1.5 d in Catlin soil, t½ = 3.9 d in Keith soil, t½ = 3.0 d in Cecil soil, t½ = 2.5 d in Walla- Walla soil and t½ = 8.5 d in Fargo soil, with an average time of 4 d (McCall et al. 1981); easily degraded under aerobic conditions with t½ = 1.8 and 3.1 d for cometabolism and metabolism respec- tively, under anaerobic conditions the degradation rate decreases and the t½ = 69 and 135 d (Liu et al. 1981; quoted, Muir 1991); second-order k = (3.6–28.8) × 10–6 mL cell–1 d–1 in natural water (Paris et al. 1981; quoted, Klečka 1985); first-order k < 0.14–0.07 d–1 in river water at 25°C (Nesbitt & Watson 1980; quoted, Klečka 1985); k = 0.058 ± 0.006 d–1 in lake water at 29°C (Subba-Rao et al. 1982; quoted, Klečka 1985; quoted, Muir 1991); k = 0.08–0.46 d–1 in soil at 25°C (McCall et al. 1981; quoted, Klečka 1985);

t½(aq. aerobic) = 240–1200 h, based on unacclimated aerobic river die-away test data (Nesbitt & Watson 1980a, b; quoted, Howard et al. 1991; Muir 1991);

t½(aq. anaerobic) = 672–4320 h, based on unacclimated aqueous screening test data (Liu et al. 1981; selected, Howard et al. 1991); –1 –1 –1 first-order k = 0.035 d in die-away test, k = 0.029 d in CO2 evolution test in soil and k = 6.9 × 10 mL·(g bacteria)–1·d–1 by activated sludge cultures (Scow 1982);

biodegradation t½ = 18 to > 50 d in clear river water and t½ = 10 to 25 d in muddy water with lag times of 6 to 12 d; degradation with a mixture of microorganisms from activated sludge, soil, and sediments lead

to t½ = 1.8–3.1 d under aerobic conditions and t½ = 69–135 d under anaerobic conditions (Howard 1991). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 1.8–18 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl radicals in air (Howard et al. 1991);

photooxidation t½ = 23.9 h for reactions with hydroxyl radicals in air (Howard 1991). Surface water: t½ = 48–96 h, based on reported photolysis half-lives for aqueous solution irradiated at UV wavelength of 356 nm (Howard et al. 1991);

degradation t½ = 14 d in sensitized, filtered and sterilized river water, based on sunlight photolysis test of 1 µg mL–1 in distilled water (Zepp et al. 1975; quoted, Cessna & Muir 1991);

typical biodegradation t½ = 10 to < 50 d with longer expected in oligotrophic waters, photolysis t½ = 29–43 d for water solutions irradiated at sunlight (Howard 1991).

Groundwater: t½ = 480–4320 h, based on estimated unacclimated aqueous aerobic and anaerobic biodegradation half-lives (Howard et al. 1991).

Sediment: t½ < 1 d for degradation in sediments and lake muds (Howard 1991). Soil: t½ = 240–1200 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991);

biodegradation t½ < 1 d to several weeks, t½ = 3.9 and 11.5 d in 2 moist soils and t½ = 9.4 to 254 d in the same soils under dry conditions (Howard 1991);

field t½ = 2–16 d, with a selected value of 10 d (Wauchope et al. 1992). Biota: depuration t½ = 13.8 h in daphnids, t½ = 1.32 d in catfish (Ellgehausen et al. 1980).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2764 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals a pK M 89.3 2.85 105.4 157.0 4.27 134.8 4.19 157.0157.0 3.91 4.39 135.0 4.81 423.6 4.5 201.6 4.85 131.1 0.7 173.6 /mol 3 cm at ρ .4 155.7 .95 157.0 4.31 Molar volume, V Molar volume, 20°C Le Bas 82.48 110.2 1.26 57.24 68.4 4.75 92.00 112.8 4.82 68.56 83.2 4.255 37.91 46.2 3.75 83.85 105.4 4.5 85.31 105.4 4.35 84.79 105.4 4.66 91.00 112.8 4.86 74.60 90.6 4.87 316.13 416.2 108.77 135.0 4.83 109.70 135.0 4.777 125.79 157.2 4.87 MW/ 0.350 1 ratio, F Fugacity at 25°C* at C ° b.p. C ° m.p. MW 60.052 16.64 117.9 1 88.106 –5.1 163.75 1 94.497 63 189.3 0.424 67.29 74.079 –20.5 141.15 1 72.063 12.5 141 1 46.026 8.3 101 1 86.090 16 162.5 1 88.106 –46 154.45 1 g/mol weight, 116.158 –3 205.2 1 128.942 13.5 194 1 102.132 –33.6 186.1 1 163.387 59.2 196.5 0.462 100.86 136.149 76.5 265.5 0.312 125 122.122 122.35 249.2 0.111 156.567 140.2 sublim 0.0741 101 144.212 16.5 239 1 136.149 103.5136.149136.149 259 109.9 0.170 179.6 0.147 263 0.0304 275 284.478 69.3 350 dec 0.368 302.38 102.132 –29.3 176.5282.462 1 13.4 360 1 166.132 230 dec dec 0.00974 104.29 102.132 35 164 0.798 Molecular 2 COOH 86.090 –35 169 1 2 COOH COOH COOH COOH 4 4 4 2 2 2 COOH 2 H H H CHCOOH CCOOH COOH 4 COOH O 2 3 6 6 6 2 O COOH COOH 1,2-(COOH) ) ) COOH COOH COOH 35 34 O COOH CH H 3 3 COOH 5 7 9 10 11 15 =CHCOOH CH=CHCOOHCH=CHCOOH=CHCH 6 86.090 86.090 15 71.55 169 C 184.7 C C 5 4- 6 3 2 3 3 2 3 3 3 H H CHCOOH CCOOH H H H H H H H H H H 2 3 2 3 4 5 5 7 17 18 4 6 6 6 Molecular formula 625-38-7 CH 65-85-0 C 112-80-1 C 88-99–3 C 124-07-2 C 76-03-9 Cl 503-74-2 C 64-19-7 CH 107-92-6 C 57-11-4 C 79-41-4 C 79-31-2 (CH 99-04-799-94-5 CH CH 118-90–1 CH 79-09-4 C 103-82-2 C 107-93-7 CH 503-64-0 CH 109-52-4 C 64-18-6 HCOOH 79-43-6 Cl 79-11-8 ClCH CAS no. CAS 118-91-2 ClC 75-98-9 (CH ) -) cis trans- -Valeric acid -Valeric © 2006 by Taylor & Francis Group, LLC Aliphatics: acid Formic Oleic acid Octanoic acid Propionic acid acid Stearic ( 2-Butenoic acid Vinylacetic 2-Butenoic ( 2-Butenoic Trichloroacetic acid Trichloroacetic Aromatics: Benzoic acid TABLE 13.2.1 TABLE acids of carboxylic properties of physical Summary Compound 2-Methylpropenoic acid 2-Methylpropenoic Phthalic acid 3-Methylbenzoic acid 3-Methylbenzoic acid 4-Methylbenzoic acid Phenylacetic Acetic acid n Hexanoic acid (Caproic acid) acid (Caproic Hexanoic 142-62-1 C Acrylic acid (2-Propenoic acid) 79-10-7 CH acid Chloroacetic Butyric acid Butyric acid Isobutyric acid 3-Methylbutanoic acid Trimethylacetic acid 2-Methylbenzoic acid 2-Chlorobenzoic Dichloroacetic acid Dichloroacetic 13.2 PLOTS AND QSPR TABLES SUMMARY

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2765 164.4 227.1 206.2 155.7 3.85 155.7 3.82 0.0484 95.72 142.2 2.97 138.121 159 156.567 243 0.00726 156.567 158 sublim 0.0496 COOHCOOH 221.038 255.483 140.5 153 dec 0.0736 215 0.0555 2 2 COOH 152.148 98.5 285 dec 0.190 2 COOH OCH OCH 4 COOH COOH 3 2 4 4 H H H 6 OCH H H 6 6 5 6 6 C C H 2 3 6 122-59-8 C 69-72-7 HOC 535-80-8 ClC 74-11-3 ClC = 56 J/mol K. J/mol = 56 fus S ∆ © 2006 by Taylor & Francis Group, LLC 2,4,5-Trichlorophenoxyacetic acid2,4,5-Trichlorophenoxyacetic 93-76-5 Cl 3-Chlorobenzoic acid 3-Chlorobenzoic Assuming * 2,4-Dichlorophenoxyacetic acid2,4-Dichlorophenoxyacetic 94-75-7 Cl 4-Chlorobenzoic acid 4-Chlorobenzoic acid Salicylic Phenoxyacetic acid

© 2006 by Taylor & Francis Group, LLC 2766 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals b 0.338 calcd a /mol) 3 m 0.01832 0.018 0.0431 0.018250.0222 0.0285 0.0650 · H/(Pa –3 –3 –3 –5 Henry's law constant constant law Henry's 10 10 10 10 × × × × 0.623 0.0844 6.723 calcd P/C exptl ow 0.73 2.81 0.43 2.60 2.65 1.99 0.930.22 0.92 0.9673 2.34 2.46 1.92 0.0606 0.0768 0.149 0.79 0.715 0.0897 1.33 1.39 0.081 0.0478 0.099 0.26 0.79 –0.54 –0.31 8.23 –6 10 × /Pa log K L 5 35 25 18.5 11 19 84 100 550 185 435 1.69 0.001 2.65 1.99 –5 10 Vapor pressure Vapor /Pa P × S 0.11 0.991 1.89 3.95 1.39 9.456 2.37 0.1512 0.83 2.660 1.41 6.81 0.0208 0.440 2.20 1.25 5 3.72 3.72 0.00113 0.00113 7.64 35 25 19 84 100 550 185 435 5750 5750 2079 2079 )P 3 0 0.553 3.248 62.26 79.97 46.40 51.51 40.14 82.47 19.61 54.71 8.0 Selected properties 250.8 235. 103.4 415.1 181.0 344.0 390.8 258.8 /(mol/m L )C 3 9 2.431 9.152 7.888 0.4471 61.58 2.555 1.088 1.195 4.026 42.14 4326 27.84 40.14 16.65 78.87 13.41 82.47 Solubility /(mol/m 103.4 S properties of carboxylic acids at 25°C of carboxylic properties )C 3 70 79.8 0.553 331 400 278 340 890 7000 3400 2300 1074 2100 9580 24000 235.0 12000 16600 121. miscible 22800 258.8 miscible miscible miscible miscible miscible miscible S/(g/m Hine & Mookerjee 1975. & Mookerjee Hine b Compound Brimblecombe et al. 1992; © 2006 by Taylor & Francis Group, LLC Chloroacetic acid Chloroacetic acid Trichloroacetic Aromatics: Benzoic acid 4-Chlorobenzoic acid 4-Chlorobenzoic acid Salicylic Dichloroacetic acid Dichloroacetic 2-Methylpropenoic acid 8900 3-Chlorobenzoic acid 3-Chlorobenzoic Oleic acid Oleic Acrylic acid Phenylacetic acid Phenylacetic acid 2-Chlorobenzoic 3-Methyl benzoic acid acid 4-Methylbenzoic 1246 2,4-D TABLE 13.2.2 TABLE of selected physical-chemical Summary Aliphatics: acid Formic acid 2-Methylbenzoic Phthalic acid Phenoxyacetic acid 2,4,5-T a Propionic acid Propionic Butyric acid acid Isobutyric -Valeric acid n -Valeric Acetic acid 3-Methylbutanoic acid3-Methylbutanoic 4100 Hexanoic acid Hexanoic Octanoic acid Stearic acid

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2767

TABLE 13.2.3 Suggested half-life classes for carboxylic acids in various environmental compartments at 25°C

Sediment Compound Air class Water class Soil class class Aliphatics: Formic acid 4 3 4 5 Acetic acid 3 3 4 5 Butyric acid 3345 Hexanoic acid (Caproic acid) 3 3 4 5 Stearic acid (Octadecanoic acid) 3 3 4 5 Acrylic acid (2-Propenoic acid) 2 3 4 5 Vinylacetic acid 2 3 4 5 Chloroacetic acid 5 4 5 6 Aromatics: Benzoic acid 3 3 4 5 2-Methylbenzoic acid (o-Toluic acid) 3 3 4 5 Phenylacetic acid 3 3 4 5 Phthalic acid 3 3 4 5 2-Chlorobenzoic acid 4 5 6 7 Salicylic acid 3 3 4 5 2,4-Dichlorophenoxyacetic acid (2,4-D) 2 3 5 6 2,4,5-Trichlorophenoxyacetic acid (2,4,5-T) 3 4 6 7

where,

Class Mean half-life (hours) Range (hours) 1 5<10 2 17 (~1 d) 10–30 3 55 (~2 d) 30–100 4 170 (~1 week) 100–300 5 550 (~3 weeks) 300–1,000 6 1,700 (~2 months) 1,000–3,000 7 5,500 (~8 months) 3,000–10,000 8 17,000 (~2 y) 10,000–30,000 9 ~5 y >30,000

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2768 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

solubility vs. Le Bas molar volume 5 Aliphatic carboxylic acids Aromatic carboxylic acids 4 Halogenated carboxylic acids

3 ) 3 mc/lom(/ 2 L

C gol C 1

0

-1

-2 40 80 120 160 200 240 280 320 360 400 440 3 Le Bas molar volume, VM/(cm /mol) FIGURE 13.2.1 Molar solubility (liquid or supercooled liquid) versus Le Bas molar volume for carboxylic acids.

vapor pressure vs. Le Bas molar volume 4 Aliphatic carboxylic acids 3 Aromatic carboxylic acids Halogenated carboxylic acids 2

1

0 /Pa L -1

log P -2

-3

-4

-5

-6 40 80 120 160 200 240 280 320 360 400 440 3 Le Bas molar volume, VM/(cm /mol) FIGURE 13.2.2 Vapor pressure (liquid or supercooled liquid) versus Le Bas molar volume for carboxylic acids.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2769

log K vs. Le Bas molar volume 9 OW Aliphatic carboxylic acids 8 Aromatic carboxylic acids Halogenated carboxylic acids 7

6

5 OW 4

log K log 3

2

1

0

-1 40 80 120 160 200 240 280 320 360 400 440 3 Le Bas molar volume, VM/(cm /mol) FIGURE 13.2.3 Octanol-water partition coefficient versus Le Bas molar volume for carboxylic acids.

Henry's law constant vs. Le Bas molar volume 1 Aliphatic carboxylic acids Aromatic carboxylic acids 0 Halogenated carboxylic acids

)lom -1 / 3 m .aP(/H gol .aP(/H -2

-3

-4

-5 40 60 80 100 120 140 160 180 200 220 3 Le Bas molar volume, VM/(cm /mol) FIGURE 13.2.4 Henry’s law constant versus Le Bas molar volume for carboxylic acids.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2770 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log K vs. solubility 9 OW Aliphatic carboxylic acids 8 Aromatic carboxylic acids Halogenated carboxylic acids 7

6

5 WO

K gol K 4

3

2

1

0

-1 -2 -1 0 1 2 3 4 5 3 log CL/(mol/cm ) FIGURE 13.2.5 Octanol-water partition coefficient versus molar solubility (liquid or supercooled liquid) for carboxylic acids.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2771

13.3 REFERENCES Abraham, M.H., Le J., Acree, Jr., W.E., Carr, P.W., Dallas, A.J. (2001) The solubility of gases and vapours in dry octan-1-ol at 298 K. Chemosphere 44, 855–863. Agrochemicals Handbook (1987) Hartley, D., Kidd, H., Eds., second edition, Royal Society of Chemistry, Nottingham, England. Alexander, M., Lustigman, B.K. (1966) Effect of chemical structure on microbial degradation of substituted benzenes. J. Agric. Food Chem. 14, 410–413. Ambrose, D., Ellender, J.H., Sprake, C.H.S., Townsend, R. (1977) Thermodynamic properties of organic oxygen compounds. XLV. The vapour pressures of acetic acid. J. Chem. Thermodyn. 9, 735–741. Ambrose, D., Ellender, J.H., Gundry, H.A., Lee, D.A., Townsend, R. (1981) Thermodynamic properties of organic oxygen compounds. LI. The vapour pressures of some esters and fatty acids. J. Chem. Thermodyn. 13, 795–802.

Ambrose, D., Ghiassee, N.B. (1987) Vapour pressures and critical temperatures and critical pressures of some alkanoic acids: C1 to C10. J. Chem. Thermodyn. 19, 505–519. Amidon, G.L., Yalkowsky, S.H., Anik, S.T., Valvani, S.C. (1975) Solubility of nonelectrolytes in polar solvents. V. Estimation of the solubility of aliphatic monofunctional compounds in water using a molecular surface area approach. J. Phys. Chem. 79, 2239–2246. Apelblat, A., Manzurola, E. (1989) Solubility of ascorbic acid, 2-furancarboxylic, glutaric, pimelic, salicylic, and o-phthalic acids in water from 279.15 to 342.15 K, and apparent molar volumes of ascorbic, glutaric, and pimelic acids in water at 298.15 K. J. Chem. Thermodyn. 21, 1005–1008. Apelblat, A., Manzurola, E. (1999) Solubility of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic, and p-toluic acid, and magnesium-DL-aspartate in water from T - (278 to 348) K. J. Chem. Thermodyn. 21, 85–91. Atkinson, R. (1985) Kinetics and mechanisms of the gas-phase reactions of hydroxyl radicals with organic compounds under atmo- spheric conditions. Chem. Rev. 85, 69–201. Atkinson, R. (1987) Structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds. Int. J. Chem. Kinetics 19, 799–828. Atkinson, R. (1989) Kinetics and Mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J. Phys. Chem. Data Monograph No.1. Atkinson, R. (1990) Gas-phase tropospheric chemistry of organic compounds: A review. Atmos. Environ. 24A(1), 1–41. Atkinson, R., Carter, W.P.L. (1984) Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem. Rev. 84, 437–470. Bailey, C.R. (1925) CCLXII. - The condensed ternary system phenol-water-salicylic acid. J Chem. Soc. 126, 1951–1965. Bailey, G.W., White, J.L. (1965) Herbicides—A compilation of their physical, chemical, and biological properties. Residue Rev. 10, 97. Banerjee, S. (1985) Calculation of water solubility of organic compounds with UNIFAC-derived parameters. Environ. Sci. Technol. 19, 369–370. Banerjee, S., Howard, P.H. (1988) Improved estimation of solubility and partitioning through correction of UNIFAC-derived activity coefficients. Environ. Sci. Technol. 22, 839–841. Banerjee, S., Howard, P.H., Lande, S.S. (1990) General structure-vapor pressure relationships for organics. Chemosphere 21(10–11), 1173–1180. Banerjee, S., Howard, P.H., Rosenberg, A.M., Dombrowski, A.E., Sikka, H., Tullis, D.L. (1984) Development of general kinetic model for biodegradation and its application to chlorophenols and related compounds. Environ. Sci. Technol. 18, 416–422. Berthod, A., Han, Y.I., Armstrong, D.W. (1988) Centrifugal partition chromatography. V. Octanol-water partition coefficients, direct and indirect determination. J. Liq. Chromatogr. 11(7), 1441–1456. Betterton, E.A. (1992) Henry’s law constants of soluble and moderately soluble organic gases: Effects of aqueous phase chemistry. Adv. Environ. Sci. Technol. 24, 1–50. Bintein, S., Devillers, J. (1994) QSAR for organic chemical sorption in soils and sediments. Chemosphere 28(6), 1171–1188. Bodor, N., Gabanyi, Z., Wong, C.K. (1989) A new method for the estimation of partition coefficient. J. Am. Chem. Soc. 111, 3783–3786. Boethling, R.S., Alexander, M. (1979) Effects of concentration of organic chemicals on their biodegradation by natural microbial communities. Appl. Environ. Microbiol. 37, 1211–1216. Boublik, T., Fried, V., Hala, E. (1984) The Vapour Pressures of Pure Substances. 2nd Edition, Elsevier, Amsterdam, The Netherlands. Bowden, D.J., Clegg, S.L., Brimblecombe, P. (1998) The Henry’s law constants of the haloacetic acids. J. Atmos. Chem. 29, 85–107. Branson, D.R. (1978) In: Predicting the Fate of Chemicals in the Aquatic Environment from Laboratory Data. ASTM STP 657. pp. 55–70. American Society for Testing and Materials, Philadelphia, PA. Brimblecombe, P., Clegg, S.L., Khan, I. (1992) Thermodynamic properties of carboxylic acids relevant to their solubility in aqueous solutions. J. Aerosol Sci. 23, suppl. 1, S901–S904. Bundgaard, H., Nielsen, N.M. (1988) Glycolamide esters as a novel biolabile prodrug type for non-steroidal anti-inflammatory carboxylic acid drugs. Int’l. J. Pharm. 43(1–2), 101–110. Butler, J.A.V., Ramchandani, C.N. (1935) The solubility of non-electrolytes. Part II. The influence of the polar group on the free energy of hydration of aliphatic compounds. J. Chem. Soc. 952–955.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2772 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Butte, W., Fooken, C., Klussmann, R., Schuller, D. (1981) Evaluation of lipophilic properties for a series of phenols, using reversed- phase high-performance liquid chromatography and high-performance thin-layer chromatography. J. Chromatogr. 214, 59–67. Buxton, G.V., Greenstock, C.L., Helman, W.P., Ross, A.B. (1986) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (-OH/-O–) in aqueous solution. J. Phys. Chem. Ref. Data 17, 513–817. Capel, P.D., Larson, S.J. (1995) A chemodynamic approach for estimating losses of target organic chemicals from water during sample holding time. Chemosphere 30, 1097–1107 Carlson, K., Karlbeg, B. (2000) Determination of octanol-water partition coefficients using a micro-volume liquid-liquid flow extraction system. Anal. Chim. Acta 423, 137–144. Cessna, A.J., Grover, R. (1978) Spectroscopic determination of dissociation constants of selected acidic herbicides. J. Agric. Food Chem. 26(1), 289–292. Cessna, A.J., Muir, D.C.G. (1991) Chapter 6, Photochemical transformations. In: Environmental Chemistry of Herbicides. Vol. II., Grover, R., Cessna, A.J., Editors, CRC Press, Boca Raton, FL. Chen, M., Ma, P. (2004) Solid-liquid equilibria of several system containing acetic acid. J. Chem. Eng. Data 49, 756–759. Chou, W.L., Speece, R.E., Siddiqi, R.H. (1979) Acclimation and degradation of petrochemical wastewater components by methane fermentation. Biotechnol. Bioeng. Symp. 8, 391–414. Cichna, M., Markl, P., Huber, J.F.K. (1995) Determination of true octanol-water partition coefficients by means of solvent generated liquid-liquid chromatography. J. Pharmaceu. Biomed. Anal. 11, 339–351. Clarke, F.H. (1984) Ionization constants by curve-fitting: application to the determination of partition coefficients. J. Pharmaceut. Sci. 73(2), 226–230. Clifford, S.L., Ramjugernath, D., Raal, J.D. (2004) Subatmospheric vapor pressure curves for propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, hexanoic acid and heptanoic acid. J. Chem. Eng. Data 49, 1189–1192. Clarke, F.H., Cahoon, N.M. (1987) Ionization constants by curve-fitting: Determination of partition and distribution coefficients of acids and bases and their ions. J. Pharmaceut. Sci. 76, 611–620. Collander, R. (1951) Partition of organic compounds between higher alcohols and water. Acta. Chem. Scand. 5, 774–780. Colomina, M., Jiménez, P., Turriôn, C. (1982) Vapour pressures and enthalpies of sublimation of naphthalene and benzoic acid. J. Chem. Thermodyn. 14, 779–784. Da, Y.Z., Ito, K., Fujiwara, H. (1992) Energy aspects of oil/water partition leading to the novel hydrophobic parameters for the analysis of quantitative structure-activity relationships. J. Med. Chem. 35(18), 3382–3387. Dagaut, P., Wallington, T.J., Liu, R., Kurylo, M.J. (1988) The gas-phase reactions of hydroxyl radicals with a series of carboxylic acids over the temperature range 240–440 K. Int J. Chem. Kinetics 20, 331–338. D’Amboise, M., Hanai, T. (1982) Hydrophobicity and retention in reversed phase liquid chromatography. J. Liq. Chromatogr. 5(2), 229–244. Dambrosky, J., Rorue, E., Jesenska, A., Natgata, Y., Klopman, G., Peijnenbury, W.J.G.M. (2001) Structure-specificity relationships for haloalkane dehalogenases. Environ. Toxicol. Chem. 20, 2681–2689. Davies, M., Jones, J.I. (1954) The sublimation pressures and heats of sublimation of some carboxylic acids. Trans. Farad. Soc. 50, 1042–1047. Dean, J.D., Editor (1985) Lange’s Handbook of Chemistry. 13th ed., McGraw-Hill, Inc., New York. de Kruif, C.G., Block, J.G. (1982) The vapour pressure of benzoic acid. J. Chem. Thermodyn. 14, 201–206. DePablo, R.S. (1976) Determination of saturated vapor pressure in range 10–1–10–4 torr by effusion method. J. Chem. Eng. Data 21, 141–143. Donovan, S.F., Pescatore, M.C. (2002) Method for measuring the logarithm of the octanol-water partition coefficient by using short octadecyl-poly-(vinyl alcohol) high-performance liquid chromatography columns. J. Chromatog. A, 952, 47–61. Draper, W.M., Crosby, D.G. (1983) Photochemical generation of superoxide radical anion in water. J. Agric. Food Chem. 31, 734–737. Dreisbach, R.R. (1952) Pressure-Volume-Temperature Relationships of Organic Compounds. Handbook Publishers Sandusky, OH. Dreisbach, R.R. (1961) Physical Properties of Chemical Compounds - III. Advances in Chemistry Series, American Chemical Society Applied Publications. American Chemical Society. Dreisbach, R.,R., Martin, A.A.I. (1949) Physical data on some organic compounds. Ind. Eng. Chem. 41, 2875–2878. Dreisbach, R.R., Shrader, A.A.I. (1949) Vapor pressure-temperature data on some organic compounds. Ind. Eng. Chem. 41, 2879–2880. Ellgehausen, H., Guth, J.A., Esser, H.O. (1980) Factors determining the bioaccumulation potential of pesticides in the individual compartments of aquatic food chains. Ecotox. Environ. Saf. 4, 134–157. El Tayar, N.E., Testa, B., Carrupt, P.A. (1992) Polar intermolecular interactions encoded in partition coefficients: An indirect estimation of hydrogen-bond parameters of polyfunctional solutes. J. Phys. Chem. 96, 1455–1459. El Tayar, N.E., Tsai, R.-S., Vallat, P., Altomare, C., Testa, B. (1991) Measurements of partition coefficients by various centrifugal partition chromatographic techniques. J. Chromatogr. 556, 181–194. Ezumi, K., Kubota, T. (1980) Simultaneous determination of acid dissociation constants and true partition coefficients by analyses of the apparent partition coefficient. Chem. Pharm. Bull. 28(1), 85–91. Fieser, L.F., Fieser, M. (1959) Textbook of Organic Chemistry. D.C. Heath and Company, Boston. Freese, E., Levin, B.C., Pearce, R., Sreevalson, T., Kaufman, J.J., Koski, W.S., Semo, N.M. (1979) Correlation between the growth inhibitory effects, partition coefficients and teratogenic effects of lipophilic acids. Teratology 20(3), 413–440.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2773

Freitag, D., Ballhorn, L., Geyer, H., Körte, F. (1985) Environmental hazard profile of organic chemicals. An experimental method for the assessment of the behaviour of chemicals in the ecosphere by simple laboratory tests with C-14 labelled chemicals. Chemosphere 14, 1589–1616. Freitag, D., Geyer, H., Kraus, A., Viswanathan, R., Kotzias, D., Attar, A., Klein, W., Körte, F. (1982) Ecotoxicological profile analysis. VII. Screening chemicals for their environmental behavior by comparative evaluation. Ecotoxicol. Environ. Saf. 6, 60–81. Fühner, H. (1924) Water solubilities in homologous series. Ber. Deutsch Chem. Gse. 57, 510–515. Fujita, T., Iwasa, J., Hansch, C. (1964) A new substituent constant derived from partition coefficients. J. Am. Chem. Soc. 86(23), 5175–5180.

Gaffney, J.S., Streit, G.E., Spall, W.D., Hall, J.H. (1987) Beyond acid rain. Do soluble oxidants and organic toxins interact with SO2 and NO2 to increase ecosystem effects? Environ. Sci. Technol. 21, 519–524. Garst, J.E. (1984) Accurate, wide range, automated, high-performance liquid chromatographic method for the estimation of octanol/water partition coefficients II: Equilibrium in partition coefficient measurements, additivity of substituent constants, and correlation of biological data. J. Pharm. Sci. 73(11), 1623–1629. Garst, J.E., Wilson, W.C. (1984) Accurate, wide range, automated, high-performance liquid chromatographic method for the estimation of octanol/water partition coefficients I: Effect of chromatographic conditions and procedure variables on accuracy and reproducibility of the method. J. Pharm. Sci. 73(11), 1616–1623. Gerstl, Z., Helling, C.S. (1987) Evaluation of molecular connectivity as a predictive method for the adsorption of pesticides by soils. J. Environ. Sci. Health B22(1), 55–69. Geyer, H., Politzki, G., Freitag, D. (1984) Prediction of ecotoxicological behavior of chemicals: Relationship between n-octanol/water partition coefficient and bioaccumulation of organic chemicals by Alga chlorella. Chemosphere 113(2), 269–284. Geyer, H., Sheehan, P., Kotzias, D., Freitag, D., Körte, F. (1982) Prediction of ecotoxicological behaviour of chemicals: relationship between physico-chemical properties and bioaccumulation of organic chemicals in the mussel Mytilus edulis. Chemosphere 11(11), 1121–1134. Geyer, H., Visvanathan, R., Freitag, D., Körte, F. (1981) Relationship between water solubility of organic chemicals and their bioaccumulation by the Alga chlorella. Chemosphere 10, 1307–1313. Gückel, W., Kästel, R., Lewerenz, J., Synnatschke, G. (1982) A method for determining the volatility of active ingredients used in plant protection. Part III: The temperature relationship between vapour pressure and evaporation rate. Pestic. Sci. 13, 161–168. Günther, F.A., Westlake, W.E., Jaglan, P.S. (1968) Reported solubilities of 738 pesticide chemicals in water. Residue Rev. 20, 1–148. Gustafson, D.I. (1989) Groundwater ubiquity score: A simple method for assessing pesticide leachability. Environ. Toxicol. Chem. 8, 339–357. Haky, J.E., Young, A.M. (1984) Evaluation of a simple HPLC correlation method for the estimation of the octanol-water partition coefficients of organic compounds. J. Liq. Chromatogr. 7, 675–689. Haller, H.D. (1978) Degradation of mono-substituted benzoates and phenols by wastewater. J. WPCF 2771–2777.

Halmekoski, J., Hannikainen, H. (1964) RM values of hydroxy-substituted benzoic acids and partition coefficients of the acids between water and aliphatic alcohols. Suom. Kemistil. B37(12), 221–226. Hamaker, J.W. (1975) In: Environmental Dynamics of Pesticides. Haque, R., Freed, V.H., Editors, Plenum Press, New York. pp. 115–153. Hanai, T., Hubert, J. (1982) Hydrophobicity and chromatographic behaviour of aromatic acids found in urine. J. Chromatogr. 239, 527–536. Hansch, C., Anderson, S.M. (1967) The effect of intramolecular hydrophobic bonding on partition coefficients. J. Org. Chem. 32, 2583. Hansch, C., Leo, A. (1979) Substituents Constants for Correlation Analysis in Chemistry and Biology. Wiley, New York. Hansch, C., Leo, A. (1987) Medchem Project Issue No. 28. Pomona College, Claremont, CA. Hansch. C., Leo, A.J., Hoekman, D. (1995) Exploring QSAR, Hydrophobic, Electronic, and Steric Constants. ACS Professional Reference Book, American Chemical Society, Washington, DC. Hansch, C., Leo, A., Nikaitani, D. (1972) On the additive-constitutive character of partition coefficients. J. Org. Chem. 37, 3090–3092. Hartley, D., Kidd, H. (1987) The Agrochemicals Handbook, 2nd ed., The Royal Society of Chemistry, The University, Nottingham, England. Hayward, D.S., Kenley, R.A., Jenke, D.R. (1990) Interactions between polymer containers and parental solutions: the correlation of equilibrium constants for polymer-water partitioning with octanol-water partition coefficients. Intl. J. Pharm. 59(3), 245–253. Hersey, A., Hill, A.P., Hyde, R.M., Livingstone, B.J. (1989) Principles of method selection in partition studies. Quant. Struct.-Act. Relat. 8(4), 288–296. Hine, J., Mookerjee, P.K. (1975) The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contri- butions. J. Org. Chem. 40, 292–298. Hodgman, C.R., Editor (1952) Handbook of Chemistry and Physics. 34th ed., Chemical Rubber Publishing Co., Cleveland, Ohio. Hoigné, J., Bader, H. (1983a) Rate constants of reactions of ozone with organic and inorganic compounds in water-I. Non-dissociating organic compounds. Water Res. 17, 173–183. Hoigné, J., Bader, H. (1983b) Rate constants of reactions of ozone with organic and inorganic compounds in water-I. Dissociating organic compounds. Water Res. 17, 185–193. Howard, P.H., Ed. (1989) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. I-Large Production and Priority Pollutants. Lewis Publishers, Chelsea, MI. Howard, P.H., Ed. (1990) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. II. Solvents. Lewis Publishers, Chelsea, MI. Howard, P.H., Ed. (1991) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. III. Pesticides. Lewis Publishers, Chelsea, MI.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2774 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Howard, P.H., Hueber, A.E., Mulesky, B.C., Crisman, J.S., Meylan, W., Crosbie, E., Gray, D.A., Sage, G.W., Howard, K.P., LaMacchia, A., Boethling, R.S., Troast, R. (1986) BIOLOG, BIODEG, and FATE/EXPOS: New files on microbial degradation and toxicity as well as environmental fate/exposure of chemicals. Environ. Toxicol. Chem. 5, 977–988. Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., Michalenko, E.M. (1991) Handbook of Environmental Degradation Rates. Lewis Publishers, Chelsea, MI. Hoy, K.L. (1970) New values of the solubility parameters from vapor pressure data. J. Paint Technol. 42(541), 76–118. Ilchmann, A., Wienke, G., Meyer, T., Gmehling, J. (1993) Countercurrent liquid/liquid chromatography—A reliable method for the determination of partition coefficients. Chem.-Ing.-Tech., 65(1), 72–75. Isensee, A.R. (1991) Chapter 5, Bioaccumulation and food chain accumulation. In: Environmental Chemistry of Herbicides. Vol. II., Grover, R., Cessna, A.J., Eds., pp. 187–197, CRC Press, Boca Raton, FL. Iwasa, J., Fujita, T., Hansch, C. (1965) Substituent constants for aliphatic functions obtained from partition coefficients. J. Med. Chem. 8, 150–153. Iwase, K., Komatsu, K., Hirono, S., Nakagawa, S., Moriguchi, I. (1985) Estimation of hydrophobicity based on the solvent-accessible surface area of molecules. Chem. Pharm. Bull. 33(5), 2114–2121. Jack, D.B., Hawker, J.L., Rooney, L., Beerahee, M, Loboand, J., Patel, P. (1988) Measurement of the distribution coefficients of several classes of drug using reversed-phase thin-layer chromatography. J. Chromatogr. 452, 257–264. Jacob, D.J. (1986) Chemistry of OH in remote clouds and its role in the production of formic acid and peroxymonosulfate. J. Geophys. Res. 91D, 9807–9826. Jenke, D.R., Hayward, D.S., Kenley, R.A. (1990) Liquid chromatographic measurement of solute/solvent partition coefficients: application to solute/container interactions. J. Chromatogr. Sci. 28(12), 609–612. Johnson, B.J., Betterton, E.A., Craig, D. (1996) Henry’s law coefficients of formic and acetic acid. J. Atmos. Chem. 24, 113–119. Jolly, G.S., McKenney, D.J., Singleton, D.L., Paraskevopoulos, G., Bossard, A.R. (1986) Rate constant and mechanism for the reaction of hydroxyl radical with formic acid. J. Phys. Chem. 90, 6557–6562. Jones, D.C. (1929) The systems n-butyl alcohol-water and n-butyl alcohol-acetone-water. J. Chem. Soc. (London) 799–816. Kahlbaum, G.W.A. (1894) Z. Phys. Chem. 13, 14.-reference in Boublik et al. 1984. Kahlbaum, G.W.A. (1898) Studien über dumpfspannkraftmessungen. II. Z. Phys. Chem. 26, 577–658. Keene, W.C., Galloway, J.N. (1986) Considerations regarding sources for formic and acetic acid in the troposphere. J. Geophys. Res. 91D, 14466–14474. Kelly, T.J., Mukund, R., Spicer, C.W., Pollack, A.J. (1994) Concentrations and transformations of hazardous air pollutants. Environ. Sci. Technol. 28, 278A–387A. Kenaga, E.E. (1980) Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicol. Environ. Safety 4, 26–38. Kenaga, E.E., Goring, C.A.I. (1980) Relationship between water solubility, soil sorption, octanol-water partitioning and concentration of chemicals in biota. In: Aquatic Toxicology. Eaton, J.G., Parrish, P.R., Hendricks, A.C., Eds., ASTM STP 707, pp. 78–115. Khan, I., Brimblecombe, P. (1992) Henry’s law constants of low molecular weight (< 130) organic acids. J. Aerosol Sci. 23, Suppl. 1, S897–S900.

Khan, I., Brimblecombe, P., Clegg, S.L. (1995) Solubilities of pyruvic acid and the lower (C1–C6) carboxylic acids. Experimental determination of equilibrium vapour pressure above pure aqueous and salt solutions. J. Atmos. Chem. 22, 285–302. Khan, U.K. (1980) Pesticides in the Soil Environment, Fundamental Aspects of Pollution Control and Environmental Series 5. Elsevier, Amsterdam, The Netherlands. Kidd, H., Hartley, D. (1983) Pesticide Index. Royal Society of Chemistry, Nottingham, England. Kidd, H., Hartley, D. (1987) Pesticide Index. Royal Society of Chemistry, Nottingham, England. Klamt, A. (1996) Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds based on molecular orbital calculations. Chemosphere 32, 716–726. Klecka, G.M. (1985) Chapter 6, Biodegradation. In: Environmental Exposure From Chemicals. Volume I. Neely, W.B., Blau, G.E., Editors, CRC Press, Inc., Boca Raton, FL. pp. 109–155. Klosky, S., Woo, L.P.L., Flanigan, J. (1927) The vapor-pressure curve of benzoic acid. J. Am. Chem. Soc.49, 1280–1284. Kollig, H.P., Ed. (1993) Environmental Fate Constants for Organic Chemicals Under Consideration for EPA’s Waste Identification Projects. EPA Report EPA/600/R-93/132, Environmental Research Lab., USEPA, Athens, GA. Kollig, H.P., Parrish, R.S., Holm, H.W. (1987) An estimate of the variability in biotransformation kinetics of xenobiotics in natural waters by aufwuchs communities. Chemosphere 16, 49–60. Kool, H.J. (1984) Influence of microbial biomass on the biodegradability of organic compounds. Chemosphere 13, 751–761. Korenman, Ya.I. (1975) Extraction of hydroxybenzene acids and some of their derivatives from aqueous solution. J. Appl. Chem. USSR (Engl. Transl.) 48, 1472–1474. Korenman, Ya.I., Danilov, U.N., Zhilinskaya, K.I. (1990) Regularities and prediction of quantitative characteristics of isomer extraction. Ukr. Khim. Zh. (Russ. ed.) 56(3), 291–295. Korman, S., La Mer, V.K. (1936) Deuterium equilibria in solution and the quinhydrone electrode. J. Am. Chem. Soc. 58, 1396–1403. Kuban, V. (1991) Determination of 1-octanol/water partition coefficients by flow-injection extraction without phase separation. Anal. Chim. Acta 248, 493–499.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2775

Kuchar, M., Rejholec, V., Brunova, B., Grimova, J., Matousova, O., Nemecek, O., Cepelakova, H. (1982) Benzyloxyaryl aliphatic acids: Synthesis and quantitative relations between structure and anti-inflammatory activity. Coll. Czech. Chem. Comm. 47, 2514. Kühne, R., Ebert, R.-U., Kleint, F., Schmidt, G., Schüümann, G. (1995) Group contribution methods to estimate water solubility of organic chemicals. Chemosphere 30, 2061–2077. Laznicek, M., Kvetina, J., Mazak, J., Krch, V. (1987) Plasma protein binding-lipophilicity relationships: Interspecies comparison of some organic acids. J. Pharm. Pharmacol. 39(2), 79–83. Lee, L.S., Bellin, C.A., Pinal, R., Rao, P.S.C. (1993) Cosolvent effects on sorption of organic acids by soils from mixed solvents. Environ. Sci. Technol. 27, 165–171. Leo, A., Hansch, C., Elkins, D. (1971) Partition coefficients and their uses. Chem. Rev. 71, 525–612. Leonard, R.H., Peterson, W.H., Johnson, M.J. (1948) Lactic acid from fermentation of sulfite waste liquor. Ind. Eng. Chem. 40, 57–67. Leopold, A.C., van Schaik, P., Neal, M. (1960) Molecular structure and herbicide adsorption. Weeds 8, 48. Li, D.-Q., Liu, D.Z., Wang, F.-A. (2001) Solubility of 4-methylbenzoic acid between 288 K and 370 K. J. Chem. Eng. Data 46, 234–236. Li, X.-W., Shibata, E., Kasai, E., Nakamura, T. (2002) Vapour pressure determination for dibenzo-p-dioxin, dibenzofuran, octachlorodibenzo-p-dioxin and octachlorodibenzofuran using a Knudsen effusion method. Materials Transaction 43, 2903–2907. Li, X.-W., Shibata, E., Kasai, E., Nakamura, T. (2004) Vapor pressures and enthalpies of sublimation of 17 polychlorinated dibenzo- p-dioxins and five polychlorinated dibenzofurans. Environ. Toxicol. Chem. 23, 348–354. Lide, D.R., Editor (2003) Handbook of Chemistry and Physics. 84th Edition, CRC Press, LLC. Boca Raton, FL. Liu, D., Strachan, W.M.J., Thomson, K., Kwasniewska, K. (1981) Determination of the biodegradability of organic compounds. Environ. Sci. Technol. 15, 788–793. Lu, P.Y., Metcalf, R.L. (1975) Environmental fate and biodegradability of benzene derivatives as studied in a model aquatic ecosystem. Environ. Health Perspect. 10, 269–284. Lyman, W.J. (1985) Chapter 2. Estimation of physical properties. In: Environmental Exposure From Chemicals. Volume I. Neely, W.B., Blau, G.E., Editors, CRC Press, Boca Raton, FL. pp. 13–48. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Eds. (1982) Handbook on Chemical Property Estimation Methods. Environmental Behavior of Organic Compounds. McGraw-Hill, New York. Mabury, S.A., Crosby, D.G. (1996) Pesticide reactivity toward hydroxyl and its relationship to field persistence. J. Agric. Food Chem. 44, 1920–1924. Mackay, D., Stiver, W. (1991) Chapter 8, Predictability and environmental chemistry. In: Environmental Chemistry of Herbicides. Vol. II., Grover, R., Cessna, A.J., Eds., pp. 281–297. CRC Press, Inc., Boca Raton, Florida. Malaspina, L., Gigli, R., Bardi, G. (1973) Microcalorimetric determination of the enthalpy of sublimation of benzoic acid and anthracene. J. Chem. Phys. 59(1), 387–394. McCall, P.J., Swann, R.L., Laskowski, D.A., Vrona, S.A., Unger, S.M., Dishburger, H.J. (1981) Prediction of chemical mobility in soil from sorption coefficients. In: Aquatic Toxicology and Hazard Assessment. ASTM STP 737, Branson, D.R., Dickson, K.L., Eds., pp. 49–58, American Society for Testing and Materials, Philadelphia. McCall, P.J., Vrona, S.A., Kelley, S.S. (1981) Fate of uniformly carbon-14 ring labeled 2,4,5-trichlorophenoxyacetic acid and 2,4-dichlorophenoxyacetic acid. J. Agric. Food Chem. 29, 100–107. McDaniel, D.H., Brown, H.C. (1958) Extended table of Hammett substituent constants based on the ionization of substituted benzoic acids. J. Org. Chem. 23, 420. McDonald, R.A., Shrader, S.A., Stull, D.R. (1959) Vapor pressures and freezing points of 30 organics. J. Chem. Eng. Data 4, 311–313. McMaster, L., Bender, E, Weil, E. (1921) The solubility of phthalic acid in water and sodium sulfate solutions. J. Am. Chem. Soc. 43, 1206–1208. Menges, R.A., Bertrand, G.L., Armstrong, D.W. (1990) Direct measurement of octanol-water partition coefficient using centrifugal partition chromatography with back-flashing technique. J. Liq. Chromatogr. 13(15), 3061–3077. Meylan, W., Howard, P.H. (1991) Bond contribution method for estimating Henry’s law constants. Environ. Toxicol. Chem. 10, 1283–1293. Meylan, W., Howard, P.H., Boethling, R.S. (1992) Molecular topology/fragment contribution method for predicting soil sorption coefficient. Environ. Sci. Technol. 26(8), 1560–1567. Miyake, K., Kitaura, F., Mizuno, N., Terada, H. (1987) Determining of partition coefficient and acid dissociation constant by high- performance liquid chromatography on polymer gel as stationary phase. Chem. Pharm. Bull. 35(1), 377–388. Miyake, K., Terada, H. (1982) Determination of partition coefficients of very hydrophobic compounds by high-performance liquid chromatography on glyceryl-coated controlled-glass. J. Chromatogr. 240, 9–20. Morrison, T.J. (1944) The salting-out effect. Trans. Farad. Soc. 40, 43–48. Muir, D.C.G. (1991) Chapter 1, Dissipation and transformation in water and sediment. In: Environmental Chemistry of Herbicides. Vol. II., Grover, R., Cessna, A.J., Eds., pp. 1–87. CRC Press, Inc., Boca Raton, Florida. Neely, W.B., Blau, G.E. (1985) Chapter 1, Introduction to environmental exposure from chemicals. In: Environmental Exposure From Chemicals. Volume I. Neely, W.B., Blau, G.E., Eds., pp. 1–11, CRC Press, Inc., Boca Raton, Florida. Nelson, N.H., Faust, S.D. (1969) Acidic dissociation constants of selected herbicides. Environ. Sci. Technol. 3, 1186–1188.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2776 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Nesbitt, H.J., Watson, J.R. (1980a) Degradation of the herbicide 2,4-D in river water- I. Description of study area and survey of rate determining factors. Water Res. 14, 1683–1688. Nesbitt, H.J., Watson, J.R. (1980b) Degradation of the herbicide 2,4-D in river water- II. The role of suspended sediment. Nutrients and water temperature. Water Res. 14, 1689–1694. Nirmalakhandan, N.N., Speece, R.E. (1988) QSAR model for predicting Henry’s constant. Environ. Sci. Technol. 22, 1349–1357. Nishimura, K., Nozaki, Y., Yoshimi, A., Nakamura, S., Kitagawa, M., Kakeya, N., Kitao, K. (1985) Studies on the promoting effect of carboxylic acid derivatives on the rectal absorption of beta-lactam antibiotics in rats. Chem. Pharm. Bull. 33(1), 282–291. OECD (1981) OECD Guidelines for Testing of Chemicals. Section 1: Physical-Chemical Properties. Organization for Economic Co-operation and Development. OECD, Paris. Oepen, B.V., Kördel, W., Klein, W. (1991) Sorption of nonpolar and polar compounds to soils: Processes, measurements and experience with the applicability of the modified OECD-Guideline 106. Chemosphere 22(3/4), 285–304. Ollis, D.F. (1985) Contaminant degradation in water. Environ. Sci. Technol. 19(6), 480–484. Osol, A., Kilpatrick, M. (1933) The “salting-out” and “salting-in” of weak acids. I. The activity coefficients of the molecules of ortho, meta, and para chlorobenzoic acids in aqueous salt solutions. J. Am. Chem. Soc. 55, 4430–4440. Patrunkey, M., Pflegel, P. (1992) Influence partition coefficients of dibasic organic acids on permeation studies with polyacrylate membranes. Pharmazie 47(4), 306–307. Pearce, P.J., Simkins, R.J.J. (1968) Acid strengths of some substituted picric acids. Can. J. Chem. 46, 241–248. Perrin, D.D. (1972) Dissociation Constants of Organic Bases in Aqueous Solutions. IUPAC Chemical Data Series; Supplement, Butterworth, London. Pitter, P. (1976) Determination of biological degradability of organic substances. Water Res. 10, 231–235.

Potter, A.E., Ritter, H.L. (1954) The vapor pressure of acetic acid and acetic-d3 acid-d. The liquid density of acetic-d3 acid-d. J. Am. Chem. Soc. 58, 1040–1042. Rekker, R.F. (1977) The Hydrophobic Fragmental Constants. Its Derivation and Application, a Means of Characterizing Membrane Systems. Elsevier Scientific Publishing Company, Oxford, England. Rekker, R.F., de Kort, H.M. (1979) The hydrophobic fragmental constants: An extension to a 1000 data point set. Eur. J. Med. Chem. 14, 479–488. Ribeiro de Silva, M.A.V., Monte, M.J.S., Huinink, J. (1995) Vapour pressures and standard molar enthalpies of sublimation of seven crystalline copper(II), β-diketonates. The mean molar (Cu-O) bond-dissociation enthalpies. J. Chem. Thermodyn. 27, 175–190. Riddick, J., Bunger, W.B., Sakano, T.K. (1986) Organic Solvents: Physical Properties and Method of Purification. 4th Edition, John Wiley & Sons, New York. Rohrschneider, L. (1973) Solvent characterization of gas-liquid partition coefficients of selected solutes. Anal. Chem. 45(7), 1241–1247. Roslev, P., Madsen P.L., Thyme, J.B., Henriksen, K. (1998) Degradation of phthalate and di-(2-ethylhexyl)phthalate by indigenous and inoculated microorganisms in sludge-amended soil. Appl. Environ. Microbiol. 64, 4711–4719. Russell, C.J., Dixon, S.L., Jurs, P.C. (1992) Computer-assisted study of the relationship between molecular structure and Henry’s law constant. Anal. Chem. 64, 1350–1355. Sabljic, A. (1987) Nonempirical modeling of environmental distribution and toxicity of major organic pollutants. In: QSAR in Environ- mental Toxicology-II. Kaiser, K.L.E., Ed., pp. 309–332, D. Reidel Publishing Co., Dordrecht, The Netherlands. Sabljic, A., Güsten, H., Schönherr, J., Riederer, M. (1990) Modeling plant uptake of airborne organic chemicals. 1. Plant cuticle/water partitioning and molecular connectivity. Environ. Sci. Technol. 24, 1321–1326.

Sabjic, A., Güsten, H., Verhaar, H., Hermens, J. (1995) QSAR modelling of soil sorption. Improvements and systematics of log KOC vs. log KOW correlations. Chemosphere 31, 4489–4514. Sachinidis, J., Hill, J.O. (1980) A re-evaluation of the enthalpy of sublimation of some metal acetylacetonate complexes. Thermochim. Acta 35, 59–66. Sangster, J. (1989) Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data 18(3), 1111–1229. Sangster, J. (1993) LOGKOW Databank. Sangster Research Labs. Montreal, Canada. Scherrer, R.A., Howard, S.M. (1979) The analysis of electronic factors in quantitative structure-activity relationships using distribution coefficients. Adv. Chem. Ser.112, 507–526. Scow, K.M. (1982) Rate biodegradation. In: Handbook on Chemical Property Estimation Methods. Environmental Behavior of Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, McGraw-Hill, New York. Servant, J., Kouadio, G., Cros, B., Delmas, R. (1991) Carboxylic monoacids in the air of Mayombe Forest (Congo): Role of the forest as a source or sink. J. Atmos. Chem. 12, 367–380. Sidgwick, N.V., Ewbank, E.K. (1921) CVII. - The influence of position on the solubilities of substituted benzoic acids. J. Chem. Soc. 119, 979–1001. Sidgwick, N.V., Spurrell, W.J., Davies, T.E. (1915) CXXXII. - The solubility of the nitrophenols and other isomeric disubstitution products of benzene. J. Chem. Soc. 1202-1213. Singleton, D.L., Paraskevopoulos, G., Irwin, R.S., Jolly, G.S., McKenney, D.J. (1988) Rate and mechanism of the reaction of hydroxyl radicals with formic and deuteriated acids. J. Am. Chem. Soc. 110, 7786–7790. Sonnefeld, W.J., Zoller, W.H., May, W.E. (1983) Dynamic coupled-column liquid chromatographic determination of ambient temper- ature vapor pressures of polynuclear aromatic hydrocarbons. Anal. Chem. 55, 275–280.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Carboxylic Acids 2777

Spencer, W.F. (1976) Vapor pressure and vapor loss. In: A Literature Survey of Benchmark Pesticides. The George Washington University Medical Center, Department of Medical and Public Affairs, Science Communication Division, Washington DC. pp. 72–165. Staudinger, J., Roberts, P.V. (1996) A critical review of Henry’s law constants for environmental applications. Crit. Rev. Environ. Sci. Technol. 25, 205–297. Staudinger, J., Roberts, P.V. (2001) A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions. Chemosphere 44, 561–576. Stegeman, M.H.L., Peijnenburg, W.J.G.M., Verboom, H. (1993) A quantitative structure-activity relationship for the direct photolysis of meta-substituted halobenzene derivatives in water. Chemosphere 26(5), 837–849. Stephenson, R. M., Malanowski, S. (1987) Handbook of the Thermodynamics of Organic Compounds. Elsevier Science Publishing Co., New York. Strong, L.E., Neff, R.M., Whitesel, I. (1989) Thermodynamics of dissolving and solvation processes for benzoic acid and the toluic acids in aqueous solution. J. Sol. Chem. 18. 101–114. Stull, D.R. (1947) Vapor pressure of pure substances: Organic compounds. Ind. Eng. Chem. 39(4), 517–560. Sugunan, S., Thomas, B. (1993) Salting coefficients of 2,-, 3-, and 4-methylbenzoic acids. J. Chem. Eng. Data 38, 520–521. Suntio, L.R., Shiu, W.Y., Mackay, D., Seiber, J.N., Goltfelty, D. (1988) Critical review of Henry’s law constants for pesticides. Rev. Environ. Contam. Toxicol. 103, 1–59. Tabak, H.H., Govind, R. (1993) Prediction of biodegradation kinetics using a nonlinear group contribution method. Environ. Toxicol. Chem. 12, 251–260. Tomida, H., Yotsuyanagi, T., Ikeda, K. (1978) Solubilization of benzoic acid derivatives by polyoxyethylene lauryl ether. Chem. Pharm. Bull. 26(9), 2824–2831. Tsonopoulos, C., Prausnitz, J.M. (1971) Activity coefficients of aromatic solutes in dilute aqueous solutions. Ind. Eng. Chem. Fundam. 10, 593–600. Umland, J.B. (1983) The determination of 1-octanol/water partition ratios: An organic chemistry laboratory experiment. J. Chem. Ed. 60(12), 1081. Unger, S.H., Cook, J.R., Hollenberg, J.S. (1978) Simple procedure for determining octanol-aqueous partition, distribution, and ionization coefficients by reversed-phase high pressure liquid chromatography. J. Pharm. Sci. 67(10), 1364–1367. Urano, K., Maeda, H., Ogura, K., Wada, H. (1982) Direct analytical method for aromatic compounds in water by steam carrier gas chromatography. Water Res. 16, 323–327. Vallat, P., El Tayar, N., Testa, B. , Slacanin, I., Marston, A., Hostettmann, K. (1990) Centrifugal counter-current chromatography. A promising means of measuring partition coefficients. J. Chromatogr. 504(2), 411–419. Valvani, S.C., Yalkowsky, S.H., Roseman, T.J. (1981) Solubility and partitioning. IV. Aqueous solubility and octanol-water partition coefficients of liquid nonelectrolytes. J. Pharm. Sci. 70, 502–507. Veith, G.D., Austin, N.M., Morris, R.T. (1979) A rapid method for estimating LOG P for organic chemicals. Water Res. 13, 43–47. Verschueren, K. (1977) Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold, New York. von Oepen, B.V., Kördel, W., Klein, W. (1991) Sorption of nonpolar and polar compounds to soils: Processes, measurements and experience with the applicability of the modified OECD-Guideline 106. Chemosphere 22(3/4), 285–304. Wallington, T.J., Dagaut, P., Kurylo, M.J. (1988) Correlation between gas-phase and solution-phase reactivities of hydroxyl radicals toward saturated organic compounds. J. Phys. Chem. 92, 5024–5028. Wang, L., Xu, L., Xu, O., Tian, L., Zhang, Z. (1989) Determination of partition coefficients of organic acids and bases and the correlation of partition coefficients in different systems. Huanjing Kexue Xuebao 9(4), 418–424. Ward, H.L., Cooper, S.S. (1930) The system, benzoic acid, ortho phthalic acid, water. J. Phys. Chem. 24, 1484–1493. Wauchope, R.D., Buttler, T.M., Hornsby, A.G., Augustijn-Beckers, P.W.M., Burt, J.P. (1992) The SCS/ARS/CES pesticide properties database for environmental decision-making. Rev. Environ. Contam. Toxicol. 123, 1–155. Weast, R.C. (1972–73) CRC Handbook of Chemistry and Physics. 53th ed., CRC Press, Cleveland, OH. Weast, R.C. (1982–83) CRC Handbook of Chemistry and Physics. 63rd ed., CRC Press, Boca Raton, FL. Wiedemann, H.G. (1971) Applications of thermogravimetry of vapor pressure determination. Thermochim. Acta 3, 355–366. Whitehead, K.E., Geankoplis, C.J. (1955) Separation of formic and sulfuric acids by extraction. Ind. Eng. Chem. 47, 2114–2122. Windholz, M., Editor (1983) The Merck Index. 10th ed., Merck Co., Rahway, NJ. Wine, P.H., Astalos, R.J., Mauldin III, R.L. (1985) Kinetic and mechanistic study of the OH + HCOOH reaction. J. Phys. Chem. 89, 2620–2624. Wolfenden, R.V. (1978) Interaction of the peptide bond with solvent water: a vapor phase analysis. Biochem. 17, 201–204. Yalkowsky, S.H., Valvani, S.C. (1980) Solubility and partitioning I: Solubility of nonelectrolytes in water. J. Pharm. Sci. 69(8), 912–922. Yalkowsky, S.H., Valvani, S.C., Roseman, T.J. (1983) Solubility and partitioning. VI. Octanol solubility and octanol-water partition coefficients. J. Pharm. Sci. 72(8), 866–870. Yaguzhinskii, L.S., Smirnova, E.G., Ratnikova, L.A., Kolesova, G.M., Krasinskaya, I.P. (1973) Hydrophobic sites of the mitochondrial electron transfer system. J. Bioenerg. 5, 163–174. Yao, C.C.D., Haag, W.R. (1991) Rate constants for direct reactions of ozone with several drinking water contaminants. Water Res. 25, 761–773.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2778 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Yaws, C.L. (1994) Handbook of Vapor Pressure, Vol. 1 C1 to C4 Compounds, Vol. 2. C5 to C7 Compounds, Vol. 3, C8 to C28 Compounds. Gulf Publishing Co., Houston, TX. Yaws, C.L., Yang, H.C., Hopper, J.R., Hansen, K.C. (1990) Organic chemicals: Water solubility data. Chem. Eng. 97, 115–118. Yaws, C.L., Yang, H.C., Pan, X. (1991) Henry’s law constants for 362 organic compounds in water. Chem. Eng. 98(11), 179–185. Zeep, R.G., Wolfe, N.L., Gordon, J.A., Baughman, G.L. (1975) Dynamics of 2,4-D esters in surface waters. Hydrolysis, photolysis and vaporization. Environ. Sci. Technol. 9, 1144. Zetzsch, C., Stuhl, F. (1982) Proceedings of 2nd European Symposium on Physico-Chemical Behavior of Atmospheric Pollutants, pp. 129–137, Sept. 29 to Oct. 1 of 1981, Varese, Italy. Reidel Publishing Company, Dordrecht, The Netherlands.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 14 Phenolic Compounds

CONTENTS 14.1 List of Chemicals and Data Compilations ...... 2781 14.1.1 Alkylphenols and other substituted phenols ...... 2781 14.1.1.1 Phenol ...... 2781 14.1.1.2 o-Cresol ...... 2794 14.1.1.3 m-Cresol ...... 2803 14.1.1.4 p-Cresol ...... 2812 14.1.1.5 2,3-Dimethylphenol ...... 2821 14.1.1.6 2,4-Dimethylphenol ...... 2825 14.1.1.7 2,5-Dimethylphenol ...... 2831 14.1.1.8 2,6-Dimethylphenol ...... 2834 14.1.1.9 3,4-Dimethylphenol ...... 2838 14.1.1.10 3,5-Dimethylphenol ...... 2842 14.1.1.11 2,3,5-Trimethylphenol ...... 2845 14.1.1.12 2,4,6-Trimethylphenol ...... 2848 14.1.1.13 3,4,5-Trimethylphenol ...... 2849 14.1.1.14 o-Ethylphenol ...... 2850 14.1.1.15 p-Ethylphenol ...... 2853 14.1.1.16 4-Propylphenol ...... 2857 14.1.1.17 p-tert-Butylphenol ...... 2858 14.1.1.18 4-Octylphenol ...... 2861 14.1.1.19 4-Nonylphenol ...... 2862 14.1.1.20 1-Naphthol ...... 2865 14.1.1.21 2-Naphthol ...... 2868 14.1.1.22 2-Phenylphenol (2-Hydroxybiphenyl) ...... 2872 14.1.1.23 4-Phenylphenol (4-Hydroxybiphenyl) ...... 2875 14.1.2 Chlorophenols ...... 2877 14.1.2.1 2-Chlorophenol ...... 2877 14.1.2.2 3-Chlorophenol ...... 2882 14.1.2.3 4-Chlorophenol ...... 2886 14.1.2.4 2,4-Dichlorophenol ...... 2892 14.1.2.5 2,6-Dichlorophenol ...... 2898 14.1.2.6 3,4-Dichlorophenol ...... 2901 14.1.2.7 2,3,4-Trichlorophenol ...... 2903 14.1.2.8 2,4,5-Trichlorophenol ...... 2905 14.1.2.9 2,4,6-Trichlorophenol ...... 2910 14.1.2.10 2,3,4,5-Tetrachlorophenol ...... 2916 14.1.2.11 2,3,4,6-Tetrachlorophenol ...... 2918 14.1.2.12 2,3,5,6-Tetrachlorophenol ...... 2921 14.1.2.13 Pentachlorophenol ...... 2922 14.1.2.14 4-Chloro-m-cresol ...... 2930

2779

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2780 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.3 Nitrophenols ...... 2931 14.1.3.1 2-Nitrophenol ...... 2931 14.1.3.2 3-Nitrophenol ...... 2937 14.1.3.3 4-Nitrophenol ...... 2940 14.1.3.4 2,4-Dinitrophenol ...... 2945 14.1.3.5 2,4,6-Trinitrophenol (Picric acid) ...... 2948 14.1.3.6 4,6-Dinitro-o-cresol ...... 2950 14.1.4 Dihydroxybenzenes, methoxyphenols and chloroguaiacols ...... 2952 14.1.4.1 Catechol (1,2-Dihydroxybenzene) ...... 2952 14.1.4.2 3,5-Dichlorocatechol ...... 2956 14.1.4.3 4,5-Dichlorocatechol ...... 2957 14.1.4.4 3,4,5-Trichlorocatechol ...... 2958 14.1.4.5 Tetrachlorocatechol ...... 2959 14.1.4.6 Resorcinol (1,3-Dihydroxybenzene) ...... 2961 14.1.4.7 Hydroquinone (1,4-Dihydroxybenzene) ...... 2964 14.1.4.8 2-Methoxyphenol (Guaiacol) ...... 2968 14.1.4.9 3-Methoxyphenol ...... 2971 14.1.4.10 4-Methoxyphenol ...... 2972 14.1.4.11 4-Chloroguaiacol ...... 2973 14.1.4.12 4,5-Dichloroguaiacol ...... 2975 14.1.4.13 3,4,5-Trichloroguaiacol ...... 2977 14.1.4.14 4,5,6-Trichloroguaiacol ...... 2979 14.1.4.15 3,4,5,6-Tetrachloroguaiacol ...... 2981 14.1.4.16 Vanillin (4-Hydroxy-3-methoxybenzaldehyde) ...... 2983 14.1.4.17 5-Chlorovanillin ...... 2985 14.1.4.18 6-Chlorovanillin ...... 2987 14.1.4.19 5,6-Dichlorovanillin ...... 2988 14.1.4.20 Syringol (2,6-Dimethoxyphenol) ...... 2989 14.1.4.21 3-Chlorosyringol ...... 2990 14.1.4.22 3,5-Dichlorosyringol ...... 2991 14.1.4.23 Trichlorosyringol ...... 2992 14.1.4.24 2-Chlorosyringaldehyde ...... 2993 14.1.4.25 2,6-Dichlorosyringaldehyde ...... 2994 14.2 Summary Tables and QSPR Plots ...... 2995 14.3 References ...... 3006

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2781

14.1 LIST OF CHEMICALS AND DATA COMPILATIONS

14.1.1 ALKYLPHENOLS AND OTHER SUBSTITUTED PHENOLS 14.1.1.1 Phenol

OH

Common Name: Phenol Synonym: carbolic acid, phenic acid, phenylic acid, phenyl hydrate, phenyl hydroxide, hydroxybenzene, oxybenzene Chemical Name: phenol CAS Registry No: 108-95-2

Molecular Formula: C6H5OH Molecular Weight: 94.111 Melting Point (°C): 40.89 (Lide 2003) Boiling Point (°C): 181.87 (Lide 2003) Density (g/cm3 at 20°C): 1.5479 (supercooled liq., Ericksen & Dobbert 1955) 1.0576 (Weast 1982)

Acid Dissociation Constant, pKa: 9.90 (Blackman et al. 1955, McLeese et al. 1979) 10.02 (Herington & Kynaston 1957; Callahan et al. 1979) 9.82 (Sillén & Martell 1971; Kaiser et al. 1984; Shigeoka et al. 1988) 10.0 (Serjeant & Dempsey 1979; Paris et al. 1982; Miyake et al. 1987; Tratnyek & Hoigné 1991) 9.92 (Könemann 1981; Könemann & Musch 1981; Ugland et al. 1981; Varhaníčková et al. 1995) 10.05 (Saarikoski 1982; Saarikoski & Viluksela 1982) 9.90 (UV absorption, Hoigné & Bader 1983; Scully & Hoigné 1987) 9.99 (Dean 1985; Schultz & Cajina-Quezada 1987; Hersey et al. 1989) 10.93 (Miyake et al. 1987) 10.12 (UV spectrophotometry, Nendza & Seydel 1988) Molar Volume (cm3/mol): 89.0 (20°C, calculated-density) 103.4 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 56.13, 45.83 (25°C, bp, Dreisbach 1955) 47.30 (at normal bp, Biddiscombe & Martin 1958) 45.689 (at normal boiling point, Andon et al. 1960) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): 68.66 (at 25°C, Biddiscombe & Martin 1958; Andon et al. 1960) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 11.514 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): 36.63 (Tsonopoulos & Prausnitz 1971) 36.0, 56.5 (observed, estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.698 (mp at 40.89°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 86600* (synthetic method, measured range 20–65.86°C, Hill & Malisoff 1926) 83000 (20°C, synthetic method, Jones 1929) 89300* (22.7°C, thermostatic and synthetic methods, measured range 22.7–60.9°C, Morrison 1944)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2782 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

88360 (shake flask-UV at pH 5.1, Blackman et al. 1955) 79000* (20°C, synthetic method/shake flask-optical, measured range 0–68.3°C, Ericksen & Dobbert 1955) 80000 (20°C, Mulley & Metcalf 1966) 78000 (shake flask-spectrophotometry, Roberts et al. 1977) 79750 (shake flask-GC, Kraij & Sincic 1980) 76514 (generator column-HPLC, Wasik et al. 1981) 150580 (20°C, shake flask-UV, Hashimoto et al. 1984) 87000 (solid-phase microextraction SPME-GC, Buchholz & Pawliszyn 1994) 84045* (shake flask-conductimetry, measured range 15.1–35°C, Achard et al. 1996) 94100* (25.35°C, shake flask-optical method, measured range 298.5–336.7 K, Jaoui et al. 1999) 83119* (23.15°C, shake flask-optical method, measured range 292.5–333.6 K, Jaoui et al. 2002) ln [S/(mol kg–1)] = 7.3013 – 853.62/(T/K); temp range 288–313 K (eq.-I derived using reported exptl. data, Jaoui et al. 2002) ln [S/(mol kg–1)] = 10.731 – 1931.7/(T/K); temp range 313–332 K (eq.-II derived using reported exptl. data, Jaoui et al. 2002)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (44.8 °C, static method-manometer, measured range 44.8–181.4 °C, Kahlbaum 1898) 28531* (141.1 °C, mercury manometer, measured range 141.1–181.1 °C, Goldblum et al. 1947) log (P/mmHg) = –2510/(T/K) + 8.395; temp range: 141.1–181.1°C (Hg manometer, Goldblum et al. 1947) 55.54* (extrapolated-regression of tabulated data, temp range 40.1–181.9°C, Stull 1947) 7605* (107.15 °C, ebulliometry, measured range 107.15–181.75 °C, Dreisbach & Shrader 1949) 1333* (70.50 °C, ebulliometry, measured range 70.50–181.7 °C, Vonterres et al. 1955) 70.75 (calculated-Antoine eq., Dreisbach 1955) log (P/mmHg) = 7.57893 – 1817.0/(205.0 + t/°C), temp range: 93–240°C, (Antoine eq. for liquid state, Dreisbach 1955) 44.26* (24.85°C, gas saturation and diaphragm manometer measurements, measured range 0–37.5°C, Biddiscombe & Martin 1958) 45.71 (gas saturation and diaphragm manometer fitted to Antoine eq., Biddiscombe & Martin 1958) log (P/mmHg) = 11.5638 – 3586.36/(t/°C + 273); temp range 9–40°C (Antoine eq. from gas-saturation and diaphragm manometer methods, Biddiscombe & Martin. 1958; Andon et al. 1960)

log (PL/mmHg) = 7.13457 – 1615.072/(t/°C + 174.569); temp range 110–200°C (Antoine eq. from gas-saturation and diaphragm manometer methods, Biddiscombe & Martin. 1958; Andon et al. 1960) 45.07 (interpolated- Antoine eq., Andon et al. 1960) 70.70 (20°C, supercooled liq., Andon et al. 1960) 83.95 (extrapolated supercooled liquid value, Antoine eq., Weast 1972–73) log (P/mmHg) = [–0.2185 × 11891.5/(T/K)] + 8.513843; temp range 40.1–418.7°C (Antoine eq., Weast 1972–73) 47.01 (extrapolated-Antoine eq., Boublik et al. 1973) log (P/mmHg) = 7.13301 – 1516.79/(174.954 + t/°C); temp range 107–182°C (Antoine eq. from reported exptl. data of Dreisbach & Shrader 1949, Boublik et al. 1973) 26.66, 133.3 (20°C, 40°C, Verschueren 1977, 1983) 16.27 (extrapolated-Cox eq., Chao et al. 1983) log (P/mmHg) = [1– 454.610/(T/K)] × 10^{1.00375 – 8.88757 × 10–4·(T/K) + 6.83750 × 10–7·(T/K)2}; temp range: 323.205–694.25 K, (Cox eq., Chao et al. 1983) 46.91, 54.74 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.25543 – 1515.182/(174.182 + t/°C); temp range 107–181.75°C (Antoine eq. from reported exptl. data of Dreisbach & Shrader 1949, Boublik et al. 1984) log (P/kPa) = 6.70346 – 1793.899/(200.218 + t/°C); temp range 70.5–181.7°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 47.00 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.1330 – 1516.79/(174.95 + t/°C); temp range 107–182°C (Antoine eq., Dean 1985, 1992) 55.00 (selected, Riddick et al. 1986) 45.7, 45.32 (interpolated-Antoine eq., Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2783

log (PS/kPa) = 10.6887 – 3586.36/(T/K); temp range 282–313 K (Antoine eq.-I, solid, Stephenson & Malanowski 1987)

log (PS/kPa) = 10.71099 – 3594.703/(T/K); temp range 273–313 K (Antoine eq.-II, solid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.25947 – 1516.072/(–98.581 + T/K); temp range 383–473 K (Antoine eq.-III, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.34757 – 1482.82/(–113.862 + T/K); temp range 455–655 K (Antoine eq.-IV, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.57957 – 1710.287/(–80.273 + T/K); temp range 314–395 K (Antoine eq.-V, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.26694 – 1522.07/(–97.834 + T/K); temp range 387–456 K (Antoine eq.-VI, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.30177 – 1548.368/(–94.612 + T/K); temp range 449–526 K (Antoine eq.-VII, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.92874 – 2146.053/(–17.025 + T/K); temp range 520–625 K (Antoine eq.-VIII, liquid, Stephenson & Malanowski 1987) 61.16 (extrapolated-four-parameter vapor pressure eq., Nesterova et al. 1990) log (P/Pa) = 37.91650 – 4155.615/(T/K) – 9.02308·log (T/K) + 0.04526 × 10–2·(T/K); temp range: 394–455 K (four-parameter vapor pressure eq. using exptl data of Biddiscombe & Martin 1958, Nesterova et al. 1990) log (P/Pa) = 127.08645 – 7292.585/(T/K) – 42.92601·log (T/K) + 1.76834 × 10–2·(T/K); temp interval of inves- tigation 380–455 K (four-parameter vapor pressure eq. derived using data of Dreisbach & Shrader 1949, Nesterova et al. 1990) log (P/mmHg) = 23.5332 – 3.4961 × 103/(T/K) – 4.899·log (T/K) + 1.216 × 10–4·(T/K) + 9.6537 × 10–13·(T/K)2; temp range 314–694 K (vapor pressure eq., Yaws 1994) 173* (40.09°C, ebulliometry, measured range 40–90°C, Tabai et al. 1997)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.0402 (exptl., Hine & Mookerjee 1975; Howard 1989) 0.065, 1.082 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 0.0718* (27.0°C, gas stripping-GC, measured range –2.0 to 27.0°C Abd-El-Bary et al. 1986) 9 kH/kPa = 2.69 × 10 exp[–6120/(T/K)], temp range –2 to 90°C (gas stripping-GC measurements plus reported data at higher temp., Abd-El-Bary et al. 1986) 1.245, 2.193, 3.322 (75.9, 88.7, 98.5°C, vapor-liquid equilibrium-GC, Dohnal & Fenclová 1995) 0.0607* (extrapolated from temp dependence eq., Dohnal & Fenclová 1995)

ln KAW = 8.701 – 5760/(T/K), temp range 20–100°C (vapor-liquid equilibrium measurements with additional literature data, Dohnal & Fenclová 1995) 0.0342* (313.24 K, derived from measured P, temp range 313.240–363.14 K, Tabai et al. 1997)

kH/kPa = 670.117 – 39274.5/(T/K) – 94.6679; temp range 313–363 K (activity coefficient by ebulliometric method, Tabai et al. 1997) < 0.240 (gas stripping-GC, Altschuh et al. 1999) 0.0536 (20°C, single equilibrium static technique SEST, Sheikheldin et al. 2001) 0.0320* (gas stripping-UV, measured range 284–302 K, Harrison et al. 2002) ln [H/(M atm–1)] = 5850/(T/K) – 11.6; temp range 284–302 K, Harrison et al. 2002) 0.157* (dynamic equilibrium/gas stripping-GC/MS, measured range 5–25°C, Feigenbrugel et al. 2004)

Octanol/Water Partition Coefficient, log KOW. Additional data at other temperatures designated * are compiled at the end of this section: 1.46 (shake flask-UV, Fujita et al. 1964) 1.46 ± 0.01 (shake flask-UV, Iwasa et al. 1965) 1.42 (shake flask-UV at pH 7.4, Rogers & Cammarata 1969) 1.60 (shake flask, Kiezyk & Mackay 1971) 1.47 (Leo et al. 1971) 1.51 (shake flask-UV at pH 7.45, Umeyama et al. 1971) 1.49 (shake flask, Korenman 1972)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2784 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

1.510* (20 °C, shake flask-concn ratio, measured range 10–60 °C, Korenman & Udalova 1974) 1.46, 1.61 (LC-k′ correlation, calculated-π const., Carlson et al. 1975) 1.54 (shake flask-UV, Davis et al. 1976) 1.45 (HPLC-RT correlation, Mirrlees et al. 1976) 1.48 ± 0.02 (shake flask at pH 7, Unger et al. 1978) 1.48, 1.46, 1.49, 1.51, 0.62, 2.20 (literature values, Hansch & Leo 1979) 1.46 (HPLC-k′ correlation, Butte et al. 1981; Butte et al. 1987) 1.45 (generator column-HPLC/UV, Wasik et al. 1981) 1.54 (RP-HPLC-k′ correlation, D′Amboise & Hanai 1982) 1.28, 1.54 (RP-LC-k′ correlation, calculated-fragment const. as per Rekker 1977, Hanai & Hubert 1982) 1.54 (HPLC-k′ correlation, Miyake & Terada 1982; Miyake et al. 1987) 1.62 (inter-laboratory, shake flask average, Eadsforth & Moser 1983) 1.16 (inter-laboratory, HPLC average, Eadsforth & Moser 1983) 1.49, 1.53 ± 0.09 (selected best lit. value, exptl.-ALPM, Garst 1984) 1.46, 1.55 ± 0.07 (selected best lit. value, exptl.-ALPM, Garst & Wilson 1984) 1.08 (calculated-activity coeff. γ from UNIFAC, Campbell & Luthy 1985) 1.46 (RP-HPLC-RT correlation, Chin et al. 1986) 1.00, 1.42 (HPLC-k′ correlation, Eadsforth 1986) 1.46 (shake flask-CPC centrifugal partition chromatography, Berthod et al. 1988) 1.46 (RP-HPLC-capacity ratio correlation, Minick et al. 1988) 1.46 (HPLC-RT correlation, Shigeota et al. 1988) 1.52 ± 0.01 (filter chamber-UV, Hersey et al. 1989) 1.50 (recommended, Sangster 1989, 1993) 1.52, 1.58, 1.69 (CPC-RV correlation, Gluck & Martin 1990) 1.47 (shake flask-UV, Kramer & Henze 1990) 1.37 ± 0.06 (liquid-liquid extraction-flow injection-UV, Kubá 1991) 1.57 (shake flask-GC, Kishino & Kobayashi 1994) 1.46 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF: 4.16 (total 14C in fathead minnow, mean exposure level 0.0025 µg·mg–1, Call et al. 1980) 4.23 (total 14C in fathead minnow, mean exposure level 0.0327 µg·mg–1, Call et al. 1980) 4.20 (total 14C in fathead minnow, mean value, Call et al. 1980)

2.20 (goldfish, rate constant ratio k1/k2, Nagel & Urich 1980) 0.97 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 1.30, 2.30, 3.34 (golden ide, algae, activated sludge, Freitag et al. 1985) 2.30 (chlorella fusca, Freitag et al. 1985; quoted, Howard 1989) 1.20 (algae, maximum apparent BCF, Hardy et al. 1985) 0.544 (algae, real BCF with biotransformation, Hardy et al. 1985) 3.14 (daphnia magna, estimated-14C activity and on dry wt. basis, Dauble et al. 1986) 2.44 (daphnia magna, based on elimination phase, Dauble et al. 1986) 1.28 (daphnia magna, Dauble et al. 1986; quoted, Geyer et al. 1991) 1.24 (zebrafish, Butte et al. 1987)

Sorption Partition Coefficient, log KOC: 1.43 (soil, Kenaga & Goring 1980)

1.48 (20°C, sorption isotherm, converted form KOM organic carbon in soils, Briggs 1981) 1.15 (sediment-water, calculated-KOW, Mabey et al. 1982) 1.57, 1.96 (silt loams, Scott et al. 1983, quoted, Howard 1989) 3.46 (untreated fine sediment, Isaacson & Frink 1984) 3.49 (untreated coarse sediment, Isaacson & Frink 1984) 1.35 (HPLC-k′ correlation, mobile phase buffered to pH 3, Hodson & Williams 1988)

2.17 (soil, calculated-KOW, Howard 1989) 2.4, 2.43 (soil: quoted, calculated-MCI χ, Meylan et al. 1992)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2785

2.68, 2.38 (natural zeolite modified with a cation surfactant HDTMA with surface coverage of 100, 200 mmol/kg at pH 7, shake flask-sorption isotherm, Li et al. 2000) 1.43 (soil, calculated-MCI 1χ, Sabljic et al. 1995) 1.42, 1.00. 1.24 (RP-HPLC-k′ correlation on 3 different stationary phases, Szabo et al. 1995) ′ 1.59, 1.67 (HP:LC-k correlation, C18 column, Hong et al. 1996) 1.32; 2.43 (HPLC-screening method; calculated-PCKOC fragment method, Müller & Kördel 1998) 1.56, 1.556, 1.255, 1.307, 1.52 (soil, first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-HPLC/UV, Gawlik et al. 1998, 1999) 1.310, 1.750, 1.281, 1.601, 1.544 (soil, second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-HPLC/UV, Gawlik et al. 1999) 1.310, 1.750, 1.281, 1.601, 1.544 (soil, second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-HPLC/UV and HPLC-k′ correlation, Gawlik et al. 2000) 1.37, 1.34 (soils: organic carbon OC ≥ 0.1% and pH 3.2–7.4, OC ≥ 0.5%, average, Delle Site 2001)

Environmental Fate Rate Constants, k, or Half-lives, t½:

Volatilization: estimated t½ ~ 3.2 months for evaporation from water (Howard 1989); t½ = 88 d, calculated for evaporation from a model river of 1 m deep with a current of 3 m/s and with a wind velocity of 3 m/s (Lyman et al. 1982; quoted, Howard 1989). –1 Photolysis: phototransformation rate k = 0.015 h with t½ = 46 h in the summer (mean temp 24°C) and k = –1 –1 0.0040 h with t½ = 173 h in the winter (mean temp 10°C) in distilled water; k = 0.018 h with t½ = 39 h –1 in the summer and k = 0.0074 h with t½ = 94 h in the winter in estuarine water when exposed to full sunlight and microbes (Hwang et al. 1986); –1 –1 photomineralization rate k = 0.04 h with t½ = 16 d in the summer and k = 0.0041 h with t½ = 169 d in –1 –1 the winter in distilled water; k = 0.095 h with t½ = 7 d in the summer and k = 0.010 h with t½ = 73 d in winter in estuarine water when exposed to full sunlight and microbes (Hwang et al. 1986);

atmospheric t½ = 46 to 173 h, based on reported half-life for photolysis under sunlight for phenol in distilled water in the summer and winter; aquatic photolysis t½ = 46 to 173 h, based on reported half-life for photolysis under sunlight for phenol in distilled water in the summer and winter (Howard et al. 1991) Apparent first-order rate constant phototransformation at λ > 285 nm, k = (3.10 ± 0.10) × 10–2 h–1 in purified water (Zamy et al. 2004)

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: 4 –1 –1 k = 1 × 10 M s for the reaction with RO2 radical at 30°C in aquatic systems with t½ = 0.8 d (Howard 1972; Hendry et al. 1974; quoted, Mill 1982) 2 –1 –1 k < 2 × 10 M s for the reaction with singlet oxygen at 25°C with t½ > 100 yr (Foote 1976; Mill 1979; quoted, Mill 1982) –12 3 –1 –1 kNO3 = (2.0 ± 0.4) × 10 cm molecule s at (300 ± 1) K (Carter et al. 1981) k = 6.5 × 103 s–1, dye-sensitized photooxidation first-order rate constant, second order k = (1.3 ± 0.2) × 103 M–1 s–1 for the reaction with ozone in water using 1 mM PrOH as scavenger at pH 1.7–2.0 and 20–23°C (Hoigné & Bader 1983a) –12 3 –1 –1 kNO3 = (2.10 ± 0.50) × 10 cm molecule s at 296 ± 2 K (Atkinson et al. 1984) –12 3 –1 –1 kNO3 = (3.64 ± 0.14) × 10 cm molecule s at 294 K with reference to reaction for NO3 radical with 2-methyl-2-butene (Atkinson et al. 1984; quoted, Atkinson 1991) –12 3 –1 –1 –12 3 –1 –1 kOH(exptl) = 28.0 × 10 cm molecule s , kOH(calc) = 45.5 × 10 cm molecule s at room temp. (Atkinson et al. 1985) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 36 × 10 cm molecule s , and kOH(obs) = 28.3 × 10 cm molecule s at room temp. (SAR, Atkinson 1987; quoted, Sabljic & Güsten 1990; Müller & Klein 1991) k = (2 to 3) × 106 M–1 s–1 at pH 8, 1.9 × 107 M–1 s–1 at pH 9, 4.6 × 107 M–1 s–1 at pH 9.5, 9.0 × 107 M–1 s–1 at pH 10 and 1.8 × 108 M–1 s–1 at pH 11.5 for the reaction with singlet oxygen at (19 ± 2)°C in water (Scully & Hoigné 1987) –12 3 –1 –1 kNO3 = 3.63 × 10 cm molecule s at 298 K (Atkinson et al. 1988; quoted, Sabljic & Güsten 1990; Müller & Klein 1991) –12 3 –1 –1 kOH = 26.3 × 10 cm molecule s at 298 K (recommended, Atkinson 1989, 1990) –12 3 –1 –1 kNO3 = (2.59 ± 0.52) × 10 cm molecule s at 300 ± 1 K with reference to reaction for NO3 radicals with cis-2-butene (Atkinson 1991)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2786 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

k = (2.6 ± 4) × 106 M–1 s–1 for the reaction with singlet oxygen in aqueous phosphate buffer at (27 ± 1)°C (Tratynyek & Hoigné 1991) –12 3 –1 –1 –12 3 –1 –1 kOH = 10.45 × 10 cm molecule s , kNO3 = 11.44 × 10 cm molecule s (Müller & Klein 1991) –12 3 –1 –1 kNO3 = (3.92 ± 0.25) × 10 cm molecule s at 296 ± 2 K with reference to reaction for NO3 radical with –12 3 –1 –1 2-methyl-2-butene; kOH = 26.5 × 10 cm molecule s at room temp. (Atkinson et al. 1992) –12 3 –1 –1 kOH(calc) = 12 × 10 cm molecule s (molecular orbital estimation method, Klamt 1993) –11 3 –1 –1 9 –1 –1 τ kOH = 2.6 × 10 cm mol s , and kOH(aq.) = 6.7 × 10 M s , the calculated atmospheric lifetime =0.45d under clear sky; τ = 0.38 d under cloudy conditions at 298 K, reduced to 0.26 d due the average temperature of tropospheric clouds at 283 K (Feigenbrugel et al. 2004) Hydrolysis: no hydrolyzable function group (Howard et al. 1991).

Biodegradation: t½ =1–2 d for bacteria to utilize 95% of 300 ppm in parent substrate (Tabak et al. 1964) decomposition by soil microflora within 1 d (Alexander & Lustigman 1966; quoted, Verschueren 1983) complete disappearance in soil suspensions in 2 d (Woodcock 1971; quoted, Verschueren 1983) –1 –1 kB = 80.0 mg COD g h based on measurements of COD decrease using activated sludge inoculum with 20–d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982) –1 –1 kB = (0.094 ± 0.003) h at feed concentration of 180 mg/L at 20°C and k = (0.095 ± 0.007) h at feed concentration of 360 mg/L at 20°C in a continuous stirred reactor (Beltrame et al. 1984) –1 –1 kB = 0.035 d with t½ = 20 d in ground water; kB = 0.065 d with t½ = 11 d in Lester River water; –1 kB =0.247d with t½ = 3 d in Superior harbor waters (Vaishnav & Babeu 1987) –1 –1 kB = 0.03 h and t½ = 28 h for estuarine water in summer (mean temp 24°C) and kB = 0.011 h with –1 –1 t½ = 62 h in winter (mean temp. 10°C); kB = 0.4 h with t½ = 2 d in summer and kB = 0.0051 h with t½ = 146 d in winter in darkness with microbes (Hwang et al. 1986) –1 kB = 0.041–0.028 h in 10–100 mg/L sludge (Urano & Kato 1986) complete degradation within 1 d in water from 3 lakes, and degradation is somewhat slower in salt water

with t½ = 9 d in estuary river (Howard 1989) –1 –1 –1 kB(exptl., average) = 0.0498 h ; kB(calc) = 0.0545 h (nonlinear) and kB(calc) = 0.0503 h (linear) (group contribution method, Tabak & Govind 1993)

t½(aerobic) = 0.25 d, t½(anaerobic) = 8.0 d in natural waters (Capel & Larson 1995) Biotransformation: microbial transformation k = (7.1 ± 1.3) × 10–12 L·organism–1 h–1 (Paris et al. 1982); estimated bacterial transformation k = 3 × 10–6 mL cell–1 h–1 in water (Mabey et al. 1982); microbial transformation rate constants in pond and river samples k = (2.0 ± 1.5) × 10–10 to (4.8 ± 3.1) × 10–10 L organism–1 h–1 at five different sites (Paris et al. 1983; quoted, Steen 1991); degradation rate constants k = 1.08 × 10–16 mol cell–1 h–1 from pure culture studies and k = 0.90 × 10–12 to 3.00 × 10–12 mol cell–1 h–1 with microorganisms in Seneca River waters (Banerjee et al. 1984).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: –1 –1 k1 = 3.15 h ; k2 = 0.02 h (goldfish, Nagel & Urich 1980)

Half-Lives in the Environment:

Air: t½ = 0.61 d by reaction with OH radicals in air (Howard 1989); t½ = 2.28 to 22.8 h, based on reaction with OH radical (Howard et al. 1991) –1 degradation k = 0.0462 d corresponding to t½ = 360 h in air (Guinee & Heijungs 1993); atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994);

calculated lifetimes of 5.3 h and 9.0 min for reactions with OH, NO3 radical, respectively (Atkinson 2000). atmospheric lifetime τ = 0.45 d under clear sky and τ = 0.38 d under cloudy conditions based on reactions with OH radical in gas and aqueous phases at 298 K, reduced to τ = 0.26 d due to average temperature of tropospheric cloud at 283 K (Feigenbrugel et al. 2004) Surface water: rate constant k = (1.3 ± 0.2) × 103 M–1 s–1 for the reaction with ozone at pH 2.0–6.0 (Hoigné & Bader 1983);

t½ = 46 h in summer, t½ = 173 h in winter in distilled water and t½ = 39 h in summer, t½ = 94 h in winter in estuarine water, based on phototransformation rate when exposed to full sunlight and microbes (Hwang et al. 1986)

t½ = 43 h in summer, t½ = 118 h in winter in poisoned estuarine water, based on photo-transformation rate and t½ = 384 h or 16 d in summer, t½ = 2640 h or 110 d in winter in poisoned estuarine water, based on photomineralization rate (Hwang et al. 1986);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2787

t½ = 384 h or 16 d in summer, t½ = 4056 h or 169 d in winter in distilled water; and t½ = 168 h or 7 d in summer, t½ = 1752 h or 73 d in winter in estuarine water, based on photo-mineralization rate when exposed to full sunlight and microbes (Hwang et al. 1986);

t½ = 2000 h in water at pH 8 and 19 ± 2°C for the reaction with singlet oxygen (Scully & Hoigné 1987); biodegradation t½ = 11 d in river waters and t½ = 3 d in Superior harbor waters (Vaishnav & Babeu 1987); complete degradation within 1 d in water from 3 lakes, and degradation is somewhat slower in salt water

with t½ = 9 d in estuary river (Howard 1989); t½ = 77 to 3840 h in water, based on reported reaction rate constant for RO2 radical with the phenols class, t½ = 5.3 to 56.5 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991); –1 degradation rate constant k = 0.0217 d corresponding to a t½ = 766 h in water (quoted from Howard 1989, Guinee & Heijungs 1993)

t½(aerobic) = 0.25 d, t½(anaerobic) = 8 d in natural waters (Capel & Larson 1995) Groundwater: biodegradation t½ = 20 d (Vashinav & Babeu 1987); t½ = 12 to 168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Soil: Days for complete disappearance by microbial decomposition in soil suspension: 2 d in Dunkirk silt loam, 1 d in Mardin silt loam (Alexander & Aleem 1961)

degradation in soil completed in 2–5 d even in subsurface soils and t½ = 2.70 and 3.51 h of low concentration of phenol in 2 silt loam soils (Howard 1989);

t½ = 24 to 240 h, based on aerobic soil die-away data (Howard et al. 1991); t½ = 4.1 d in a slightly basic sandy loam soil containing 3.25% organic matter and t½ = 23 d in acidic clay soil with < 1.0% organic matter, based on aerobic batch lab microcosm experiments (Loehr & Matthews 1992) –1 degradation rate constant k = 0.227 d corresponding to a t½ = 73.3 h in soil (quoted from Howard 1989, Guinee & Heijungs 1993). Biota: elimination from goldfish within 4 h (Nagel & Urich 1980); µ –1 depuration t½(obs) = 336 h, t½(calc) = 385 h for exposure level of 0.0025 g mL and t½(obs.) = 438 h, µ –1 t½(calc) = 497 h for exposure level of 0.0375 g mL (Call et al. 1980); depuration t½(calc) = 8 to 44 min in algae (Hardy et al. 1985); half-lives in fish t½ < 1 d for goldfish, t½ = 14–18 d for minnow (Niimi 1987)

TABLE 14.1.1.1.1 Reported aqueous solubilities of phenol at various temperatures 1.

Hill & Malisoff 1926 Morrison 1944 Erichsen & Dobbert 1955 Achard et al. 1996

volumetric method thermostatic and synthetic shake flask-optical method shake flake-conductivity

t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 20.0 83600 22.7 89300 0 73000. 15.1 76044 25.0 86600 26.9 93159 10 75000 25.0 84045 30.0 92200 32.3 98617 20 79000 35.0 93098 35.0 99100 36.0 104169 30 86000 57.30 148700 43.7 108968 40 97000 62.74 193500 47.7 128823 50 115000 65.79 277700 50.5 138892 60 153000 66.01 291300 53.5 149807 62 166000 65.79 202100 55.8 162323 64 183000 65.84 313500 57.8 174650 66 215000 65.86 322300 60.9 203538 67 252000 65.84 327900 68 316000 68.3 365000 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2788 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.1.1.1 (Continued) 2.

Jaoui et al. 1999 Jaoui et al. 2002

static visual method static visual method*

T/K S/g·m–3 T/K S/g·m–3 298.5 94100 292.5 81011 307.5 99328 296.1 82959 313.4 104556 296.3 83119 313.7 143764 300.2 86290 319.8 118149 302.7 88341 324.8 134877 305.8 90901 331.5 151606 308.4 93065 336.7 182970 313.3 97186 315.4 100169 322.4 114416 326.8 124024 331.3 134394 333.6 139814 some data from Achard et al. 1996, Jaoui et al. 1999

Phenol: solubility vs. 1/T -2.0 experimental data Hashimoto et al. 1984 -2.5

-3.0

x nl x -3.5

-4.0

-4.5

-5.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 14.1.1.1.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for phenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2789

TABLE 14.1.1.1.2 Reported vapor pressures of phenol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4) 1.

Kahlbaum 1898* Stull 1947 Goldblum et al. 1947 Dreisbach & Shrader 1949

static-manometer summary of literature data mercury manometer ebulliometry

t/°CP/Pat/°CP/Pa°CP/Pat/ t/°CP/Pa 44.8 133.3 40.1 133.3 141.1 28531 107.15 7605 51.5 266.6 62.5 666.6 152.6 42263 113.81 10114 55.8 400.0 73.8 1333 164.4 61061 125.95 16500 59.3 533.3 86.0 2666 168.3 68661 152.37 42066 62.5 666.6 100.1 5333 173.5 80127 167.63 67661 73.5 1333.2 108.4 7999 181.0 98659 181.75 101325 85.8 2666.4 121.4 13332 140.2 27598 93.8 3999.7 139.0 26664 145.1 32797 bp/°C 181.75 99.8 5533 160.0 53329 171.4 75194 104.4 6661 181.9 101325 176.6 87060 113.7 9992 181.1 98525 120.2 13332 mp/°C 40.6 139.0 26664 eq. 1 P/mmHg 151.0 39997 A 8.395 160.0 53329 B 2510 167.0 66661 173.0 79993 179.0 93326 181.4 101325 *complete list see ref. 2.

Vonterres et al. 1955 Biddiscombe & Martin 1958 Tabai et al. 1997

ebulliometry gas saturation/diaphragm manometer ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa solid liquid 70.50 1333 0 3.746 121.25 13583 40.09 173 90.20 3333 5.1 6.159 131.183 20005 50.0 345 104.2 6666 9.25 9.413 138.014 25635 60.0 655 113.0 9999 9.85 10.40 140.704 28226 70.03 1187 121.5 13332 10.4 10.47 147.204 35310 79.97 2048 132.5 19998 14.5 16.0 155.343 46139 89.99 3415 140.1 26664 18.25 22.93 156.196 47902 147.0 33330 18.25 23.20 156.528 53130 152.0 39997 19.6 26.66 159.799 54843 153.0 43330 22.0 35.60 160.124 58843 156.0 46663 24.85 44.26 163.795 60104 160.0 53329 28.15 63.73 168.945 70154 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2790 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.1.1.2 (Continued)

Vonterres et al. 1955 Biddiscombe & Martin 1958 Tabai et al. 1997

ebulliometry gas saturation/diaphragm manometer ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa 164.0 59995 30.5 74.39 169.991 72357 167.0 73327 32.95 92.93 171.025 74590 170.5 73327 35.0 108.5 172.635 78154 173.0 79993 37.45 138.7 173.066 79148 176.0 86659 175.767 85526 179.0 93325 bp/°C 181.839 178.196 91590 181.7 101325 179.878 94918 Antoine eq. for temp range: 180.863 98625 0–40°C 181.551 100497 eq. 1 P/mmHg 182.053 101904 A 11.5638 B 3586.36 Antoine eq. for temp range: C 273 110–200°C eq. 2 P/mmHg ∆ –1 HV/(kJ mol ) A 7.13457 at bp 47.304 B 1516.072 at 25°C 68.66 C 174.569

Phenol: vapor pressure vs. 1/T 7.0 experimental data Stull 1947 6.0

5.0

4.0 )aP/

S 3.0 P(gol

2.0

1.0

0.0 b.p. = 181.87 °C m.p. = 40.89 °C -1.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 14.1.1.1.2 Logarithm of vapor pressure versus reciprocal temperature for phenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2791

TABLE 14.1.1.1.3 Reported Henry’s law constants of phenol at various temperatures and temperature dependence equations

ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a)

ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a)

ln (kH/atm) = A – B/(T/K) (3) ln H = A – B/(T/K) (4) log H = A – B/(T/K) (4a)

ln kH = A – B/(T/K) – C·ln (T/K) (5)

Abd-El-Bary et al. 1986 Dohnal & Fenclová 1995 Tabai et al. 1997 Feigenbrugel et al. 2004

gas stripping-GC/FID vapor-liquid equilibrium derived from measured P gas stripping-GC/MS

t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) T/K H/(Pa m3/mol) T/K H/(Pa m3/mol) –2.0 0.0072 4.0 0.0127* 313.24 0.0342 278.15 0.0222 4.0 0.0127 18.3 0.0373* 323.15 0.090 278.15 0.0299 18.3 0.0373 27.0 0.0721* 333.15 0.202 278.20 0.0280 27.0 0.0718 80.3 1.552* 343.18 0.355 278.25 0.0337 44.4 0.193* 100.0 3.537* 353.12 0.506 283.05 0.0340 56.3 0.437* 75.9 1.245 363.14 0.999 283.15 0.0456 75.0 1.233* 88.7 2.193 283.15 0.0328

90.0 2.376* 98.6 3.322 eq. 5 kH/kPa 283.25 0.0428 25.0 0.0607# A 670.117 283.25 0.0404 *data from literature 25.0 0.0605$ B 29374.5 288.15 0.0590 #calculated from eq. 1 C 94.6679 288.15 0.0928 $calculated from eq. 3 temp range 313–363 K 288.25 0.0560 *data from literature 293.15 0.1166

eq. 3 kH/kPa 293.15 0.169

A 21.7128 eq. 1 KAW Harrison et al. 2002 293.15 0.1093 B 6120.0 A 8.701 gas stripping-UV 293.15 0.1065 eq. derived included lit. data B 5760 T/K H/(Pa m3/mol) 293.25 0.0960 enthalpy of hydration: 293.25 0.1071 ∆ –1 HK/(kJ mol ) = 47.9 ± 0.5 284 0.0122 298.15 0.0904 OR 284.5 0.0110 298.15 0.2022

eq. 3 kH/kPa 289.5 0.0199 298.15 0.1375 A 21.443 293.5 0.0262 B 6032 298 0.0320 ∆ –1 HK/(kJ mol ) = 50.2 ± 0.4 302 0.0379 eq. 4 H/(M atm–1) A –11.6 B –5850

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2792 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Phenol: Henry's law constant vs. 1/T 2.0

1.0

0.0 )lom/ -1.0 3 m.aP(/H nl m.aP(/H -2.0

-3.0

-4.0 Abd-El-Bary et al. 1986 Dohnal & Fenclová 1995 Tabai et al. 1997 -5.0 Harrison et al. 2002 Feigenbrugel et al. 2004 Sheikheldin et al. 2001 -6.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 14.1.1.1.3 Logarithm of Henry’s law constant versus reciprocal temperature for phenol.

TABLE 14.1.1.1.4 Reported octanol-water partition coefficients of phenol at various temperatures

Korenman & Udalova 1974

shake flask-concn ratio

t/°Clog KOW 10 1.531 20 1.510 30 1.461 40 1.433 50 1.396 60 1.369

log KOW = A – B/(T/K) A 0.4479 B –305.877

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2793

Phenol: K vs. 1/T 2.0 OW

1.8

1.6 WO K g K ol 1.4

1.2 Korenman & Udalova 1974 experimental data Sangster 1989, 1993 Hansch et al. 1995 1.0 0.0028 0.003 0.0032 0.0034 0.0036 1/(T/K)

FIGURE 14.1.1.1.4 Logarithm of KOW versus reciprocal temperature for phenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2794 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.1.2 o-Cresol

OH

Common Name: o-Cresol Synonym: 2-hydroxytoluene, 2-methylphenol, o-cresylic acid, o-hydroxytoluene, 2-cresol, 1,2-cresol Chemical Name: 2-methylphenol CAS Registry No: 95-48-7

Molecular Formula: C7H8O, C6H4(CH3)OH Molecular Weight: 108.138 Melting Point (°C): 31.03 (Lide 2003) Boiling Point (°C): 191.04 (Lide 2003) Density (g/cm3 at 20°C): 1.0273 (Weast 1982–83)

Acid Dissociation Constant, pKa: 10.28 (Pearce & Simkins 1968) 10.20 (Hoigné & Bader 1983; Weast 1982–83) 10.26 (Dean 1985) Molar Volume (cm3/mol): 104.4 (30°C, Stephenson & Malanowski 1987) 125.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 46.94 (Biddiscombe & Martin 1958) 45.91 (at normal boiling point, Andon et al. 1960) 42.7 (Dean 1992) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): 76.02 (at 25°C, Biddiscombe & Martin 1958; Andon et al. 1960; Dean 1992) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 15.8 (Tsonopoulos & Prausnitz 1971; Riddick et al. 1986) ∆ Entropy of Fusion Sfus (J/mol K): 52.01 (Tsonopoulos & Prausnitz 1971) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.873 (mp at 31.03°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 30100* (35.3°C, shake flask, measured range 35.3–162.8°C, critical solution temp 162.8°C, Sidgwick et al. 1915) 24970 (shake flask-residue volume method, Booth & Everson 1948) 25950 (shake flask-UV at pH 5.1, Blackman et al. 1955) 25000* (20°C, synthetic method/shake flask-optical, measured range 0–166.5°C, Ericksen & Dobbert 1955) 25000 (shake flask-UV spectrophotometry, Roberts et al. 1977) 2725 (generator column-HPLC, Wasik et al. 1981) 31000, 56000 (40°C, 100°C, Verschueren 1983) 42608, 48061, 52241 (75.9, 88.7, 98.5°C, vapor-liquid equilibrium-GC, Dohnal & Fenclová 1995) 26820* (calculated-activity coeff. γ ∞ data, measured range 25–35°C, Dohnal & Fenclová 1995) 26800 (shake flask-HPLC/UV at pH 3.6, Varhaníčková et al. 1995)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 23065* (142.3°C, mercury manometer, measured range 142.3–190.8°C, Goldblum et al. 1947)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2795

log (P/mmHg) = –2520/(T/K) + 8.308; temp range 142.3-177.1°C (Hg manometer, Goldblum et al. 1947) 58.16* (extrapolated-regression of tabulated data, temp range 38–190.5°C, Stull 1947) 7605* (113.11°C, ebulliometry, measured range 113.11–190.95°C, Dreisbach & Shrader 1949) 56.72 (calculated-Antoine eq., Dreisbach 1955) log (P/mmHg) = 7.49476 – 1777.8/(203.0 + t/°C); temp range 97–250°C (Antoine eq. for liquid state, Dreisbach 1955) 38.60 (gas saturation and diaphragm manometer fitted to Antoine eq., Biddiscombe & Martin 1958) 37.32* (25.25°C, gas saturation -diaphragm manometer, temp range 0–28°C, Biddiscombe & Martin 1958) log (P/mmHg) = 12.7778 – 3970.17/(t/°C + 273); temp range 0–30°C (Antoine eq. gas-saturation and diaphragm manometer methods, Biddiscombe & Martin. 1958; Andon et al. 1960) log (P/mmHg) = 7.07055 – 1542.299/(t/°C + 177.110); temp range 110–200°C (Antoine eq. from gas-saturation and diaphragm manometer methods, Biddiscombe & Martin. 1958; Andon et al. 1960) log (P/mmHg) = [–0.2185 × 12487.3/(T/K)] + 8.79055; temp range 38.2–190.8°C (Antoine eq., Weast 1972–73) 30.7 (extrapolated-Antoine eq., Boublik et al. 1973) log (P/mmHg) = 6.91172 – 1435.503/(165.158 + t/°C); temp range 120–191°C (Antoine eq. from reported exptl. data of Dreisbach & Shrader 1949, Boublik et al. 1973) 32.0 (Verschueren 1977, 1983) 38.32 (extrapolated-Cox eq., Chao et al. 1983) log (P/mmHg) = [1– 463.986/(T/K)] × 10^{1.01555 – 9.95980 × 10–4·(T/K) + 7.92834 × 10–7·(T/K)2}; temp range 313.20–697.65 K (Cox eq., Chao et al. 1983) 30.3, 22.5 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.02377 – 1427.165/(164.218 + t/°C); temp range 120–191°C (Antoine eq. from reported exptl. data of Dreisbach & Shrader 1949, Boublik et al. 1984) log (P/kPa) = 5.82809 – 1299.971/(148.886 + t/°C); temp range 142.3–189.8°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 30.74 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 6.9117 – 1435.5/(165.16 + t/°C); temp range 120–191°C (Antoine eq., Dean 1985, 1992) 37.70 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PS/kPa) = 11.68858 – 3909.409/(T/K); temp range 273–303 K (Antoine eq.-I, solid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.19545 – 1542.299/(–96.04 + T/K); temp range 383–473 K (Antoine eq.-II, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.47616 – 1714.489/(–79.841 + T/K); temp range 304–409 K (Antoine eq.-III, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.19561 – 1543.097/(–95.902 + T/K); temp range 399–470 K (Antoine eq.-IV, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.24893 – 1584.403/(–90.794 + T/K); temp range 463–526 K (Antoine eq.-V, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.82237 – 2134.352/(–19.536 + T/K); temp range 517–630 K (Antoine eq.-VI, liquid, Stephenson & Malanowski 1987) 40.0 (Riddick et al. 1986) 39.4 (extrapolated-four-parameter vapor pressure eq., Nesterova et al. 1990) log (P/Pa) = 99.85294 – 6347.665/(T/K) – 32.60231·log (T/K) + 1.24267 × 10–2·(T/K); temp interval of investi- gation: 412–467 K (four-parameter vapor pressure eq. derived using exptl data of Biddiscombe & Martin 1958, Nesterova et al. 1990) log(P/mmHg) = 89.4591 – 6.0489 × 103/(T/K) – 29.481·log(T/K) + 1.0936 × 10–4·(T/K) + 1.9933 × 10–12·(T/K)2; temp range 304–698 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.124, 0.07, 1.082 (exptl., calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 0.284, 0.162 (8, 25°C, calculated, Leuenberger et al. 1985) 0.0852 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 0.176* (°C, calculated-activity coeff. γ ∞ data, measured range 25–35°C, Dohnal & Fenclová 1995)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2796 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

3.352, 5.386, 8.652 (75.9, 88.7, 98.5°C, vapor-liquid equilibrium-GC, Dohnal & Fenclová 1995) 0.178 (extrapolated-vapor-liquid equilibrium measurements, Dohnal & Fenclová 1995)

ln KAW = 9.091 – 5556/(T/K), temp range 20–100°C (vapor-liquid equilibrium measurements with additional lit. data, Dohnal & Fenclová 1995) 0.159 (gas stripping-GC, Altschuh et al. 1999) 0.102 (calculated-group contribution, Lee et al. 2000) 0.217 (20°C, single equilibrium static technique SEST, Sheikheldin et al. 2001) 0.0965* (gas stripping-UV, measured range 281–302 K, Harrison et al. 2002) ln [H/(M atm–1)] = 6680/(T/K) – 15.4; temp range 281–302 K, Harrison et al. 2002) 0.146, 0.239* (20, 25°C, dynamic equilibrium system/gas stripping-GC/MS, Feigenbrugel et al. 2004)

Octanol/Water Partition Coefficient, log KOW: 2.04 (shake flask-UV, Korenman & Pereshein 1970) 1.95 (from Hansch & Dunn III unpublished result, Leo et al. 1971; Hansch & Leo 1985) 1.95 (LC-k′ correlation, Carlson et al. 1975) 2.045 (shake flask, Korenman et al. 1980) 2.17 (HPLC-k′ correlation, Butte et al. 1981; Butte et al. 1987) 1.96 (generator column-HPLC, Wasik et al. 1981) 1.99 (RP-HPLC-k′ correlation, Miyake & Terada 1982) 1.98 (recommended, Sangster 1989) 1.97, 1.98 (COMPUTOX data bank, Kaiser 1993) 1.95 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

1.26 (calculated-KOW, Lyman et al. 1982; quoted, Howard 1989) 1.03 (zebrafish, Butte et al. 1987)

Sorption Partition Coefficient, log KOC: 1.34 (Brookstone clay loam soil at pH 5.7, Boyd 1982; quoted, Howard 1989) 1.26 (calculated-S, Boyd 1982; quoted, Howard 1989)

1.76 (calculated-KOW, Kollig 1993)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –11 3 –1 –1 kOH = 3.41 × 10 cm molecule s at 300 ± 1 K (relative rate method with reference 2-methyl-2-butene Perry et al. 1977; Atkinson et al. 1979) –12 3 –1 –1 kNO3 = (12 ± 2) × 10 cm molecule s at 300 ± 1 K (relative rate method with reference to with 2-methyl- 2-butene Japar & Niki 1975; Graham & Johnston 1978; Carter et al. 1981) k < 2 × 102 M–1 s–1 for oxidation with singlet oxygen at 25°C in the aquatic system with half-life > 100 yr (Foote 1976; Mill 1979; quoted, Mill 1982) 9 –1 –1 kOH = 20 × 10 M s at 25°C with t½ = 0.3 d (Hendry & Kenley 1979; quoted, Mill 1982) –12 3 –1 –1 kNO3 = (13.9 ± 2.4) × 10 cm molecule s at 300 ± 1 K (relative rate method with reference to the reaction of NO3 radical with 2-methyl-2-butene, Carter et al. 1981; quoted, Atkinson 1991) photooxidation t½ = 66–3480 h in water, based on reaction rate constants for OH and RO2 radicals with the phenol class (Güesten et al. 1981; Mill & Mabey 1985; quoted, Howard et al. 1991) –19 3 –1 –1 kO3 = (2.55 ± 0.39) × 10 cm molecule s at 296 ± 2 K; calculated tropospheric lifetimes of 45 d and 0.3 d due to reaction with O3 and OH radical, respectively, at room temp. (Atkinson et al. 1982, 1984; Atkinson 1985) 8 –1 –1 kOH = 2 × 10 M s with half-life of 0.3 d in the atmosphere (Mill 1982) 13 3 –1 –1 kOH = 2.0 × 10 cm mol s at 300 K (Lyman et al. 1982) k = (1.2 ± 0.3) × 104 M–1 s–1 for the reaction with ozone in water at pH 1.5–2.0 (Hoigné & Bader 1983b)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2797

–11 3 –1 –1 –11 3 –1 –1 kOH = 4.1 × 10 cm ·molecule s at 298 K, kNO3 = 1 × 10 cm molecule s at 300 K (Atkinson & Lloyd 1984; quoted, Carlier et al. 1986) –11 3 –1 –1 kNO3 = (1.20 ± 0.34) × 10 cm molecule s at 296 ± 2 K (Atkinson et al. 1984) –12 3 –1 –1 kNO3 = (15.6 ± 1.7) × 10 cm molecule s with reference to the reaction of NO3 radical with m-cresol at (298 ± 1) K (Atkinson et al. 1984; quoted, Atkinson 1991) –12 3 –1 –1 8 3 kNO3 = 22 × 10 cm molecule s with 2.4 × 10 NO3 radical/cm at room temp. and a loss rate of 450 –1 d with t½ = 1.6–16 h (Atkinson et al. 1984, 1985; quoted, Atkinson 1985) –12 3 –1 –1 5 3 kOH = 40 × 10 cm molecule s for the vapor-phase reaction with 5 × 10 hydroxyl radical/cm at room temp. and a loss rate of 1.7 d–1 (Atkinson 1985; quoted, Howard et al. 1991) –12 3 –1 –1 –12 3 –1 –1 kOH(exptl) = 37 × 10 cm molecule s , and kOH(calc) = 44.8 × 10 cm molecule s at room temp. (Atkinson 1985) –12 3 –1 –1 –12 3 –1 –1 kOH(exptl) = 40 × 10 cm molecule s , kOH(calc) = 44 × 10 cm molecule s at room temp. (SAR, Atkinson 1987; quoted, Sabljic & Güesten 1990; Müller & Klein 1991) –11 3 –1 –1 kOH = 4.2 × 10 cm molecule s at 298 K (recommended, Atkinson 1989, 1990) –12 3 –1 –1 –12 3 –1 –1 kNO3 = (13.7 ± 0.9) × 10 cm molecule s at (296 ± 2) K, and kOH = 42 × 10 cm molecule s for at room temp. (Atkinson et al. 1992) –12 3 –1 –1 kOH(calc) = 30.36 × 10 cm molecule s (molecular orbital calculations, Klamt 1993) –11 3 –1 –1 –10 –1 –1 kOH = 4.9 × 10 cm mol s , and kOH(aq.) = 1.1 × 10 M s , the calculated atmospheric lifetime τ = 0.24 d under clear sky; τ = 0.22 d under cloudy conditions at 298 K, reduced to 0.17 d due the average temperature of tropospheric clouds at 283 K (Feigenbrugel et al. 2004) Hydrolysis: Biodegradation: 1 to 2 d for bacteria to utilize 95% of 300 ppm in the parent substrate (Tabak et al. 1964)

t½ = 2 d at 20°C and 7 d at 4°C in river water (Ludzack & Ettinger 1960; quoted, Howard 1989) completely degraded by a soil microflora within one day (Alexander & Lustigman 1966; quoted, Verschueren 1983); average rate of biodegradation k = 54.0 mg COD g–1 h–1 based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982)

t½(aq. aerobic) = 24–168 h, based on unacclimated aerobic screening test data (Takemoto et al. 1981; Urushigawa et al. 1983; quoted, selected, Howard et al. 1991)

t½(aq. anaerobic) = 96–672 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991) k(exptl.) = 0.0679 h–1 compared to group contribution method predicted k(calc) = 0.0728 h–1 (nonlinear) and k = 0.0567 h–1 (linear) (Tabak & Govind 1993)

t½(aerobic) = 2 d, t½(anaerobic) = 15 d in natural waters (Capel & Larson 1995) Biotransformation: microbial transformation k = (2.7 ± 1.3) × 10–10 L·organism–1·h–1 (Paris et al. 1983; quoted, Steen 1991).

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: photooxidation t½ = 1.6–16 h in air, based on measured rate data for the vapor phase reaction with hydroxyl radical in air (Atkinson 1985; selected, Howard et al. 1991); loss rate k = 10.8 × 10–4 min–1 in outdoor Teflon chambers in the dark (Grosjean 1985);

photodegradation t½ ~ 9.6 h in air, based on measured rate constant for the reaction with photochemically generated hydroxyl radicals (quoted, Howard 1989); atmospheric transformation lifetime τ < 1 d (estimated, Kelly 1994);

calculated lifetimes of 2.2 h, 2 min and 65 d for reactions with OH radical, NO3 radical and O3, respectively (Atkinson 2000). calculated atmospheric lifetime τ = 0.24 d under clear sky and τ = 0.22 d under cloudy conditions based on reactions with OH radical in gas and aqueous phases at 298 K, reduced to τ = 0.19 d due to average temperature of tropospheric cloud at 283 K (Feigenbrugel et al. 2004)

Surface water: photooxidation t½ = 66–3480 h in water, based on reaction rate constants for OH and RO2 radicals with the phenol class (Güesten et al. 1981; Mill & Mabey 1985; quoted, Howard et al. 1991) rate constant k = (1.2 ± 0.3) × 104 M–1 s–1 for the reaction with ozone at pH 1.5/2.0 (Hoigné & Bader 1983)

t½(aerobic) = 2 d, t½(anaerobic) = 15 d in natural waters (Capel & Larson 1995) Ground water: estimated t½ ~0.01 yr for cresols at Noordwijk (Zoeteman et al. 1981).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2798 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Sediment:

Soil: t½ = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991)

t½ = 5.1 d in an acidic clay soil with < 1.0% organic matter and t½ = 1.6 d in slightly basic sandy loam soil with 3.25% organic matter, based on aerobic batch lab microcosm experiments (Loehr & Matthews 1992). Biota:

TABLE 14.1.1.2.1 Reported aqueous solubilities of o-cresol at various temperatures

Sidgwick et al. 1915 Erichsen & Dobbert 1955 Dohnal & Fenclová 1995

shake flask-synthetic method shake flask-optical method vapor-liquid equil.-UV

t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 35.3 30100 0 22000 25 26820 50.2 32200 20 25000 30 28470 61.7 34700 40 28000 35 30810 70.6 37500 60 32000 75.9 42608 77.7 41000 80 38000 88.7 48061 84.6 45100 100 48000 98.5 52241 130.6 65200 120 67000 100 53640 148.7 104600 130 82000 158.7 193600 140 102000 161.7 300600 150 136000 162.8 408900 160 202000 160.0 501400 162 228000 157.7 598000 164 275000 145.7 693000 166 352000 129.6 761400 166.5 400000 87.5 823700 56.6 845800 33.6 866000 25.6 861400 8.3 875200 9.1 886800 10.2 898900 11.1 908500 12.9 926200 15.3 940800 22.3 974600 26.9 990100 29.9 1000000 critical solution temp 162.8°C triple point 8°C

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2799

o -Cresol: solubility vs. 1/T 1.0 Sidgwick et al. 1915 Erichsen & Dobbert 1955 0.0 Dohnal & Fenclová 1995 experimental data -1.0

-2.0

x nl x -3.0

-4.0

-5.0

critical solution -6.0 temp. = 162.8 °C m.p. = 31.03 °C -7.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 14.1.1.2.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for o-cresol.

TABLE 14.1.1.2.2 Reported vapor pressures of o-cresol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Goldblum et al. 1947 Dreisbach & S. 1949 Biddiscombe & Martin 1958

summary of lit. data mercury manometer ebulliometry gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa solid liquid 38.2 133.3 142.3 23065 113.11 7605 0 2.680 138.575 20410 64.0 666.6 153.3 33731 120.22 10114 2.90 2.093 146.128 26548 76.7 1333 164.5 47729 132.63 16500 5.0 4.213 152.680 33025 90.5 2666 171.2 58529 160.17 42066 5.60 4.680 158.592 39922 105.8 5333 183.5 81993 176.14 67661 9.80 6.933 163.551 46571 115.5 7999 189.8 97859 190.95 101325 10.05 7.773 168.080 53394 127.4 13332 143.7 24265 14.85 13.20 172.002 59935 146.7 26664 166.8 51329 14.90 12.60 175.642 66563 168.4 53329 172.0 61328 bp/°C 190.95 17.40 18.27 179.039 73277 190.8 101325 179.4 73861 19.50 22.0 182.183 79956 177.1 69194 20.0 22.40 185.185 86782 mp/°C 30.8 20.35 22.66 187.735 92934 24.35 34.66 188.487 94810 eq. 1 P/mmHg 25.25 37.33 189.013 96149 A 8.308 26.65 45.20 189.455 97276 B 2520 27.25 48.40 189.973 98613 28.35 66.66 190.371 99650 190.486 99953 mp/°C 30.99 190.545 100125 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2800 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.1.2.2 (Continued)

Stull 1947 Goldblum et al. 1947 Dreisbach & S. 1949 Biddiscombe & Martin 1958

summary of lit. data mercury manometer ebulliometry gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa bp/°C 191.003 191.046 101452 191.135 101668 for temp range: 191.511 102686 0–30°C eq. 2 P/mmHg A 11.5638 for temp range: B 3586.36 110–200°C C 273 eq. 2 P/mmHg A 7.13457 ∆ –1 HV/(kJ mol ) B 1516.072 at bp 46.94 C 174.569 at 25°C 76.02

o -Cresol: vapor pressure vs. 1/T 7.0 Goldblum et al. 1947 Dreisbach & Shrader 1949 6.0 Biddiscombe & Martin 1958 Stull 1947 5.0

4.0 )aP/

S 3.0 P(gol

2.0

1.0

0.0 b.p. = 191.04 °C m.p. = 31.03 °C -1.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 14.1.1.2.2 Logarithm of vapor pressure versus reciprocal temperature for o-cresol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2801

TABLE 14.1.1.2.3 Reported Henry’s law constants of o-cresol at various temperatures and temperature dependence equations

ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a)

ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a)

ln (kH/atm) = A – B/(T/K) (3) ln H = A – B/(T/K) (4) log H = A – B/(T/K) (4a) 2 KAW = A – B·(T/K) + C·(T/K) (5)

Dohnal & Fenclová 1995 Harrison et al. 2002 Feigenbrugel et al. 2004

vapor-liquid equilibrium gas stripping-UV gas stripping-GC/MS

t/°CH/(Pa m3/mol) T/K H/(Pa m3/mol) T/K H/(Pa m3/mol) 25 0.176* 281 0.0224 278.25 0.0348 30 0.245* 284.5 0.0313 278.25 0.0355 35 0.341* 289.5 0.0596 278.35 0.0286 75.9 3.352 293.5 0.0650 283.15 0.0707 88.7 5.386 298 0.0965 283.15 0.0556 98.5 8.652 302 0.1165 283.25 0.0565 100 9.028 288.10 0.0842 25.0 0.1777# eq. 4 H/(M atm–1) 288.15 0.1137 25.0 0.1764$ A –15.4 288.20 0.0855 B –6680 293.10 0.1603 #calculated from eq. 1 293.15 0.1626 $calculated from eq. 3 293.15 0.1554 *data from literature 293.15 0.1371 293.15 0.1883

eq. 1 KAW 293.25 0.1537 A 9.091 298.15 0.2356 B 5556 298.15 0.2362 enthalpy of hydration: 293 0.1464 ∆ –1 HK/(kJ mol ) = 46.2 ± 0.4 298 0.2390 OR

eq. 3 kH/kPa A 21.832 B 5827 ∆ –1 HK/(kJ mol ) = 48.5 ± 0.4

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2802 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

o -Cresol: Henry's law constant vs. 1/T 2.0

1.0

0.0 )lom/ -1.0 3 m.aP( -2.0 /H /H -3.0 nl

-4.0 Dohnal & Fenclová 1995 Harrison et al. 2002 -5.0 Feigenbrugel et al. 2004 Altschuh et al. 1999 Sheikheldin et al. 2001 -6.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 14.1.1.2.3 Logarithm of Henry’s law constant versus reciprocal temperature for o-cresol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2803

14.1.1.3 m-Cresol

OH

Common Name: m-Cresol Synonym: m-cresylic acid, 1-hydroxy-3-methylbenzene, 3-hydroxytoluene, m-hydroxytoluene, 3-methylphenol, m-methy lphenol, 3-cresol Chemical Name: m-cresol, 3-methylphenol CAS Registry No: 108-39-4

Molecular Formula: C7H8O, C6H4(CH3)OH Molecular Weight: 108.138 Melting Point (°C): 12.24 (Lide 2003) Boiling Point (°C): 202.27 (Lide 2003) Density (g/cm3): 1.0336 (Weast 1982–83) 1.0302 (25°C, Riddick et al. 1986)

Acid Dissociation Constant, pKa: 10.09 (Pearce & Simkins 1968; Riddick et al. 1986; Howard 1989) 10.0 (Hoigné & Bader 1983; Dean 1985) 10.01 (Weast 1982–83) Molar Volume (cm3/mol): 105.6 (calculated-density, Rohrschneider 1973) 125.6 (calculated-Le Bas-method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 49.38 (at normal bp, Biddiscombe & Martin 1958) 47.40 (at normal boiling point, Andon et al. 1960) 61.714 (at 25°C, Biddiscombe & Martin 1958; Andon et al. 1960; Dean 1992) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): 6.53 (Tsonopoulos & Prausnitz 1971) 10.70 (Riddick et al. 1986; Dean 1992) ∆ Entropy of Fusion, Sfus (J/mol K): 37.53 (Tsonopoulos & Prausnitz 1971) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0 Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 23600* (24.7°C, shake flask, measured range –2 to 87.58°C, critical solution temp 147°C, Sidgwick et al. 1915) 22664 (shake flask-residue volume method, Booth & Everson 1948) 22000* (20°C, synthetic method/shake flask-optical, measured range 0–148°C, Ericksen & Dobbert 1955) 25000 (shake flask-spectrophotometry, Roberts et al. 1977) 2800 (generator column-HPLC, Wasik et al. 1981; Tewari et al. 1982) 23500, 58000 (20°C, 100°C, Verschueren 1977, 1983) 23790* (20.35°C, equilibrium cell-concn ratio-GC, measured range 20.35–139°C, Leet et al. 1987) 24125, 23194* (24.7, 25°C, calculated-activity coeff. γ ∞ data, Dohnal & Fenclová 1995) 46935, 54615, 58327(75.9, 88.7, 98.5°C, vapor-liquid equilibrium-GC, Dohnal & Fenclová 1995) 19600 (shake flask-HPLC/UV at pH 4.45, Varhaníčková et al. 1995)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2804 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of the section): 20265* (149.5°C, mercury manometer, measured range 149.5–201.1°C, Goldblum et al. 1947) log (P/mmHg) = –2650/(T/K) + 8.457; temp range 149.5–201.1°C (Hg manometer, Goldblum et al. 1947) 23.95* (extrapolated-regression of tabulated data, temp range 52–202.8°C, Stull 1947) 25.83 (calculated-Antoine eq., Dreisbach 1955) log (P/mmHg) = 7.53165 – 1875.3/(201.0 + t/°C), temp range: 110–240°C, (Antoine eq. for liquid state, Dreisbach 1955) 1333* (85.5°C, ebulliometry, measured range 85.5–202.1°C, Vonterres et al. 1955) 19.0 (gas saturation-diaphragm manometer fitted to Antoine eq., Biddiscombe & Martin 1958) 18.278* (24.90°C, gas saturation-diaphragm manometer, temp range 0–39°C, Biddiscombe & Martin 1958) log (P/mmHg) = 9.9653 – 3223.45/(t/°C + 273); temp range 11–40°C (Antoine eq. from gas-saturation and diaphragm manometer methods, Biddiscombe & Martin. 1958; Andon et al. 1960) log (P/mmHg) = 7.15904 – 1603.811/(t/°C + 172.646); temp range 110–200°C (Antoine eq. from gas-saturation and diaphragm manometer methods, Biddiscombe & Martin. 1958; measurements, Andon et al. 1960) log (P/mmHg) = [–0.2185 × 13483.8/(T/K)] + 9.135933; temp range 52–202.8°C (Antoine eq., Weast 1972–73) 22.28 (extrapolated-Antoine eq., Boublik et al. 1973) log (P/mmHg) = 7.50798 – 1856.356/(199.065 + t/°C), temp range 149.5–201°C (Antoine eq. from reported exptl. data, Boublik et al. 1973) 4120* (114.99°C, diaphragm gauge, measured range 114.99–216.72 °C, Nasir et al. 1980) 5.33, 16.0 (20°C, 30°C, Verschueren 1977, 1983) 36.43 (calculated-Cox eq., Chao et al. 1983) log (P/mmHg) = [1– 475.222/(T/K)] × 10^{0.965085 – 6.89845 × 10–4·(T/K) + 4.47100 × 10–7·(T/K)2}; temp range: 278.05–705.85 K, (Cox eq., Chao et al. 1983) 22.1, 11.9 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.62485 – 1850.362/(198.462 + t/°C); temp range 149.5–201°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.28411 – 1580.594/(167.548 + t/°C); temp range 88.5–202.1°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 22.29 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.5080 – 1856.36/(199.07 + t/°C); temp range 150–201°C (Antoine eq., Dean 1985, 1992) 19.10 (Riddick et al. 1986) 79960* (466.35 K, vapor-liquid equilibrium, measured range 466.35–588.68 K, Klara et al. 1987) 19.08; 18.61 (interpolated-Antoine eq.-III, IV, Stephenson & Malanowski 1987)

log (PS/kPa) = 8.0462 – 2930.845/(T/K); temp range 273–285 K (Antoine eq.-I, solid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.28394 – 1603.811/(–100.504 + T/K); temp range 383–473 K, (Antoine eq.-II, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 9.0902 – 3223.45/(T/K); temp range 284–313 K (Antoine eq.-III, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.150 – 2123.548/(–59.018 + T/K); temp range 285–416 K (Antoine eq.-IV, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.28579 – 1605.855/(–100.232 + T/K); temp range 410–477 K (Antoine eq.-V, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 5.80987 – 1293.277/(–135.465 + T/K); temp range 471–531 K (Antoine eq.-VI, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.64135 – 2069.208/(–26.534 + T/K), temp range: 523–633 K, (Antoine eq.-VII, liquid, Stephen- son & Malanowski 1987) 19.70 (extrapolated-Antoine eq., Nesterova et al. 1990) log (P/Pa) = 64.02580 – 5272.296/(T/K) – 18.84252·log (T/K) + 0.52858 × 10–2·(T/K); temp range: 409–477 K (four-parameter vapor pressure eq. derived using exptl data of Biddiscombe & Martin 1958, Nesterova et al. 1990) log (P/mmHg) = 105.528 – 6.9748 × 103/(T/K) – 35.083·log (T/K) + 1.2508 × 10–2·(T/K) – 2.4317 × 0–12·(T/K)2; temp range 285–706 K (vapor pressure eq., Yaws 1994)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2805

Henry’s Law Constant (Pa m3/mol at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.0203, 0.0881 (8, 25°C, calculated, Leuenberger et al. 1985) 0.0875, 0.0627 (calculated-P/C, estimated-bond contribution, Meylan & Howard 1991) 0.0718 (computed-vapor-liquid equilibrium VLE data, Yaws et al. 1991) 0.1068 (calculated-P/C, Shiu et al. 1994) 0.0810, 0.0865* (24.7, 25°C, calculated-activity coeff. γ ∞ data, Dohnal & Fenclová 1995) 1.683, 2.990, 4.635 (75.9, 88.7, 98.5°C, vapor-liquid equilibrium-GC, Dohnal & Fenclová 1995) 0.0848 (extrapolated-vapor liquid equilibrium measurements, Dohnal & Fenclová 1995)

ln KAW = 8.909 – 5722/(T/K), temp range 20–100°C (vapor-liquid equilibrium measurements with additional lit. data, Dohnal & Fenclová 1995) 0.0868 (gas stripping-GC, Altschuh et al. 1999) 0.0641 (20°C, single equilibrium static technique SEST, Sheikheldin et al. 2001) 0.0765, 0.127* (20, 25°C, dynamic equilibrium system/gas stripping-GC/MS, Feigenbrugel et al. 2004)

Octanol/Water Partition Coefficient, log KOW: 1.96 (shake flask-UV, Fujita et al. 1964; Leo et al. 1971; Hansch & Leo 1985) 2.02 (shake flask, Korenman et al. 1980) 1.94 (HPLC-RT correlation, Butte et al. 1981) 1.96 (generator column-HPLC, Wasik et al. 1981; Tewari et al. 1982) 1.96 (shake flask-UV, Saarikoski & Viluksela 1982) 1.98 (recommended, Sangster 1989, 1993) 1.96 (COMPUTOX databank, Kaiser 1993) 1.96 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF: 1.30 (golden ide, after 3 d, Freitag et al. 1985) 3.69 (algae, after 1 d, Freitag et al. 1985) 3.04 (activated sludge, after 5 d, Freitag et al. 1985) 1.03 (zebrafish, Butte et al. 1987)

Sorption Partition Coefficient, log KOC: 1.54 (Brookstone clay loam soil, Boyd 1982) 1.26 (calculated-S, Boyd 1982)

1.76 (calculated-KOW, Kollig 1993)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: –1 Photolysis: direct aqueous photolysis k = 0.011 ± 0.001 min with t½ = 60.4 min (Stegeman et al. 1993). Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –12 3 –1 –1 kNO3 = (7 ± 1) × 10 cm molecule s with reference to the reaction of NO3 radical with 2-methyl-2- butene (Japar & Niki 1975; Graham & Johnston 1978; Carter et al. 1981) –12 3 –1 –1 kOH = 48 × 10 cm molecule s with reference to the reaction of OH radical with 2-methyl-2-butene (Atkinson et al. 1979; Carter et al. 1981) –12 3 –1· –1 kNO3 = (8.10 ± 1.16) × 10 cm molecule s at (300 ± 1) K with reference to the reaction of NO3 radical with 2-methyl-2-butene (Carter et al. 1981; quoted, Atkinson 1991) –19 3 –1 –1 kO3 = (1.94 ± 0.35) × 10 cm molecule s at 296 ± 2 K; calculated tropospheric lifetimes of 60 d and 0.2 d due to reaction with O3 and OH radical, respectively, at room temp. (Atkinson et al. 1982, 1984; Atkinson 1985)

photooxidation half-life of 66–3480 h in water, based on reported reaction rate constants for OH and RO2 radicals with the phenol class (Mill & Mabey 1985; Güesten et al. 1981; selected, Howard et al. 1991) k = (1.3 ± 0.3) × 104 M–1 s–1 for the reaction with ozone in water at pH 1.5/2.0 (Hoigné & Bader 1983b) –12 3 –1 –1 kOH = 5.92 × 10 cm molecule s at 298 K (Atkinson & Lloyd 1984; quoted, Carlier et al. 1986)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2806 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

–11 3 –1 –1 kNO3 = 1 × 10 cm molecule s at 300 K (Atkinson & Lloyd 1984; quoted, Carlier et al. 1986) –12 3 –1 –1 kNO3 = (9.20 ± 2.4) × 10 cm molecule s at 296 ± 2 K (Atkinson et al. 1984) –12 3 –1 –1 kNO3 = (15.9 ± 1.7) × 10 cm molecule s at 298 ± 1 K with reference to the reaction of NO3 radical with phenol (Atkinson et al. 1984; quoted, Atkinson 1991) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 93.9 × 10 cm molecule s and kOH(exptl) = 57 × 10 cm molecule s at room temp. (SAR, Atkinson 1987; quoted, Sabljic & Güesten 1990; Müller & Klein 1991) –11 3 –1 –1 kOH = 6.4 × 10 cm molecule s at 296 K (recommended, Atkinson 1989, 1990) –12 3 –1 –1 kNO3 = (9.74 ± 0.74) × 10 cm molecule s with reference to the reaction of NO3 radical with 2-methyl- –12 3 –1 –1 2-butene, and kOH = 64 × 10 cm molecule s at room temp. (Atkinson et al. 1992) –12 3 –1 –1 kOH(calc) = 34.42 × 10 cm molecule s (molecular orbital calculations, Klamt 1993) –11 3 –1 –1 τ τ kOH = 5.2 × 10 cm mol s , the calculated atmospheric lifetime = 0.22 d under clear sky; = 0.19 d under cloudy conditions at 298 K, reduced to 0.13 d due the average temperature of tropospheric clouds at 283 K (Feigenbrugel et al. 2004) Hydrolysis:

Biodegradation: t½ = 1–2 d for bacteria to utilize 95% of 300 ppm in parent substrate (Tabak et al. 1964) completely degraded by a soil microflora within one day (Alexander & Lustigman 1966; quoted, Verschueren 1983) average rate k = 55.0 mg COD g–1·h–1 based on measurements of COD decrease using activated sludge inoculum with 20 d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982);

t½(aq. aerobic) = 48–696 h, based on unacclimated marine water grab sample data (Pfaender & Batholomew 1982; selected, Howard et al. 1991);

t½(aq. anaerobic) = 360–1176 h, based on anaerobic screening test data (Horowitz et al. 1982; Shelton & Tiedje 1981; selected, Howard et al. 1991). Biotransformation:

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 8.0 h, based on rate constant for the gas phase reaction with OH radical in air (Atkinson et al. 1979; quoted, Howard 1989);

photooxidation t½ = 1.1–11.3 h in air, based on measured rate data for the vapor phase reaction with hydroxyl radical in air (Atkinson 1985; quoted, Howard et al. 1991); atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). calculated atmospheric lifetime τ = 0.22 d under clear sky and τ = 0.19 d under cloudy conditions based on reactions with OH radical in gas and aqueous phases at 298 K, reduced to τ = 0.13 d due to average temperature of tropospheric cloud at 283 K (Feigenbrugel et al. 2004)

Surface water: t½ = 48–696 h, based on unacclimated marine water grab sample data (Pfaender & Batholomew 1982; selected, Howard et al. 1991); k = (1.3 ± 0.3) × 104 M–1 s–1 for the reaction with ozone at pH 1.5/2.0 (Hoigné & Bader 1983);

photooxidation t½ = 66–3480 h in water, based on reported reaction rate constants for OH and RO2 radicals with the phenol class (Mill & Mabey 1985; Güesten et al. 1981; selected, Howard et al. 1991).

Ground water: estimated half-life for cresols, t½ = 0.01 yr at Noordwijk (Zoeteman et al. 1981); t½ = 96–1176 h, based on estimated unacclimated aqueous aerobic biodegradation half-life and aqueous anaerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 48–696 h, based on unacclimated marine water grab sample data (Pfaender & Batholomew 1982; selected, Howard et al. 1991);

t½ = 11.3 d in an acidic clay soil with < 1.0% organic matter and t½ = 0.6 d in a slightly basic sandy loam soil with 3.25% organic matter, based on aerobic batch lab microcosm experiments (Loehr & Matthews 1992). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2807

TABLE 14.1.1.3.1 Reported aqueous solubilities of m-cresol at various temperatures

Sidgwick et al. 1915 Erichsen & Dobbert 1955 Leet et al. 1987 Dohnal & Fenclová1995

shake flask-synthetic equilibrium cell-conc method shake flask-optical method ratio vapor-liquid equil.-UV

t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 –0.20 22400 0 20000 20.35 23790 24.7 24125 24.7 23600 20 22000 40.05 25390 25 23194 47.0 26600 40 25000 58.45 30190 75.8 46935 61.9 30300 60 31000 77.25 37368 88.7 54615 74.5 35400 80 40000 98.15 49804 98.5 58327 87.5 42400 100 53000 119.75a 78100 116.9 65900 120 88000 138.95b 143583 139.4 119900 130 113000 146.9 324000 140 156000 superscript a, at 204 kPa 147.0 350700 142 170000 superscript b, at 366 kPa 146.6 410600 144 189000 140.5 612700 146 221000 124.8 703200 147 264000 109.3 804600 148 380000 82.8 804600 67.7 826000 57.1 837000 46.5 847900 34.5 858500 20.3 870500 13.2 875800 critical solution temp 147°C mp/°C 4.0

m -Cresol: solubility vs. 1/T 1.0 Sidgwick et al. 1915 Erichsen & Dobbert 1955 0.0 Dohnal & Fenclová 1995 experimental data -1.0

-2.0

x nl x -3.0

-4.0

-5.0

critical solution -6.0 temp. = 147 °C m.p. = 12.24 °C -7.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K)

FIGURE 14.1.1.3.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for m-cresol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2808 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.1.3.2 Reported vapor pressures of m-cresol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4) 1.

Stull 1947 Goldblum et al. 1947 Vonterres et al. 1955

summary of literature data static method-manometer ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pa 52.0 133.3 149.5 20265 85.5 1333 76.0 666.6 164.3 33464 105.2 3333 87.8 1333 172.0 42796 121.7 6666 101.4 2666 179.6 53862 131.6 9999 116.0 5333 187.4 67328 139.1 13332 125.8 7999 192.1 76927 150.0 19998 138.0 13332 196.3 86526 158.5 26664 157.3 26664 201.1 98925 163.1 33330 179.0 53329 149.6 20398 170.1 39997 202.8 101325 154.1 23731 173.0 43330 176.4 48796 175.0 45553 mp/°C 10.8 183.4 60128 179.8 53329 201.1 98925 183.5 66661 189.8 73327 eq. 1 P/mmHg 192.5 79993 A 8.457 196.0 86659 B 2650 198.8 93325 202.1 101325 2.

Biddiscombe & Martin 1958 Nasir et al. 1980 Klara et al. 1987

gas saturation ebulliometry diaphragm gauge vapor-liquid equilibrium

t/°CP/Pat/°CP/Pat/°CP/PaT/KP/Pa liquid 0 2.00* 135.835 12174 114.99 4120 466.35 79960 4.90 2.933* 149.804 20418 121.25 5789 472.95 85540 7.20 4.533* 157.610 26762 127.46 7849 493.75 160600 9.15 4.40* 163.741 32816 133.4 10286 510.86 237900 11.0 5.866 169.814 39930 142.92 15223 531.35 366200 15.0 7.333 174.784 46538 156.29 25337 565.45 695500 17.65 9.866 179.331 53388 167.90 37430 588.68 1028500 19.80 11.47 182.979 59446 187.33 67950 21.50 14.13 186.818 66415 203.4 106385 eq. 3 P/kPa 24.90 18.27 190.266 73225 216.72 149432 A 15.5337 26.95 27.73 193.424 79951 B 4594.0 29.75 30.80 196.418 86769 C 54.34 30.85 36.80 199.003 93024

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2809

TABLE 14.1.1.3.2 (Continued)

Biddiscombe & Martin 1958 Nasir et al. 1980 Klara et al. 1987

gas saturation ebulliometry diaphragm gauge vapor-liquid equilibrium

t/°CP/Pat/°C P/Pa t/°CP/PaT/KP/Pa 33.25 43.20 199.694 94754 39.10 57.60 200.250 96156 *solid 200.658 97201 201.216 98639 bp/°C 202.231 201.557 99550 202.156 101118 Antoine eq. for temp range: 202.737 102665 11–40°C eq. 2 P/mmHg Antoine eq. for temp range A 9.9653 110–200°C B 3223.45 eq. 2 P/mmHg C 273 A 7.15904 B 1603.811 ∆ –1 HV/(kJ mol ) C 172.646 at bp 49.375 at 25°C 61.714

m -Cresol: vapor pressure vs. 1/T 7.0 experimental data Stull 1947 6.0

5.0

4.0 )aP/

S 3.0 P(gol

2.0

1.0

0.0 b.p. = 202.27 °C m.p. = 12.24 °C -1.0 0.0016 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 14.1.1.3.2 Logarithm of vapor pressure versus reciprocal temperature for m-cresol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2810 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.1.3.3 Reported Henry’s law constants of m-cresol at various temperatures and temperature dependence equations

ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a)

ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a)

ln (kH/atm) = A – B/(T/K) (3) ln H = A – B/(T/K) (4) log H = A – B/(T/K) (4a) 2 KAW = A – B·(T/K) + C·(T/K) (5)

Dohnal & Fenclová 1995 Feigenbrugel et al. 2004

vapor-liquid equilibrium gas stripping-GC/MS

t/°CH/(Pa m3/mol) T/K H/(Pa m3/mol) 24.7 0.0810* 278.15 0.0148 25.0 0.0865* 278.25 0.0192 75.9 1.683 283.15 0.0283 88.7 2.990 283.25 0.0378 98.5 4.635 283.25 0.0272 25.0 0.0848# 283.25 0.0293 25.0 0.0846$ 288.15 0.0444 288.25 0.0450 #calculated from eq. 1 293.15 0.0976 $calculated from eq. 3 293.15 0.0682 *data from literature 293.15 0.0723 293.15 0.0786

eq. 1 KAW 293.15 0.0771 A 8.909 293.15 0.0976 B 5722 293.25 0.0901 293.15 0.0810 enthalpy of hydration: 298.15 0.1306 ∆ –1 HK/(kJ mol ) = 47.6 ± 0.5 298.15 0.1252 OR 293 0.0765

eq. 3 kH/kPa 298 0.1270 A 21.650 B 5994 ∆ –1 HK/(kJ mol ) = 49.8 ± 0.6

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2811

m -Cresol: Henry's law constant vs. 1/T 2.0

1.0

0.0 )lo -1.0 m/ 3 m.aP -2.0 ( /H nl /H -3.0

-4.0 Dohnal & Fenclová 1995 -5.0 Feigenbrugel et al. 2004 Altschuh et al. 1999 Sheikheldin et al. 2001 -6.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 14.1.1.3.3 Logarithm of Henry’s law constant versus reciprocal temperature for m-cresol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2812 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.1.4 p-Cresol

OH

Common Name: p-Cresol Synonym: p-cresylic acid, 1-hydroxy-4-methylbenzene, 4-hydroxytoluene, 4-methylphenol, p-hydroxytoluene, p-methyl- phenol, 4-cresol Chemical Name: 4-methylphenol CAS Registry No: 106-44-5

Molecular Formula: C7H8O, CH3C6H4OH Molecular Weight: 108.138 Melting Point (°C): 34.77 (Lide 2003) Boiling Point (°C): 201.98 (Lide 2003) Density (g/cm3 at 20°C): 1.0178 (Weast 1982–83)

Acid Dissociation Constant, pKa: 10.26 (Pearce & Simkins 1968, Dean 1985, Riddick et al. 1986; Howard 1989) 10.28 (Serjeant & Dempsey 1979; Tratnyek & Hoigné 1991; Haderlein & Schwarzenbach 1993) 10.17 (Weast 1982–83) Molar Volume (cm3/mol): 125.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 49.53 (at normal bp, Biddiscombe & Martin 1958) 47.55 (at normal boiling point, Andon et al. 1960) 43.2 (Dean 1992) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): 73.93 (at 25°C, Biddiscombe & Martin 1958; Andon et al. 1960; Dean 1992) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 12.72 (Tsonopoulos & Prausnitz 1971; Dean 1992) ∆ Entropy of Fusion, Sfus (J/mol K): 53.22 (Tsonopoulos & Prausnitz 1971) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.802 (mp at 34.77°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 22400* (40.2°C, shake flask, measured range 40.2–143.5°C, critical solution temp 143.5°C, Sidgwaick et al. 1915) 24230 (shake flask-residue volume method, Booth & Everson 1948) 19000 (shake -flask-UV, Blackman et al. 1955) 17000* (20°C, synthetic method/shake flask-optical, measured range 0–143.7°C, Ericksen & Dobbert 1955) 21000 (shake flask-spectrophotometry, Roberts et al. 1977) 24000, 53000 (40°C, 100°C, Verschueren 1977, 1983) 21500* (calculated-activity coeff. γ ∞ data, Dohnal & Fenclová 1995) 43534, 50064, 54615 (75.9, 88.7, 98.5°C, vapor-liquid equilibrium-GC, Dohnal & Fenclová 1995) 22000 (shake flask-HPLC/UV at pH 3.9, Varhaníčkova et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 17599* (145.7 °C, mercury manometer, measured range 145.7–200.8 °C, Goldblum et al. 1947)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2813

log (P/mmHg) = –2680/(T/K) + 8.524; temp range 145.7–200.9°C (Hg manometer, Goldblum et al. 1947) 21.89* (extrapolated-regression of tabulated data, temp range 53–201.8°C, Stull 1947) 7605* (128.65 °C, ebulliometry, measured range 128.65–201.88 °C, Dreisbach & Shrader 1949) 26.34 (calculated-Antoine eq., Dreisbach 1955) log (P/mmHg) = 7.52971 – 1872.4/(201.0 + t/°C); temp range 97–250°C (Antoine eq. for liquid state, Dreisbach 1955) 15.91 (gas saturation-diaphragm manometer fitted to Antoine eq., Biddiscombe & Martin 1958) 12.93* (23.35°C, gas saturation-diaphragm manometer, measured range 0–34.15°C, Biddiscombe & Martin 1958) log (P/mmHg) = 12.0298 – 3861.98/(t/°C + 273); temp range 0–34°C (Antoine eq. from gas-saturation and diaphragm manometer methods, Biddiscombe & Martin. 1958; Andon et al. 1960) log (P/mmHg) = 7.11767 – 1566.029/(t/°C + 167.680); temp range 110–200°C (Antoine eq. from gas-saturation- diaphragm manometer methods, Biddiscombe & Martin. 1958; Andon et al. 1960) 133.3 (53°C, Andon et al. 1960; Haque et al. 1980) log (P/mmHg) = [–0.2185 × 13611.7/(T/K)] + 9.190555; temp range 53–201.8°C (Antoine eq., Weast 1972–73) 11.8 (extrapolated-Antoine eq., Boublik et al. 1973) log (P/mmHg) = 7.03508 – 1511.08/(161.854 + t/°C); temp range 128–210.88°C (Antoine eq. from reported exptl. data of Dreisbach & Shrader 1949, Boublik et al. 1973) 13.94 (extrapolated-Cox eq., Chao et al. 1983) log (P/mmHg) = [1– 475.109/(T/K)] × 10^{1.07944 – 11.6938 × 10–4·(T/K) + 9.28202 × 10–7·(T/K)2}; temp range: 323.20–704.65 K, (Cox eq., Chao et al. 1983) 11.8, 17.5 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.15637 – 1508.694/(161.594 + t/°C), temp range 128–201.9°C (Antoine eq. from reported exptl. data of Dreisbach & Shrader 1949, Boublik et al. 1984) log (P/kPa) = 6.44531 – 1713.242/(183.846 + t/°C); temp range 15.7–200.9°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 11.83 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.03508 – 1511.08/(161.85 + t/°C); temp range 128–202°C (Antoine eq., Dean 1985, 1992) 17.3 (Riddick et al. 1986) 15.6 (calculated-Antoine eq., Stephenson & Malanowski 1987)

log (PS/kPa) = 12.098 – 3861.98/(T/K); temp range 273–307 K (Antoine eq.-I, solid, Stephenson & Malanowski 1987)

log (PS/kPa) = 11.16859 – 3868.314/(T/K); temp range 277–307 K (Antoine eq.-II, solid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.24257 – 1566.029/(–105.47 + T/K); temp range 383–473 K (Antoine eq.-III, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.83697 – 1930.688/(–73.422 + T/K); temp range 308–393 K (Antoine eq.-IV, Stephenson & Malanowski 1987)

log (PL/kPa) = 5.2376 – 1563.08/(–105.776 + T/K); temp range 385–477 K (Antoine eq.-V, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.19164 – 1533.535/(–108.781 + T/K); temp range 463–533 K (Antoine eq.-VI, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.99685 – 2310.405/(–10.362 + T/K); temp range 523–635 K (Antoine eq.-VII, Stephenson & Malanowski 1987) 16.1 (extrapolated-Antoine eq., Nesterova et al. 1990) log (P/Pa) = 93.42570 – 6409.054/(T/K) – 29.82622·log (T/K) + 1.03314 × 10–2·(T/K); temp range: 397–476 K (four-parameter vapor pressure eq. derived using exptl data of Biddiscombe & Martin 1958, Nesterova et al. 1990) log (P/mmHg) = 122.8998 –7.6175 × 103/(T/K) –41.637·log (T/K) + 1.5709 × 10–2·(T/K) –8.9199 × 10–13·(T/K)2; temp range 308–705 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.0802; 0.0699; 1.0820 (exptl., calculated-group contribution; calculated-bond contribution Hine & Mookerjee 1975)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2814 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

0.0223, 0.0973 (8, 25°C, calculated, Leuenberger et al. 1985) 0.689 (calculated-P/C, Neely & Blau 1985) 0.0397 (calculated-VLE vapor liquid equilibrium data, Yaws et al. 1991) 0.0653 (calculated-P/C, Shiu et al. 1994) 0.0783*, 0.297 (25, 40.2°C, calculated-activity coeff. γ∞ data, Dohnal & Fenclová 1995) 1.735, 3.144, 4.774 (75.9, 88.7, 98.5°C, vapor-liquid equilibrium-GC, Dohnal & Fenclová 1995) 0.0801 (extrapolated-vapor liquid equilibrium measurements, Dohnal & Fenclová 1995)

ln KAW = 9.328 – 5865/(T/K), temp range 20–100°C (vapor-liquid equilibrium measurements with additional lit. data, Dohnal & Fenclová 1995) < 0.347 (gas stripping-GC, Altschuh et al. 1999) 0.102 (calculated-group contribution, Lee et al. 2000) 0.0582, 0.0989* (20, 25°C, dynamic equilibrium system/gas stripping-GC/MS, Feigenbrugel et al. 2004)

Octanol/Water Partition Coefficient, log KOW: 1.94 (shake flask-UV, Fujita et al. 1964) 1.92, 1.94, 1.95 (quoted literature values, Leo et al. 1971; Hansch & Leo 1979, Hansch & Leo 1985) 1.99 (shake flask-UV at pH 7.45, Umeyama et al. 1971) 1.94 (LC-k′ correlation, Carlson et al. 1975) 2.17 (shake flask, Korenman et al. 1980) 1.97 (RP-HPLC-k′ correlation, Miyake & Terada 1982) 1.92, 1.98 ± 0.07 (selected best lit. value, exptl.-ALPM, Garst & Wilson 1984) 1.62 (HPLC-k′ correlation, Haky & Young 1984) 1.73 (calculated-activity coeff. γ from UNIFAC, Campbell & Luthy 1985) 1.91 (HPLC-k′ correlation, Miyake et al. 1987) 1.94 (RP-HPLC-capacity ratio, Minick et al. 1988) 1.94 (recommended, Hansch et al. 1995)

1.90; 2.06, 2.12, 1.94 (solid-phase microextraction; calculated-KOW program, calculated-CLOGP, quoted exptl., Dean et al. 1996) 1.53, 1.53, 1.69, 1.76 (HPLC-k′ correlation, different combinations of stationary and mobile phases under isocratic conditions, Makovskaya et al. 1995a)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

1.26 (estimated-KOW, Lyman et al. 1982; quoted, Howard 1989)

Sorption Partition Coefficient, log KOC: 2.81 (Coyote Creek sediment, Smith et al. 1978) 1.69 (Brookstone clayloam soil, Boyd 1982) –0.046 (predicted-S, Boyd 1982)

1.76 (calculated-KOW, Kollig 1993) 2.70 (soil, calculated-MCI 1χ, Sabljic et al. 1995) 2.15, 2.33 (soils: organic carbon OC ≥ 0.1% and pH 2.0–7.4, OC ≥ 0.5%, average, Delle Site 2001)

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Volatilization: t½ ~167 d, estimated from a lake as calculated from equations of Mackay & Wolkoff 1973 (Smith et al. 1978). Photolysis: –7 –1 k = 6.8 × 10 s under overcast weather of April at 25°C; t½ ~ 4800 h in river, t½ > 10000 h in both eutrophic lake and pond and t½ = 2400 h in oligotrophic lake, based on an average photolysis rate on a summer day at 40°N latitude by the one compartment model (Smith et al. 1978; quoted, Howard 1989)

photolytic t½ = 5800 h in aquatics (Haque et al. 1980). Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2815

photooxidation t½ = 144–11325 h in water, based on measured rate data for reactions with singlet oxygen and hydroxyl radical in aqueous solution (Anbar & Neta 1967; Scully & Hoigne 1987; quoted, Howard et al. 1991) –12 3 –1 –1 kNO3 = (13 ± 2) × 10 cm molecule s at 300 ± 1 K (Japar & Niki 1975; Graham & Johnston 1978; quoted, Carter et al. 1981) k(aq.) = 20 M–1 s–1, averaged over 24-h day (Smith et al. 1978) –12 3 –1 –1 kOH = 38 × 10 cm molecule s at 300 ± 1 K (Atkinson et al. 1979; quoted, Carter et al. 1981) photooxidation t½ = 10 h, based on measured rate data for the vapor phase reaction with hydroxyl radical in air (Atkinson et al. 1979; quoted, Howard 1989) –12 3 –1 –1 kNO3 = (15 ± 2.4) × 10 cm ·molecule s at 300 ± 1 K in air (relative rate technique with reference to 2-methyl-2-butene, Carter et al. 1981; quoted, Atkinson 1991) –19 3 –1 –1 kO3 = (4.71 ± 0.66) × 10 cm ·molecule s at 296 ± 2 K; calculated tropospheric lifetimes of 25 d and 0.3 d due to reaction with O3 and OH radical, respectively, at room temp. (Atkinson et al. 1982, 1984; Atkinson 1985) k = (3.0 ± 0.6) × 104 M–1 s–1 for the reaction with ozone in water at pH 1.5/2.0 (Hoigné & Bader 1983b) –11 3 –1 –1 kOH = 4.50 × 10 cm molecule s at 298 K (Atkinson & Lloyd 1984; quoted, Carlier et al. 1986) –11 3 –1 –1 kNO3 = 1 × 10 cm molecule s at 300 K (Atkinson & Lloyd 1984; quoted, Carlier et al. 1986) –12 3 –1 –1 kOH = (16.6 ± 1.8) × 10 cm molecule s at 298 ± 1 K (relative technique with reference to m-cresol, Atkinson et al. 1984; quoted, Atkinson 1991) –11 3 –1 –1 kNO3 = (1.27 ± 0.36) × 10 cm molecule s at 296 ± 2 K in air (Atkinson et al. 1984) photooxidation t½ = 1.5–15 h, based on measured rate data for the vapor phase reaction with hydroxyl radical in air (Atkinson 1985; selected, Howard et al. 1991) –12 3 –1 –1 –12 3 –1 –1 kOH(exptl) = 44.8 × 10 cm molecule s , and kOH(obs.) = 41 × 10 cm molecule s at room temp. (Atkinson 1985) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 56.2 × 10 cm molecule s , and kOH(exptl) = 42 × 10 cm molecule s at room temp. (Atkinson et al. 1985; quoted, Sabljic & Güesten 1990; Müller & Klein 1991 –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 44 × 10 cm molecule s , and kOH(exptl) = 44 × 10 cm molecule s at room temp. (SAR, Atkinson 1987; quoted, Sabljic & Güesten 1990) k = 1.1 × 107 M–1 s–1 at pH 8.3, 2.4 × 107 M–1 s–1 at pH 8.8, 1.6 × 108 M–1 s–1 at pH 10, 3.5 × 108 M–1 s–1 at pH 11.5 for the reaction with singlet oxygen in water at (19 ± 2)°C (Scully & Hoigné 1987) –12 3 –1 –1 kNO3 = 21.9 × 10 cm molecule s at 298 K (Atkinson et al. 1988; quoted, Sabljic & Güesten 1990; Müller & Klein 1991) –1 3 –1 –1 kOH = 4.7 × 10 cm molecule s at 298 K (recommended, Atkinson 1989, 1990) k = (9.6 ± 2.8) × 106 M–1 s–1 for the reaction with singlet oxygen in aqueous phosphate buffer at (27 ± 1)°C (Tratnyek & Hoigné 1991) –12 3 –1 –1 –12 3 –1 –1 kNO3 = (10.7 ± 1) × 10 cm molecule s at 296 ± 2 K, kOH = 47 × 10 cm molecule s at room temp. (Atkinson et al. 1992) –12 3 –1 –1 kOH(calc) = 30.83 × 10 cm molecule s (molecular orbital calculations, Klamt 1993) –11 3 –1 –1 –10 –1 –1 τ kOH = 5.2 × 10 cm mol s , and kOH(aq.) = 1.2 × 10 M s , the calculated atmospheric lifetime = 0.23 d under clear sky; τ = 0.18 d under cloudy conditions at 298 K, reduced to 0.11 d due to the average temperature of tropospheric clouds at 283 K (Feigenbrugel et al. 2004) Hydrolysis: no hydrolyzable functional groups (Smith et al. 1978).

Biodegradation: t½ = 1–2 d for bacteria to utilize 95% of 300 ppm in parent substrate (Tabak et al. 1964) Completely degraded by a soil microflora in one day (Alexander & Lustigman 1966; quoted, Verschueren 1983); average rate k = 55.0 mg COD g–1 h–1 based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982); µ t½ = 12 h in eutrophic lake for a point source continuously discharging 1.0 g/mL predicted by one compartment model for all processes including dilution (Smith et al. 1978); laboratory determined k = 5.2 × 10–7 mL cell–1 h–1 at 25°C (Smith et al. 1978) k(calc) = 1.7 d–1 in river water, k = 0.8–4.7 d–1 in estuary water and k = 2.8–4.8 d–1 in marine water after a lag period (Vashon & Schwab 1982; quoted, Battersby 1990);

t½(aq. aerobic) = 1–16 h, based on unacclimated marine and freshwater grab sample data (Van Veld & Spain 1983; Rogers et al. 1984; selected, Howard et al. 1991)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2816 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

t½(aq. anaerobic) = 240–672 h, based on anaerobic screening test data (Boyd et al. 1983; Horowitz et al. 1982; selected, Howard et al. 1991); k = 1.72 × 10–17 mol cell–1 h–1 in pure culture system (Banerjee et al. 1984).

Biotransformation: estimated t½ = 12 h in river, eutrophic lake and pond and t½ > 10000 h in oligotrophic lake, based on an average photolysis rate on a summer day at 40°N latitude by the one compartment model (Smith et al. 1978).

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment:

Air: photooxidation t½ = 10 h, based on measured rate data for the vapor phase reaction with OH radical in air (Atkinson et al. 1979; quoted, Howard 1989);

photooxidation t½ = 1.5–15 h, based on measured rate data for the vapor phase reaction with OH radical in air (Atkinson 1985; quoted, Howard et al. 1991); atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). calculated atmospheric lifetime τ = 0.23 d under clear sky and τ = 0.18 d under cloudy conditions based on reactions with OH radical in gas and aqueous phases at 298 K, reduced to τ = 0.11 d due to average temperature of tropospheric cloud at 283 K (Feigenbrugel et al. 2004)

Surface water: t½ = 0.55 h in river, t½ = 12 h in pond and eutrophic lake, and t½ = 2400 h in oligotrophic lake for a point source continuously discharging 1.0 µg/mL predicted by one compartment model for all processes including dilution (Smith et al. 1978; quoted, Howard 1989); rate constant k = (3.0 ± 0.6) × 104 M–1·s–1 for the reaction with ozone at pH 1.5/2.0 in water (Hoigné & Bader 1983b);

t½ = 1–16 h, based on unacclimated marine and freshwater grab sample data (Van Veld & Spain 1983; Rogers et al. 1984; quoted, Howard et al. 1991);

t½ = 500 h for the reaction with singlet oxygen in water at pH 8 and (19 ± 2)°C (Scully & Hoigné 1987). Ground water: estimated half-life for cresols, t½ = 0.01 yr at Noordwijk (Zoeteman et al. 1981); t½ = 2–672 h, based on estimated unacclimated aqueous aerobic biodegradation half-life and aqueous anaerobic biodeg- radation half-life (Howard et al. 1991). Sediment: Soil:

t½ = 1–16 h, based on unacclimated marine and freshwater grab sample data (Van Veld & Spain 1983; Rogers et al. 1984; quoted, Howard et al. 1991);

t½ = 0.5 d in an acidic clay soil with < 1.0% organic matter and t½ = 1.0 d in a slightly basic sandy loam soil with 3.25% organic matter, based on aerobic batch lab microcosm experiments (Loehr & Matthews 1992). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2817

TABLE 14.1.1.4.1 Reported aqueous solubilities of p-cresol at various temperatures

Sidgwick et al. 1915 Erichsen & Dobbert 1955 Dohnal & Fenclová 1995

shake flask-synthetic method shake flask-optical method vapor-liquid equil.-UV

t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 40.2 22400 0 10000 25 21500 52.6 24900 20 17000 40.2 22840 63.5 28000 40 23000 75.9 43534 73.5 31900 60 30000 88.7 50064 84.0 37200 80 37000 98.5 54615 88.8 40600 100 48000 100 56146 94.0 44700 110 56000 124.5 74200 120 72000 139.4 151000 130 101000 141.2 200700 140 177000 143.5 301300 142 226000 143.4 400800 143 264000 141.5 506300 143.5 340000 134.8 606100 148 380000 111.6 719100 77.9 704000 37.4 836100 27.5 844800 17.2 852800 8.7 868600 9.2 879000 10.8 900900 17.1 946800 20.3 960100 24.0 922700 27.5 983200 29.9 990600 33.8 1000000 critical solution temp 143.5°C triple point 8.7°C

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2818 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

p -Cresol: solubility vs. 1/T 1.0 Sidgwick et al. 1915 Erichsen & Dobbert 1955 0.0 Dohnal & Fenclová 1995 experimental data -1.0

-2.0

x nl x -3.0

-4.0

-5.0

critical solution -6.0 temp. = 143.5 °C m.p. = 34.77 °C -7.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 14.1.1.4.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for p-cresol.

TABLE 14.1.1.4.2 Reported vapor pressures of p-cresol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Goldblum et al. 1947 Dreisbach & S. 1949 Biddiscombe & Martin 1958

summary of lit. data mercury manometer ebulliometry gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa solid liquid 53.0 133.3 145.7 17599 128.65 7605 0 1.493 124.151 7518 76.5 666.6 163.6 32664 131.26 10114 4.75 1.640 138.025 13204 88.6 1333 171.6 42263 143.86 16500 8.60 2.653 145.593 17517 102.3 2666 179.2 53329 171.27 42066 10.8 4.066 155.395 24845 117.7 5333 187.2 67194 187.17 67661 13.9 4.880 162.723 31824 127.0 7999 193.7 80660 201.88 101325 16.8 7.199 168.937 38934 140.0 13332 200.8 98392 20.0 9.013 173.819 45366 157.7 26664 153.0 22931 22.0 12.08 178.598 52497 179.4 53329 183.8 61062 bp/°C 201.88 23.35 13.00 183.663 60995 201.8 101325 190.8 74261 28.85 21.86 186.521 66259 197.1 88526 29.75 25.60 190.578 74355 mp/°C 35.5 200.8 98392 32.55 31.60 192.90 79336 34.15 38.53 193.029 79631 eq. 1 P/mmHg 197.102 89029 A 8.308 198.609 92732 B 2520 bp/°C 201.94 199.666 95395 200.226 96828 for temp range: 200.535 97964 0–34°C 201.122 99164 eq. 2 P/mmHg 201.719 100728 A 12.0298 202.269 102205

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2819

TABLE 14.1.1.4.2 (Continued)

Stull 1947 Goldblum et al. 1947 Dreisbach & S. 1949 Biddiscombe & Martin 1958

summary of lit. data mercury manometer ebulliometry gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa B 3861.98 202.985 104133 C 273 ∆ –1 HV/(kJ mol ) for temp range: at bp 49.534 110–200°C at 25°C 73.931 eq. 2 P/mmHg A 7.11767 B 1566.029 C 167.680

p -Cresol: vapor pressure vs. 1/T 7.0 Goldblum et al. 1947 Dreisbach & Shrader 1949 6.0 Biddiscombe & Martin 1958 Stull 1947 5.0

4.0 )aP/

S 3.0 P(gol

2.0

1.0

0.0 b.p. = 201.98 °C m.p. = 34.77 °C -1.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 14.1.1.4.2 Logarithm of vapor pressure versus reciprocal temperature for p-cresol.

TABLE 14.1.1.4.3 Reported Henry’s law constants of m-cresol at various temperatures and temperature dependence equations

ln KAW = A – B/(T/K) (1) log KAW = A – B/(T/K) (1a)

ln (1/KAW) = A – B/(T/K) (2) log (1/KAW) = A – B/(T/K) (2a)

ln (kH/atm) = A – B/(T/K) (3) ln H = A – B/(T/K) (4) log H = A – B/(T/K) (4a) 2 KAW = A – B·(T/K) + C·(T/K) (5)

Dohnal & Fenclová 1995 Feigenbrugel et al. 2004

vapor-liquid equilibrium gas stripping-GC/MS

t/°CH/(Pa m3/mol) T/K H/(Pa m3/mol) 25.0 0.0783* 278.25 0.00914 40.2 0.297* 278.25 0.01148 75.9 1.735 278.35 0.00846 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2820 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.1.4.3 (Continued)

Dohnal & Fenclová 1995 Feigenbrugel et al. 2004

vapor-liquid equilibrium gas stripping-GC/MS

t/°CH/(Pa m3/mol) T/K H/(Pa m3/mol) 88.7 3.144 283.15 0.0262 98.5 4.774 283.15 0.0215 25.0 0.0801# 283.25 0.0207 25.0 0.0792$ 288.10 0.0323 288.15 0.0414 #calculated from eq. 1 288.20 0.0307 $calculated from eq. 3 293.10 0.0557 *data from literature 293.15 0.0724 293.15 0.0627

eq. 1 KAW 293.15 0.0606 A 9.328 293.15 0.0563 B 5865 293.25 0.0602 298.15 0.0943 enthalpy of hydration: 298.25 0.0875 ∆ –1 HK/(kJ mol ) = 48.8 ± 0.6 293 0.0582 OR 298 0.0989

eq. 3 kH/kPa A 22.071 B 6138 ∆ –1 HK/(kJ mol ) = 51.0 ± 0.6

p -Cresol: Henry's law constant vs. 1/T 2.0

1.0

0.0 )lom/ -1.0 3 m.aP(/H nl m.aP(/H -2.0

-3.0

-4.0

-5.0 Dohnal & Fenclová 1995 Feigenbrugel et al. 2004 -6.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 14.1.1.4.3 Logarithm of Henry’s law constant versus reciprocal temperature for p-cresol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2821

14.1.1.5 2,3-Dimethylphenol

OH

Common Name: 2,3-Dimethylphenol Synonym: 2,3-xylenol, 1-hydroxy-2,3-dimethylbenzene Chemical Name: 2,3-dimetylphenol CAS Registry No: 526-75-0

Molecular Formula:C8H10O, CH3C6H3(CH3)OH Molecular Weight: 122.164 Melting Point (°C): 72.5 (Lide 2003) Boiling Point (°C): 216.9 (Lide 2003) Density (g/cm3):

Acid Dissociation Constant, pKa: 10.54 (Dohnal & Fenclová 1995) Molar Volume (cm3/mol): 147.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 84.08, 47.32 (25°C, normal boiling point, Andon et al. 1960) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.342 (mp at 72.5°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 40000* (150 °C, shake flask-optical method, measured range 150–208.8 °C, Erichsen & Dobbert 1955) 3930 (20°C, shake flask or batch contacting technique-UV, Dohnal & Fenclová 1995)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 133.3* (56°C, summary of literature data, temp range 56–219.0°C, Stull 1947) 1333* (84.0 °C, ebulliometry, measured range 84.0–219.0 °C, Vonterres et al. 1955) 3.64* (24.71°C, ebulliometry/gas saturation, measured range 10–45°C, Andon et al. 1960) log (P/mmHg) = 13.1606 – 4389.99/(t/°C + 273); temp range 10–50°C (Antoine eq. from ebulliometric and gas- saturation measurements, Andon et al. 1960) log (P/mmHg) = 7.04268 – 1069.164/(t/°C + 169.744); temp range 149–219°C (Antoine eq. from ebulliometric and gas-saturation measurements, Andon et al. 1960) log (P/kPa) = 6.13887 – 1588.200/(167.385 + t/°C); temp range 149–218°C (Antoine eq. derived from experi- mental data of Andon et al. 1960, Boublik et al. 1984) log (P/kPa) = 6.01592 – 1644.433/(192.286 + t/°C), temp range 84–219°C (Antoine eq. derived from experimen- tal data of Vonterres et al. 1955, Boublik et al. 1984)

log (PS/kPa) = 12.29616 – 4394.694/(T/K); temp range 282–323 K (solid, Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.17998 – 1619.086/(–102.197 + T/K); temp range 433–492 K (liquid, Antoine eq.-II, Stephenson & Malanowski 1987) log (P/mmHg) = 82.92733 – 6.0367 × 103/(T/K) –26.948·log (T/K) + 9.739 × 10–3·(T/K) + 2.5196 × 10–12·(T/K)2; temp range 346–723 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equations): 0.0631, 0.0952 (20, 25°C, calculated-limiting activity coefficient γ∞ data, Dohnal & Fenclová 1995)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2822 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

2.96, 5.656, 8.652 (75.9, 88.7, 98.5°C, vapor-liquid equilibrium-GC, Dohnal & Fenclová 1995)

ln KAW = 11.858 – 6567/(T/K); temp range 20–98.5°C (vapor-liquid equilibrium VLE data, Dohnal & Fenclová 1995)

Octanol/Water Partition Coefficient, log KOW: 2.48 (HPLC-RT correlation, Makovskaya et al. 1995b)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC: τ Environmental Fate Rate Constants, k and Half-Lives, t½, or Lifetimes, : Half-Lives in the Environment:

TABLE 14.1.1.5.1 Reported aqueous solubilities of 2,3-dimethylphenol at various temperatures

Erichsen & Dobbert 1955

shake flask-optical method

t/°CS/g·m–3 150 40000 160 48000 170 58000 180 70000 190 94000 200 140000 202 156000 204 175000 206 200000 208 252000 208.8 365000

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2823

2,3-Dimethylphenol: vapor pressure vs. 1/T 7.0 Vonterres et al. 1955 Andon et al. 1960 6.0 Stull 1947

5.0

4.0 )aP/

S 3.0 P(gol

2.0

1.0

0.0 b.p. = 216.9 °C m.p. = 72.5 °C -1.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.1.5.1 Logarithm of vapor pressure versus reciprocal temperature for 2,3-dimethylphenol.

TABLE 14.1.1.5.2 Reported vapor pressures of 2,3-dimethylphenol at various temperatures and the coefficients for the vapor pressure equations

log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Vonterres et al. 1955 Andon et al. 1960

summary of literature data ebulliometry gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa 56.0 133 84.0 1333 9.91 0.609 149.346 13304 83.8 666.6 105.6 3333 14.70 1.072 160.94 20045 97.6 1333 124.0 6666 19.70 1.933 169.634 26704 112.0 2666 135.2 9999 24.71 3.640 176.314 32963 129.2 5333 144.0 13332 29.58 5.650 182.500 39779 139.5 7999 157.0 26664 35.19 10.13 187.374 45920 152.2 13332 174.0 33330 39.54 17.33 192.094 53573 173.0 26664 180.2 39997 44.81 29.86 196.778 59919 196.0 53329 183.6 43330 49.88 52.93 200.752 66779 218.0 101325 186.1 46663 204.000 72842 191.0 53329 mp/°C 72.57 207.54 79951 mp/°C 75.0 196.0 59995 bp/°C 216.87 210.672 86542 200.0 66661 213.454 93026 203.9 73327 for temp range: 214.137 94644 207.0 79993 9–50°C 214.788 96151 210.1 86659 eq. 2 P/mmHg 215.091 96929 213.5 93325 A 13.1606 215.646 98283 219.0 101325 B 4389.06 216.144 99513 C 273 216.987 101613 217.323 102400 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2824 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.1.5.2 (Continued)

Stull 1947 Vonterres et al. 1955 Andon et al. 1960

summary of literature data ebulliometry gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa ∆ –1 HV/(kJ mol ) 217.928 104010 at 25°C 84.015 at bp 47.32 for temp range: 149–218°C eq. 2 P/mmHg A 7.04268 B 1609.184 C 169.774

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2825

14.1.1.6 2,4-Dimethylphenol

OH

Common Name: 2,4-Dimethylphenol Synonym: 2,4-xylenol, as-m-xylenol, 1-hydroxy-2,4-dimethylbenzene Chemical Name: 2,4-dimethylphenol CAS Registry No: 105-67-9

Molecular Formula: C8H10O, CH3C6H3(CH3)OH Molecular Weight: 122.164 Melting Point (°C): 24.5 (Lide 2003) Boiling Point (°C): 210.98 (Lide 2003) Density (g/cm3 at 20°C): 1.0202 (Andon et al. 1960) 0.9650 (Weast 1982–83) Molar Volume (cm3/mol): 147.8 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 10.60 (Herington & Kynaston 1957; quoted, Callahan et al. 1979) 10.58 (Dean 1985) 10.63 (Riddick et al. 1986; Howard 1989) 10.10 (Kollig 1993) ∆ Enthalpy of Vaporization, HV (kJ/mol): 47.15 (at normal boiling point, Andon et al. 1960) 65.86 (at 25°C, Andon et al. 1960; Dean 1992) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 8795 (shake flask-UV at pH 5.1, Blackman et al. 1955) 6200 (shake flask-UV at pH 6.5, Blackman et al. 1955) 6200* (synthetic method/shake flask-optical, extrapolated value, measured range 160–213.5°C, Ericksen & Dobbert 1955) 7868 (shake flask-LSC, Banerjee et al. 1980) 7888 (shake flask-radioactive analysis, Veith et al. 1980) 7819 (generator column-HPLC, Wasik et al. 1981) 4200 (solid-phase microextraction SPME-GC, Buchholz & Pawliszyn 1994) 7929 (calculated-activity coeff. γ∞ data, Dohnal & Fenclová 1995) 8200 (shake flask-HPLC/UV, Varhaníčková et al. 1995)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (51.8°C, summary of literature data, temp range 51.8–211.0°C, Stull 1947) 21.78 (calculated-Antoine eq., Dreisbach 1955) log (P/mmHg) = 7.37688 – 1838.9/(1999.0 + t/°C); temp range 115–245°C (Antoine eq. for liquid state, Dreis- bach 1955)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2826 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

1333* (89.50 °C, ebulliometry, measured range 89.50–211.0 °C, Vonterres et al. 1955) 12.81* (24.87°C, ebulliometric and gas-saturation methods, measured range 9–45°C Andon et al. 1960) 13.02 (interpolated-Antoine eq. derived from exptl. results, Andon et al. 1960) log (P/mmHg) = 10.5277 – 3439.99/(t/°C + 273); temp range 9–45°C (Antoine eq. from ebulliometric and gas- saturation measurements, Andon et al. 1960) log (P/mmHg) = 7.04694 – 1581.391/(t/°C + 168.652); temp range 114–212°C (Antoine eq. from ebulliometric and gas-saturation measurements, Andon et al. 1960) log (P/mmHg) = [–0.2185 × 13130.2/(T/K)] + 8.867260; temp range 51.8–211.5°C (Antoine eq., Weast 1972–73) 10.28 (extrapolated-Antoine eq., Boublik et al. 1973) log (P/mmHg) = 7.05539 – 1587.459/(169.339 + t/°C); temp range 144.4–212.3°C (Antoine eq. from reported exptl. data of Andon et al. 1960, Boublik et al. 1973) 13.17 (calculated-Cox eq., Chao et al. 1983) log (P/mmHg) = [1– 483.876/(T/K)] × 10^{0.999891 – 8.94506 × 10–4·(T/K) + 6.96026 × 10–7·(T/K)2}; temp range: 298.02–707.95 K, (Cox eq., Chao et al. 1983) 10.29, 20.22 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.18152 – 1588.34/(169.437 + t/°C), temp range 144.4–212.3°C (Antoine eq. from reported exptl. data of Andon et al. 1960, Boublik et al. 1984) log (P/kPa) = 7.02271 – 2183.475/(225.488 + t/°C); temp range 89.5–211°C (Antoine eq. from reported exptl. data of Vonterres et al. 1955, Boublik et al. 1984) 10.28 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.05539 – 1587.46/(169.34 + t/°C); temp range 144–212°C (Antoine eq., Dean 1985, 1992) 12.87 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 9.65613 – 3442.574/(T/K); temp range 282–318 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.1672 – 1578.685/(–104.772 + T/K); temp range 429–486 K (Antoine eq.-II, Stephenson & Malanowski 1987) 12.96 (extrapolated-four-parameter vapor pressure eq., Nesterova et al. 1990) log (P/Pa) = 86.11491 – 6138.775/(T/K) – 27.12977·log (T/K) + 0.91169 × 10–2·(T/K); temp range 418–485 K (four-parameter vapor pressure eq. derived using exptl data of Andon et al. 1960, Nesterova et al. 1990) log (P/mmHg) = 53.3866 – 5.1516 × 103/(T/K) – 15.095·log (T/K) – 1.3196 × 10–9·(T/K) + 2.8455 × 10–6·(T/K)2; temp range 346–708 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 1.722 (calculate-P/C, Mabey et al. 1982) 500 (EPICS-GC, Ashworth et al. 1988) 500* (EPICS-GC/FID, measured range 10–30°C, Ashworth et al. 1988) ln [H/(atm m3/mol)] = –16.34 – 3307/(T/K), temp range 10–30°C (EPICS measurements, Ashworth et al. 1988) 0.0638 (8°C, Leuenberger et al. 1985) 0.203, 0.0692 (calculated-P/C, estimated-bond contribution, Meylan & Howard 1991) 0.1815 (calculated-P/C, Shiu et al. 1994) 0.199* (calculated-limiting activity coeff. γ ∞ data, Dohnal & Fenclová 1995) 4.338, 7.491, 11.46 (75.9, 88.7, 98.5°C, vapor-liquid equilibrium-GC, Dohnal & Fenclová 1995) 0.202* (extrapolated-vapor liquid equilibrium measurements, Dohnal & Fenclová 1995)

ln KAW = 10.077 – 5811/(T/K); temp range 20–100°C (vapor-liquid equilibrium measurements with additional lit. data, Dohnal & Fenclová 1995) 0.154 (20°C, single equilibrium static technique SEST, Sheikheldin et al. 2001) 643 (20°C, selected from literature experimentally measured data - poor correlation coefficient, Staudinger & Roberts 2001)

log KAW = –5.192 + 1563/(T/K); poor correlation coefficient (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 2.30 (20°C, shake flask-UV, Korenman 1973) 2.42 (23 ± 1.5°C, shake flask-LSC, Banerjee et al. 1980; Veith et al. 1980)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2827

2.30 (shake flask, Korenman et al. 1980) 1.99, 2.54 (RP-HPLC-RT correlation, quoted calculated value, Veith et al. 1980) 2.54 (35°C, shake flask-UV, Rogers & Wong 1980) 2.34 (generator column-HPLC, Wasik et al. 1981) 2.37 (calculated-activity coeff. γ from UNIFAC not considering mutual solubility of octanol and water, Arbuckle 1983) 2.95 (calculated-activity coeff. γ from UNIFAC by considering mutual solubility of octanol and water, Arbuckle 1983) 2.14 (HPLC-k′ correlation, Haky & Young 1984) 1.83 (calculated-activity coeff. γ from UNIFAC, Banerjee & Howard 1988) 2.35 (recommended, Sangster 1989, 1993) 2.48 (calculated-UNIFAC activity coeff., Dallos et al. 1993) 2.30 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: Bioconcentration Factor, log BCF: 1.18 (bluegill sunfish, Barrows et al. 1980) 2.18 (bluegill sunfish, Veith et al. 1980)

1.86 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 1.88 (calculated-MCI χ, Sabljic 1987a)

Sorption Partition Coefficient, log KOC:

1.98 (sediment-water, calculated-KOW, Mabey et al. 1982) 2.63 (soil, calculated-KOW, Lyman et al. 1982) 2.19 (activated carbon, Blum et al. 1994)

1.76 (calculated-KOW, Kollig 1993) 2.62, 2.77 (average values for sediments, soils, Delle Site 2001)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: k < 4 × 106 M–1 h–1 for singlet oxygen, 1.1 × 108 M–1·h–1 for peroxy radical at 25°C (Mabey et al. 1982)

photooxidation t½ = 77-3840 h in water, based on reported reaction rate constants for RO2 radicals with the phenol class (Mill & Mabey 1985; selected, Howard et al. 1991)

photooxidation t½ = 8.0 h in air, based on reaction with photochemically produced hydroxyl radical in air (GEMS 1986; selected, Howard 1989) –12 3 –1 –1 kOH = 71.5 × 10 cm molecule s at 296 ± 2 K (Atkinson 1989) photooxidation t½ = 1.19–11.9 h, based on estimated rate constant for the reaction with OH radical in air (Howard et al. 1991) –12 3 –1 –1 kOH(calc) = 51.06 × 10 cm molecule s (molecular orbital calculations, Klamt 1993) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 5.2 × 10 cm molecule s , kOH(exptl) = 1.06 × 10 cm molecule s at 298 K (SAR structure-activity relationship, Kwok & Atkinson 1995) Hydrolysis: Biodegradation: average rate of biodegradation 28.2 mg COD g–1 h–1 based on measurements of COD decrease using activated sludge inoculum with 20 d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982); –1 first-order rate constant k = 1.0 d corresponding to t½ = 0.7 d in adapted activated sludge under aerobic conditions (Mills et al. 1982);

t½(aq. aerobic) = 24–168 h, based on aqueous aerobic screening test data (Petrasek et al. 1983; Chambers et al. 1963; selected, Howard et al. 1991); t½(aq. anaerobic) = 96–672 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991); average k(exptl.) = 0.0578 h–1 compared to group contribution method predicted k = 0.0758 h–1 (nonlinear) and k = 0.0646 h–1 (linear) (Tabak & Govind 1993).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2828 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Biotransformation: rate constant for bacterial transformation of 1 × 107 mL cell–1 h–1 in water (Mabey et al. 1982).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 8.0 h, based on reaction with photochemically produced hydroxyl radical in air (GEMS 1986; quoted, Howard 1989); photooxidation t½ = 1.19–11.9 h, based on estimated rate constant for the reaction with hydroxyl radicals in air (Howard et al. 1991).

Surface water: photooxidation t½ = 77–3840 h in water, based on reported reaction rate constants for RO2 radical with the phenol class (Mill & Mabey 1985; quoted, Howard et al. 1991).

Groundwater: t½ = 48–336 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

TABLE 14.1.1.6.1 Reported aqueous solubilities and Henry’s law constants of 2,4-dimethylphenol at various temperatures

Aqueous solubility Henry’s law constant

Erichsen & Dobbert 1955 Ashworth et al. 1988 Dohnal & Fenclová 1995

shake flask-optical method EPICS-GC vapor-liquid equilibrium

t/°CS/g·m–3 t/°CH/(Pa m3/mol) t/°CH/(Pa m3/mol) 160 17000 10 840 75.9 4.338 170 33000 15 683 88.7 7.491 180 54000 20 1023 98.5 11.46 190 77000 25 500 200 114000 30 380 210 188000 212 234000 log H = A – B/(T/K) 213 279000 H/(atm m3/mol) 213.5 335000 A –16.34 25 6200 B –3307 extrapolated

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2829

2,4-Dimethylphenol: Henry's law constant vs. 1/T 8.0

6.0

)lom/ 4.0 3 m.aP(/H nl m.aP(/H 2.0

0.0

-2.0 Dohnal & Fenclová 1995 Sheikheldin et al. 2001 -4.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 14.1.1.6.1 Logarithm of Henry’s law constant versus reciprocal temperature for 2,4-dimethylphenol.

TABLE 14.1.1.6.2 Reported vapor pressures of 2,4-dimethylphenol at various temperatures and the coefficients for the vapor pressure equations

log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Vonterres et al. 1955 Andon et al. 1960

summary of literature data ebulliometry gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa 51.8 133.3 89.50 1333 9.73 3.040 144.382 13195 78.0 666.6 109.9 3333 14.94 5.066 156.053 20024 91.3 1333 127.0 6666 20.13 8.279 164.129 26289 105 2666 137.4 9999 24.87 12.81 171.241 33051 131.5 5333 144.5 13332 29.91 20.13 176.700 39155 131 7999 156.0 19998 35.16 30.797 182.116 46078 143 13332 165.1 26664 39.41 43.73 186.169 52557 161.5 26664 171.2 33330 44.86 67.06 191.348 60131 184.5 53329 177.3 39997 194.795 66188 211.5 101325 180.0 46663 mp/°C 24.54 198.444 73115 186.7 53329 bp/°C 210.931 201.747 79877 mp/°C 25.5 190.8 59995 204.809 86584 194.4 66661 for temp range: 207.513 92867 198.0 73327 9–45°C 208.299 94764 201.0 79993 eq. 2 P/mmHg 208.898 97557 204.0 86659 A 10.5277 209.314 97251 206.6 93325 B 3499.99 209.847 98580 211.0 101325 C 273 210.45 100102 210.951 101381 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2830 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.1.6.2 (Continued)

Stull 1947 Vonterres et al. 1955 Andon et al. 1960

summary of literature data ebulliometry gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa ∆ –1 HV/(kJ mol ) 211.453 102666 at 25°C 65.856 211.888 103803 at bp 47.145 212.32 106266

for temp range: 144–212°C eq. 2 P/mmHg A 7.04694 B 1581.391 C 168.652

2,4-Dimethylphenol: vapor pressure vs. 1/T 7.0 Vonterres et al. 1955 Andon et al. 1960 6.0 Stull 1947

5.0

4.0 )a P/

S 3.0 P(gol

2.0

1.0

0.0 b.p. = 210.98 °C m.p. = 24.5 °C -1.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.1.6.2 Logarithm of vapor pressure versus reciprocal temperature for 2,4-dimethylphenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2831

14.1.1.7 2,5-Dimethylphenol

OH

Common Name: 2,5-Dimethylphenol Synonym: 2,5-xylenol, 1-hydroxy-2,5-dimethylbenzene Chemical Name: 2,5-dimethyl phenol CAS Registry No: 95-87-4

Molecular Formula:C8H10O, CH3C6H3(CH3)OH Molecular Weight: 122.164 Melting Point (°C): 74.8 (Lide 2003) Boiling Point (°C): 211.1 (Lide 2003) Density (g/cm3):

Acid Dissociation Constant, pKa: 10.41 (Dohnal & Fenclová 1995) Molar Volume (cm3/mol): 147.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 84.98, 46.94 (25°C, normal bp, Andon et al. 1960) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.325 (mp at 74.8°C) Water Solubility (g/m3 or mg/L at 25°C or as indicated): 3126 (shake flask-UV, pH 5.1, Blackman et al. 1955) 3122 (20°C, shake flask-UV, Dohnal & Fenclová 1995)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (51.8°C, summary of literature data, temp range 51.8–211.5°C, Stull 1947) 1333* (89.40 °C, ebulliometry, measured range 89.40–211.2°C, Vonterres et al. 1955) 1.213* (24.82°C, ebulliometry/gas saturation, measured range 9.5–45°C, Andon et al. 1960) log (P/mmHg) = 13.3705 – 4438.56/(t/°C + 273); temp range 9–50°C (Antoine eq. from ebulliometric and gas- saturation measurements, Andon et al. 1960) log (P/mmHg) = 7.03684 – 1581.906/(t/°C + 169.497); temp range 143–212°C (Antoine eq. from ebulliometric and gas-saturation measurements, Andon et al. 1960) log (P/kPa) = 6.1332 – 1560.465/(176.024 + t/°C), temp range 144–211.2°C (Antoine eq. derived from exptl data of Andon et al. 1960, Boublik et al. 1984) log (P/kPa) = 6.04303 – 1383.881/(157.333 + t/°C); temp range 89.4–211.2°C (Antoine eq. derived from exptl data of Vonterres et al. 1955, Boublik et al. 1984)

log (PS/kPa) = 12.51064 – 3950.681/(T/K), temp range 282–323 K (solid, Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.17702 – 1593.804/(–102.241 + T/K); temp range 427–485 K (liquid, Antoine eq.-II, Stephenson & Malanowski 1987) log (P/mmHg) = 47.5888 – 4.8102 × 103/(T/K) –13.186·log (T/K) – 1.0208 × 10–9·(T/K) + 2.7045 × 10–12·(T/K)2; temp range 348–707 K (vapor pressure eq., Yaws 1994)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2832 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.0873, 0.133 (20, 25°C, calculated-limiting activity coefficient γ ∞ data, Dohnal & Fenclová 1995) 4.353, 7.476, 11.20 (75.9, 88.7, 98.5°C, vapor-liquid equilibrium-GC, Dohnal & Fenclová 1995)

ln KAW = 12.004 – 6511/(T/K); temp range 20–98.5°C (vapor-liquid equilibrium VLE data, Dohnal & Fenclová 1995)

Octanol/Water Partition Coefficient, log KOW: 2.34 (shake flask, Korenman 1973) 2.33 (shake flask, Korenman et al. 1980) 2.35 (generator column-HPLC, Wasik et al. 1981) 2.34 (recommended, Sangster 1993) 2.48 (HPLC-RT correlation, Makovskaya et al. 1995b)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

TABLE 14.1.1.7.1 Reported vapor pressures of 2,5-dimethylphenol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Vonterres et al. 1955 Andon et al. 1960

summary of literature data ebulliometry gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa 51.8 133.3 89.40 1333 9.42 0.60 143.024 12990 78.0 666.6 109.8 3333 15.01 1.215 154.805 19234 91.3 1333 126.8 6666 19.9 2.186 164.433 26584 105 2666 137.2 9999 24.82 3.946 171.549 33375 121.5 5333 144.5 13333 29.83 6.849 176.902 39361 131 7999 156.0 19998 35.33 12.59 182.455 46460 143 13332 164.8 26666 39.41 19.47 187.328 53509 161.5 26664 171.5 33330 44.79 34.53 191.46 60142 184.2 53329 177.4 39997 49.75 52.80 194.984 66312 211.5 101325 180.2 43330 198.93 73602 182.5 46663 210.834 79735 mp/°C 74.5 186.6 53329 mp/°C 74.85 204.603 85737 189.5 59995 bp/°C 211.132 207.748 92988 194.2 66661 208.661 95182 198.0 73327 for temp range: 209.138 96349 201.0 79993 9–50°C 209.556 97373 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2833

TABLE 14.1.1.7.1 (Continued)

Stull 1947 Vonterres et al. 1955 Andon et al. 1960

summary of literature data ebulliometry gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa 204.6 86659 eq. 2 P/mmHg 210.117 98764 206.8 93325 A 13.3705 210.771 100257 211.2 101325 B 4438.56 211.232 101580 C 273 211.736 102870 ∆ –1 HV/(kJ mol ) for temp range: at 25°C 84.98 143–212°C at bp 46.94 eq. 2 P/mmHg A 7.03684 B 1581.906 C 169.497

2,5-Dimethylphenol: vapor pressure vs. 1/T 7.0 Vonterres et al. 1955 Andon et al. 1960 6.0 Stull 1947

5.0

4.0 )aP/

S 3.0 P(gol

2.0

1.0

0.0 b.p. = 211.1 °C m.p. = 74.8 °C -1.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.1.7.1 Logarithm of vapor pressure versus reciprocal temperature for 2,5-dimethylphenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2834 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.1.8 2,6-Dimethylphenol

OH

Common Name: 2,6-Dimethylphenol Synonym: 2,6-xylenol, vic-m-xylenol Chemical Name: 2,6-dimethylphenol CAS Registry No: 576-26-1

Molecular Formula: C8H10O, CH3C6H3(CH3)OH Molecular Weight: 122.164 Melting Point (°C): 45.8 (Lide 2003) Boiling Point (°C): 201.07 (Lide 2003) Density (g/cm3 at 20°C): 1.1320 (25°C, Andon et al. 1960) Molar Volume (cm3/mol): 107.9 (25°C, calculated-density) 147.8 calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 10.60 (McLeese et al. 1979; Dean 1985; Varhaníčková et al. 1995) 10.63 (Riddick et al. 1986) ∆ Enthalpy of Vaporization, HV (kJ/mol): 60.41, 46.97 (25°C, bp, Dreisbach 1955) 44.52 (at normal boiling point, Andon et al. 1960) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): 75.6 (at 25°C, Andon et al. 1960; Dean 1992) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 18.9; 16.3 (exptl.; calculated-group additivity method, Chickos et al. 1999) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K.), F: 0.625 (mp at 45.8°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 6230 (shake flask-UV at pH 5.1, Blackman et al. 1955) 13000* (130 °C, shake flask-optical method, measured range 130–241.2°C, Erichsen & Dobbert 1955) 9650 (generator column-HPLC, Wasik et al. 1981) 2900, 5900 (8, 25°C, Leuenberger et al. 1985) 9560 (20°C, shake flask-UV, Dohnal & Fenclová 1995) 6150 (shake flask-HPLC/UV at pH 6.3, Varhaníčková et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 19.086 (calculated-Antoine eq., Dreisbach 1955) log (P/mmHg) = 7.40318 – 1858.7/(199.0 + t/°C); temp range 115–250°C (Antoine eq. for liquid state, Dreisbach 1955) 1333* (92.5°C, ebulliometry, measured range 92.5–212.0°C, Vonterres et al. 1955) 23.3* (24.67°C, ebulliometric and gas-saturation methods, measured range 4.75–40°C, Andon et al. 1960) 24.31 (calculated-Antoine eq. from ebulliometry/gas saturation measurements, Andon et al. 1960) log (P/mmHg) = 12.5036 – 3948.27/(t/°C + 273); temp range 4–40°C (Antoine eq., ebulliometric and gas- saturation measurements, Andon et al. 1960) log (P/mmHg) = 7.05753 – 1618.528/(t/°C + 186.482); temp range 144–203°C (Antoine eq., ebulliometric and gas-saturation measurements, Andon et al. 1960)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2835

34.41 (extrapolated-Antoine eq., Boublik et al. 1973) log (P/mmHg) = 7.0707 – 1628.323/(187.603 + t/°C), temp range 144.8–203.5°C (Antoine eq. from reported exptl. data of Andon et al. 1960, Boublik et al. 1973) 33.68 (extrapolated-Cox eq., Chao et al. 1983) log (P/mmHg) = [1– 474.112/(T/K)] × 10^{0.99333 – 9.96552 × 10–4·(T/K) + 8.34247 × 10–7·(T/K)2}; temp range 321.81–701.65 K (Cox eq., Chao et al. 1983) 34.41, 10.37 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.19572 – 1628.413/(187.613 + t/°C), temp range 144.8–203.5°C (Antoine eq. from reported exptl. data of Andon et al. 1960, Boublik et al. 1984) log (P/kPa) = 6.57979 – 1831.266/(188.83 + t/°C), temp range 97.5–212°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 34.4 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.00707 – 1628.32/(187.60 + t/°C); temp range 145–204°C (Antoine eq., Dean 1985, 1992) 19.09 (selected, Riddick et al. 1986) 24.0 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PS/kPa) = 11.6308 – 3950.681/(T/K); temp range 277–313 K (Antoine eq.-I, solid, Stephenson & Mal- anowski 1987)

log (PL/kPa) = 6.19544 – 1629.621/(–85.358 + T/K); temp range 417–476 K (Antoine eq.-II, liquid, Stephenson & Malanowski 1987) 43.8 (extrapolated-four-parameter vapor pressure eq., Nesterova et al. 1990) log (P/Pa) = 39.83138 – 4062.725/(T/K) – 10.16994·log (T/K) + 0.20170 × 10–2·(T/K); temp range: 418–477 K (four-parameter vapor pressure eq. derived using exptl data of Andon et al. 1960, Nesterova et al. 1990) log (P/mmHg) = 87.1964 – 5.8721 × 103/(T/K) – 28.853·log (T/K) + 1.113 × 10–2·(T/K) + 2.2316 × 10–12·(T/K)2; temp range 319–701 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 0.684 (modified gas-stripping, Hawthorne et al. 1985) 0.193 (8°C, Leuenberger et al. 1985) 0.377 (calculated-P/C, Shiu et al. 1994) 0.302 (calculated-activity coeff. γ ∞ data, Dohnal & Fenclová 1995) 10.3, 17.81, 25.2 (75.9, 88.7, 98.5°C, vapor-liquid equilibrium-GC, Dohnal & Fenclová 1995) 0.441 (extrapolated-vapor-liquid equilibrium measurements, Dohnal & Fenclová 1995)

ln KAW = 11.176 – 5906/(T/K), temp range 20–100°C (vapor-liquid equilibrium measurements with additional lit. data, Dohnal & Fenclová 1995) 0.098 (calculated-group contribution, Lee et al. 2000)

Octanol/Water Partition Coefficient, log KOW at 25°C or as indicated: 2.36 (Leo et al. 1971; Hansch & Leo 1979) 2.34 (LC-k′ correlation; Carlson et al. 1975) 2.40 (35°C, shake flask-UV, Rogers & Wong 1980) 2.31 (generator column-HPLC, Wasik et al. 1981) 2.07 (HPLC-k′ correlation, Haky & Young 1984) 2.51 (HPLC-RT correlation, Eadsforth 1986) 2.36 (recommended, Sangster 1989, 1993) 2.36 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k or Half-Lives, t½: Volatilization: Photolysis:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2836 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –12 3 –1 –1 kOH = 65.9 × 10 cm molecule s at 296 K (Atkinson 1989) –12 3 –1 –1 kOH(calc) = 54.1 × 10 cm molecule s estimated from Atmospheric Oxidation Program, kOH(exptl) = –12 3 –1 –1 –12 3 –1 –1 65.9 × 10 cm molecule s ; and kOH(calc) = 30.2 × 10 cm molecule s estimated from Fate of Atmospheric Pollutants Program (Meylan & Howard 1993) –12 3 –1 –1 kOH(calc) = 49.48 × 10 cm molecule s (molecular orbital estimation method, Klamt 1993) Hydrolysis:

Biodegradation: t½ = 7–10 d for bacteria to utilize 95% of 200 ppm in parent substrate (Tabak et al. 1964); average rate of biodegradation 9.0 mg COD g–1 h–1 based on measurements of COD decrease using activated sludge inoculum with 20 d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982) Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment:

TABLE 14.1.1.8.1 Reported aqueous solubilities and vapor pressures of 2,6-dimethylphenol at various temperatures log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Aqueous solubility Vapor pressure

Erichsen & Dobbert 1955 Vonterres et al. 1955 Andon et al. 1960

shake flask-optical method ebulliometry gas saturation ebulliometry

t/°CS/g·m–3 t/°CP/Pat/°CP/Pat/°CP/Pa 130 13000 92.5 1333 4.75 2.60 144.798 19813 140 16000 112.5 3333 9.46 4.48 153.385 26322 150 21000 129.0 6666 14.98 8.319 160.524 33079 160 27000 139.4 9999 19.78 13.87 166.759 39853 170 36000 147.1 13332 24.67 23.33 171.831 46274 180 47000 158.4 19998 30.2 39.86 176.276 52564 190 58000 167.0 26664 34.98 64.93 180.369 59847 200 71000 173.2 33330 39.66 100.3 184.792 66529 210 90000 179.1 39997 188.694 73851 220 120000 181.5 43330 mp/°C 74.85 191.754 80043 230 176000 188.0 53329 bp/°C 201.03 194.81 86616 232 191000 190.2 59995 196.676 90843 234 209000 196.3 66661 for temp range: 198.414 94918 236 229000 200.0 73327 4–40°C 198.937 96176 238 255000 202.5 79993 eq. 2 P/mmHg 199.432 97373 240 297000 205.6 86659 A 12.5036 199.983 98721 241.2 440000 208.0 93325 B 3948.27 200.45 99881 212.0 101325 C 273 201.059 101400 201.616 120808 ∆ –1 HV/(kJ mol ) 202.519 105117 at 25°C 75.60 203.525 107738 at bp 44.52

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2837

TABLE 14.1.1.8.1 (Continued)

Aqueous solubility Vapor pressure

Erichsen & Dobbert 1955 Vonterres et al. 1955 Andon et al. 1960

shake flask-optical method ebulliometry gas saturation ebulliometry

t/°CS/g·m–3 t/°CP/Pat/°CP/Pat/°CP/Pa for temp range: 144–203°C eq. 2 P/mmHg A 7.05753 B 1618.528 C 186.492

2,6-Dimethylphenol: vapor pressure vs. 1/T 7.0 Vonterres et al. 1955 Andon et al. 1960 6.0

5.0

4.0 )aP/

S 3.0 P(gol

2.0

1.0

0.0 b.p. = 201.07 °C m.p. = 45.8 °C -1.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.1.8.1 Logarithm of vapor pressure versus reciprocal temperature for 2,6-dimethylphenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2838 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.1.9 3,4-Dimethylphenol

OH

Common Name: 3,4-Dimethylphenol Synonym: 3,4-xylenol, as-o-xylenol Chemical Name: 3,4-dimethylphenol CAS Registry No: 95-65-8

Molecular Formula: C8H10O, CH3C6H3(CH3)OH Molecular Weight: 122.164 Melting Point (°C): 65.1 (Lide 2003) Boiling Point (°C): 227 (Lide 2003) Density (g/cm3 at 20°C): 1.1380 (25°C, Andon et al. 1960) 0.9830 (Weast 1982–83) Molar Volume (cm3/mol): 147.8 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 10.40 (McLeese et al. 1979) 10.32 (Dean 1985) 10.36 (Riddick et al. 1986) ∆ Enthalpy of Vaporization, HV (kJ/mol): 49.67 (at normal boiling point, Andon et al. 1960) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): 85.73 (at 25°C, Andon et al. 1960; Dean 1992) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 18.13; 17.0 (exptl.; calculated-group additivity method, Chickos et al. 1999) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.404 (mp at 65.1°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 5100 (shake flask-UV, Blackman et al. 1955) 5100* (synthetic method/shake flask-optical, extrapolated value, measured range 130–190.2°C, Ericksen & Dobbert 1955) 5000 (shake flask-spectrophotometry, Roberts et al. 1977) 12810 (20°C, shake flask-UV, Dohnal & Fenclová 1995) 7250 (shake flask-HPLC/UV at pH 6.25, Varhaníčková et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (66.2°C, summary of literature data, temp range 66.2–225.2°C, Stull 1946) 5.160 (calculated-Antoine eq., Dreisbach 1955) log (P/mmHg) = 7.70494 – 2030.9/(196.0 + t/°C); temp range 130–265°C (Antoine eq. for liquid state, Dreisbach 1955)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2839

1333* (105.7 °C, ebulliometry, measured range 105.7–226.0°C, Vonterres et al. 1955) 1.84* (24.88°C, ebulliometry/gas-saturation methods, measured range 9.89–49.36°C, Andon et al. 1960) 1.895 (interpolated-Antoine eq. from ebulliometry/gas saturation measurements, Andon et al. 1960) log (P/mmHg) = 13.1729 – 4478.23/(t/°C + 273); temp range: 9–50°C, (Antoine eq. from ebulliometric and gas- saturation measurements, Andon et al. 1960) log (P/mmHg) = 7.07343 – 1617.202/(t/°C + 158.778); temp range 171–229°C (Antoine eq., ebulliometric and gas-saturation measurements, Andon et al. 1960) log (P/mmHg) = [–0.2185 × 13991.0/(T/K)] + 9.02680; temp range 66.2–225.2°C (Antoine eq., Weast 1972–73) 2.541 (extrapolated-Antoine eq., Boublik et al. 1973) log (P/mmHg) = 7.07979 – 1621.451/(159.261 + t/°C); temp range 172–228°C (Antoine eq. from reported exptl. data of Andon et al. 1960, Boublik et al. 1973) 3.621 (extrapolated-Cox eq., Chao et al. 1983) log (P/mmHg) = [1– 499.926/(T/K)] × 10^{1.05062 – 10.2129 × 10–4·(T/K) + 8.04338 × 10–7·(T/K)2}; temp range: 353.20–729.65 K, (Cox eq., Chao et al. 1983)

7.327 (supercooled liquid PL, extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.20545 – 1622.411/(159.947 + t/°C); temp range 172–228°C (Antoine eq. from reported exptl. data of Andon et al. 1960, Boublik et al. 1984) log (P/kPa) = 7.46831 – 2538.736/(239.359 + t/°C); temp range 105.7–226°C (Antoine eq. from reported exptl. data of Vonterres et al. 1955, Boublik et al. 1984) 2.540 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.07919 – 1621.45/(159.26 + t/°C); temp range 172–229°C (Antoine eq., Dean 1985, 1992) 5.160 (Riddick et al. 1986)

1.865 (solid PS, interpolated-Antoine eq.-I, Stephenson & Malanowski 1987) log (PS/kPa) = 12.31521 – 4485.592/(T/K); temp range 282–323 K (Antoine eq.-I, solid, Stephenson & Mal- anowski 1987)

log (PL/kPa) = 6.20617 – 1623.592/(–113.623 + T/K); temp range 444–502 K (Antoine eq.-II, liquid, Stephenson & Malanowski 1987) 3.795 (extrapolated-four parameter vapor pressure eq., Nesterova et al. 1990) log (P/Pa) = 93.28460 – 6735.317/(T/K) – 29.48566·log (T/K) + 0.95432 × 10–2·(T/K); temp range: 445–502 K (four-parameter vapor pressure eq. derived using exptl data of Andon et al. 1950, Nesterova et al. 1990) log (P/mmHg) = 68.6521 – 6.15 × 103/(T/K) – 20.184·log (T/K) – 1.1259 × 10–10·(T/K) + 4.0266 × 10–6·(T/K)2; temp range 338–730 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equations): 0.00942 (Leuenberger et al. 1985) 0.0212 (calculated-P/C, Shiu et al. 1994) 0.0278 (20°C, calculated-activity coeff. γ∞ data, Dohnal & Fenclová 1995) 1.416, 2.903, 4.619 (75.9, 88.7, 98.5°C, vapor-liquid equilibrium-GC, Dohnal & Fenclová 1995) 0.0421 (extrapolated-vapor-liquid equilibrium measurements, Dohnal & Fenclová 1995)

ln KAW = 11.854 – 6809/(T/K), temp range 20–100°C (vapor-liquid equilibrium VLE measurements with addi- tional lit. data, Dohnal & Fenclová 1995) 0.098 (calculated-group contribution, Lee et al. 2000)

Octanol/Water Partition Coefficient, log KOW: 2.23 (20°C, shake flask-UV, Korenman 1973) 2.23 (shake flask, Korenman et al. 1980) 2.23 (recommended, Sangster 1989, 1993) 2.23 (recommended, Hansch et al. 1995) 2.36 (HPLC-RT correlation, Makovskaya et al. 1995b) 2.26 (solid-phase micro-extraction, Dean et al. 1996)

Octanol/Air Partition Coefficient, log KOA: Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2840 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Hydrolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –12 3 –1 –1 kOH = 81.4 × 10 cm molecule s at 296 K (Atkinson 1989) –12 3 –1 –1 kOH(calc) = 55.1 × 10 cm molecule s (molecular orbital estimation method, Klamt 1993) Biodegradation: average rate of biodegradation 13.4 mg COD g–1 h–1 based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

TABLE 14.1.1.9.1 Reported aqueous solubilities of 3,4-dimethylphenol at various temperatures

Erichsen & Dobbert 1955

shake flask-optical method

t/°CS/g·m–3 130 29000 140 36000 150 42000 160 59000 170 81000 180 124000 186 173000 188 200000 189 222000 190 278000 190.2 336000 25 5100* *extrapolated

TABLE 14.1.1.9.2 Reported vapor pressures of 3,4-dimethylphenol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Vonterres et al. 1955 Andon et al. 1960

summary of literature data ebulliometry gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa 66.2 133.3 105.7 1333 9.89 0.293 171.933 20341 93.8 666.6 125.8 3333 14.78 0.543 180.131 26703 107.7 1333 142.6 6666 19.98 1.031 186.548 32749 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2841

TABLE 14.1.1.9.2 (Continued)

Stull 1947 Vonterres et al. 1955 Andon et al. 1960

summary of literature data ebulliometry gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa 122 2666 152.9 9999 24.88 1.840 193.38 40369 138 5333 160.9 13332 29.8 3.240 197.879 46135 148 7999 172.3 19998 34.86 5.626 202.37 52526 162 13332 180.3 26664 39.67 9.386 207.376 60478 181.5 26664 187.7 33330 44.76 16.13 211.126 67049 203.6 53329 193.9 39997 49.36 25.46 213.126 72703 225.2 101325 196.3 43330 217.587 79685 198.7 46663 mp/°C 65.11 200.898 86882 mp/°C 62.8 203.0 53339 bp/°C 221.692 223.649 93227 212.5 66661 224.292 94764 213.4 73327 for temp range: 224.799 95996 216.5 79993 9–50°C 225.276 97153 219.2 86659 eq. 2 P/mmHg 225.928 98771 222.0 93325 A 13.1729 226.392 99920 226.0 101325 B 4478.23 226.921 101242 C 273 227.397 102474 228.487 105289 ∆ –1 HV/(kJ mol ) 228.899 106371 at 25°C 85.73 at bp 49.67 for temp range: 171–229°C eq. 2 P/mmHg A 7.07343 B 1617.202 C 158.778

3,4-Dimethylphenol: vapor pressure vs. 1/T 7.0 Vonterres et al. 1955 Andon et al. 1960 6.0 Stull 1947

5.0

4.0 )aP/

S 3.0 P(gol

2.0

1.0

0.0 b.p. = 227 °C m.p. = 65.1 °C -1.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.1.9.1 Logarithm of vapor pressure versus reciprocal temperature for 3,4-dimethylphenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2842 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.1.10 3,5-Dimethylphenol

OH

Common Name: 3,5-Dimethylphenol Synonym: 3,5-xylenol, 1-hydroxy-3,5-dimethylbenzene Chemical Name: 3,5-dimethyl phenol CAS Registry No: 108-68-9

Molecular Formula:C8H10O CH3C6H3(CH3)OH Molecular Weight: 122.164 Melting Point (°C): 63.4 (Lide 2003) Boiling Point (°C): 221.74 (Lide 2003) Density (g/cm3):

Acid Dissociation Constants, pKa: 7.8 (McLeese et al. 1979) 10.19 (Dohnal & Fenclová 1995) Molar Volume (cm3/mol): 147.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 82.84, 49.31 (25°C, normal bp, Andon et al. 1960) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.420 (mp at 63.4°C)

Water Solubility (g/m3 or mg/L at 25°C): 4886 (shake flask-UV, pH 5.1, Blackman et al. 1955) 4425 (20°C, shake flask-UV, Dohnal & Fenclová 1995)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (62.0°C, summary of literature data, temp range 62–219.5°C, Stull 1947) 1333* (102.8°C, ebulliometry, measured range 102.8–219.0°C, Vonterres et al. 1955) 2.63* (24.95°C, ebulliometry/gas saturation, measured range 9–45°C, Andon et al. 1960) log (P/mmHg) = 12.8271 – 4328.13/(t/°C + 273); temp range 9–50°C (Antoine eq. from ebulliometric and gas- saturation measurements, Andon et al. 1960) log (P/mmHg) = 7.11745 – 1630.124/(t/°C + 163.076); temp range 154–224°C (Antoine eq. from ebulliometric and gas-saturation measurements, Andon et al. 1960) log (P/kPa) = 6.25752 – 1641.206/(164.311 + t/°C), temp range 154.7–223.3°C (Antoine eq. derived from reported exptl data of Andon et al. 1960, Boublik et al. 1984) log (P/kPa) = 8.27972 – 3182.232/(287.862 + t/°C), temp range 102.8–219°C (Antoine eq. derived from reported exptl data of Vonterres et al. 1960, Boublik et al. 1984)

log (PS/kPa) = 11.97153 – 4336.025/(T/K); temp range 282–323 K (solid, Antoine eq.-I, Stephenson & Mal- anowski 1987)

log (PL/kPa) = 6.25292 – 1638.564/(–109.095 + T/K); temp range 427–497 K (liquid, Antoine eq.-II, Stephenson & Malanowski 1987) log (P/mmHg) = –44.915 – 2.8912 × 103/(T/K) + 25.704·log (T/K) – 3.9714 × 10–2·(T/K) + 1.6464 × 10–5·(T/K)2; temp range 337–716 K (vapor pressure eq., Yaws 1994)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2843

Henry’s Law Constant (Pa m3/mol at 25°C or as indicated and reported temperature dependence equations): 0.0419, 0.0614 (20, 25°C, calculated-limiting activity coefficient γ∞ data, Dohnal & Fenclová 1995) 1.95, 3.70, 6.12 (75.9, 88.7, 98.5°C, vapor-liquid equilibrium-GC, Dohnal & Fenclová 1995)

ln KAW = 11.654 – 6636/(T/K); temp range 20–98.5°C (vapor-liquid equilibrium VLE data, Dohnal & Fenclová 1995)

Octanol/Water Partition Coefficient, log KOW: 2.31 (shake flask, Korenman 1972; Korenman et al. 1980) 2.55 (shake flask-UV, Rogers & Wong 1980) 2.38 (UNIFAC activity coefficient, Campbell & Luthy 1985) 2.54 (HPLC-RT correlation, Eadsforth 1986) 2.35 (shake flask, Log P Database, Hansch & Leo 1987) 2.35 (recommended, Sangster 1993)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC: τ Environmental Fate Rate Constants, k and Half-Lives, t½, or Lifetimes, :

Half-Lives in the Environment:

TABLE 14.1.1.10.1 Reported vapor pressures of 3,5-dimethylphenol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Vonterres et al. 1955 Andon et al. 1960

summary of literature data ebulliometry gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa 62 133.3 102.8 1333 9.57 0.44 154.72 12984 89.2 666.6 122.5 3333 14.92 0.813 166.472 19760 102.4 1333 139.1 6666 20.35 1.587 175.126 26444 117.0 2666 149.0 9999 24.05 2.626 182.389 33392 133.3 5333 156.8 13332 30.42 4.866 187.937 39757 143.5 7999 168.1 19998 34.85 7.813 192.743 45815 156 13332 176.3 26664 39.94 13.32 197.298 52352 176.2 26664 182.9 33330 45.23 22.80 201.925 59794 197.8 53329 188.5 39997 49.97 35.33 205.601 66193 219.5 101325 191.0 43330 209.151 72942 194.0 46663 212.159 79072 mp/°C 68.0 198.1 53329 mp/°C 63.27 215.799 87070 202.0 59995 bp/°C 221.692 218.298 92904 205.3 66661 219.146 94952 208.3 73327 for temp range: 219.584 96027 211.0 79993 9–50°C 220.097 97296 214.0 86659 eq. 2 P/mmHg 220.692 98771

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2844 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.1.10.1 (Continued)

Stull 1947 Vonterres et al. 1955 Andon et al. 1960

summary of literature data ebulliometry gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa 216.2 93325 A 12.8271 221.309 100334 219.0 101325 B 4328.13 221.709 101362 C 273 222.269 102845 222.724 104007 ∆ –1 HV/(kJ mol ) 223.321 105573 at 25°C 82.84 at bp 49.31 for temp range: 154–224°C eq. 2 P/mmHg A 7.11745 B 1630.124 C 163.076

3,5-Dimethylphenol: vapor pressure vs. 1/T 7.0 Vonterres et al. 1955 Andon et al. 1960 6.0 Stull 1947

5.0

4.0 )aP/

S 3.0 P(gol

2.0

1.0

0.0 b.p. = 221.74 °C m.p. = 63.4 °C -1.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.1.10.1 Logarithm of vapor pressure versus reciprocal temperature for 3,5-dimethylphenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2845

14.1.1.11 2,3,5-Trimethylphenol

OH

Common Name: 2,3,5-Trimethylphenol Synonym: Chemical Name: 2,3,5-trimethylphenol CAS Registry No: 697-82-5

Molecular Formula: C9H12O, C6H2(CH3)3OH Molecular Weight: 136.190 Melting Point (°C): 94.5 (Lide 2003) Boiling Point (°C): 233 (Lide 2003) Density (g/cm3):

Acid Dissociation Constant, pKa: 10.60 (Blackman et al. 1955) Molar Volume (cm3/mol): 170.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.208 (mp at 94.5°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 40000* (200°C, synthetic method/shake flask-optical, measured range 200–248°C, Erichsen & Dobbert 1955) 762 (shake flask-UV, Blackman et al. 1955) 855 (shake flask-HPLC/UV at pH 5.95, Varhaníčková et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 2.426* (extrapolated-Antoine eq., ebulliometry, measured range 186–247°C, Handley et al. 1964) log (P/mmHg) = 7.08022 – 1685.973/(166.150 + t/°C); temp range 186–247°C (Antoine eq., ebulliometric method, Handley et al. 1964) 4.451 (extrapolated-Cox eq., Chao et al. 1983) log (P/mmHg) = [1–508.477/(T/K)] × 10^{0.932965 – 5.75276 × 10–4·(T/K) + 3.29737 × 10–7·(T/K)2}; temp range: 459.63–520.21 K, (Cox eq., Chao et al. 1983) 2.426 (extrapolated-Antoine eq., Boublik et al. 1973) log (P/mmHg) = 7.08012 – 1685.896/(166.141 + t/°C), temp range 186.5–247°C (Antoine eq. from reported exptl. data of Handley et al. 1964, Boublik et al. 1984) 2.43, 0.0234 (extrapolated from liquid, Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.02493 – 1685.528/(166.133 + t/°C), temp range 186.5–247°C (Antoine eq. from reported exptl. data of Handley et al. 1964, Boublik et al. 1984) log (P/kPa) = 6.95436 – 889.02/(67.752 + t/°C), temp range 106–233°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 2.43 extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.08012 – 1685.90/(166.14 + t/°C), temp range 186–247°C (Antoine eq., Dean 1985, 1992) 2.44 (extrapolated, liquid, Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.20676 – 1687.869/(–106.761 + T/K), temp range 459–531 K (Antoine eq., Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2846 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (P/Pa) = 89.62984 – 6541.396/(T/K) – 28.26318·log (T/K) + 0.92991 × 10–2·(T/K); temp range: 460–520 K (four-parameter vapor pressure eq. derived using exptl data of Handley et al. 1964, Nesterova et al. 1990)

Henry’s Law Constant (Pa-m3/mol at 25°C): 0.404 (calculated-P/C, this work)

Octanol/Water Partition Coefficient, log KOW: 3.06 (COMPUTOX databank, Kaiser 1993) 2.92 (from Panoma database or calculated from MedChem program, Sabljic et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 3.61 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Half-Lives in the Environment:

TABLE 14.1.1.11.1 Reported aqueous solubilities and vapor pressures of 2,3,5-trimethylphenol at various temperatures

Aqueous solubility Vapor pressure

Erichsen & Dobbert 1955 Handley et al. 1964

shake flask-optical method ebulliometry

t/°CS/g·m–3 t/°CP/Pa 200 40000 186.482 26547 210 54000 193.614 33021 220 79000 200.127 40002 230 128000 205.448 46560 240 200000 210.422 53453 242 224000 214.675 59972 244 250000 218.644 66623 246 291000 222.382 73417 257.8 420000 225.707 79909 229.041 86877 231.852 93116 234.759 99940 237.50 106735 240.13 113587 242.511 120090 244.811 126646 247.062 133344 mp/°C 93.73 bp/°C 235.329

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2847

TABLE 14.1.1.11.1 (Continued)

Aqueous solubility Vapor pressure

Erichsen & Dobbert 1955 Handley et al. 1964

shake flask-optical method ebulliometry

t/°CS/g·m–3 t/°CP/Pa

for temp range: 186–247°C log (P/mmHg) = A – B/(C + t/°C) P/mmHg A 7.08022 B 1685.973 C 166.150 ∆ –1 HV/(kJ mol ) at bp 49.96

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2848 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.1.12 2,4,6-Trimethylphenol

OH

Common Name: 2,4,6-Trimethylphenol Synonym: Mesitol Chemical Name: 2,4,6-Trimethylphenol CAS Registry No: 527-60-6

Molecular Formula: C9H12O, C6H2(CH3)3OH Molecular Weight: 136.190 Melting Point (°C): 73 (Lide 2003) Boiling Point (°C): 220 (Lide 2003) Density (g/cm3):

Acid Dissociation Constant, pKa: 10.90 (Blackman et al. 1955) 10.88 (Dean 1985) Molar Volume (cm3/mol): 170.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.338 (mp at 73°C)

Water Solubility (g/m3 or mg/L at 25°C): 1007 (shake flask-UV, Blackman et al. 1955; quoted, Varhaníčková et al. 1995) 1420 (shake flask-HPLC/UV at pH 4.85, Varhaničková et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 7.0 (extrapolated from liquid state, Antoine eq., Boublik et al. 1984) log (P/kPa) = 5.91352 – 1481.329/(158.589 + t/°C), temp range 94–220.6°C (Antoine eq. from reported exptl. data, Boublik et al. 1984)

19.6 (supercooled liquid PL, extrapolated-Antoine eq., Stephenson & Malanowski 1987) log (PL/kPa) = 6.82395 – 2158.2/(–45.2 + T/K), temp range 367–494 K (Antoine eq., Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa m3/mol at 25°C): 0.2512 (calculated-P/C, Shiu et al. 1994)

Octanol/Water Partition Coefficient, log KOW: 2.73 (generator column-HPLC/UV, Wasik et al. 1981) 2.73 (quoted and recommended, Sangster 1989; 1993) 2.7 3 (COMPUTOX databank, Kaiser 1993)

Octanol/Air Partition Coefficient, log KOA: Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2849

14.1.1.13 3,4,5-Trimethylphenol

OH

Common Name: 3,4,5-Trimethylphenol Synonym: Chemical Name: 3,4,5-trimethylphenol CAS Registry No: 527-54-8

Molecular Formula: C9H12O, C6H2(CH3)3OH Molecular Weight: 136.190 Melting Point (°C): 108 (Stephenson & Malanowski 1987; Lide 2003) Boiling Point (°C): 249 (Stephenson & Malanowski 1987) 248.5 (Lide 2003) Density (g/cm3):

Acid Dissociation Constant, pKa: 10.25 (Dean 1985) Molar Volume (cm3/mol): 170.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.153 (mp at 108°C)

Water Solubility (g/m3 or mg/L at 25°C): 1538 (shake flask-HPLC/UV, Varhaníčková et al. 1994)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations):

log (PL/kPa) = 7.33216 – 2536.1/(–44.56 + T/K), temp range 396–521 K (Antoine eq., Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW:

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2850 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.1.14 o-Ethylphenol

OH

Common Name: 2-Ethylphenol Synonym: o-ethylphenol Chemical Name: 2-ethylphenol, o-ethylphenol CAS Registry No: 90-00-6

Molecular Formula: C8H10O, C2H5C6H4OH Molecular Weight: 122.164 Melting Point (°C): 18 (Lide 2003) Boiling Point (°C): 204.52 204.5 (Lide 2003) Density (g/cm3 at 20°C): 1.01885, 1.01459 (20°C, 25°C Biddiscombe et al. 1963) 1.0370 (Verschueren 1983; 25°C, Dean 1985) Molar Volume (cm3/mol): 117.8 (0°C, Stephenson & Malanowski 1987) 147.8 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 10.02 (Dean 1985) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 14040 (shake flask-HPLC/UV at pH 5.2, Varhaníčková et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (46.2 °C, summary of literature data, temp range 46.2–207.5°C, Stull 1947) 33.66 (calculated-Antoine eq., Dreisbach 1955) log (P/mmHg) = 7.23343 – 1771.5/(200.0 + t/°C), temp range 105–245°C (Antoine eq. for liquid state, Dreisbach 1955) 20.84 (interpolated-Antoine eq., Biddiscombe et al. 1963) 20.4* (24.93°C, ebulliometric and gas transpiration measurements, measured range 5–45°C, Biddiscombe & Martin 1958) log (P/mmHg) = 10.3131 – 3313.50/(t/°C + 273); temp range 5–45°C (Antoine eq. from ebulliometric and gas transpiration methods, Biddiscombe et al.1963) log (P/mmHg) = 7.00742 – 1648.923/(t/°C + 170.833); temp range 150–218°C (Antoine eq. from ebulliometric and gas transpiration methods, Biddiscombe et al. 1963) log (P/mmHg) = [–0.2185 × 12516.7/(T/K)] + 8.586948; temp range 46.2–207.5°C (Antoine eq., Weast 1972–73) log (P/mmHg) = [1– 480.731/(T/K)] × 10^{0.883881 – 6.07675 × 10–4·(T/K) + 6.44264 × 10–7·(T/K)2}; temp range: 319.35–480.65 K, (Cox eq., Chao et al. 1983) 16.7, 29 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.13214 – 1548.802/(170.82 + t/°C), temp range 150.4–215.05°C (Antoine eq. from reported exptl. data of Biddiscombe et al. 1963, Boublik et al. 1984) log (P/kPa) = 6.97225 – 2178.815/(231.035 + t/°C), temp range 86–207.5°C (Antoine eq. from reported exptl. data of Vonterres et al. 1955, Boublik et al. 1984) 27.01 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.8003 – 2140.4/(227 + t/°C), temp range 86–208°C (Antoine eq., Dean 1985, 1992) 20.87 (interpolated-Antoine eq.-II, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2851

log (PL/kPa) = 6.13344 – 1550.409/(–102.103 + T/K); temp range 423–491 K (Antoine eq.-I, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 9.44878 – 3318.181/(T/K), temp range 277–318 K (Antoine eq.-II, Stephenson & Malanowski 1987) 19.55 (extrapolated-Antoine eq., Nesterova et al. 1990) log (P/Pa) = 94.95377 – 6350.841/(T/K) – 30.56287·log (T/K) + 1.09475 × 10–2·(T/K); temp range: 424–491 K (four-parameter vapor pressure eq. derived using exptl data of Biddiscombe et al. 1963, Nesterova et al. 1990)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.174 (calculated with selected-P/C)

Octanol/Water Partition Coefficient, log KOW: 2.47 (shake flask, Hansch & Leo 1979) 2.64 (shake flask, Korenman 1980) 2.64 (HPLC-RT correlation, Butte et al. 1981) 2.47 (recommended, Sangster 1989, 1993) 2.46 (HPLC-RT correlation, Ritter et al. 1994) 2.47 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k or Half-Lives, t½:

Half-Lives in the Environment:

TABLE 14.1.1.14.1 Reported vapor pressures of o-ethylphenol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Biddiscombe et al. 1963

summary of literature data gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pa 46.2 133.3 4.98 3.346 150.425 20458 73,4 666.6 10.0 5.173 158.137 26542 87 1333 15.01 8.759 164.876 32996 101.5 2666 20.01 13.73 171.143 40086 117.9 5333 24.93 20.40 176.174 46627 127.9 7999 29.53 30.80 180.808 53390 141.8 13332 34.84 45.86 184.869 59946 161.6 26664 39.99 73.99 188.565 66460 184,5 53329 45.0 102.9 192.115 73235 207.5 101325 195.266 79702 198.382 86528 mp/°C –45 mp/°C –3.31 200.845 92242 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2852 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

bp/°C 217.985 204.350 100866 TABLE 14.1.1.14.1 (Continued)

Stull 1947 Biddiscombe et al. 1963

summary of literature data gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pa 206.632 106865 for temp range: 208.429 111753 5–45°C 209.854 115762 eq. 2 P/mmHg 212.651 123942 A 10.3131 215.149 131641 B 3313.50 218.047 142363 C273 ∆ –1 HV/(kJ mol ) for temp range: at 25°C 63.60 150–218°C at bp 48.116 eq. 2 P/mmHg A 7.00742 B 1548.923 C 170.833

o -Ethylphenol: vapor pressure vs. 1/T 7.0 Vonterres et al. 1955 Biddiscombe et al. 1963 6.0 Stull 1947

5.0

4.0 )a P / S 3.0 P(gol

2.0

1.0

0.0 b.p. = 204.5 °C m.p. = 18 °C -1.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.1.14.1 Logarithm of vapor pressure versus reciprocal temperature for o-ethylphenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2853

14.1.1.15 p-Ethylphenol

OH

Common Name: 4-Ethylphenol Synonym: p-ethylphenol Chemical Name: 2-ethylphenol, p-ethylphenol CAS Registry No: 123-07-9

Molecular Formula: C8H10O, C2H5C6H4OH Molecular Weight: 122.164 Melting Point (°C): 45 (Lide 2003) Boiling Point (°C): 217.9 (Lide 2003) Density (g/cm3 at 20°C): 1.054 (25°C, Biddiscombe et al. 1963) 1.011 (25°C, Dean 1985) Molar Volume (cm3/mol): 147.8 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 10.0 (Dean 1985) ∆ Enthalpy of Vaporization, HV (kJ/mol): 50.84 (at normal boiling point, Biddiscombe et al. 1963) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): 80.33 (at 25°C, Andon et al. 1960) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.636 (mp at 45°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 24000* (150°C, synthetic method-shake flask-optical, measured range 150–187°C, Erichsen & Dobbert 1955) 5000 (shake flask-spectrophotometry, Roberts et al. 1977) 7980 (shake flask-HPLC/UV, Varhaníčková et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (59.3°C, summary of literature data, temp range 59.3–219.0°C, Stull 1947) 9.67 (calculated-Antoine eq., Dreisbach 1955) log (P/mmHg) = 7.55177 – 1943.1/(197.0 + t/°C), temp range: 125–255°C, (Antoine eq. for liquid state, Dreis- bach 1955) 1333* (101.0°C, ebulliometry, measured range 101.0–218.2°C, Vonterres et al. 1955) 5.030 (calculated-Antoine eq., Biddiscombe et al. 1963) 4.96* (25.03°C, ebulliometric and gas transpiration measurements, measured range 5–44°C, Biddiscombe et al. 1963) log (P/mmHg) = 12.6090 – 4183.50/(t/°C + 273); temp range 5–44°C (Antoine eq. from ebulliometric and gas transpiration methods, Biddiscombe et al.1963) log (P/mmHg) = 7.01297 – 1548.923/(t/°C + 156.820); temp range 171–229°C (Antoine eq. from ebulliometric and gas transpiration methods, Biddiscombe et al. 1963)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2854 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (P/mmHg) = [–0.2185 × 13437.9/(T/K)] + 8.854990; temp range 59.3–219°C (Antoine eq., Weast 1972–73) 6.575 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.13614 – 1547.614/(156.677 + t/°C), temp range 171.8–229.1°C (Antoine eq. from reported exptl. data of Biddiscombe et al. 1963, Boublik et al. 1984) log (P/kPa) = 7.59041 – 2575.507/(242.273 + t/°C), temp range 101–218.2°C (Antoine eq. from reported exptl. data of Vonterres et al. 1955, Boublik et al. 1984) 7.530 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 8.291 – 2423/(229 + t/°C), temp range 101–218°C (Antoine eq., Dean 1985, 1992) 4.95 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PS/kPa) = 11.74364 – 4188.624/(T/K), temp range 278–317 K, (Antoine eq.-I, solid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.13939 – 1550.479/(–116.1 + T/K), temp range: 444–503 K (Antoine eq.-II, liquid, Stephenson & Malanowski 1987) 6.137 (extrapolated-four-parameter vapor pressure eq., Nesterova et al. 1990) log (P/Pa) = 96.72774 – 6779.787/(T/K) – 30.80658·log (T/K) + 1.101581 × 10–2·(T/K); temp range: 445–502 K (four-parameter vapor pressure eq. derived using exptl data of Biddiscombe et al. 1963, Nesterova et al. 1990) log (P/mmHg) = 16.9092 – 3.7255 × 103/(T/K) – 1.7886·log (T/K) – 4.2275 × 10–3·(T/K) + 1.8002 × 10–6·(T/K)2; temp range 318–716 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C): 0.132 (calculated-P/C, this work)

Octanol/Water Partition Coefficient, log KOW: 2.75 (literature average, Leo et al. 1971) 2.58 (shake flask-UV at pH 7.45, Umeyama et al. 1971) 2.26 (shake flask, Korenman 1972, Korenman et al. 1980) 2.26, 2.58 (Hansch & Leo 1979) 2.60 (shake flask-UV, Rogers & Wong 1980) 2.37 (HPLC-RT correlation, Butte et al. 1981) 2.12, 2.19 (RP-HPLC-k′ correlation, Miyake & Terada 1982) 2.59 ± 0.07; 2.58 (HPLC-RV correlation-ALPM, selected best lit. value, Garst & Wilson 1984) 2.50 (recommended, Sangster 1989, 1993) 2.50 (COMPUTOX databank, Kaiser 1993) 2.40; 2.58 (pH 7.4, pH 5.6, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2855

TABLE 14.1.1.15.1 Reported aqueous solubilities of p-ethylphenol at various temperatures

Erichsen & Dobbert 1955

synthetic method, SF-optical

t/°CS/g·m–3 150 24000 160 30000 170 45000 180 93000 182 112000 184 141000 186 197000 187.1 395000

TABLE 14.1.1.15.2 Reported vapor pressures of p-ethylphenol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Vonterres et al. 1955 Biddiscombe et al. 1963

summary of literature data ebulliometry gas saturation ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa 59.3 133.3 101.0 1333 5.0 0.480 171.757 26571 86.5 666.6 109.8 3333 10.0 0.907 178.525 33069 100.2 1333 137.5 6666 15.0 1.613 184.585 39942 115.0 2666 148.0 9999 19.99 2.813 189.724 46636 131.3 5333 155.5 13332 25.03 4.960 194.356 53416 141.7 7999 167.0 19998 30.02 8.426 198.419 59999 154.2 13332 177.2 26664 35.0 14.27 202.227 66736 175.0 26664 182.0 33330 39.99 23.33 205.607 73211 197.4 53329 187.7 39997 43.97 34.13 208.892 79979 219.0 101325 190.5 43330 211.911 86626 192.6 46663 214.673 93090 mp/°C 46.5 197.0 53329 mp/°C 45.06 217.535 100174 201.7 59995 bp/°C 217.985 220.026 106683 204.0 66661 222.543 113599 207.4 73327 for temp range: 224.769 119995 210.9 79993 5–44°C 226.933 126484 213.1 86659 eq. 2 P/mmHg 229.147 133418 216.1 93325 A 12.6090 218.2 101325 B 4183.81 for temp range: C 273 171–229°C eq. 2 P/mmHg ∆ –1 HV/(kJ mol ) A 7.01297 at 25°C 80.33 B 1548.754 at bp 50.84 C 156.820

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2856 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

p -Ethylphenol: vapor pressure vs. 1/T 7.0 Vonterres et al. 1955 Biddiscombe et al. 1963 6.0 Stull 1947

5.0

4.0 )aP/

S 3.0 P(gol

2.0

1.0

0.0 b.p. = 217.9 °C m.p. = 45 °C -1.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.1.15.1 Logarithm of vapor pressure versus reciprocal temperature for p-ethylphenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2857

14.1.1.16 4-Propylphenol

OH

Common Name: 4-Propylphenol Synonym: Chemical Name: 4-propylphenol CAS Registry No: 645-56-7

Molecular Formula: C9H12O, C3H7C6H4OH Molecular Weight: 136.190 Melting Point (°C): 22 (West 1982–83; Lide 2003) Boiling Point (°C): 232.6 (Weast 1982–83; Lide 2003) Density (g/cm3 at 20°C): 1.009 (Weast 1982–83)

Acid Dissociation Constant, pKa: Molar Volume (cm3/mol): 170.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 1278 (shake flask-HPLC/UV, Varhaníčková et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations):

log (PL/kPa) = 7.32632 – 2550.1/(–28.65 + T/K), temp range 383–508 K, (Antoine eq., Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 2.1 (HPLC-RT correlation, McLeese et al. 1979)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2858 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.1.17 p-tert-Butylphenol

OH

Common Name: 4-tert-Butylphenol Synonym: p-tert-butylphenol, 4-(α,α-dimethylethylphenol) Chemical Name: 4-tert-butylphenol, p-tert-butylphenol CAS Registry No: 98-54-4

Molecular Formula: C10H14O, (CH3)3CC6H4OH Molecular Weight: 150.217 Melting Point (°C): 98 (Lide 2003) Boiling Point (°C): 237 (Lide 2003) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): 152.0 (20°C, Stephenson & Malanowski 1987) 192.2 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 9.90 (McLeese et al. 1979) ∆ Enthalpy of Vaporization, HV (kJ/mol): 67.33, 50.62 (25°C, bp, Dreisbach 1955) 50.54 (at normal boiling point, Handley et al. 1964) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.192 (mp at 98°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated): 650 (20–25°C, Geyer et al. 1981) 1000 (Thomas 1982) 700 (Verschueren 1983) 580 (Yalkowsky et al. 1987) 580 (shake flask-UV, Ahel & Giger 1993a) 1850 (shake flask-HPLC/UV at pH 6.05, Varhaníčková et al. 1995) 753 (calculated-group contribution, Kühne et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 6.402* (extrapolated-regression of tabulated data, temp range 70–238°C, Stull 1947) 3.688 (calculated-Antoine eq., Dreisbach 1955) log (P/mmHg) = 7.49264 – 1999.8/(194.0 + t/°C), temp range 140–370°C (Antoine eq. for liquid state, Dreisbach 1955) 1.225* (liquid, extrapolated-Antoine eq., ebulliometry, measured range 198–251°C, Handley et al. 1964) log (P/mmHg) = 11.5638 – 3586.36/(t/°C + 273); temp range 198–251°C (Antoine eq. from ebulliometric mea- surements, Handley et al. 1964) log (P/mmHg) = [–0.2185 × 13787.7/(T/K)] + 8.785696; temp range 70–238°C (Antoine eq., Weast 1972–73) 5.072 (extrapolated-Cox eq., Chao et al. 1983) log (P/mmHg) = [1– 512.693/(T/K)] × 10^{0.834403 – 2.10918 × 10–4·(T/K) + 0.554077 × 10–7·(T/K)2}; temp range 343.15–524.76 K (Cox eq., Chao et al. 1983)

1.24 (supercooled liquid PL, extrapolated-Antoine eq., Boublik et al. 1984)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2859

log (P/kPa) = 6.12365 – 1626.256/(155.092 + t/°C); temp range 198–231.6°C (Antoine eq. from reported exptl. data of Handley et al. 1964, Boublik et al. 1984) 1.25 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.00038 – 1627.51/(155.24 + t/°C), temp range 198–252°C (Antoine eq., Dean 1985, 1992) 1.272 (extrapolated-liquid, Antoine eq., Stephenson & Malanowski 1987) 0.492 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PS/kPa) = 11.46945 – 4405.873/(T/K); temp range 280–304 K (Antoine eq.-I, solid, Stephenson & Mal- anowski 1987)

log (PL/kPa) = 6.13162 – 1632.939/(–117.258 + T/K), temp range: 471–525 K, (Antoine eq.-II, liquid, Stephen- son & Malanowski 1987) log (P/Pa) = 122.26679 – 8003.926/(T/K) – 40.16380·log (T/K) + 1.40155 × 10–2·(T/K); temp range 471–525 K (four-parameter vapor pressure eq. derived using exptl data of Biddiscombe et al. 1963, Nesterova et al. 1990) log (P/mmHg) = –54.7404 – 2.4727 × 103/(T/K) + 28.991·log (T/K) – 3.9356 × 10–3·(T/K)+1.543×10–5·(T/K)2; temp range 372–734 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C):

0.113 (calculated-1/KAW, CW/CA, reported as exptl., Hine & Mookerjee 1975) 0.139; 3.750(calculated-group contribution; calculated-bond contribution, Hine & Mookerjee 1975) 0.922 (calculated-P/C, Thomas 1982) 0.113, 0.375 (quoted, calculated-MCI χ, Nirmalakhandan & Speece 1988)

Octanol/Water Partition Coefficient, log KOW: 3.04 (shake flask, Geyer et al. 1984) 2.94, 3.14 (shake flask-OECD 1981 Guideline, Geyer et al. 1984) 3.41 (HPLC-RT correlation, Butte et al. 1987) 3.04 (recommended, Sangster 1989) 3.31 (recommended, Hansch et al. 1995) 3.10 (HPLC-RT correlation, Makovskaya et al. 1995b) 2.95 (solid-phase microextraction, Dean et al. 1996)

Bioconcentration Factor, log BCF: 1.53 (Chlorella, after exposure to 50 µg/L for 24 h, Geyer et al. 1981) 1.88 (calculated-S, Geyer et al. 1981) 1.53; 2.08 (algae, golden orfe, Freitag et al. 1982) 2.38 (activated sludge, Freitag et al. 1982, 1985) 1.53 (Alga Chlorella fusca, wet weight basis, Geyer et al. 1984) 1.48; 2.07 (algae; golden ide, Freitag et al. 1985) 1.86 (zebrafish, Butte et al. 1987; quoted, Devillers et al. 1996) 2.38; 1.48; 2.07 (activated sludge; algae; fish; Freitag et al. 1987)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: volatilization

t½ = 117 h from water body with depth of 1 m (Thomas 1982).

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2860 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.1.17.1 Reported vapor pressures of p-tert-butylphenyl at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Handley et al. 1964

summary of literature data ebulliometry

t/°CP/Pat/°CP/Pat/°CP/Pa

70.0 133.3 198.21 33059 mp/°C 99.55 99.2 666.6 204.527 39955 bp/°C 239.83 114 1333 209.901 46592 for temp range: 129.5 2666 214.892 53489 198–251°C 146 5333 219.142 59984 eq. 2 P/mmHg 156 7999 223.088 66579 A 6.99455 170.2 13332 226.818 73350 B 1623.046 191.5 26664 230.203 79963 C 154.716 ∆ –1 214 53329 233.457 86724 HV/(kJ mol ) 238 101325 236.342 92123 at bp 50.54 239.305 100052 mp/°C 99.0 242.180 106758 244.560 113369 247.015 120049 249.336 126634 251.608 133354

p-tert-Butylphenol: vapor pressure vs. 1/T 7.0 Handley et al. 1964 Stull 1947 6.0

5.0

4.0 ) aP/

S 3.0 P( g o l 2.0

1.0

0.0 b.p. = 237 °C m.p. = 98 °C -1.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.1.17.1 Logarithm of vapor pressure versus reciprocal temperature for p-tert-butylphenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2861

14.1.1.18 4-Octylphenol

OH

Common Name: 4-Octylphenol Synonym: p-octylphenol Chemical Name: 4-octylphenol CAS Registry No: 27193-28-8

Molecular Formula: C14H22O, C8H17C6H4OH Molecular Weight: 206.324 Melting Point (°C): 43 (Lide 2003) Boiling Point (°C): 280-283 (Lewis 1996) Density (g/cm3 at 20°C): 0.941 (at 24°C, Lewis 1996) Molar Volume (cm3/mol): 281.0 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.666 (mp at 43°C)

Water Solubility (g/m3 or mg/L at 25°C): 12.6 ± 0.50 (generator column-HPLC/fluo., Ahel & Giger 1993a) 14.1 ± 0.60 (shake flask-HPLC/UV, Varhaníčková et al. 1995)

Vapor Pressure (Pa at 25°C): 0.071 (quoted, Shiu et al. 1994)

Henry’s Law Constant (Pa m3/mol at 25°C): 0.4916 (calculated-P/C, Shiu et al. 1994)

Octanol/Water Partition Coefficient, log KOW: 3.70 (calculated-π substituent const. or fragment const., McLeese et al. 1981) 4.12 ± 0.10 (shake flask-HPLC/fluo., Ahel & Giger 1993b)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Hydrolysis: Oxidation: Biodegradation: average exptl. rate constant k = 0.0894 h–1 compared to group contribution method predicted rate constants k = 0.1124 h–1 (nonlinear) and k = 0.0982 h–1 (Tabak & Govind 1993). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2862 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.1.19 4-Nonylphenol

OH

Common Name: 4-Nonylphenol Synonym: p-nonylphenol Chemical Name: 4-nonylphenol CAS Registry No: 104-40-5; 25154-52-3

Molecular Formula: C15H24O, C9H19C6H4OH Molecular Weight: 220.351 Melting Point (°C): 42 (Lide 2003 Boiling Point (°C): approx. 295 (Lide 2003) Density (g/cm3 at 20°C): 1.513 (Budavari 1989) Molar Volume (cm3/mol): 231.1 (20°C, Stephenson & Malanowski 1987) 303.2 (calculated-Le Bas method at normal boiling)

Acid Dissociation Constant, pKa: ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.681 (mp at 42°C)

Water Solubility (g/m3 or mg/L at 25°C): 5.43 ± 0.17 (generator column-HPLC/fluo., Ahel & Giger 1993a) 4.90 ± 0.4 (shake flask-GC/FID, Brix et al. 2001)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.0701* (ebulliometry, extrapolated, measured range 214.78–321.91°C, Hon et al. 1976) log (P/mmHg) = 7.74950 – 2550.67/(260.28 + t/°C); temp range 214.78–321.91°C (Antoine eq., ebulliometry, Hon et al. 1976) 0.0720 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.8847 – 2560.53/(207.199 + t/°C), temp range 214.8–321.8°C (Antoine eq. from reported exptl. data of Hon et al. 1976, Boublik et al. 1984) 0.0691 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.87147 – 2547.289/(–67.246 + T/K), temp range 487–595 K (Antoine eq., Stephenson & Malanowski 1987) 0.174, 0.14, 0.109, 0.0908, 0.0802, 0.0556 (GC-RT correlation, 7 isomers, Bidleman & Renberg 1985)

Henry’s Law Constant (Pa m3/mol at 25°C): 1.5705 (calculated-P/C, Shiu et al. 1994)

Octanol/Water Partition Coefficient, log KOW: 4.20 (calculated-π substituent const. or fragment const., McLeese et al. 1981) 4.10 (Geyer et al. 1982) 5.90 (selected, Yoshida et al. 1986) 5.76 (HPLC-RT correlation, Itokawa et al. 1989) 4.48 ± 0.12 (shake flask-HPLC/fluo., Ahel & Giger 1993b) 6.36 (calculated-CLOGP 3.51, Jaworska & Schultz 1993)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2863

6.36 (COMPUTOX, Kaiser 1993) 5.76 (Sangster 1993; Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF: 2.45 (salmon, McLeese et al. 1981) 1.00 (mussel mytilus edulis, Geyer et al. 1982) 2.40 (fish liver, Ahel & Giger 1993a) 2.22; 2.45 (laboratory BCF data: killifish; salmon; Tsuda et al. 2000) 1.49; 1.32; 1.40; 1.34; 1.32; 1.18; 1.11–2.61 (field BCF data: pale chub; Ayu sweetfish, dark chub, crucian carp; large-mouth bass; bluegill; fish tissue; Tsuda et al. 2000)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Hydrolysis: Oxidation: Biodegradation: average exptl. rate constant of 0.0894 h–1 compared to group contribution method predicted rate constants of 0.1124 h–1 (nonlinear) and 0.0982 h–1 (linear) (Tabak & Govind 1993). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: –1 k1 = 45.0 d (McLeese et al. 1981) –1 k2 = 0.16 d (McLeese et al. 1981)

Half-Lives in the Environment:

Biota: t½ = 4 d in salmon before excretion (McLeese et al. 1981).

TABLE 14.1.1.19.1 Reported vapor pressures of 4-nonylphenol at various temperatures

Hon et al. 1976

ebulliometry

t/°CP/Pa 214.78 6557 251.33 19998 261.87 26679 274.76 37250 283.74 46663 289.28 53364 298.78 66656 303.76 74873 307.72 81628 310.82 87441 314.17 94271 317.1 100170 321.81 110655 bp/°C 317.61 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2864 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.1.19.1 (Continued)

Hon et al. 1976

ebulliometry

t/°CP/Pa

log P = A – B/(C + t/°C) P/mmHg A 7.74950 B 2550.67 C 260.28 ∆ –1 HV/(kJ mol ) at bp 61.923

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2865

14.1.1.20 1-Naphthol

OH

Common Name: 1-Naphthol Synonym: α-naphthol, 1-naphthalenol, 1-hydroxynaphthalene Chemical Name: 1-naphthol CAS Registry No: 90-15-3

Molecular Formula: C10H8O, C10H7OH Molecular Weight: 144.170 Melting Point (°C): 95 (Lide 2003) Boiling Point (°C): 288.0 (sublimation, Weast 1982–83; Dean 1985; Lide 2003) Density (g/cm3): 1.0989 (99°C, Weast 1982–83) 1.0954 (99°C, Dean 1985)

Acid Dissociation Constant, pKa: 9.20 (McLeese et al. 1979) 9.30 (Dean 1985) Molar Volume (cm3/mol): 131.2 (99°C, Stephenson & Malanowski 1987) 155.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 23.47 (Tsonopoulos & Prausnitz 1971) ∆ Entropy of Fusion, Sfus (J/mol K): 63.6 (Tsonopoulos & Prausnitz 1971) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol·K), F: 0.206 (mp at 95°C)

Water Solubility (g/m3 or mg/L at 25°C): 438 (quoted, Tsonopoulos & Prausnitz 1971) 870; 674 (exptl., calculated-group contribution, Kühne et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 1.550* (extrapolated-regression of tabulated data, temp range 94–282.5°C, Stull 1947) 1333* (141.5°C, ebulliometry, measured range 141.5–282.5°C, Vonterres et al. 1955) log (P/mmHg) = [–0.2185 × 14205.6/(T/K)] + 8.476669; temp range 94–282.5°C (Antoine eq., Weast 1972–73) 0.509 (extrapolated-liquid, Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.69308 – 2275.566/(202.869 + t/°C), temp range 141.5–282.5°C (Antoine eq. from reported exptl. data of Vonterres et al. 1955, Boublik et al. 1984) 0.290 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.28421 – 2077.56/(184.0 + t/°C); temp range 141–282°C (Antoine eq., Dean 1985, 1992) α log (PS/kPa) = 12.20753 – 4873.394/(T/K); temp range 298–312 K (Antoine eq.-I, form, solid, Stephenson & Malanowski 1987) β log (PS/kPa) = 10.70115 – 4405.522/(T/K); temp range 314–324 K (Antoine eq.-II, form, solid, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.53825 – 3083.8/(1.731 + T/K); temp range 399–556 K (Antoine eq.-III, liquid, Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.49 (calculated-P/C, this work)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2866 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Octanol/Water Partition Coefficient, log KOW: 2.98 (shake flask-UV, Hansch & Anderson 1967) 2.98, 2.84, 2.31 (Hansch & Leo 1979) 2.28 (HPLC-k′ correlation, Haky & Young 1984) 2.84 (recommended, Sangster 1989, 1993) 2.84 (CPC centrifugal partition chromatography, Gluck & Martin 1990) 3.13 (back-flushing-CPC centrifugal partition chromatography, Menges et al. 1990) 2.81 (shake flask-HPLC, Menges et al. 1991) 3.02 (concurrent chromatography, Berthod et al. 1988) 2.84 (COMPUTOX, Kaiser 1993) 2.43 (HPLC-RT correlation, Ritter et al. 1994) 2.84 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 2.64 (soil and sediment, Hassett et al. 1981) 3.33 (soil, Means et al. 1982) 3.41 (soil, calculated-MCI χ, Sabljic 1987)

2.10–2.77 (soil, calculated-KOW, model of Karickhoff et al. 1979, Sabljic 1987) 2.63–2.99 (soil, calculated-KOW, model of Kenaga & Goring 1980, Sabljic 1987) 1.84–2.1 (soil, calculated-KOW, model of Briggs 1981, Sabljic 1987) 1.99–2.66 (soil, calculated-KOW, model of Means et al. 1982, Sabljic 1987) 1.30–1.90 (soil, calculated-KOW, model of Chiou et al. 1983, Sabljic 1987) 2.89 (soil, calculated-MCI χ, Bahnick & Doucette 1988)

2.52–2.96, 2.53 (soil: quoted, calculated-KOW, Xing et al. 1994) 1.92–2.64 (organic sorbent: cellulose, lignin, Xing et al. 1994) 3.31, 2.91, 2.61 (RP-HPLC-k′ correlation on 3 different stationary phases, Szabo et al. 1995) 2.61; 3.48 (HPLC-screening method; calculated-PCKOC fragment method, Müller & Kördel 1998)

Environmental Fate Rate Constants, k and Half-Lives, t½: Volatilization: Photolysis: Photooxidation: Hydrolysis: Biodegradation: average rate of biodegradation 38.4 mg COD g–1·h–1 based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982). Biotransformation:

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environmental Compartments:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2867

TABLE 14.1.1.20.1 Reported vapor pressures of 1-naphthol at various temperatures

Stull 1947 Vonterres et al. 1955

summary of literature data ebulliometry

t/°CP/Pat/°CP/Pa 94.0 133.3 141.5 1333 125.5 666.6 164.8 3333 142 1333 184.2 6666 158 2666 196.9 9999 177.8 5333 206.0 13332 190 7999 219.3 19998 206 13332 229.0 26664 229.6 26664 236.4 33330 255.8 53329 244.0 39997 282.5 101325 246.5 43330 250.2 46663 mp/°C 96.0 255.1 53329 260.3 59995 264.8 66661 265.7 73327 272.0 79993 275.2 86659 278.3 93325 282.5 101325

1-Naphthol: vapor pressure vs. 1/T 8.0 Vonterres et al. 1955 Stull 1947 7.0

6.0

5.0 ) aP/

S 4.0 P( g o l 3.0

2.0

1.0 b.p. = 288 °C m.p. = 95 °C 0.0 0.0016 0.002 0.0024 0.0028 0.0032 0.0036 1/(T/K) FIGURE 14.1.1.20.1 Logarithm of vapor pressure versus reciprocal temperature for 1-naphthol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2868 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.1.21 2-Naphthol

OH

Common Name: 2-Naphthol Synonym: β-naphthol, 2-naphthalenol, 2-hydroxynaphthalene Chemical Name: 2-naphthol CAS Registry No: 135-19-3

Molecular Formula: C10H7OH Molecular Weight: 144.170 Melting Point (°C): 121.5 (Lide 2003) Boiling Point (°C): 285 (Lide 2003) Density (g/cm3 at 20°C): 1.280 (Weast 1982–83)

Acid Dissociation Constant, pKa: 9.57 (Dean 1985) Molar Volume (cm3/mol): 155.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 18.79 (Tsonopoulos & Prausnitz 1971) ∆ Entropy of Fusion, Sfus (J/mol K): 47.7 (Tsonopoulos & Prausnitz 1971) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol·K), F: 0.113 (mp at 121.5°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 680* (23.20°C, shake flask, measured range 15.55–31.25, McCune & Wilhelm 1949) 700 (20–25°C, Seidell 1941; Lange 1973) 713* (21.5°C, shake flask-UN spectrophotometry, measured range 6.9–75°C, Moyle & Tyner 1953) 754 (Tsonopoulos & Prausnitz 1971) 1000 (shake flask-UV spectrophotometry, Roberts et al. 1977) 740 (Verschueren 1983) 477 (calculated-group contribution, Kühne et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 1.430* (extrapolated-regression of tabulated data, temp range 128.5–288°, Stull 1947) 1333* (144.0°C, ebulliometry, measured range 144.0–288.0°C, Vonterres et al. 1955) log (P/mmHg) = [–0.2185 × 14138.5/(T/K)] + 8.391271; temp range 128.6–288°C (Antoine eq., Weast 1972–73)

0.386 (extrapolated-Antoine eq., supercooled liquid PL, Boublik et al. 1984) log (P/kPa) = 6.62476 – 2244.555/(198.594 + t/°C), temp range 144–288°C (Antoine eq. from reported exptl. data of Vonterres et al. 1955, Boublik et al. 1984)

0.160 (extrapolated-Antoine eq., supercooled liquid PL, Dean 1985) log (P/mmHg) = 7.34714 – 2135.0/(183.0 + t/°C), temp range 144–288°C (Antoine eq., Dean 1985, 1992)

0.0303 (interpolated-Antoine eq.-III, solid PS, Stephenson & Malanowski 1987) α log (PS/kPa) = 12.48704 – 5110.333/(T/K), temp range 298–312 K (Antoine eq.-I, form, solid, Stephenson & Malanowski 1987) β log (PS/kPa) = 10.80636 – 4586.029/(T/K), temp range 314–332 K (Antoine eq.-II, form, solid, Stephenson & Malanowski 1987)

log (PS/kPa) = 9.273 – 4112/(T/K), temp range 283–323 K (Antoine eq.-III, solid, Stephenson & Malanowski 1987) log (PL/kPa) = 7.22927 – 2827.5/(–19.868 + T/K), temp range 401–561 K (Antoine eq.-IV, liquid, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2869

Henry’s Law Constant (Pa m3/mol at 25°C): 0.280 (calculated-P/C, this work)

Octanol/Water Partition Coefficient, log KOW: 2.84 (shake flask-UV, Hansch & Anderson 1967) 2.70, 2.84, 2.89 (Hansch & Leo 1979) 2.01, 2.46 (HPLC-k′ correlation, Eadsforth 1986) 2.84 (recommended, Sangster 1989) 2.85 (centrifugal partition chromatography CPC-RV, El Tayar et al. 1991) 2.70 (EPA CLOGP Data Base, Hulzebos et al. 1993) 2.70 (COMPUTOX, Kaiser 1993) 2.70 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 3.33 (soil, Means et al. 1982) 3.41 (soil, calculated-MCI χ, Sabljic 1987)

2.10–2.77 (soil, calculated-KOW based on model of Karickhoff et al. 1979, Sabljic 1987) 2.63–2.99 (soil, calculated-KOW based on model of Kenaga & Goring 1980, Sabljic 1987) 1.84–2.19 (soil, calculated-KOW based on model of Briggs 1981, Sabljic 1987) 1.99–2.66 (soil, calculated-KOW based on model of Means et al. 1982, Sabljic 1987) 1.30–1.90 (soil, calculated-KOW based on model of Chiou et al. 1983, Sabljic 1987)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis: Oxidation: Hydrolysis: Biodegradation: average rate of biodegradation 39.2 mg COD g–1 h–1 based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982). Biotransformation:

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2870 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.1.21.1 Reported aqueous solubilities and vapor pressures of 2-naphthol at various temperatures

Aqueous solubility Vapor pressure

McCune & Wilhelm 1949 Moyle & Tyner 1953 Stull 1947 Vonterres et al. 1955

shake flask shake flask-UV spec. summary of literature data ebulliometry

t/°CS/g·m–3 t/°CS/g·m–3 t/°CP/Pat/°CP/Pa 15.55 501 6.90 355 128.6 666.6 144.0 1333 16.24 526 13.45 487 145.5 1333 158.0 3333 23.20 680 17.7 561 161.8 2666 188.0 6666 31.25 928 21.5 713 181.7 5333 200.5 9999 29.5 876 193.7 7999 210.0 13332

log (100·CW) = A – B/(T/K) 33.3 985 209.8 13332 223.1 19998

CW g/100 mL 38.7 1304 234.0 26664 233.0 26664 A 5.8833 44.5 1609 260.6 53329 246.0 33330 B 1495.84 48.5 2001 288.0 101325 247.4 39997 55.2 2460 251.0 43330 60.0 3034 mp/°C 122.5 254.2 46663 68.1 4222 260.2 53329 75.0 5493 265.1 59995 269.0 66661 273.0 73327 276.6 79993 279.7 86659 283.0 93325 288.0 101325

2-Naphthol: solubility vs. 1/T -7.0 McCune & Wilhelm 1949 Moyle & Tyner 1953 -7.5 Roberts et al. 1977

-8.0

-8.5

x nl x -9.0

-9.5

-10.0

-10.5

-11.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 14.1.1.21.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2-naphthol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2871

2-Naphthol: vapor pressure vs. 1/T 8.0 Vonterres et al. 1955 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 285 °C m.p. = 121.5 °C 0.0 0.0016 0.002 0.0024 0.0028 0.0032 0.0036 1/(T/K) FIGURE 14.1.1.21.2 Logarithm of vapor pressure versus reciprocal temperature for 2-naphthol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2872 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.1.22 2-Phenylphenol (2-Hydroxybiphenyl)

HO

Common Name: 2-Phenylphenol Synonym: o-phenylphenol, 2-hydroxybiphenyl, [1,1′-biphenyl]-2-ol Chemical Name: 2-phenylphenol CAS Registry No: 90-43-7

Molecular Formula: C12H10O, C6H5C6H4OH Molecular Weight: 170.206 Melting Point (°C): 57.5 (Weast 1982–83) Boiling Point (°C): 286 (Weast 1982–83; Lide 2003) Density (g/cm3 at 20°C): 1.213 (Dean 1985) 1.200 (25°C, Verschueren 1983) Molar Volume (cm3/mol): 192.0 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 9.55 (Dean 1985) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.480 (mp at 57.5°C)

Water Solubility (g/m3 or mg/L at 25°C): 700 (Verschueren 1983)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (100°C, summary of literature data, temp range 100–275°C, Stull 1947) 1333* (161.9 °C, ebulliometry, measured range 161.9–275.0°C, Vonterres et al. 1955) log (P/mmHg) = [–0.2185 × 15397.8/(T/K)] + 9.015370; temp range 100–275°C (Antoine eq., Weast 1972–73) log (P/mmHg) = [1– 549.249/(T/K)] × 10^{0.889463 – 4.72320 × 10–4·(T/K) + 5.27654 × 10–7·(T/K)2}; temp range 373.15–548.15 K (Cox eq., Chao et al. 1983) 2667, 13330 (163°C, 206°C, Verschueren 1983) log (P/kPa) = 5.50723 – 1137.035/(72.282 + t/°C), temp range 161.9–275°C (Antoine eq. from reported exptl. data of Vonterres et al. 1955, Boublik et al. 1984)

30.0 (interpolated-Antoine eq.-I, solid PS, Stephenson & Malanowski 1987) log (PS/kPa) = 10.8635 – 4326.754/(T/K), temp range 291–314 K (Antoine eq.-I, solid, Stephenson & Malanowski 1987)

log (PL/kPa) = 4.1553 – 547.8/(–298.55 + T/K), temp range 434–547 K (Antoine eq.-II, liquid, Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 3.09 (Hansch & Leo 1979) 3.09 (COMPUTOX, Kaiser 1993) 3.06 (HPLC-RT correlation, Ritter et al. 1994) 3.09 (recommended, Sangster 1993) 3.06 (HPLC-RT correlation, Ritter et al. 1994) 3.09 (recommended, Hansch et al. 1995)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2873

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: photooxidation t½ = 66–3840 h in water, based on reported reaction rate constants for OH and RO2 radicals to react with phenol class compounds (Mill & Mabey 1985; Guesten et al. 1981; quoted, Howard et al. 1991);

photooxidation t½ = 0.1–22 h, based on estimated reaction rate constant with OH radical (Atkinson 1987; quoted, Howard et al. 1991) and NO3 radical in nighttime air to react with the phenol and cresol classes (Howard et al. 1991). Hydrolysis: Biodegradation: 100% degradation under aerobic and anaerobic conditions after 3 wk (504 h) at 22°C (Verschueren 1983);

t½(aq. aerobic) = 24–168 h, based on a river die-away study in which a 50% degradation was observed over a one week period (Gonsior et al. 1984; quoted, Howard et al. 1991); t½(aq. anaerobic) = 96–672 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment:

Air: photooxidation t½ = 0.1–22 h, based on estimated reaction rate constant with OH radical (Atkinson 1987; quoted, Howard et al. 1991) and NO3 radical in nighttime air to react with the phenol and cresol classes (Howard et al. 1991).

Surface water: photooxidation t½ = 66–3840 h in water, based on reported reaction rate constants for OH and RO2 radicals to react with phenol class compounds (Mill & Mabey 1985; Güesten et al. 1981; quoted, Howard et al. 1991); t½ = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Groundwater:t½ = 48–336 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

TABLE 14.1.1.22.1 Reported vapor pressures of 2-phenylphenol at various temperatures

Stull 1947 Vonterres et al. 1955

summary of literature data ebulliometry

t/°CP/Pat/°CP/Pa 100 133.3 161.9 1333 131.6 666.6 168.0 3333 146.2 1333 188.1 6666 163.3 2666 198.0 9999 180.3 5333 206.8 13332 192.2 7999 219.0 19998 205.9 13332 228.1 26664 227.9 26664 235.2 33330 251.8 53329 241.6 39997 275.0 101325 244.0 43330 247.4 46663 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2874 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.1.22.1 (Continued)

Stull 1947 Vonterres et al. 1955

summary of literature data ebulliometry

t/°CP/Pat/°CP/Pa mp/°C 56.6 252.0 53329 257.0 59995 261.0 66661 264.0 73327 268.0 79993 270.0 86659 273.8 93325 275.0 101325 bp/°C 278.004

2-Phenylphenol (2-hydroxybiphenyl): vapor pressure vs. 1/T 8.0 Vonterres et al. 1955 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 286 °C m.p. = 57.5 °C 0.0 0.0016 0.002 0.0024 0.0028 0.0032 0.0036 1/(T/K) FIGURE 14.1.1.22.1 Logarithm of vapor pressure versus reciprocal temperature for 2-phenylphenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2875

14.1.1.23 4-Phenylphenol (4-Hydroxybiphenyl)

OH

Common Name: 4-Phenylphenol Synonym: p-phenylphenol, 4-hydroxybiphenyl, [1,1′-biphenyl]-4-ol Chemical Name: 4-phenylphenol CAS Registry No: 92-69-3

Molecular Formula: C12H10O, C6H5C6H4OH Molecular Weight: 170.206 Melting Point (°C): 166 (Lide 2003) Boiling Point (°C): 305–308 (sublimation, Weast 1982–83; Stephenson & Malanowski 1987) 305 (Lide 2003) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): 192.0 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 9.55 (Dean 1985) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.0414 (mp at 166°C)

Water Solubility (g/m3 or mg/L at 25°C): 9.79 (CESARS 1988) 56.4; 50.2 (quoted exptl.; calculated-group contribution, Kühne et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 1333* (176.2°C, summary of literature data, temp range 176.2–308°C, Stull 1947) 1333* (177.0°C, ebulliometry, measured range 177.0–308.0°C, Vonterres et al. 1955) log (P/mmHg) = [–0.2185 × 16974.3/(T/K)] + 9.234838; temp range 176.2–308°C (Antoine eq., Weast 1972–73) log (P/mmHg) = [1– 580.171/(T/K)] × 10^{0.949514 – 5.554686 × 10–4·(T/K) + 5.61184 × 10–7·(T/K)2}; temp range: 450.15–581.15 K, (Cox eq., Chao et al. 1983) 0.0278 (liquid, extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 7.97182 – 3214.349/(231.575 + t/°C), temp range 177–308°C (Antoine eq. from reported exptl. data of Vonterres et al. 1955, Boublik et al. 1984) 0.020 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 8.6575 – 3022.8/(216.1 + t/°C); temp range:177–308°C (Antoine eq., Dean 1985, 1992)

0.00153 (extrapolated-Antoine eq., solid PS, Stephenson & Malanowski 1987) log (PS/kPa) = 11.17513 – 5066.004/(T/K); temp range 327–348 K (Antoine eq.-I, solid, Stephenson & Mal- anowski 1987)

log (PL/kPa) = 8.41978 – 3684.9/(–5.81 + T/K), temp range 450–581 K (Antoine eq-II., liquid, Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 3.20 (shake flask-UV, Norrington et al. 1975) 3.63 (HPLC-RV correlation, Garst 1984) 2.88 (centrifugal partition chromatography (CPC), Terada et al. 1987) 3.20 (COMPUTOX databank, Kaiser 1993) 3.31 (HPLC-RT correlation, Ritter et al. 1994)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2876 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

3.20 (recommended, Sangster 1993) 3.20 (recommended, Hansch et al. 1995) 2.60, 2.56, 2.70, 2.72 (HPLC-k′ correlation, different combinations of stationary and mobile phases under isocratic conditions, Makovskaya et al. 1995a)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

TABLE 14.1.1.23.1 Reported vapor pressures of 4-phenylphenol at various temperatures

Stull 1947 Vonterres et al. 1955

summary of literature data ebulliometry

t/°CP/Pat/°CP/Pa 176.2 1333 177.0 1333 193.8 2666 199.2 3333 213.0 5333 217.8 6666 225.3 7999 229.0 9999 240.9 13332 237.4 13332 263.2 26664 250.0 19998 285.5 53329 260.2 26664 308.0 101325 267.1 33330 273.8 39997 mp/°C 164.5 276.0 43330 278.8 46663 283.0 53329 287.1 59995 291.0 66661 294.7 73327 297.8 79993 300.6 86659 303.5 93325 308.0 101325 bp/°C 307.194

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2877

14.1.2 CHLOROPHENOLS 14.1.2.1 2-Chlorophenol

OH Cl

Common Name: 2-Chlorophenol Synonym: o-chlorophenol, 1-chloro-2-hydroxybenzene Chemical Name: 2-chlorophenol CAS Registry No: 95-57-8

Molecular Formula: C6H4(OH)Cl Molecular Weight: 128.556 Melting Point (°C): 9.4 (Lide 2003) Boiling Point (°C): 174.9 (Dreisbach 1955; Weast 1982–83; Lide 2003) Density (g/cm3): 1.2634 (20°C, Weast 1982–83) 1.257 (25°C, Krijgsheld & van der Gen 1986)

Acid Dissociation Constant, pKa: 8.65 (Farquharson et al. 1958; Saarikoski & Viluksela 1982; Renner 1990) 8.48 (Pearce & Simkins 1968; Krijgsheld & van der Gen 1986) 8.52 (Drahonovsky & Vacek 1971) 8.29 (Sillén & Martell 1971; Kaiser et al. 1984; Shigeoka et al. 1988) 8.55 (Serjeant & Dempsey 1979) 8.30 (Hoigné & Bader 1983) 9.30 (HPLC, Miyake et al. 1987) Molar Volume (cm3/mol): 101.8 (20°C, Stephenson & Malanowski 1987) 124.3 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 40.05, 49.25 (normal bp, 25°C, Dreisbach 1955) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 13.50 (Dreisbach 1955) 10.75 (Tsonopoulos & Prausnitz 1971) 12.52 (Chickos et al. 1999) ∆ Entropy of Fusion, Sfus (J/mol K): 38.12 (Tsonopoulos & Prausnitz 1971) 44.24 (exptl., Chickos et al. 1999) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 25000* (20°C, synthetic method, measured range –0.20 to 173.0°C, Sidgwick & Turner 1922) 29000 (20–25°C, Seidell 1941; Urano et al. 1982) 24650 (20°C, shake flask-UV, Mully & Metcalf 1966) 22000 (shake flask-spectrophotometry, Roberts et al. 1977) 28500 (20°C, Verschueren 1977, 1983) 11480 (shake flask-LSC, Banerjee et al. 1980) 11200 (shake flask-radioactive analysis, Veith et al. 1980) 20000 (recommended, IUPAC Solubility Data Series, Horvath & Getzen 1985) 23260 (shake flask-HPLC/UV at pH 4.8, Ma et al. 1993) 28500 (solid-phase microextraction SPME-GC, Buchholz & Pawliszyn 1994)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2878 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

22660* (24.6°C, shake flask-conductimetry, measured range 15.4–34.5°C, Achard et al. 1996)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 316* (interpolated-regression of tabulated data, temp range 12.7–174.5°C, Stull 1947) 208 (calculated-Antoine eq., Dreisbach 1955) log (P/mmHg) = 7.05272 – 1589.1/(206.0 + t/°C), temp range 80–300°C (Antoine eq. for liquid state, Dreisbach 1955) 313 (extrapolated from Antoine eq., Weast 1972–73) log (P/mmHg) = [–0.2185 × 10341.1/(T/K)] + 7.952334; temp range 12.1–174.5°C (Antoine eq., Weast 1972–73) 5532 (80°C, Verschueren 1977, 1983) 293, 180.7 (extrapolated, Antoine eq., Dean 1985) log (P/mmHg) = 6.87731 – 1471.61/(193.17 + t/°C); temp range 80–200°C (Antoine eq., Dean 1985, 1992) 131.8 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 5.78693 – 1314.9/(–101.95 + T/K), temp range 333–449 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 5.3685 – 1096.98/(–122.58 + T/K); temp range 354–448 K (Antoine eq.-II, Stephenson & Malanowski 1987) 737, 1329, 2278, 3736, 5907 (50, 60.24, 69.94, 79.95, 89.94°C, calculated-Antoine eq. of Stephenson & Malanowski 1987, Tabai et al. 1997)

Henry’s Law Constant (Pa·m3/mol at 25°C): 1.065 (calculated-P/C, Mabey et al. 1982) 0.688 (calculated-P/C, Shiu et al. 1994) 0.661 (20°C, single equilibrium static technique SEST, Sheikheldin et al. 2001)

kH/kPa = 161.250 – 12658.0/(T/K) – 20.4027; temp range 323–363 K (activity coefficient by ebulliometric method, Tabai et al. 1997)

Octanol/Water Partition Coefficient, log KOW: 2.15 (shake flask-UV, Fujita et al. 1964;) 2.15, 2.19 (Leo et al. 1971) 2.20 (calculated using data from Fujita et al. 1964, Umeyama et al. 1971) 2.12 (20°C, shake flask, Korenman 1974) 2.15 (LC-k′ correlation, Carson et al. 1975) 2.17 (Hansch & Leo 1979) 2.16 (shake flask-LSC, Banerjee et al. 1980) 0.83 (RP-HPLC-RT correlation, Veith et al. 1980) 2.11 (RP-HPLC-RT correlation, Butte et al. 1981) 2.03 (shake flask, Dearden & Bresnen 1981) 2.16 ± 0.03 (HPLC-k′ correlation, Hammers et al. 1982) 2.32 (RP-HPLC-RT correlation, Chin et al. 1986) 1.56, 1.99 (HPLC-k′ correlation, Eadsforth 1986) 2.09 (HPLC-RT correlation, Miyake et al. 1986) 2.13 (shake flask-UV, Miyake et al. 1987) 2.16 (shake flask-CPC, Berthod et al. 1988) 2.24 (batch equilibration-UV, Beltrame et al. 1988) 2.11 (centrifugal partition chromatography, Gluck & Martin 1990) 2.25 (back flashing-CPC centrifugal partition chromatography; Menges et al. 1990) 2.05 (centrifugal partition chromatography CPC-RV, El Tayar et al. 1991) 2.17 (counter-current chromatography, Berthod et al. 1992) 2.15 (recommended, Sangster 1993) 2.29 (shake flask-GC, Kishino & Kobayashi 1994) 2.15 (recommended, Hansch et al. 1995)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2879

Bioconcentration Factor, log BCF: 2.33 (bluegill sunfish, Barrows et al. 1980) 2.33 (bluegill sunfish, Veith et al. 1980)

1.61 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 2.33 (bluegill sunfish, Bysshe 1982) 0.81 (gold fish, Kobayashi et al. 1979; quoted, Verschueren 1983; Howard 1989) 0.81 (Isnard & Lambert 1988)

0.28–1.40 (estimated from KOW, Howard 1989)

Sorption Partition Coefficient, log KOC: 3.70, 3.60 (sediment: fine, coarse; Isaacson & Frink 1984)

1.86 (sediment-water, calculated-KOW, Mabey et al. 1982) 1.71 (clay loam soil, Boyd 1982; quoted, Howard 1989) 3.69 (untreated fine sediment, Isaacson & Frink 1984) 3.60 (untreated coarse sediment, Isaacson & Frink 1984) 3.98 (treated fine sediment, Isaacson & Frink 1984) 4.36 (treated coarse sediment, Isaacson & Frink 1984)

1.20–2.55 (estimated from KOW, Howard 1989) 1.82 (calculated-KOW, Kollig 1993) 2.60 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Volatilization: t½ = 1.35, 1.60 h from stirred and static water at 23.8°C (Chiou et al. 1980; Howard 1989); t½ = 73 d, based on estimation from a model river 1 m deep flowing at 1 m/s with a wind velocity of 3 m/s (Howard 1989).

Photolysis: vapor phase t½ = 47 h (Howard 1989); first-order photolysis disappearance rate constant k = 3.01 × 10–2 min–1 in the absence of DOM at 313 nm (Kawaguchi 1992).

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: k(aq.) < 7 × 105 M–1 h–1 for singlet oxygen and 1 × 107 M–1 h–1 for peroxy radical at 25°C (Mabey et al. 1982) k(aq.) = 66 × 106 M–1 s–1 at pH 8, k = (1.1 ± 0.3) × 103 M–1 s–1 for non-protonated species, k = (0.2 ± 0.1) × 109 M–1 s–1 for phenolate ions for the reaction with ozone in water using 3 mM t-BuOH as scavenger at pH 1.8–4 and 20–23°C (Hoigné & Bader 1983b) –11 3 –1 kOH = 1.3 × 10 cm molecule s for reaction with OH radical in air (Bunce et al. 1991) k(aq.) = (9.2 ± 9.4) × 106 M–1 h–1 for the reaction with singlet oxygen in aqueous phosphate buffer at 27 ± 1°C (Tratnyek & Hoigné 1991) Hydrolysis: Biodegradation: average rate k = 25.0 mg COD g–1 h–1 based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982); time necessary for complete degradation of 16 m/L in 14–25 d by wastewater (Haller 1978); aerobic degradation in a non-sterile clay loam soil: 91% loss at 0°C after 8 d at the termination of the experiment, 94% loss at 4°C after 8 d and 100% loss at 20°C after 10–15 d all under same exptl. conditions (Baker et al. 1980); –1 –1 rate constants k = 1.0 d with t½ = 0.7 d in adopted activated sludge and k = 0.3 d with t½ = 2.3 d in soil suspension under aerobic conditions (Mills et al. 1982); completely degraded in soil suspensions in 14 d and by a soil microflora within 64 d (quoted, Verschueren 1983); approximately 48 h in a column microcosm under aerobic conditions (Suflita & Miller 1985); degradation rate k = 10 -mol L–1 d–1 in freshwater and k = 8 -mol L–1 d–1 in saline water with acclimated sulfidogenic sediment cultures (Häggblom & Young 1990). Biotransformation: rate constant for bacterial transformation of 1 × 10–7 mL cell–1 h–1 in water (Mabey et al. 1982); microbial transformation k = (7.1 ± 1.6) × 10–11 L organism–1 h–1 (Paris et al. 1983; quoted, Steen 1991); degradation k = 3.49 × 10–17 ( ± 38% SD) mol cell–1 h–1 from pure culture studies (Banerjee et al. 1984).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2880 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Half-Lives in the Environment: Air: half-life in the atmosphere was estimated to be 1.96 d (Howard 1989); tropospheric lifetime of 1 d, calculated based on reactions principally with OH radical on March 21 at 43°N (Bunce 1991).

Surface water: t½ = 16.8 d in sludge and t½ = 55.2 d in polluted river waters (Mills et al. 1982); rate constant of (1.1 ± 0.3) × 103 M–1 s–1 for the reaction with ozone at pH 1.8–4.0 (Hoigné & Bader 1983b); photolysis disappearance k = 3.01 × 10–2 min–1 in the absence of DOM at 313 nm (Kawaguchi 1992). Groundwater: Sediment: Soil: Days for complete disappearance by microbial decomposition in soil suspension: 14 d in Dunkirk silt loam, 47 d in Mardin silt loam (Alexander & Aleem 1961)

t½ = 51 d in a coarse sandy soil, t½ = 110 d in sandy loam (Kjeldsen et al. 1990) t½ = 7.2 d in an acidic clay soil with < 1.0% organic matter and t½ = 1.7 d in a slightly basic sandy loam soil with 3.25% organic matter, based on aerobic batch lab microcosm experiments (Loehr & Matthews 1992).

Biota: t½ < 1 d in tissue of bluegill sunfish (Barrows et al. 1980).

TABLE 14.1.2.1.1 Reported aqueous solubilities and vapor pressures of 2-chlorophenol at various temperatures

Aqueous solubility Vapor pressure

Sidgwick & Turner 1922 Achard et al. 1996 Stull 1947

synthetic method shake flask-conductimetry summary of literature data

t/°CS/g·m–3 t/°CS/g·m–3 t/°CP/Pa –0.20 15600 15.4 24007 12.1 133.3 –0.30 24400 24.6 22660 38.2 666.6 82.9 37600 34.5 24007 51.2 1333 106.3 51200 65.9 2666 159.1 135800 82.0 5333 165.8 169500 92.0 7999 170.7 225900 106.0 13332 173.0 330000 126.4 26664 172.9 450400 149.8 53329 170.1 549500 174.5 101325 166.2 607200 156.6 706200 mp/°C 7.0 118.9 828200 91.5 859000 –2.0 877300 –4.0 892500 –5.0 896200 –8.0 908700 –8.2 922000 –6.0 929200 –1.50 967900 2.0 983900 7.0 1000000 critical solution temp 173°C

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2881

2-Chlorophenol: solubility vs. 1/T 0.0 Sidgwick & Turner 1922 Achard et al. 1996 -1.0 experimental data Horvath & Getzen 1985 (IUPAC recommended)

-2.0

-3.0 x nl x

-4.0

-5.0

-6.0 critical solution temp. = 173 °C m.p. = 9.4 °C -7.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 14.1.2.1.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2-chlorophenol.

2-Chlorophenol: vapor pressure vs. 1/T 8.0 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 174.9 °C m.p. = 9.4 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.2.1.2 Logarithm of vapor pressure versus reciprocal temperature for 2-chlorophenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2882 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.2.2 3-Chlorophenol

OH

Cl

Common Name: 3-Chlorophenol Synonym: m-chlorophenol, 1-chloro-3-hydroxybenzene Chemical Name: 3-chlorophenol CAS Registry No: 108-43-0

Molecular Formula: C6H4ClOH Molecular Weight: 128.556 Melting Point (°C): 32.6 (Lide 2003) Boiling Point (°C): 214.0 (Sidgwick & Turner 1922; Stull 1947; Weast 1982–83; Lide 2003) Density (g/cm3, 20°C): 1.268 (25°C, Weast 1982–83)

Acid Dissociation Constant, pKa: 9.12 (Farquharson et al. 1958; Renner 1990) 8.85 (Doedens 1967; Jones 1981; Bintein & Devillers 1994) 9.08 (Pearce & Simkins 1968) 8.78 (Sillén & Martell 1971; Kaiser et al. 1984; Shigeoka et al. 1988) 9.12 (Serjeant & Dempsey 1979; Howard 1989; Tratnyek & Hoigné 1991; Haderlein & Schwarzenbach 1993) 8.97 (Könemann 1981; Könemann & Musch 1981; Ugland et al. 1981; Renner 1990; Ma et al. 1993) 9.10 (Dean 1985; Schultz & Cajina-Quezada 1987) 9.02 (Krijgsheld & van der Gen 1986) 9.37 (quoted from Ugland et al. 1981, Lagas 1988) Molar Volume (cm3/mol): 103.3 (45°C, Stephenson & Malanowski 1987) 124.3 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 11.72 (Tsonopoulos & Prausnitz 1971) 14.91; 15.6 (exptl.; calculated-group additivity method, Chickos et al. 1999) ∆ Entropy of Fusion, Sfus (J/mol K): 38.2 (Tsonopoulos & Prausnitz 1971) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol·K), F: 0.842 (mp at 9.4°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 26000* (20°C, synthetic method, measured range –0.20 to 130.8°C, Sidgwick & Turner 1922) 26000 (20–25°C, Seidell 1941; Urano et al. 1982; Shigeoka et al. 1988) 22420 (20°C, Mulley & Metcalf 1966) 22000 (recommended, Horvath & Getzen 1985) 22190 (shake flask-HPLC/UV at pH 4.6, Ma et al. 1993)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 41.90* (extrapolated-regression of tabulated data, temp range 44.2–214°C, Stull 1947) 41.40 (extrapolated-Antoine eq., liquid value, Weast 1972–73) log (P/mmHg) = [–0.2185 × 11979.7/(T/K)] + 8.276287; temp range 44.2–214°C (Antoine eq., Weast 1972–73) 667.0 (72°C, Verschueren 1983) 1.034 (extrapolated-Antoine eq.-I, solid, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2883

log (PS/kPa) = 7.61412 – 3178.132/(T/K), temp range 252–293 K (Antoine eq.-I, solid, Stephenson & Mal- anowski 1987)

33.40 (extrapolated-Antoine eq., supercooled liquid PL, Stephenson & Malanowski 1987) log (PL/kPa) = 6.54908 – 1978.86/(–51.572 + T/K), temp range 317–487 K (Antoine eq.-II, liquid, Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa·m3/mol): 0.0567 (calculated, Hine & Mookerjee 1975) 0.2045 (calculated-P/C, Shiu et al. 1994)

kH/kPa = 22.0921 – 6444.46/(T/K); temp range 323–363 K (activity coefficient by ebulliometric method, Tabai et al. 1997)

Octanol/Water Partition Coefficient, log KOW: 2.50 (shake flask-UV, Fujita et al. 1964) 2.55 (calculated using data from Fujita et al. 1964, Umeyama et al. 1971) 2.52 (shake flask-UV, Korenman 1974) 2.17, 2.29 (calculated-π const., calculated-fragment const., Rekker 1977) 2.50 (Hansch & Leo 1979) 2.33 (HPLC-k′ correlation, Butte et al. 1981, Butte et al. 1987) 2.44 (Dearden & Bresnen 1981) 2.36 (HPLC-k′ correlation, Hammers et al. 1982) 2.55 (RP-HPLC-k′ correlation, Miyake & Terada 1982) 1.87, 2.29 (HPLC-k′ correlation, Eadsforth 1986) 2.36 (HPLC-RT correlation, Miyake et al. 1986) 2.55 (batch equilibration-UV, Beltrame et al. 1988) 2.50 (RP-HPLC-capacity ratio correlation, Minick et al. 1988) 2.48 (RP-HPLC, Shigeoka et al. 1988) 2.43; 2.63 (shake flask, HPLC-RT correlation, Wang et al. 1989) 2.50 (recommended, Sangster 1993) 2.64 (shake flask-GC, Kishino & Kobayashi 1994) 2.50; 2.57 (HPLC-RT correlation, electrometric titration, Slater et al. 1994) 2.50 (recommended, Hansch et al. 1995) 2.60 (solid-phase microextraction, Dean et al. 1996)

Bioconcentration Factor, log BCF: 1.30 (Golden ide, Freitag et al. 1985) 1.25 (zebrafish, Butte et al. 1987) 0.845, 1.23 (earthworms e. fetida andrei: Kooyenberg soil, Holten soil, van Gestel & Ma 1988) 2.01, 2.09 (earthworms l. rubellus: Kooyenberg soil, Holten soil, van Gestel & Ma 1988)

1.17–2.55 (estimated from KOW, Howard 1989) 1.00, 1.32, 2.17, 2.18 (earthworm system, from literature, Connell & Markwell 1990) 1.10, 1.40, 10.1, 16.3 (earthworm system, derived data, Connell & Markwell 1990)

Sorption Partition Coefficient, log KOC:

1.20–2.74 (estimated from KOW, Howard 1989) 2.54 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Volatilization: estimated t½ ~73 d for evaporation from a model river of 1 m deep, flowing at 1 m/s with a wind velocity of 3 m/s (Lyman et al. 1982; quoted, Howard 1989).

Photolysis: vapor phase t½ = 1.96 d (Howard 1989); measured pseudo-first-order reaction k = 0.048 ± 0.001 min–1 for direct photolysis in aqueous solutions (Peijnenburg et al. 1992).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2884 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Oxidation: rate constant k = (5.4 ± 1.0) × 106 M–1 s–1 for the reaction with singlet oxygen in aqueous phosphate buffer at 27 ± 1°C (Tratnyek & Hoigné 1991). Hydrolysis: will not be an important degradation process (Howard 1989). Biodegradation: 95% degradation in 3–6 d in mixed bacteria cultures (Tabak et al. 1964); completely degraded in soil suspensions within 72 d and by a soil microflora within 64 d (quoted, Verschueren 1983); time necessary for complete degradation of 16 mg/L in 14–25 d by wastewater (Haller 1978); degradation rate of 15 -mol L–1 d–1 in freshwater and 18 µmol L–1 d–1 in saline water with acclimated sulfidogenic sediment cultures (Häggblom & Young 1990). Biotransformation: degradation rate of 4.32 × 10–17 ( ± 47% SD) mol cell–1 h–1 from pure culture studies (Banerjee et al. 1984).

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: vapor phase half-life was estimated to be 1.96 d (Howard 1989).

Surface water: t½ = (14.5 ± 0.3) min for direct photolysis in aqueous solutions (Peijnenburg et al. 1992). Ground water: Sediment: half-life was approximately 30 d in sediment from a farm stream at 20°C (Howard 1989). Soil: Days for complete disappearance by microbial decomposition in soil suspension: 72 + d in Dunkirk silt loam, 47 + d in Mardin silt loam (Alexander & Aleem 1961)

disappearance t½ = 2.5 d from Kooyenburg soil, t½ = 5.4 d from Holten soil with earthworms e. fetida andrei and t½ = 2.6 d from Kooyenburg soil, t½ = 2.1 d from Holten soil with earthworms l. rubblus (van Gestel & Ma 1988);

t½ = 15.1 d in an acidic clay soil with < 1.0% organic matter and t½ = 21.8 d in a slightly basic sandy loam soil with 3.25% organic matter, based on aerobic batch lab microcosm experiments (Loehr & Matthews 1992). Biota:

TABLE 14.1.2.2.1 Reported aqueous solubilities and vapor pressures of 3-chlorophenol at various temperatures

Aqueous solubility Vapor pressure

Sidgwick & Turner 1922 Stull 1947

synthetic method summary of literature data

t/°CS/g·m–3 t/°CS/g·m–3 t/°CP/Pa –0.18 7300 3.2 844700 44.2 133.3 1.20 12500 –0.90 -* 72.0 666.6 2.5 18500 4.5 871900 86.1 1333 82.25 51200 –4.8 886600* 101.7 2666 118.0 111300 –8.2 901100* 118.0 5333 123.0 135600 –13.2 917300* 129.4 7999 127.5 178400 10.8 922300 143.0 13332 130.8 320200 –17.0 -* 164.8 26664 130.7 388900 17.0 951000 188.7 53329 130.5 461200 22.2 971100 214.0 101325 129.1 536500 32.5 1000000 109.8 712300 mp/°C 32.5 23.1 823000 critical solution temp 130.8°C 11.8 829000 *metastable point

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2885

3-Chlorophenol: solubility vs. 1/T 0.0 Sidgwick & Turner 1922 Ma et al. 1993 -1.0 Horvath & Getzen 1985 (IUPAC recommended)

-2.0

-3.0 x x n l -4.0

-5.0

-6.0 critical solution temp. = 130.8 °C m.p. = 32.6 °C -7.0 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 0.004 1/(T/K) FIGURE 14.1.2.2.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 3-chlorophenol.

3-Chlorophenol: vapor pressure vs. 1/T 8.0 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 214 °C m.p. = 32.6 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.2.2.2 Logarithm of vapor pressure versus reciprocal temperature for 3-chlorophenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2886 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.2.3 4-Chlorophenol

OH

Cl Common Name: 4-chlorophenol Synonym: p-chlorophenol, 1-chloro-4-hydroxybenzene Chemical Name: 4-chlorophenol CAS Registry No: 106-48-9

Molecular Formula: ClC6H4OH Molecular Weight: 128.556 Melting Point (°C): 42.8 (Lide 2003) Boiling Point (°C): 220 (Lide 2003) Density (g/cm3 at 20°C): 1.2651 (Weast 1982–83)

Acid Dissociation Constant, pKa: 9.37 (Farquharson et al. 1958; Ugland et al. 1981; Saarikoski & Viluksela 1982; Renner 1990) 9.18 (Doedens 1967) 9.42 (Pearce & Simkins 1968) 9.14 (Sillén & Martell 1971; Kaiser et al. 1984; Shigeoka et al. 1988; Argese et al. 1999) 9.41 (Serjeant & Dempsey 1979) 9.38 (Paris et al. 1982; Krijgsheld & van der Gen 1986) 9.20 (Hoigné & Bader 1983) 9.43 (Dean 1985; Schultz & Cajina-Quezada 1987) 9.37 ± 0.01 (potentiometric partition, Hersey et al. 1989) 9.57 ± 0.01 (UV with pH profile, Hersey et al. 1989) Molar Volume (cm3/mol): 101.6 (40°C, Stephenson & Malanowski 1987) 124.3 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 14.69 (Tsonopoulos & Prausnitz 1971) 14.07; 16.2 (exptl.; calculated-group additivity method, Chickos et al. 1999) ∆ Entropy of Fusion, Sfus (J/mol K): 46.44 (Tsonopoulos & Prausnitz 1971) ∆ Fugacity Ratio at 25° C (assuming Sfus = 56 J/mol K), F: 0.669 (mp at 42.8°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 27000* (20°C, synthetic method, measured range –0.20 to 128.7°C, Sidgwick & Turner 1922) 27000 (20–25°C, Seidell 1941; Urano et al. 1982) 27000 (shake flask-UV at pH 5.1, Blackman et al. 1955) 26250 (20°C, shake flask-UV, Mulley & Metcalf 1966) 24000 (shake flask-spectrophotometry, Roberts et al. 1977) 27000 (recommended, Horvath & Getzen 1985) 26390 (shake flask-HPLC/UV at pH 4.6, Ma et al. 1993) 25540* (25.2°C, shake flask-conductimetry, measured range 15.1–34.5°C, Achard et al. 1996) 20712* (11.05°C, shake flask-optical method, measured range 282.2–386.1 K, Jaoui et al. 1999) 25519* (24.85°C, shake flask-optical method, measured range 298–341.9 K, Jaoui et al. 2002) ln [S/(mol kg–1)] = 5.6451 – 716.81/(T/K); temp range 282–342 K (eq. derived using reported exptl. data, Jaoui et al. 2002)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2887

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 28.6* (extrapolated-regression of tabulated data, temp range 49.8–220°C, Stull 1947) 28.0 (extrapolated-Antoine eq., liquid value, Weast 1972–73) log (P/mmHg) = [–0.2185 × 12281.6/(T/K)] + 8.331937; temp range 49.8–220°C (Antoine eq., Weast 1972–73) 13.3, 33.3 (20°C, 30°C, Verschueren 1977, 1983) 3.47 (extrapolated liquid value, Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 8.83238 – 1385.1/(–131.1 + T/K), temp range 373–493 K (Antoine eq., Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa·m3/mol at 25°C and reported temperature dependence equations): 0.0567 (calculated, Hine & Mookerjee 1975; Howard 1989) 0.0471 (calculated-P/C, Leuenberger et al. 1985) 0.0952 (calculated-P/C, Shiu et al. 1994)

kH/kPa = 2017.07 – 110385.0/(T/K) – 290.078; temp range 323–363 K (activity coefficient by ebulliometric method, Tabai et al. 1997)

Octanol/Water Partition Coefficient, log KOW: 2.39 (shake flask-UV, Fujita et al. 1964) 2.53 (shake flask-UV at pH 7.45, Umeyama et al. 1971) 2.37 (HPLC-RT correlation, Carlson et al. 1975) 2.40 (HPLC-RT correlation, Mirrlees et al. 1976) 2.17, 2.29 (calculated-π const., calculated-fragment const., Rekker 1977) 2.35, 2.39, 2.44, 2.40 (lit. values, Hansch & Leo 1979) 2.51 (calculated-π const. or fragment const., McLeese et al. 1979) 2.55 (20°C, shake flask-UV, Rogers & Wong 1980) 2.35 (HPLC-k′ correlation, Hammers et al. 1982) 2.51 (RP-HPLC-k′, correlation Miyake & Terada 1982) 2.46 ± 0.06 (HPLC-RV correlation.-ALPM, Garst & Wilson 1984) 2.88 (CPC-RV, Terada et al. 1987) 2.43 (batch equilibration-UV, Beltrame et al. 1988, Beltrame et al. 1989) 2.39 (RP-HPLC-capacity ratio, Minick et al. 1988) 2.41 (shake flask, Shigeoka et al. 1988) 2.42; 2.46; 2.34, 2.45 (filter chamber-UV; potentiometric partition; Hersey et al. 1989) 2.52; 2.59 (shake flask; HPLC-RT correlation, Wang et al. 1989) 2.39 (recommended, Sangster 1993) 2.63 (shake flask-GC, Kishino & Kobayashi 1994) 2.41; 2.45 (HPLC-RT correlation, electrometric titration, Slater et al. 1994) 2.39 (recommended, Hansch et al. 1995) 1.82, 1.83, 2.01, 1.98 (HPLC-k′ correlation, different combinations of stationary and mobile phases under isocratic conditions, Makovskaya et al. 1995a)

Bioconcentration Factor, log BCF: 1.18 (goldfish, Kobayashi et al. 1979)

0.30–1.59 (estimated from KOW, Howard 1989) 1.05–1.50 (estimated, NCASI 1992)

Sorption Partition Coefficient, log KOC: 1.85 (clay loam soil, Boyd 1982; Howard 1989)

1.20–2.68 (estimated from KOW, Howard 1989) 2.377, 2.686, 2.025, 2.222, 2.332 (soils, first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-HPLC/UV, Gawlik et al. 1998) 2.142, 1.966, 1.966, 2.289, 1.952 (soils, second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-HPLC/UV and HPLC-k′ correlation, Gawlik et al. 2000)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2888 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: half-lives of 12.8 h, 17.4 h for evaporation from stirred and static water at a depth of 0.38 cm at

23.6°C (Chiou et al. 1980; Howard 1989); t½ = 73 d was estimated for evaporation from a river 1 m deep, flowing at 1 m/s with a wind velocity of 3 m/s (Howard 1989). Photolysis: –1 photo-transformation rate constants: k = 0.011 h with t½ = 63 h for distilled water in summer (mean temp –1 –1 25°C) and k = 0.007 h with t½ = 99 h in winter (mean temp 14°C); k = 0.03 h with t½ = 28 h for –1 estuarine water in summer and k = 0.011 h with t½ = 63 h in winter exposed to full sunlight and microbes (Hwang et al. 1986) –1 photo-mineralization rate constants: k = 0.012 h with t½ = 58 d for distilled water in summer and –1 –1 –1 k = 0.003 h with t½ = 224 d in winter; k = 0.07 h with t½ = 10 d in summer and k = 0.007 h with t½ = 95 d in winter for surface estuarine water exposed to full sunlight and microbes (Hwang et al. 1986); 3 –1 photo-degradation k = 564 × 10 min with t½ = 1.1 min for direct UV radiation in aqueous solutions (Benitez et al. 2000).

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: k(aq.) = (600 ± 100) M–1 s–1 for the reaction with ozone in water using 1 mM PrOH as scavenger at pH 2 and 20–23°C (Hoigné & Bader 1983a) k(aq.) = 34 × 106 M–1 s–1 at pH 8, and k = (600 ± 100) M–1 s–1 for non-protonated species, k = (0.6 ± 0.2) × 109 M–1 s–1 for phenolate ions for the reaction with ozone in water using 3 mM t-BuOH as scavenger at pH 1.5–6 and 20–23°C (Hoigné & Bader 1983b) k(aq.) = (6.0 ± 3.6) × 106 M–1 s–1 for the reaction with singlet oxygen in aqueous buffer at 27 ± 1°C (Tratnyek & Hoigné 1991) 72.1 mg/L total organic carbon (TOC) degraded to 98% TOC after 5 h illumination with 250 watt tungsten lamp by the photo-Fenton reaction (Ruppert et al. 1993) 3 –1 3 –1 k = 1877 × 10 min with a half-life of 0.4 min for reaction with Fenton’s reagent; kO3 = 17 × 10 min 3 –1 with a half-life of 38.15 min at pH 2; and kO3 = 239 × 10 min with a half-life of 3.4 min at pH 9 for reactions with ozone in aqueous solutions (Benitez et al. 2000) Hydrolysis: Biodegradation: 95% degradation in 3–6 d in a mixed bacteria cultures (Tabak et al. 1964); average rate of biodegradation 11.0 mg COD g–1 h–1 based on measurements of COD decrease using activated sludge inoculum with 20 d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982); time necessary for complete degradation of 16 mg/L in 7–14 d by wastewater and in 14–25 d by soil (Haller 1978); –1 t½ = 475 h in river waters with a calculated first-order k = 0.035 d (Lee & Ryan 1979; quoted, Battersby 1990); aerobic degradation in a non-sterile clay-loam soil: 77% loss at 0°C at the termination of the experiment after 14 d, 84% loss at 4°C after 12 d and 100% loss at 20°C after 30 d all under same experimental conditions (Baker et al. 1980);

t½ = 216–480 h and 72–1080 h for 75% degradation in mineral medium and seawater (de Kreuk & Hanstveit 1981); biodegradation first order rate constant k = 0.23 d–1 in aquatic systems (Scow 1982); completely degraded in soil suspensions in 9 d and by a soil microflora in 16 d (quoted, Verschueren 1983); –1 microbial degradation is the primary transformation process; transformation k = 0.06 h with t½ = 11 h for –1 estuarine water in summer and t½ = 0.006 h with t½ = 116 h in winter in the darkness (Hwang et al. 1986) –1 –1 mineralization k = 0.293 h with t½ = 2 d for estuarine water in summer and k = 0.003 h with t½ = 231 –1 d in winter in the darkness (Hwang et al. 1986); degradation rate constants k = 0.035 d with t½ = 480 d in Skidway River water and 0.23 d–1 with a half-life of 72 h in Skidway River water-sediment slurry (Pritchard 1987); degradation rate constant of 37 µmol L–1 d–1 in freshwater and 22 µmol L–1 d–1 in saline water with acclimated sulfindogenic sediment cultures (Häggblom & Young 1990); average transformation rate of 53 µmol L–1 d–1 at 31°C for anaerobic degradation in freshwater sediments with an average adaptation time of 37 d (Zhang & Wiegel 1990); 70% degradation within 1–2 d in soil and completely degraded within 15 d in river water (NCASI 1992) Degradation constant k = 8.5 µM/h for aerobic dechlorination in shake flask experiments;; k = 10 µM/h in the sequential anaerobic-aerobic continuous reactor system (Armenante et al. 1999).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2889

Biotransformation: microbial transformation rate constant of (1.7 ± 0.9) × 10–12 L organism–1 h–1 (Paris et al. 1982); microbial transformation rate constant of (4.7 ± 1.6 × 10–11 L organism–1 h–1 to (9.0 ± 1.7) × 10–11 L organism–1 h–1 in pond and river samples at five different sites (Paris et al. 1983); degradation rate k = 5.44 × 10–17 ( ± 32% SD) mol cell–1 h–1 from pure culture studies and 0.3 × 10–12 mol cell–1 h–1 with microorganisms in Seneca River waters (Banerjee et al. 1984).

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 1.96 d in the atmosphere (Howard 1989) Surface water: t½ = 475 h for biodegradation in river waters with a calculated first-order rate constant of 0.035 d–1 (Lee & Ryan 1979; quoted, Battersby 1990);

t½ = 216–624 h and 72–1080 h for 75% degradation in mineral medium and seawater, respectively (de Kreuk & Hanstveit 1981); rate constant k = 600 ± 100 M–1 s–1 for the reaction with ozone at pH 1.5–6.0 (Hoigné & Bader 1983);

t½ = 63 h in summer at season temp., 25°C, t½ = 99 h in winter at season temp., 14°C in distilled water and 28 h in summer, t½ = 63 h in winter in estuary surface water, based on photo-transformation rate (Hwang et al. 1986);

t½ = 58 d in summer, t½ = 224 d in winter in distilled water; and t½ = 10 d in summer, t½ = 95 d in winter in surface estuarine water, based on photo-mineralization rate (Hwang et al. 1986);

t½ = 216 h at 21°C in Skidway River water (Pritchard 1987); t½ = 20 d in water (Howard 1989); at a concentration of 1 mg/L, 4-CP was degraded completely within 15 d in river waters (NCASI 1992);

photo-oxidation t½ = 0.4 min for reaction with Fenton’s reagent; t½ = 38.15 min at pH 2, and t½ = 3.4 min at pH 9 for reactions with ozone in aqueous solutions (Benitez et al. 2000). Ground water:

Sediment: t½ = 72 h at 22°C in Skidway River water-sediment slurry (Pritchard 1987); t½ = 3 d in sediment and seawater (Howard 1989). Soil: Days for complete disappearance by microbial decomposition in soil suspension: 9 d in Dunkirk silt loam, 3 d in Mardin silt loam (Alexander & Aleem 1961)

t½ = 2.5 d in an acidic clay soil with < 1.0% organic matter and t½ = 1.0 d in a slightly basic sandy loam soil with 3.25% organic matter, based on aerobic batch lab microcosm experiments (Loehr & Matthews 1992); 70% degradation with 1 to 2 d (NCASI 1992). Biota:

TABLE 14.1.2.3.1 Reported aqueous solubilities of 4-chlorophenol at various temperatures

Sidgwick & Turner 1922 Achard et al. 1996 Jaoui et al. 1999 Jaoui et al. 2002

synthetic method shake flask-conductivity shake flask-optical method shake flask-optical method*

t/°CS/g·m–3 t/°CS/g·m–3 T/K S/g·m–3 T/K S/g·m–3 –0.20 20700 15.1 23337 282.2 17856. 298.0 25519 65.0 39100 25.2 25540 284.2 20712 305.2 27010 113.8 106600 34.6 28499 308.3 27855 315.3 29389 125.0 205000 311.2 29283 319.7 30057 128.2 291600 324.2 32140 323.8 30919 128.7 425700 341.9 35711 332.7 32809 125.8 534900 354.7 41425 341.2 34608 122.4 596200 359.9 44282 298.0 25519 115.5 650500 362.7 48567 305.2 27010 107.7 693600 364.4 52852 315.3 29132 97.0 740300 365.7 54261 332.7 32809 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2890 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.2.3.1 (Continued)

Sidgwick & Turner 1922 Achard et al. 1996 Jaoui et al. 1999 Jaoui et al. 2002

synthetic method shake flask-conductivity shake flask-optical method shake flask-optical method*

t/°CS/g·m–3 t/°CS/g·m–3 T/K S/g·m–3 T/K S/g·m–3 35.5 840200 366.7 57852 339.5 34248 17.0 854200 386.1 117132 298.3 25583 5.5 861900 309.3 27872 0.5 889200 315.8 29235 6.2 924800 324.8 31124 11.0 944800 329.0 32024 14.2 957000 341.9 34763 18.0 968200 19.5 972900 *some data from Achard et al. 41.0 1000000 1996, Jaoui et al. 1999 critical solution temp 129°C triple point –0.30°

4-Chlorophenol: solubility vs. 1/T 1.0 Sidgwick & Turner 1922 Achard et al. 1996 0.0 Jaoui et al. 1999 Jaoui et al. 2002 -1.0 experimental data Horvath & Getzen 1985 (IUPAC recommended)

-2.0

x n x -3.0 l

-4.0

-5.0

critical solution -6.0 temp. = 129 °C m.p. = 42.8 °C -7.0 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 14.1.2.3.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 4-chlorophenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2891

TABLE 14.1.2.3.2 Reported vapor pressures of 4-chlorophenol at various temperatures

Stull 1947

summary of literature data

t/°CP/Pa 49.8 133.3 78.2 666.6 92.2 1333 108.1 2666 125.0 5333 136.1 7999 150.0 13332 172.0 26664 196.0 53329 220.0 101325 mp/°C 42.0

4-Chlorophenol: vapor pressure vs. 1/T 8.0 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 220 °C m.p. = 42.8 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.2.3.2 Logarithm of vapor pressure versus reciprocal temperature for 4-chlorophenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2892 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.2.4 2,4-Dichlorophenol

OH Cl

Cl

Common Name: 2,4-Dichlorophenol Synonym: 2,4-DCP Chemical Name: 2,4-dichlorophenol CAS Registry No: 120-83-2

Molecular Formula: C6H4Cl2O, C6H3Cl2OH Molecular Weight: 163.001 Melting Point (°C): 45.0 (Stull 1947; Verschueren 1977, 1983; Weast 1982–83: Lide 2003) Boiling Point (°C): 210.0 (Stull 1947; Verschueren 1977, 1983; Weast 1982–83; Lide 2003) Density (g/cm3): 1.383 (at 60/25°C, Verschueren 1983)

Acid Dissociation Constant, pKa: 7.80 (Blackman et al. 1955; Hoigné & Bader 1983; Scully & Hoigné 1987) 7.85 (Farquharson et al. 1958; Pearce & Simkins 1968) 7.68 (Doedens 1967) 7.89 (Sillén & Martell 1971; Serjeant & Dempsey) 8.01, 8.04, 8.09 (measured values, Xie & Dyrssen 1984) 8.09 (Shigeoka et al. 1988) Molar Volume (cm3/mol): 145.2 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 20.09; 16.7 (exptl.; calculated-group additivity method, Chickos et al. 1999) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus= 56 J/mol K), F: 0.636 (mp at 45°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 4500 (gravimetric, Mosso 1887) 6194 (shake flask-UV at pH 5.1, Blackman et al. 1955) 5000 (shake flask-spectrophotometry, Roberts et al. 1977) 2650 (shake flask-GC, Jones et al. 1977/1978) 4600 (20°C, Verschueren 1977, 1983) 5547 (shake flask-HPLC/UV at pH 5.1, Ma et al. 1993) 4600 (solid-phase microextraction SPME-GC, Buchholz & Pawliszyn 1994) 5517* (25.2°C, shake flask-conductimetry, measured range 15.3–35.1°C, Achard et al. 1996) 6339* (37.35°C, shake flask-optical method, measured range 310.5–423.2 K, Jaoui et al. 1999) 4980 (shake flask-HPLC/UV, pH 4.98, Huang et al. 2000) 4841* (21.45°C, shake flask-optical method, measured range 296.4–337.7 K, Jaoui et al. 2002) ln [S/(mol kg–1)] = 11.846 – 3025.1/(T/K); temp range 288–298 K (eq.-I derived using reported exptl. data, Jaoui et al. 2002) ln [S/(mol kg–1)] = 5.0497 – 981.37/(T/K); temp range 298–347 K (eq.-II derived using reported exptl. data, Jaoui et al. 2002)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2893

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 20.6* (extrapolated-regression of tabulated data, temp range 53–210°C, Stull 1947) 11.9 (extrapolated-Antoine eq., Weast 1972–73) log (P/mmHg) = [–0.2185 × 13230.4/(T/K)] + 8.884810; temp range 53–210°C (Antoine eq., Weast 1972–73) 18.0 (supercooled liquid value, GC-RT correlation, Hamilton 1980) 15.4 (capillary GC-RT, Bidleman & Renberg 1985) 2.40, 11.87 (8°C, 25°C, extrapolated, Leuenberger et al. 1985)

log (PL/kPa) = 6.75941 – 1945.1/(–73.987 + T/K); temp range 326–483 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.32554 – 1807.32/(–69.17 + T/K); temp range 391–474 K (Antoine eq.-II, Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 0.284 (calculated-P/C, Mabey et al. 1982) 0.110 (8°C, calculated-P/C, Leuenberger et al. 1985) 0.435 (calculated-P/C, Shiu et al. 1994)

kH/kPa = 24.9070 – 6791.07/(T/K); temp range 323–363 K (activity coefficient by ebulliometric method, Tabai et al. 1997) 0.292 (20°C, single equilibrium static technique SEST, Sheikheldin et al. 2001)

Octanol/Water Partition Coefficient, log KOW: 3.08 (Leo et al. 1971) 3.06 (shake flask-UV, Stockdale & Selwyn 1971) 3.06, 3.08 (Hansch & Leo 1979) 2.92 (HPLC-k′ correlation, Hammers et al. 1982) 3.14 (RP-HPLC-k′ correlation, Miyake & Terada 1982) 3.41 (shake flask-UV, Beltrame et al. 1984) 3.23 (shake flask-HPLC/UV, Schellenberg et al. 1984) 3.20, 3.17, 3.17 (20°C, shake flask-GC-calculated-regression, Xie & Dyrssen 1984) 3.21, 3.23 (shake flask-GC, HPLC-k′ correlation, Xie et al. 1984) 3.23 (OECD 1981 guidelines, Leuenberger et al. 1985) 2.87 (RP-HPLC-RT correlation, Chin et al. 1986) 2.97 (HPLC-RT correlation, Miyake et al. 1986) 3.61 (centrifugal partition chromatography CPC-RV, Terada et al. 1987) 3.21 (shake flask, Shigeoka et al. 1988; quoted, Saito et al. 1993) 3.16 (shake flask/batch equilibrium-UV, Beltrame et al. 1988) 3.06 (EPA CLOGP Data Base, Hulzebos et al. 1993) 3.17 (recommended, Sangster 1993) 3.07 (calculated-QSAR, Kollig 1993) 3.20 (shake flask-GC, Kishino & Kobayashi 1994) 3.06 (recommended, Hansch et al. 1995) 3.34 (solid-phase microextraction; Dean et al. 1996)

Bioconcentration Factor, log BCF: 1.53 (goldfish, Kobayashi 1979) 1.00 (trout, Hattula et al. 1981)

2.27 (microorganism-water, calculated-KOW, Mabey et al. 1982) 2.00 (golden ide, after 3 d, Freitag et al. 1985) 2.42 (algae, after 1 d, Freitag et al. 1985) 2.53 (activated sludge, after 5 d, Freitag et al. 1985) 1.00 (quoted, brown trout, Walden et al. 1986) 1.80 (correlated, Isnard & Lambert 1988) 1.41–1.65 (estimated, NCASI 1992)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2894 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Sorption Partition Coefficient, log KOC:

2.59 (sediment-water, calculated-KOW, Mabey et al. 1982) 2.59–3.02 (soil, calculated-KOW, model of Karickhoff et al. 1979, Sabljic 1987a,b) 2.89–3.12 (soil, calculated-KOW, model of Kenaga & Goring 1980, Sabljic 1987a,b) 2.10–2.32 (soil, calculated-KOW, model of Briggs 1981, Sabljic 1987a,b) 2.48–2.91 (soil, calculated-KOW, model of Means et al. 1982, Sabljic 1987a,b) 1.74–2.13 (soil, calculated-KOW, model of Chiou et al. 1983, Sabljic 1987a,b) 3.60, 3.50 (untreated fine and coarse sediment, Isaacson & Frink 1984) 3.71, 3.98 (treated fine and coarse sediment, Isaacson & Frink 1984) 2.75 (sediment, Schenllenberg et al. 1984; quoted, Sabljic 1987a,b) 2.76 (soil, calculated-MCI χ, Sabljic 1987a,b)

2.49 (calculated-KOW, Kollig 1993) 2.75 (soil, calculated-MCI 1χ, Sabljic et al. 1995) 2.47, 2.53 (RP-HPLC-k′ correlation including MCI related to non-dispersive intermolecular interactions, hydrogen-bonding indicator variable, Hong et al. 1996) 2.609, 2.654, 2.460, 2.346, 2.540 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-HPLC/UV and HPLC-k′ correlation, Gawlik et al. 2000) 2.49, 2.57, 2.77, 2.33 (soils: organic carbon OC -0.1% and pH 2.0–7.4, OC –0.1% and pH ≤ 5.8, OC –0.5%, 0.1 ≤ OC < 0.5%, average, Delle Site 2001)

Environmental Fate Rate Constants and Half-Lives: Volatilization: photolysis: –1 –1 kP = 0.82 h with t½ = 0.8 h for distilled water in summer at mean temp. 25°C, and kP = 0.21 h with –1 t½ = 3 h in winter at mean temp. 11°C; kP = 1.16 h with t½ = 0.6 h for estuarine water in summer and –1 –1 –1 kP = 0.44 h with t½ = 2 h in winter; kP = 1.0 h with t½ = 0.7 h in summer and kP = 0.38 h with t½ = 2 h in winter for poisoned estuarine water when exposed to full sunlight and microbes (photo- transformation, Hwang et al. 1986) –1 –1 kP = 0.09 h with t½ = 8 d in summer and kP = 0.049 h with t½ = 14 d in winter for distilled water; –1 –1 kP =0.20h with t½ = 4 d in summer and kP = 0.04 h with t½ = 17 d in winter for estuarine water; –1 –1 kP = 0.12 h with t½ = 6 d in summer and kP = 0.05 h with t½ = 14 d in winter for poisoned estuarine water when exposed to full sunlight and microbes (photo-mineralization rate, Hwang et al. 1986)

photochemical-transformation t½ = 2.5–2.6 h in Xenotest 1200 (Svenson & Björndal 1988) atmospheric and aqueous photolysis t½ = 0.8–3 h based on measured rate of photolysis in distilled water under sunlight in summer and winter (Howard et al. 1991) 3 –1 kP = 38 × 10 min with a t½ = 17.5 min for direct UV radiation aqueous solutions (Benitez et al. 2000) Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: k < 7 × 105 M–1 h–1 for singlet oxygen, and 1 × 107 M–1 h–1 for peroxy radical at 25°C (Mabey et al. 1982) k = 5 × 106 M–1 s–1 at pH 8, k < 1.5 × 103 M–1 s–1 for non-protonated species, k = (8 ± 4) × 109 M–1 s–1 for phenolate ions for the reaction with ozone in water using 3 mM t-BuOH as scavenger at pH 1.3–1.5 and 20–23°C (Hoigné & Bader 1983b) k = 7 × 105 M–1 s–1 at pH 5.5, k = 2 × 106 M–1 s–1 at pH 6.0, k = 10 × 106 M–1 s–1 at pH 6.6, k = 15 × 106 M–1 s–1 at pH 7.0, k = 76 × 106 M–1·s–1 at pH 7.9, k = 120 × 106 M–1 s–1 at pH 9.0 and pH 9.6 for the reaction with singlet oxygen in water at 19 ± 2°C (Scully & Hoigné 1987) –12 3 –1 –1 kOH = 1.06 × 10 cm molecule s at 298 K (Atkinson 1989) –12 3 –1 kOH = 3.5 × 10 cm molecule s (Bunce et al. 1991) k = (5.1 ± 4.7) × 106 M–1 s–1 for the reaction with singlet oxygen in aqueous phosphate buffer at 27 ± 1°C (Tratnyek & Hoigné 1991) –12 3 –1 –1 kOH(calc) = 1.71 × 10 cm molecule s (molecular orbital estimation method, Klamt 1993) k = 209 × 103 min–1 with a half-life of 2.4 min for reaction with Fenton’s reagent; and k = 24 × 103 min–1 with a half-life of 30.4 min at pH 2, and k = 315 × 103 min–1 with a half-life of 3.3 min at pH 9 for reactions with ozone in aqueous solutions (Benitez et al. 2000) Hydrolysis: no hydrolyzable groups (Howard et al. 1991). Biodegradation: 7 to 10 d for bacteria to utilize 95% of 200 ppm in parent substrate (Tabak et al. 1964);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2895

aqueous aerobic t½ = 66.7–199 h, based on aerobic lake die-away test data (Aly & Faust 1964; selected, Howard et al. 1991); aqueous anaerobic t½ = 324–1032 h, based on anaerobic lake die-away test data (Aly & Faust 1964; selected, Howard et al. 1991); completely degraded in soil suspensions in 9 d (Woodcock 1971; quoted, Verschueren 1983); average rate of biodegradation 10.5 mg COD g–1 h–1 based on measurements of COD decrease using activated sludge inoculum with 20-d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982); aerobic degradation in a non-sterile clay-loam soil: 79% loss at 0°C at the termination of the experiment after 14 days, 82% loss at 4°C after 12 d and 84% loss at 20°C after 40 d all under same experimental conditions (Baker et al. 1980); –1 –1 rate constants k = 0.5 d with t½ = 1.4 d in adapted activated sludge and k = 0.1 d with t½ = 6 d in natural waters under anaerobic conditions (Mills et al. 1982); microbial degradation negligible in darkness (Hwang et al. 1986); k = 0.223 h–1 for maximum removal by activated sludge microorganisms (Chudoba et al. 1989); biodegradation first-order rate of hydroxylation, k = 0.017 min–1 by pseudomonas putida Fl (Spain et al. 1989; quoted, Neilson et al. 1991); 15% reduction in concn (2 µM) after incubation with cells of Rhodococcus chlorophenolicus for 14 d under aerobic conditions (Neilson et al. 1991) transformation rate of 245 -mol L–1 d–1 at 31°C for anaerobic degradation in freshwater sediments with an average of 7 d adaptation time (Zhang & Wiegel 1990); complete biodegradation in water, seawater, sludge and lagoon within 16 to 23 d (NCASI 1992). Degradation constant k = 1.6 µM/h for anaerobic batch experiment in serum bottles; k = 1.2 µM/h for dechlorination in anaerobic batch or continuous bioreactor; k = 1.9 µM/h in the sequential anaerobic- aerobic continuous reactor system (Armenante et al. 1999) Biotransformation: for bacterial transformation k = 1 × 107 mL cell–1 h–1 in water (Mabey et al. 1982); degradation rate k = 3.76 × 10–19 mol cell–1 h–1 ( ± 47% SD) from pure culture studies, k = 0.02 × 10–14 to 2×10–14 mol cell–1·h–1 with microorganisms in Seneca River waters (Banerjee et al. 1984).

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: calculated tropospheric lifetime of 3 d for reaction with OH radical on March 21 at 43°N; lifetime varies from 2 to 20 d at the latitude of Toronto depending on seasons; at latitude of 43.7°N, tropospheric lifetimes are: 20 d on December 21, 5 d on February 21, 2.2 d on April 21 and 1.5 d on June 21; and at different geographical locations on March 21, lifetimes are 1.7 d at latitude 0°, 2.2 d at 25°S, 6.7 d at 55°S and 680 at 85°S (Bunce et al. 1991);

t½ = 21.2–212 h, based on estimated rate constant for reaction with hydroxyl radical in air (Howard et al. 1991). Surface water: rate constant k < 1.5 × 103 M–1 s–1 for the reaction with ozone at pH 1.5–3.0 (Hoigné & Bader 1983);

t½ = 0.8 h in summer, t½ = 3.0 h in winter for distilled water; t½ = 0.7 h in summer, t½ = 2.0 h in winter for poisoned estuarine water; t½ = 0.6 h in summer, t½ = 2.0 h in winter for estuarine water, all based on photo-transformation rate under full sunlight and microbes; t½ = 8.0 d in summer, t½ = 14 d in winter for distilled water; t½ = 6 d in summer, t½ = 14 d in winter for poisoned estuarine water and t½ = 4 d in summer, t½ = 17 d in winter for estuarine water, based on photo-mineralization rate under full sunlight and microbes (Hwang et al. 1986);

t½ = 62 h in water at pH 8 and 19 ± 2°C for the reaction with singlet oxygen (Scully & Hoigné 1987); t½ = 2.5–2.6 h for photochemical transformation in Xenotest 1200 (Svenson & Björndal 1988); t½ = 0.8–3 h based on measured rate of photolysis in distilled water under sunlight in summer and winter (Howard et al. 1991); complete biodegradation within 5–23 d in seawater (NCASI 1992);

photo-oxidation t½ = 2.4 min for reaction with Fenton’s reagent; t½ = 30.4 min at pH 2 and t½ = 3.3 min at pH 9 for reactions with ozone in aqueous solutions (Benitez et al. 2000).

Ground water: t½ = 133–1032 h, based on unacclimated aqueous aerobic and anaerobic biodegradation half-lives (Howard et al. 1991).

Sediment: mean half-life of dechlorination: t½ = 116 d in July and t½ = 47 d in November (Hale et al. 1991). Soil: Days for complete disappearance by microbial decomposition in soil suspension: 9 d in Dunkirk silt loam, 3 d in Mardin silt loam (Alexander & Aleem 1961)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2896 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

t½ = 176–1680 h, based on aerobic soil die-away test data (Baker et al. 1980; Haider et al. 1974; selected, Howard et al. 1991);

t½ = 3.5 d in an acidic clay soil with < 1.0% organic matter and 1.5 d in a slightly basic sandy loam soil with 3.25% organic matter, based on aerobic batch lab microcosm experiments (Loehr & Mattews 1992). Biota:

TABLE 14.1.2.4.1 Reported aqueous solubilities and vapor pressures of 2,4-dichlorophenol at various temperatures

Aqueous solubility Vapor pressure

Achard et al. 1996 Jaoui et al. 1999 Jaoui et al. 2002 Stull 1947

shake flask-optical shake flask-conductivity shake flask-optical method method* summary of literature data

t/°CS/g·m–3 T/K S/g·m–3 T/K S/g·m–3 t/°CP/Pa 15.3 3896 310.5 6339 294.6 4841 53.0 133.3 25.2 5517 327.1 7244 303.1 6129 80.0 666.6 29.8 6075 338.1 8150 311.5 6683 92.8 1333 35.1 6501 347.2 9056 322.4 7433 107.7 2666 355.1 9961 336.7 8460 123.4 5333 363.5 10867 295.2 4939 133.5 7999 373.7 10867 303.7 6161 146.0 13332 382.1 11772 312.4 6748 165.2 26664 393.5 12678 318.1 7139 187.5 53329 401.5 13583 232.2 7482 210.0 101325 408.4 14489 291.4 4320 423.2 15394 302.0 6047 mp/°C 45.0 308.8 6504 321.0 7335 337.7 8525 *some data from Achard et al. 1996, Jaoui et al. 1999

2,4-Dichlorophenol: solubility vs. 1/T -5.0 Achard et al. 1996 Jaoui et al. 1999 -5.5 Jaoui et al. 2002 experimental data -6.0

-6.5 x x

nl -7.0

-7.5

-8.0

-8.5

-9.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 14.1.2.4.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2,4-dichlo- rophenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2897

2,4-Dichlorophenol: vapor pressure vs. 1/T 8.0 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(g ol 3.0

2.0

1.0 b.p. = 210 °C m.p. = 45 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.2.4.2 Logarithm of vapor pressure versus reciprocal temperature for 2,4-dichlorophenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2898 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.2.5 2,6-Dichlorophenol

OH Cl Cl

Common Name: 2,6-Dichlorophenol Synonym: 2,6-DCP Chemical Name: 2,6-dichlorophenol CAS Registry No: 87-65-0

Molecular Formula: C6H3Cl2OH Molecular Weight: 163.001 Melting Point (°C): 68.5 (Lide 2003) Boiling Point (°C): 220 (Lide 2003) Density (g/cm3):

Acid Dissociation Constant, pKa: 6.91 (Farquharson et al. 1958; Saarikoski & Viluksela 1982; Renner 1990) 6.80 (Doedens 1967; McLeese et al. 1979) 6.79 (Pearce & Simkins 1968) 6.79 (Sillén & Martell 1971; Kaiser et al. 1984; Xie & Dyrssen 1984; Shigeoka et al. 1988) 6.78 (Ugland et al. 1981; Dean 1985) 6.54 (Nendza & Seydel 1988) Molar Volume (cm3/mol): 145.2 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion Hfus (kJ/mol): 22.14 (exptl., Chickos et al. 1999) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol·K), F: 0.374 (mp at 68.5°C)

Water Solubility (g/m3 or mg/L at 25°C): 2625 (shake flask-HPLC/UV at pH 4.5, Ma et al. 1993)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 13.1* (extrapolated-regression of tabulated data, temp range 59.5–220°C, Stull 1947) 12.9 (extrapolated-Antoine eq., Weast 1972–73) log (P/mmHg) = [–0.2185 × 13472.0/(T/K)] + 8.864007; temp range 59.5–220°C (Antoine eq., Weast 1972–73) 12.2 (supercooled liq. value, GC-RT correlation, Hamilton 1980) 12.7 (capillary GC-RT, Bidleman & Renberg 1985) 11.2 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 7.32845 – 2436.59/(–35.584 + T/K); temp range 333–493 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 5.2254 – 1106.4/(–151.42 + T/K); temp range 353–493 K (Antoine eq.-II, Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.7376 (calculated-P/C, Shiu et al. 1994)

Octanol/Water Partition Coefficient, log KOW: 2.86 (Hansch & Leo 1979) 2.34 (HPLC-RT correlation, Butte et al. 1981) 2.64 (HPLC-k′ correlation, Hammers et al. 1982)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2899

3.36 (shake flask-UV, Beltrame et al. 1984) 2.84, 2.92 (shake flask-GC, HPLC-k′ correlation, Xie et al. 1984) 2.84 (shake flask, Shigeoka et al. 1988) 2.80 (batch equilibration-UV, Beltrame et al. 1988) 2.64 (recommended, Sangster 1993) 2.92 (shake flask-GC, Kishino & Kobayashi 1994) 2.75 (recommended, Hansch et al. 1995) 2.57 (HPLC-RT correlation, Makovskaya et al. 1995b)

Bioconcentration Factor, log BCF: 1.44–1.56 (estimated, NCASI 1992)

Sorption Partition Coefficient, log KOC: Environmental Fate Rate Constants and Half-Lives: Volatilization: Photolysis: Photooxidation: Hydrolysis: Biodegradation: 1920 - ∞ h and 144–360 h for 75% degradation in mineral medium and seawater batch experiments respectively (de Kreuk & Hanstveit 1981) 81% reduction in concn (2 µM) after incubation with cells of Rhodococcus chlorophenolicus for 14 d under aerobic conditions (Neilson et al. 1991) Biotransformation:

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: ∞ Surface water: t½ = 1920 - h and 144–360 h for 75% degradation in mineral medium and seawater batch experiments, respectively (de Kreuk & Hanstveit 1981). Ground water: Sediment:

Soil: t½ = 16.2 d in an acidic clay soil with < 1.0% organic matter and t½ = 2.4 d in a slightly basic sandy loam soil with 3.25% organic matter, based on aerobic batch lab microcosm experiments (Loehr & Matthews 1992). Biota:

TABLE 14.1.2.5.1 Reported vapor pressures of 2,6-dichlorophenol at various temperatures

Stull 1947

summary of literature data

t/°CP/Pa 59.5 133.3 87.5 666.6 101.0 1333 115.5 2666 131.5 5333 141.8 7999 154.6 13332 175.5 26664 197.7 53329 220.0 101325 mp/°C -

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2900 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

2,6-Dichlorophenol: vapor pressure vs. 1/T 8.0 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 220 °C m.p. = 68.5 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.2.5.1 Logarithm of vapor pressure versus reciprocal temperature for 2,6-dichlorophenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2901

14.1.2.6 3,4-Dichlorophenol

OH

Cl Cl

Common Name: 3,4-Dichlorophenol Synonym: 3,4-DCP Chemical Name: 3,4-dichlorophenol CAS Registry No: 95-77-2

Molecular Formula: C6H3Cl2OH Molecular Weight: 163.001 Melting Point (°C): 68.0 (Weast 1982–83; Lide 2003) Boiling Point (°C): 253 (Lide 2003) Density (g/cm3):

Acid Dissociation Constant, pKa: 7.39 (Doedens 1967; Jones 1981; Bintein & Devillers 1994) 8.59 (Pearce & Simkins 1968; Serjeant & Dempsey 1979; Hammers et al. 1982) 8.59 (Sillén & Martell 1971; Kaiser et al. 1984) 8.62 (Ugland et al. 1981; Lagas 1988; Renner 1990; Ma et al. 1993) 8.68 (Xie & Dyrssen 1984; Shigeoka et al. 1988; Sangster 1993) 8.63 (Dean 1985) Molar Volume (cm3/mol): 145.2 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 20.93 (exptl., Chickos et al. 1999) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol·K), F: 0.379 (mp at 68°C)

Water Solubility (g/m3 or mg/L at 25°C): 9256 (shake flask-HPLC/UV at pH 5.1, Ma et al. 1993)

Vapor Pressure (Pa at 25°C):

Henry’s Law Constant (Pa·m3/mol):

Octanol/Water Partition Coefficient, log KOW: 3.37 (Hansch & Leo 1979) 3.05 (HPLC-k′ correlation, Hammers et al. 1982) 3.33 (HPLC-RT correlation, Banerjee et al. 1984) 3.47 (shake flask-UV, Beltrame et al. 1984) 3.44, 3.41 (shake flask-GC, HPLC-k′ correlation, Xie et al. 1984) 3.44 (shake flask, Shigeoka et al. 1988) 3.68 (shake flask/batch equilibration-UV, Beltrame et al. 1988) 3.33 (recommended, Sangster 1993) 3.27; 3.39 (HPLC-RT correlation; electrometric titration, Slater et al. 1994) 3.33 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF: 1.43, 1.38 (earthworm E. fetida andrei: in Kooyenburg soil, Holten soil, van Gestel & Ma 1988) 1.30, 1.61 (earthworm L. rubellus: in Kooyenburg soil, Holten soil, van Gestel & Ma 1988)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2902 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

1.79, 1.8, 1.94, 2.04 (earthworm system, collated from literature, Connell & Markwell 1990) 0.8, 1.3, 1.4, 1.80 (earthworm system, derived data, Connell & Markwell 1990)

Sorption Partition Coefficient, log KOC: 3.09 (soil, calculated-MCI 1χ, Sabljic et al. 1995) 3.03 (2.93–3.13) (soil: organic carbon OC ≥ 0.5% and pH ≤ 6.0, average, Delle Site 2001)

Environmental Fate Rate Constants and Half-Lives: Volatilization: Photolysis: oxidation: Hydrolysis: Biodegradation: biodegradation first-order rate of hydroxylation of 0.008 min–1 by Pseudomonas putida Fl (Spain et al. 1989; quoted, Neilson et al. 1991). Biotransformation: degradation rate of 6.84 × 10–19 ( ± 38% SD) mol cell–1 h–1 from pure culture studies (Banerjee et al. 1984).

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: Surface water: Ground water:

Sediment: mean half-life of dechlorination: t½ = 115 d in July and t½ = 86 d in November with relatively long t½ = 66 d reported from site 1, t½ = 64 d from site 3 and t½ = 132 d from site 5 in January (Hale et al. 1991). Soil: disappearance t½ = 10.1 d from Kooyenburg soil, t½ = 11.2 d from Holten soil with earthworms E. fetida andrei and t½ = 24.7 d from Kooyenburg soil, t½ = 49.5 d from Holten soil with earthworms L. rebellus (van Gestel & Ma 1988);

t½ = 18.3 d in an acidic clay soil with < 1.0% organic matter and t½ = 3.2 d in a slightly basic sandy loam soil with 3.25% organic matter, based on aerobic batch lab experiments (Loehr & Matthews 1992). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2903

14.1.2.7 2,3,4-Trichlorophenol

OH Cl

Cl Cl

Common Name: 2,3,4-Trichlorophenol Synonym: Chemical Name: 2,3,4-trichlorophenol CAS Registry No: 1595-06-0

Molecular Formula: C6H3Cl3O, C6H2Cl3OH Molecular Weight: 197.446 Melting Point (°C): 83.5 (Weast 1982–83; Lide 2003) Boiling Point (°C): sublimation (Weast 1982–83; Dean 1985; Lide 2003) Density (g/cm3):

Acid Dissociation Constant, pKa: 7.66 (Doedens 1967) 6.50 (Sillén & Martell 1971; McLeese et al. 1979; Kaiser et al. 1984; Shigeoka et al. 1988; Sangster 1993) 6.97 (Ugland et al. 1981; Dean 1985; Renner 1990; Ma et al. 1993) 7.18 (Schellenberg et al. 1984) Molar Volume (cm3/mol): 166.1 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol·K), F: 0.267 (mp at 83.5°C)

Water Solubility (g/m3 or mg/L at 25°C): 500 (estimated, Ma et al. 1990) 915 (shake flask-HPLC/UV at pH 5.1, Ma et al. 1993)

Vapor Pressure (Pa at 25°C): 1.00 (selected, Ma et al. 1990)

3.48 (selected PL, Shiu et al. 1994) Henry’s Law Constant (Pa·m3/mol): 0.3959 (calculated-P/C, Shiu et al. 1994)

Octanol/Water Partition Coefficient, log KOW: 4.07 (Hansch & Leo 1979) 3.51 (HPLC-RT correlation, Butte et al. 1981) 3.54 (HPLC-k′ correlation, Hammers et al. 1982) 3.80 (shake flask-UV, Beltrame et al. 1984) 3.80 (shake flask, Shigeoka et al. 1988) 3.82 (shake flask/batch equilibration-UV, Beltrame et al. 1988) 3.61 (recommended, Sangster 1993) 3.51, 3.54, 3.80 (lit. values, Hansch et al. 1995)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2904 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: Environmental Fate Rate Constants and Half-Lives: Volatilization:

Photolysis: photochemical-transformation t½ = 1.7 h in Xenotest 1200 (Svenson & Björndal 1988). Photooxidation: Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment: Air: Surface water: 1.7 h for photochemical transformation in Xenotest 1200 (Svenson & Björndal 1988). Ground water: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2905

14.1.2.8 2,4,5-Trichlorophenol

OH Cl

Cl Cl

Common Name: 2,4,5-Trichlorophenol Synonym: 245-TCP Chemical Name: 2,4,5-trichlorophenol CAS Registry No: 95-95-4

Molecular Formula: C6H2Cl3OH Molecular Weight: 197.446 Melting Point (°C): 69 (Lide 2003) Boiling Point (°C): 247 (Lide 2003) Density (g/cm3 at 20°C): 1.500 (75°C, Verschueren 1983)

Acid Dissociation Constant, pKa: 7.00 (Blackman et al. 1955, Sillén & Martell 1971; Kaiser et al. 1984) 7.07 (Farquharson et al. 1958; Saarikoski & Viluksela 1982; Renner 1990) 7.43 (Doedens 1967; Jones 1981; Bintein & Devillers 1994) 6.72 (Ugland et al. 1981; Dean 1985; Lagas 1988; Renner 1990; Ma et al. 1993) 6.90 (Hoigné & Bader 1983) 6.94 (Schellenberg et al. 1984; Sangster 1993) 6.83 (Nendza & Seydel 1988) Molar Volume (cm3/mol): 166.1 (calculated-Le Bas method at normal boiling point) 165.5 (calculated- χ, Sabljic 1987b) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 21.59 (exptl., Chickos et al. 1999) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.370 (mp at 69°C)

Water Solubility (g/m3 or mg/L at 25°C): 948 (shake flask-UV at pH 5.1, Blackman et al. 1955) 990 (IUPAC recommended at pH 5.1, Horvath & Getzen 1985) 700 (8°C, Leuenberger et al. 1985) 649 (shake flask-HPLC/UV at pH 4.9, Ma et al. 1993)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 6.69* (extrapolated-regression of tabulated data, temp range 72–251.8°C, Stull 1947) 6.60 (extrapolated liquid value, Antoine eq, Weast 1972–73) log (P/mmHg) = [–0.2185 × 13237.0/(T/K)] + 8.401072; temp range 72–251.8°C (Antoine eq., Weast 1972–73) 6.12 (supercooled liquid, GC-RT correlation, Hamilton 1980) 2.66 (capillary GC-RT, Bidleman & Renberg 1985) 2.93 (selected, Leuenberger et al. 1985) 7.64 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 7.38179 – 2812.25/(–2.091 + T/K); temp range 345–525 K (Antoine eq., Stephenson & Malanowski 1987) 2.93 (calculated, Howard 1991)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2906 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.132 (8°C, Leuenberger et al. 1985) 0.590 (calculated, Howard 1991) 0.521 (calculated-P/C, Shiu et al. 1994)

Octanol/Water Partition Coefficient, log KOW: 3.72 (Leo et al. 1971; Hansch & Leo 1979; 1982) 2.39 (estimated-HPLC-RT correlation, Veith et al. 1979) 3.63 (HPLC-k′ correlation, Hammers et al. 1982) 3.80 (shake flask-GC, Saarikoski & Viluksela 1982) 4.19 (shake flask-HPLC/UV, Schellenberg et al. 1984) 4.10, 3.96 (shake flask-GC, HPLC-k′ correlation, Xie et al. 1984) 3.73 (HPLC-RT correlation, Miyake et al. 1986) 3.84 (shake flask/batch equilibration-UV, Beltrame et al. 1988) 4.10 (shake flask, Shigeoka et al. 1988) 3.52; 3.55 (shake flask; HPLC-RT correlation, Wang et al. 1989) 3.72 (recommended, Sangster 1993) 4.02 (shake flask-GC, Kishino & Kobayashi 1994) 3.72 (recommended, Hansch et al. 1995) 3.83 (HPLC-RT correlation, Makovskaya et al. 1995b)

Bioconcentration Factor, log BCF: 3.28 (fathead minnow-28 d exposure, Veith et al. 1979b) 3.28, 2.70 (total 14C in fathead minnows, observed, calculated, mean exposure level 0.0048 µg·mL–1, Call et al. 1980) 3.26, 2.82 (total 14C in fathead minnows, observed, calculated, mean exposure level 0.0493 µg·mL–1, Call et al. 1980) 3.27 (total 14C in fathead minnows, mean value, Call et al. 1980)

2.40 (calculated-KOW, Mackay 1982) 2.88 (calculated-MCI χ, Sabljic 1987a) 1.79 (fish, van Gestel & Ma 1988) 1.81, 1.53 (earthworms E. fetida andrei: Kooyenburt soil, Holten soil, van Gestel & Ma 1988) 2.04, 2.82 (earthworms L. rubellus: Kooyenburt soil, Holten soil, van Gestel & Ma 1988) 2.04, 2.39, 2.61, 3.36 (earthworm system, collated from literature, Connell & Markwell 1990) 0.40, 1.50, 2.50, 8.40 (earthworm system, derived data, Connell & Markwell 1990) 3.28; 3.61 (fathead minnows; fish, Howard 1991) 2.14 (estimated, NCASI 1992)

Sorption Partition Coefficient, log KOC:

3.49–3.98 (soil, calculated-KOW, model of Karickhoff et al. 1979, Sabljic 1987a,b) 3.38–3.64 (soil, calculated-KOW, model of Kenaga & Goring 1980, Sabljic 1987a,b) 2.56–2.82 (soil, calculated-KOW, model of Briggs 1981, Sabljic 1987a,b) 3.38–3.87 (soil, calculated-KOW, model of Means et al. 1982, Sabljic 1987a,b) 2.55–2.99 (soil, calculated-KOW, model of Chiou et al. 1983, Sabljic 1987a,b) 3.36 (sediment, Schellenberg et al. 1984; quoted, Sabljic 1987a,b) 2.99 (soil, calculated-MCI χ, Sabljic 1987a,b) 3.25, 3.12, 3.38, 2.56 (quoted:lake sediment, river sediment, aquifer material, soil, Howard 1991) 3.34, 3.30 (soils, Howard 1991)

2.93 (calculated-KOW, Kollig 1993) 3.36 (soil, calculated-MCI 1χ, Sabljic et al. 1995) 3.11 (2.81–3.41), 3.35 (3.30–3.40) (soils: organic carbon OC ≥ 0.1% and pH 3.4–6.0, OC ≥ 0.5% and pH ≤ 4.9 undissociated, average, Delle Site 2001)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2907

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Volatilization: volatilization t½ ~ 9.0 d from a model river 1 m deep, flowing 1 m/s with a wind speed of 3 m/s, and t½ = 207 d from a model pond (Howard 1991). Photolysis: –1 –1 kP = 1.30 h with t½ = 0.6 h in summer at mean temp. 25°C and kP = 0.61 h with t½ = 1.0 h in winter at mean –1 –1 temp 18°C in distilled water; kP = 1.2 h with t½ = 0.6 d in summer and kP = 0.65 h with t½ = 1.0 h in winter –1 –1 in poisoned estuarine water; and kP = 1.4 h with t½ = 0.5 h in summer and kP = 0.65 h with t½ = 1.0 h in winter for estuarine water under full sunlight and microbes (photo-transformation, Hwang et al. 1986) –1 –1 kP = 1.30 h corresponding to a t½ = 0.5 h in summer, kP = 0.61 h corresponding to a t½ = 1.0 h in winter –1 –1 in distilled water and kP = 1.20 h corresponding to a t½ = 0.6 h in summer, kP = 0.65 h corresponding to a t½ = 1.0 h in winter in estuarine water under irradiation by natural sunlight (quoted from Hwang et al. 1987, Sanders et al. 1993)

t½ = 0.5–336 h, based on photolysis rate constants for transformation and mineralization under summer and winter, sunlight conditions (Howard et al. 1991)

photolysis t½ = 0.6 and 1.0 h in natural water (and distilled water) exposed to midday sunlight during summer and winter respectively (Howard 1991)

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: aqueous photooxidation t½ = 66–3480 h in water, based on reported reaction constants for OH and RO2 radicals with the phenol class (Mill & Mabey 1985; Güesten et al. 1981; selected, Howard et al. 1991) k(aq.) > 109 M–1 s–1 at pH 8, and k < 3 × 103 M–1 s–1 for non-protonated species, k > 109 M–1 s–1 for phenolate ions for the reaction with ozone in water using 3 mM t-BuOH as scavenger at pH 1.2–1.5 and 20–23°C (Hoigné & Bader 1983b) –12 3 –1 kOH = 2.9 × 10 cm molecule s (Bunce et al. 1991) 6 Hydrolysis: t½ > 8 × 10 yr, based on hydrolysis rate constant is zero at pH 7.0 (Kollig et al. 1987; selected, Howard et al. 1991). Biodegradation: decomposition in suspended soils: > 72 d for complete disappearance (Woodcock 1971; quoted, Verschueren 1983); 840 h for 75% degradation in mineral medium (de Kreuk & Hanstveit 1981);

aqueous aerobic t½ = 552–16560 h, based on unacclimated aerobic river die-away test data (Lee & Ryan 1979; selected, Howard et al. 1991); aqueous anaerobic t½ = 3028–43690 h, based on unacclimated anaerobic grab sample data for soil and ground water (Gibson & Suflita 1986; Baker & Mayfield 1980; selected, Howard et al. 1991); degradation with microbes in darkness negligible (Hwang et al. 1986); –1 –1 degradation k = 0.00010 d with a t½ = 16560 h and k = 0.030 d with a t½ = 552 h for Skidway River water and water-sediment slurry, respectively (Pritchard 1987);

biodegradation t½ = 690 d in river water (Howard 1991) 70% reduction in concn (2 µM) after incubation with cells of Rhodococcus chlorophenolicus for 14 d under aerobic conditions (Neilson et al. 1991)

t½(aerobic) = 25 d, t½(anaerobic) = 130 d in natural waters (Capel & Larson 1995) Biotransformation: degradation rate k = 1.43 × 10–20 ( ± 77% SD) mol cell–1 h–1 from pure culture studies and k=5×10–15 mol cell–1 h–1 with microorganisms in Seneca River waters (Banerjee et al. 1984).

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment: Air: tropospheric lifetime of 4 d on March 21 at 43°N (Bunce et al. 1991);

t½ = 30.1–301 h, based on an estimated rate constant for the vapor phase reaction with hydroxyl radical in air (Howard et al. 1991);

t½ ~ 7.5 d for reactions with OH radical (estimated, Howard 1991); atmospheric transformation lifetime was estimated to be > 5 d (Kelly et al. 1994). Surface water: 840 h for 75% degradation in mineral medium (de Kreuk & Hanstveit 1981); 3 –1 –1 Rate constant k < 3 × 10 M s for the reaction with O3 at pH 1.2–1.5 (Hoigné & Bader 1983); t½ = 0.5 h (summer), t½ = 1.0 h (winter) in distilled water and t½ = 0.5 h (summer), t½ = 1.0 h (winter) in surface estuarine water based on photo-transformation rate under full sunlight and microbes (Hwang et al. 1986);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2908 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

t½ = 7 d (summer), t½ = 14 d (winter) in distilled water and t½ = 3 d (summer), t½ = 8 d (winter) in estuarine water based on photo-mineralization rater under full sunlight and microbes (Hwang et al. 1986);

t½ = 0.6 h (summer), t½ = 1.0 h (winter) in poisoned estuarine water based on photo-transformation rate and t½ = 6 d (summer), t½ = 14 d (winter) in poisoned estuarine water based on photomineralization rate (Hwang et al. 1986);

t½ = 16560 h at 21°C in Skidway River water (Pritchard 1987); photodegradation t½ = 0.5 h (summer), t½ = 1.0 h (winter) in distilled water and t½ = 0.6 h (summer), t½ = 1.0 h (winter) in estuarine water under irradiation by natural sunlight (quoted from Hwang et al. 1987, Sanders et al. 1993);

t½ = 0.5–336 h, based on aqueous photolysis half-life (Howard et al. 1991); rapidly photolyze with a t½ = 0.6–1.0 h at water surfaces, t½ = 690 d in water column (Howard 1991) t2(aerobic) = 25 d, t2(anaerobic) = 130 d in natural waters (Capel & Larson 1995) Ground water: t½ =1104–43690 h, based on estimated unacclimated aqueous aerobic biodegradation half-life and aqueous anaerobic biodegradation half-life (Howard et al. 1991). –1 Sediment: t½ = 23 d from calculated degradation rate constant k = 0.0030 d for radiolabeled 2,4,5-TCP in Skidway River water-sediment slurry (Lee & Ryan 1979; quoted, Pritchard 1987);

biodegradation t½ = 23 d in sediments (Howard 1991). Soil: Days for complete disappearance by microbial decomposition in soil suspension: 72 + d in Dunkirk silt loam, 47 + d in Mardin silt loam (Alexander & Aleem 1961)

disappearance t½ = 3.4 d from Kooyenburg soil and t½ = 6.6 d from Holten soil with earthworms E. fetida andrei and t½ = 39.6 d from Kooyenburg soil, t½ = 13.9 d from Holten soil with earthworm L. rubellus (van Gestel & Ma 1988);

t½ = 33 d in sandy loam (Kjeldsen et al. 1990) t½ = 552–16560 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991); under aerobic conditions biodegradation t½ = 15 d in a soil suspension (Howard 1991); t½ = 22.3 d in an acidic clay soil with < 1.0% organic matter and t½ = 14.6 d in a slightly basic sandy loam soil with 3.25% organic matter, based on aerobic batch lab microcosm experiments (Loehr & Matthews 1992). µ –1 Biota: depuration t½(obs.) = 12 h, t½(calc) = 9.2 h for mean exposure level of 0.0048 g·mL and t½(obs) = 12 h, µ –1 t½(calc) = 6.6 h for mean exposure level of 0.0493 g·mL (fathead minnow, Call et al. 1980).

TABLE 14.1.2.8.1 Reported vapor pressures of 2,4,5-trichlorophenol at various temperatures

Stull 1947

summary of literature data

t/°CP/Pa 72.0 133.3 102.1 666.6 117.3 1333 134.0 2666 151.5 5333 162.5 7999 178.0 13332 201.5 26664 226.5 53329 251.8 101325 mp/°C 62

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2909

2,4,5-Trichlorophenol: vapor pressure vs. 1/T 8.0 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 232 °C m.p. = 72 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.2.8.1 Logarithm of vapor pressure versus reciprocal temperature for 2,4,5-trichlorophenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2910 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.2.9 2,4,6-Trichlorophenol

OH Cl Cl

Cl

Common Name: 2,4,6-Trichlorophenol Synonym: 2,4,6 TCP Chemical Name: 2,4,6-trichlorophenol CAS Registry No: 88-06-2

Molecular Formula: C6H2Cl3OH Molecular Weight: 197.446 Melting Point (°C): 69 (Lide 2003) Boiling Point (°C): 246.0 (Stull 1947; Weast 1982–83; Lide 2003) Density (g/cm3): 1.675 (Schmidt-Bleek et al. 1982) 1.491 (75°C, Weast 1982–83)

Acid Dissociation Constant, pKa: 6.10 (Blackman et al 1955) 6.22 (Farquharson et al. 1958; Saarikoski & Viluksela 1982) 5.99 (Dean 1985) 6.23 (Serjeant & Dempsey 1979; Tratnyek & Hoigné 1991) 6.00 (Xie 1983, Yoshida et al. 1987) 6.15 (Schellenberg et al. 1984; Leuenberger et al. 1985) 6.18 (Sangster 1993) Molar Volume (cm3/mol): 166.1 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.370 (mp at 69°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 858 (gravimetric method, Daccomo 1885) 434 (shake flask-UV at pH 5.1, Blackman et al. 1955) 900 (shake flask-spectrophotometry, Roberts et al. 1977) 430 (IUPAC recommended at pH 5.1,Horvath & Getzen 1985) 312 (20°C, phenol form, shake flask-HPLC/UV, Yoshida et al. 1987) 312 × (1 + 10pH–6.06) (20°C, measured at pH 4, 5, 6 and 7, shake flask-HPLC/UV, Yoshida et al. 1987) 300, 580, 270000 (river, oligotrophic lake, eutrophic lake, Yoshida et al. 1987) 708 (shake flask-HPLC/UV at pH 4.7, Ma et al. 1993) 800 (solid-phase microextraction SPME-GC, Buchholz & Pawliszyn 1994) 692* (24.9°C, shake flask-conductimetry, measured range 19.5–30.0°C, Achard et al. 1996) 1144* (41.05°C, shake flask-optical method, measured range 314.2–420.6 K, Jaoui et al. 1999) 503 (shake flask-HPLC/UV, pH 5.03, Huang et al. 2000) 439.6* (21.75°C, shake flask-optical method, measured range 294.9–317.2 K, Jaoui et al. 2002) ln [S/(mol kg–1)] = 23.367 – 7096.7/(T/K); temp range 292–303 K (eq. derived using reported exptl. data, Jaoui et al. 2002) ln [S/(mol kg–1)] = 6.6069 – 2029.9/(T/K); temp range 303–334 K (eq. derived using reported exptl. data, Jaoui et al. 2002)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2911

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 4.17* (extrapolated-regression of tabulated data, temp range 76.5–246°C, Stull 1947) 4.00 (20–25°C, extrapolated, Jordan 1954) 4.12 (extrapolated liquid, Antoine eq., Weast 1972–73) log (P/mmHg) = [–0.2185 × 14092.8/(T/K)] + 8.82338; temp range 76.5–246°C (Antoine eq., Weast 1972–73) 3.83 (supercooled liquid, GC-RT correlation, Hamilton 1980) 1.12 (gas saturation, Politzki et al. 1982) 1.30 (20°C, Schmidt-Bleek et al. 1982) 1.60 (extrapolated, Mabey et al. 1982) 2.67 (Leuenberger et al. 1985)

3.26 (capillary GC-RT correlation, supercooled liquid PL, Bidleman & Renberg 1985) 4.28 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 7.67323 – 2876.7/(–11.682 + T/K), temp range 349–519 K (Antoine eq., Stephenson & Malanowski 1987) 0.827 (GC-RT correlation, solid phase, Yoshida et al. 1987)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated): 0.405 (calculated-P/C, Mabey et al. 1982) 0.132 (8°C, calculated-P/C, Leuenberger et al. 1985) 0.523/(1 + 10pH + 6.06) (20°C, calculated-P/C, Yoshida et al. 1987) 0.5687 (calculated-P/C, Shiu et al. 1994) 0.428 (20°C, single equilibrium static technique SEST, Sheikheldin et al. 2001)

Octanol/Water Partition Coefficient, log KOW: 3.06 (Leo et al. 1971) 3.69 (Leo et al. 1971) 3.69, 3.62, 4.02 (Hansch & Leo 1979) 3.76 (HPLC-RT correlation, Butte et al. 1981) 3.48 (RP-HPLC-k′ correlation, Miyake & Terada 1982) 4.03 (shake flask-GC, Saarikoski & Viluksela 1982) 3.72 (shake flask-HPLC/UV, Schellenberg et al. 1984) 2.97, 2.80 (shake flask, OECD 1981 Guidelines, Geyer et al. 1984) 3.75, 3.69 (shake flask-GC, HPLC-k′ correlation, Xie et al. 1984) 3.72 (OECD 1981 guidelines, Leuenberger et al. 1985) 3.29 (RP-HPLC-RT correlation, Chin et al. 1986) 3.97 (CPC-RV, Terada et al. 1987) 3.75 (HPLC-RT correlation, Shigeoka et al. 1988) 3.68 (batch equilibration-UV, Beltrame et al. 1988) 3.96; 3.60 (shake flask; HPLC-RT correlation, Wang et al. 1989) 3.69 (recommended, Sangster 1993) 2.67 (shake flask-GC, Kishino & Kobayashi 1994) 3.69 (recommended, Hansch et al. 1995) 3.84, 3.76, 3.65, 3.54 (pH 3.0, 6.1, 7.0, 8.0, shake flask-GC (octanol phase)/HPLC (aqueous phase) measured range pH 2.1 to 13.3, Nowosielski & Fein 1998)

Bioconcentration Factor, log BCF: 2.00–2.32 (Landner et al. 1977; Laake 1982) 2.40 (fish, Körte et al. 1978) 1.60, 1.71, 2.49 (activated sludge, algae, golden orfe, Freitag et al. 1982) 1.71; 1.81 (algae: exptl; calculated, Geyer et al. 1981) 1.54–1.78, 1.60 (mussel mytilus edulis, Geyer et al. 1982)

2.92 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 3.24, 3.48, 3.1–4.09 (algae, snail, guppy, Virtanen & Hattula 1982) 1.71, 2.49, 1.60 (algae, fish, activated sludge, Klein et al. 1984)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2912 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

1.71, 2.13 (algae: exptl., calculated-KOW, Geyer et al. 1984) 1.78, 1.70, 2.49 (activated sludge, algae, golden ide, Freitag et al. 1985) 1.48–2.08 (rainbow trout, Oikari et al. 1985) 2.75; 2.84 (Atlantic salmon fry: humic water; lake water, Carlberg et al. 1986) 1.30 (Isnard & Lambert 1988) 1.94; 2.83 (flagfish: whole fish; fish lipid, Smith et al. 1990) 1.87–2.16 (estimated, NCASI 1992) 1.48–2.08, 3.01–4.09, 2.49, 3.48, 1.60, 1.70–3.24 (trout, guppy, fish, snail, mussel, algae, quoted from literature, NCASI 1992) 3.6, 5.4, 5.0 (perch bile to water, Söderström et al. 1994) 2.84 (Salmo salar, quoted, Devillers et al. 1996)

Sorption Partition Coefficient, log KOC: 2.34 (sediment, Virtanen & Hattula 1982)

3.30 (sediment-water, calculated-KOW, Mabey et al. 1982) 2.52 (soil, Seip et al. 1986)

3.41–3.84 (soil, calculated-KOW, model of Karickhoff et al. 1979, Sabljic 1987a,b) 3.33–3.57 (soil, calculated-KOW, model of Kenaga & Goring 1980, Sabljic 1987a,b) 2.52–2.75 (soil, calculated-KOW, model of Briggs 1981, Sabljic 1987a,b) 3.30–3.73 (soil, calculated-KOW, model of Means et al. 1982, Sabljic 1987a,b) 2.48–2.87 (soil, calculated-KOW, model of Chiou et al. 1983, Sabljic 1987a,b) 3.02 (sediment, Schellenberg et al. 1984; quoted, Sabljic 1987a,b) 3.03 (sediment, Leuenberger et al. 1985) 2.99 (soil, calculated, Sabljic 1987a,b) 3.34, 2.79, 2.23 (average values, soil at pH 6, 7, and 7.7, Yoshida et al. 1987) 2.79, 3.34, 2.04 (river, oligotrophic lake, eutrophic lake, Yoshida et al. 1987) 2.50 (soil, calculated-MCI χ, Bahnick & Doucette 1988) 2.92–3.12; 3.03 (lit. range, mean value, Robinson & Novak 1994)

2.82–3.02 (log KOM, organic matter, Robinson & Novak 1994) 2.81, 3.03 (log KHA, humic acid, Robinson & Novak 1994) 2.25 (calculated-KOW, Kollig 1993) 3.02 (soil, calculated-MCI 1χ, Sabljic et al. 1995) 2.59; 3.08 (HPLC-screening method; calculated-PCKOC fragment method, Müller & Kördel 1998) 2.52 (1.97–3.01), 2.88 (2.33–3.39) (soils: organic carbon OC ≥ 0.1% and pH > 4.2, OC ≥ 0.1% and pH ≤ 4.2 undissociated, average, Delle Site 2001)

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Volatilization: volatilization and sorption t½ ~ 192 h from natural pond (Schauerte et al. 1982); –3 pH–6.06 –1 volatilization rate constant from water k = 3.90 × 10 /(1 + 10 )/Lw h , Lw, depth of water phase (Yoshida et al. 1987).

Photolysis: aqueous photolysis t½ = 2–96 h, based on laboratory photolysis rate constants for an environmental pond at noon under fall sunlight conditions at 40°N latitude (Sugiura et al. 1984; quoted, Howard et al. 1991); pH–5.86 pH–5.86 –1 photo-degradation rate constants kp = (0.156 + 9.16 × 10 )/(1 + 10 ) in water, for summer, fine pH–6.09 pH–6.09 –1 –1 day, and kp = (0.042 + 1.40 × 10 )/((1 + 10 ) h in water, for winter, fine day; k = 0.72 d for river, k = 2.2 d–1 for oligotrophic lake and k = 0.776 d–1 for eutrophic lake (Yoshida et al. 1987);

photochemical-transformation t½ = 1.2 h in Xenotest 1200 (Svenson & Björndal 1988); photolysis t½ = 24 h (Paasivirta 1992); 3 –1 photo-degradation rate constant k = 26 × 10 min with t½ = 25.2 min for direct UV radiation aqueous solutions (Benitez et al. 2000). Oxidation: aqueous oxidation rate constant k < 7 × 104 M–1 h–1 for singlet oxygen and k =1 × 106 M–1 h–1 for peroxy radical at 25°C (Mabey et al. 1982); apparent reaction rate constant k > 108 M–1·s–1 at pH 8, and rate constants k <104 M–1 s–1 for non-protonated species, k > 108 M–1 s–1 for phenolate ions for the reaction with ozone in water using 3 mM t-BuOH as scavenger at pH 1.3–1.5 and 20–23°C (Hoigné & Bader 1983b);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2913

photooxidation t½ = 123.4–1234 h, based on an estimated rate constant for the vapor phase reaction with OH radical in air (Atkinson 1987; quoted, Howard et al. 1991);

photooxidation t½ = 20.3–2027 h, based on measured rate data for reaction with singlet oxygen in aqueous solution (Scully & Hoigne 1987; quoted, Howard et al. 1991); rate constants: k = 2 × 106 M–1 s–1 at pH 4.2, k = 6 × 106 M–1 s–1 at pH 4.8, k = 1.5 × 107 M–1 s–1 at pH 5.2, k=2.6×107 M–1·s–1 at pH 5.5, k = 5.5 × 107 M–1 s–1 at pH 6.0, k = 9.50 × 107 M–1 s–1 at pH 7 and k=1.2×108 M–1 s–1 at pH 9 for the reaction with singlet oxygen in aqueous solution at (19 ± 2)°C (Scully & Hoigné 1987); rate constant k = (1.7 ± 0.7) × 107 M–1 s–1 for the reaction with singlet oxygen in aqueous phosphate buffer at 27 ± 1°C (Tratnyek & Hoigné 1991); 3 –1 photo-oxidation rate constant k = 98 × 10 min with t½ = 5.1 min for reaction with Fenton’s reagent; and 3 –1 3 –1 k = 44 × 10 min with t½ = 20.6 min at pH 2 and k = 314 × 10 min with t½ = 3.1 min at pH 9 for reactions with ozone in aqueous solutions (Benitez et al. 2000). 6 Hydrolysis: t½ > 8 × 10 yr, based on hydrolysis rate constant of zero at pH 7 (Kollig et al. 1987; quoted, Howard et al. 1991).

Biodegradation: t½ = 7–10 d for bacteria to utilize 95% of 300 ppm in parent substrate (Tabak et al. 1964); decompositions in soil suspensions: 5 d for complete disappearance (Woodcock 1971; quoted, Verschueren 1983);

t½ = 216–432 h and 624–1560 h for 75% degradation in mineral medium and seawater batch experiment, respectively (de Kreuk & Hanstveit 1981);

aqueous aerobic t½ = 168–1680 h, based on unacclimated aerobic river die-away test and soil grab sample data (Blades-Fillmore et al. 1982; Haider et al. 1974; quoted, Howard et al. 1991);

aqueous anaerobic t½ = 4050–43690 h, based on unacclimated anaerobic grab sample data for soil (Baker & Mayfield 1980; quoted, Howard et al. 1991); 92% aerobic biodegraded after 28 d by both Sturm of OECD and sealed vessel tests (Birch & Fletcher 1991); biodegradation rate constant k = 3.5 × 10–11 L cell–1·h–1 at 20°C and pH 7; biodegradation rate constants k = 8.4 × 10–5 d–1 in river, k = 8.2 × 10–6 d–1 in oligotrophic lake and k = 8.4 × 10–4 d–1 in eutrophic lake in water compartment, k = 8.4 × 10–4 d–1 in river, k = 8.2 × 10–5 d–1 in oligotrophic lake and k = 8.4 × 10–3 d–1 in eutrophic lake in soil compartment (Yoshida et al. 1987); 94% reduction in concn (2 -M) after incubation with cells of Rhodococcus chlorophenolicus for 14 d under aerobic conditions (Neilson et al. 1991) up to 60% can be mineralized by acclimated bacteria pseudomonas aeruginosa in 48 h but decreased with increasing humic acid concentration (Robinson & Novak 1994) Degradation constant k = 3.2-M/h for anaerobic batch experiment in serum bottles; k = 2.4 -M/h for dechlorination in anaerobic batch or continuous bioreactor; k = 2.4 -M/h in the sequential anaerobic- aerobic continuous reactor system (Armenante et al. 1999) Biotransformation: rate constant for bacterial transformation k = 3 × 109 mL cell–1 h–1 in water (Mabey et al. 1982).

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants: –1 –1 k1 = 421 d , 3573 d (flagfish: whole fish, fish lipid, Smith et al. 1990) –1 –1 k2 = 4.78 d , 5.26 d (flagfish: whole fish, fish lipid, Smith et al. 1990) –1 –1 k2 = 4.78 d , 2.54 d (fish: bioconcentration based; toxicity based, Smith et al. 1990)

Half-Lives in the Environment:

Air: t½ = 123.4–1234 h, based on an estimated rate constant for the vapor phase reaction with OH radical (Atkinson 1987; quoted, Howard et al. 1991); atmospheric transformation lifetime was estimated to be > 5d (Kelly et al. 1994).

Surface water: t½ = 216–432 h and 624–1560 h for 75% degradation in mineral medium and seawater batch experiment, respectively (de Kreuk & Hanstveit 1981);

t½ = 1.2 h, based on photochemical transformation in Xenotest 1200 (Svenson & Björndal 1988); t½ = 2–96 h, based on aqueous photolysis half-life (Sugiura et al. 1984; quoted, Howard et al. 1991); t½ = 62 h for the reaction with singlet oxygen at pH 8 and (19 ± 2)°C in water (Scully & Hoigné 1987) photolysis t½ = 24 h (Paasivirta 1992); photo-oxidation t½ = 5.1 min for reaction with Fenton’s reagent; t½ = 20.6 min at pH 2 and t½ = 3.1 min at pH 9 for reactions with ozone in aqueous solutions (Benitez et al. 2000).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2914 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Ground water: t½ = 336–43690 h, based on estimated unacclimated aqueous aerobic biodegradation half-life and aqueous anaerobic biodegradation half-life (Howard et al. 1991). Sediment: Soil: Days for complete disappearance by microbial decomposition in soil suspension: 5 d in Dunkirk silt loam, 13 d in Mardin silt loam (Alexander & Aleem 1961)

t½ = 168–1680 h, based on estimated unacclimated aqueous aerobic biodegradation half-life including soil grab sample data (Haider et al. 1974; quoted, Howard et al. 1991);

t½ = 6.3 d in an acidic clay soil with < 1.0% organic matter and t½ = 5.3 d in a slightly basic sandy loam soil with 3.25% organic matter, based on aerobic batch laboratory microcosm experiments (Loehr & Matthews 1992);

t½ = 6720 h (Paasivirta 1992). Biota: t½ = 0.15 d of clearance from whole flagfish; t½ = 0.13 d of clearance from flagfish lipid (Smith et al. 1990).

TABLE 14.1.2.9.1 Reported aqueous solubilities and vapor pressures of 2,4,6-trichlorophenol at various temperatures

Aqueous solubility Vapor pressure

Achard et al. 1996 Jaoui et al. 1999 Jaoui et al. 2002 Stull 1947

shake flask-optical shake flask-conductivity shake flask-optical method method* summary of literature data

t/°CS/g·m–3 T/K S/g·m–3 T/K S/g·m–3 t/°CP/Pa 19.5 410 314.2 1144 294.9 493.6 76.5 133.3 20.1 427 334.3 1376 304.6 947.8 105.9 666.6 24.9 692 335.3 1377 308.6 933.1 120.2 1333 30.0 928 337.6 1733 314.6 1362 135.8 2666 342.3 2116 320.9 1323 152.2 5333 345.3 2377 294.9 493.6 163.5 7999 352.2 2832 297.7 631.8 177.8 13332 369.9 3391 302.4 908.3 199.0 26664 383.8 5419 307.5 1007 222.5 53329 408.1 7086 313.7 1145 246.0 101325 420.6 7777 292.8 414.6 302.2 888.5 mp/°C 68.5 308.0 1007 317.2 1224 some data from Achard et al. 1996, Jaoui et al. 1999

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2915

2,4,6-Trichlorophenol: solubility vs. 1/T -7.0

-7.5

-8.0

-8.5

x nl x -9.0

-9.5

-10.0 Achard et al. 1996 Jaoui et al. 1999 -10.5 Jaoui et al. 2002 experimental data Horvath & Getzen 1985 (IUPAC recommended) -11.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 14.1.2.9.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2,4,6-trichlo- rophenol.

2,4,6-Trichlorophenol: vapor pressure vs. 1/T 8.0 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 220 °C m.p. = 73 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.2.9.2 Logarithm of vapor pressure versus reciprocal temperature for 2,4,6-trichlorophenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2916 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.2.10 2,3,4,5-Tetrachlorophenol

OH Cl

Cl Cl Cl

Common Name: 2,3,4,5-Tetrachlorophenol Synonym: Chemical Name: 2,3,4,5-tetrachlorophenol CAS Registry No: 4901-51-3

Molecular Formula: C6HCl4OH Molecular Weight: 231.891 Melting Point (°C): 116.5 (Lide 2003) Boiling Point (°C): sublimation (Weast 1982–83; Lide 2003) Density (g/cm3):

Acid Dissociation Constant, pKa: 6.96 (Doedens 1967) 5.30 (Sillén & Martell 1971; Kaiser et al. 1984) 5.64 (Könemann 1981; Könemann & Musch 1981; Ugland et al. 1981; Dean 1985; Renner 1990) 6.35 (Schellenberg et al. 1984) 6.61 (Xie & Dyrssen 1984) 6.12 (Nendza & Seydel 1988) 6.48 (Sangster 1993) Molar Volume (cm3/mol): 187.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.127 (mp at 116.5°C)

Water Solubility (g/m3 or mg/L at 25°C): 166 (shake flask-HPLC/UV at pH 4.9, Ma et al. 1993)

Vapor Pressure (Pa at 25°C):

Henry’s Law Constant (Pa m3/mol): 0.140 (calculated-P/C, Shiu et al. 1994)

Octanol/Water Partition Coefficient, log KOW: 4.95 (Hansch & Leo 1979) 5.03 (HPLC-RT correlation, Banerjee et al. 1984) 4.21 (shake flask-UV, Beltrame et al. 1984) 4.87 (20°C, shake flask-HPLC, Schellenberg et al. 1984) 4.82, 4.68 (shake flask-GC, HPLC-k′ correlation, Xie et al. 1984) 4.71 (shake flask-GC, Xie & Dyrssen 1984) 4.54 (batch equilibration-UV, Beltrame et al. 1988) 4.21 (recommended, Sangster 1993) 4.21 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2917

Bioconcentration Factor, log BCF: 1.61, 1.60 (earthworm E. fetida andrei: in Kooyenburg soil, Holten soil, van Gestel & Ma 1988) 2.55, 2.33 (earthworm L. rubellus: in Kooyenburg soil, Holten soil, van Gestel & Ma 1988) 2.61, 2.73, 3.49, 3.53 (earthworm system, collated from literature, Connell & Markwell 1990) 0.40, 0.50, 2.30, 4.10 (earthworm system, derived data, Connell & Markwell 1990)

Sorption Partition Coefficient, log KOC:

4.21–4.66 (soil, calculated-KOW, model of Karickhoff et al. 1979, Sabljic 1987a,b) 3.77–4.01 (soil, calculated-KOW, model of Kenaga & Goring 1980, Sabljic 1987a,b) 2.94–3.17 (soil, calculated-KOW, model of Briggs 1981, Sabljic 1987a,b) 4.11–4.55 (soil, calculated-KOW, model of Means et al. 1982, Sabljic 1987a,b) 3.20–3.60 (soil, calculated-KOW, model of Chiou et al. 1983, Sabljic 1987a,b) 4.12 (sediment, Schellenberg et al. 1984; quoted, Sabljic 1987a,b) 3.32 (soil, calculated-MCI χ, Sabljic 1987a,b)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization:

Photolysis: photochemical transformation t½ = 0.88 h in Xenotest 1200 (Svenson & Björndal 1988). Oxidation: Hydrolysis: Biodegradation: 100% reduction in concn (2 µM) after incubation with cells of Rhodococcus chlorophenolicus for 14 d under aerobic conditions (Neilson et al. 1991) Biotransformation: degradation rate constant k = 7.14 × 10–22 ( ± 41% SD) mol·cell–1·h–1 from pure culture studies and k = 5 × 10–16 mol·cell–1·h–1 with microorganisms in Seneca River waters (Banerjee et al. 1984).

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air:

Surface water: t½ = 0.88 h, based on photochemical transformation in Xenotest 1200 (Svenson & Björndal 1988). Ground water: Sediment:

Soil: disappearance t½ = 43.4 d from Kooyenburg soil, t½ = 29.1 d from Holten soil with earthworm E. fetida andrei and t½ = 26.8 d from Kooyenburg soil, t½ = 42.5 d from Holten soil with earthworm L. rebellus (van Gestel & Ma 1988). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2918 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.2.11 2,3,4,6-Tetrachlorophenol

OH Cl Cl

Cl Cl

Common Name: 2,3,4,6-Tetrachlorophenol Synonym: Chemical Name: 2,3,4,6-tetrachlorophenol CAS Registry No: 58-90-3

Molecular Formula: C6HCl4OH Molecular Weight: 231.891 Melting Point (°C): 70.0 (Weast 1982–83; Lide 2003) Boiling Point (°C): 150 (at 15 mm Hg, Weast 1982–83) Density (g/cm3): 1.60 (at 60°C, Verschueren 1983)

Acid Dissociation Constant, pKa: 5.40 (Blackman et al. 1955; Xie 1983; Schellenberg et al. 1984; Sangster 1993) 5.46 (Farquharson et al. 1958; Saarikoski & Viluksela 1982; Renner 1990) 5.30 (Sillén & Martell 1971; McLeese et al. 1979; Kaiser et al. 1984) 5.22 (Ugland et al. 1981; Dean 1985; Lagas 1988; Renner 1990; Ma et al. 1993) 5.62 (Xie & Dyrssen 1984; Xie et al. 1986; Shigeoka et al. 1988; Söderström et al. 1994) Molar Volume (cm3/mol): 187.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, H fus, (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.362 (mp at 70°C)

Water Solubility (g/m3 or mg/L at 25°C): 183 (shake flask-UV at pH 5.1, Blackman et al. 1955) 180 (recommended at pH 5.1, IUPAC Solubility Data Series, Horvath & Getzen 1985) 166 (shake flask-HPLC/UV, pH 4.62, Huang et al. 2000)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 0.763 (extrapolated-regression of tabulated data, temp range 100–275°C, Stull 1947) 0.750 (extrapolated liquid, Antoine eq., Weast 1972–73) log (P/mmHg) = [–0.2185 × 15362.7/(T/K)] + 9.016052; temp range 100–275°C (Antoine eq., Weast 1972–73) 0.692 (supercooled liq. value, GC-RT correlation, Hamilton 1980) 0.564 (capillary GC-RT correlation, Bidleman & Renberg 1985) 0.810 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 7.96172 – 3227.92/(–6.121 + T/K); temp range 373–548 K (Antoine eq., Stephenson & Mal- anowski 1987)

Henry’s Law Constant (Pa m3/mol): 0.3548 (calculated-P/C, Shiu et al. 1994)

Octanol/Water Partition Coefficient, log KOW: 4.10 (Hansch & Leo 1979) 4.27 (RP-HPLC-k′ correlation, Miyake & Terada 1982) 4.45 (shake flask-GC, Saarikoski & Viluksela 1982)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2919

4.12 (shake flask-UV, Beltrame et al. 1984) 4.42 (shake flask-HPLC/UV, Schellenberg et al. 1984) 4.42, 4.34 (shake flask-GC, HPLC-k′ correlation, Xie et al. 1984) 4.31 (shake flask-GC, Xie & Dyrssen 1984) 4.42 (OECD 1981 guidelines, Leuenberger et al. 1985) 4.25 (centrifugal partition chromatography CPC-RV, Terada et al. 1987) 4.42 (shake flask, Shigeoka et al. 1988) 4.37 (shake flask/batch equilibration-UV, Beltrame et al. 1988) 4.45 (recommended, Sangster 1993) 4.24 (shake flask-GC, Kishino & Kobayashi 1994) 4.45 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF: 2.65 (trout, Hattula et al. 1981) 2.55–2.69 (estimated, NCASI 1992) 3.3, 3.8, 4.4, 4.5 (perch bile to water, Söderström et al. 1994)

Sorption Partition Coefficient, log KOC:

4.21 (soil, calculated-KOW, model of Karickhoff et al. 1979, Sabljic 1987a,b) 3.77 (soil, calculated-KOW, model of Kenaga & Goring 1980, Sabljic 1987a,b) 2.94 (soil, calculated-KOW, model of Briggs 1981, Sabljic 1987a,b) 4.11 (soil, calculated-KOW, model of Means et al. 1982, Sabljic 1987a,b) 3.20 (soil, calculated-KOW, model of Chiou et al. 1983, Sabljic 1987a,b) 3.82 (sediment, Schellenberg et al. 1984; quoted, Sabljic 1987a,b) 3.35 (soil, Seip et al. 1986; quoted, Sabljic 1987a,b) 3.32 (soil, calculated-MCI χ, Sabljic 1987a,b) 3.90 (calculated, Lagas 1988) 2.45, 2.70 (totally dissociated as phenolate-calculated, Lagas 1988) 3.35 (soil, calculated-MCI 1χ, Sabljic et al. 1995) 3.02 (2.35–3.69), 3.06 (2.31–3.81), 3.75(3.69–3.81), 2.28(2.16–2.40) (soils: organic carbon OC ≥ 0.1% and pH 3.4–7.5, OC ≥ 0.5%, OC ≥ 0.5% pH ≤ 3.4 undissociated, OC ≥ 0.5% pH ≥ 7.4 dissociated, average, Delle Site 2001)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization:

Photolysis: aqueous photolysis t½ ~ 1–336 h, based on aqueous data for 24,5- 2,4,6-trichlorophenols and pentachlorophenol (Howard et al. 1991); 3 –1 photo-degradation rate constant k = 21 × 10 min with t½ = 30.6 min for direct UV radiation aqueous solutions (Benitez et al. 2000).

Photooxidation: atmospheric t½ = 364.4–3644 h, based on estimated rate constant for reaction with OH radical and aqueous t½ = 66.0–3480 h, based on reaction rate constants with OH and RO2 · radicals with phenol class (Howard et al. 1991); 3 –1 photo-oxidation rate constant k = 9 × 10 min with t½ = 49.5 min for reaction with Fenton’s reagent; and 3 –1 3 –1 k = 94 × 10 min with t½ = 10.6 min at pH 2 and k = 415 × 10 min with t½ = 1.9 min at pH 9 for reactions with ozone in aqueous solutions (Benitez et al. 2000). Hydrolysis: no hydrolyzable groups (Howard et al. 1991).

Biodegradation: decomposition in soil suspensions: t½ > 72 d for complete disappearance (Woodcock 1971; quoted, Verschueren 1983);

aqueous aerobic t½ = 672–4032 h, based on acclimated aerobic screening test data and aqueous anaerobic t½ = 2688–16128 h, based on unacclimated aerobic biodegradation half-lives (Howard et al. 1991). Biotransformation:

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2920 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Half-Lives in the Environment:

Air: t½ = 364.4–3644 h, based on estimated photooxidation half-life in air (Howard et al. 1991). Surface water: t½ = 0.88 h, based on photochemical transformation in Xenotest 1200 (Svenson & Björndal 1988); t½ = 1–336 h, based on estimated aqueous photolysis data for trichlorophenols and PCP (Howard et al. 1991); photo-oxidation t½ = 49.5 min for reaction with Fenton’s reagent; t½ = 10.6 min at pH 2, and t½ = 1.9 min at pH 9 for reactions with ozone in aqueous solutions (Benitez et al. 2000).

Ground water: t½ = 1344–8640 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment: Soil: Days for complete disappearance by microbial decomposition in soil suspension: 72 + 2 d in Dunkirk silt loam (Alexander & Aleem 1961)

t½ = 672–4320 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2921

14.1.2.12 2,3,5,6-Tetrachlorophenol

OH Cl Cl

Cl Cl

Common Name: 2,3,5,6-Tetrachlorophenol Synonym: Chemical Name: 2,3,5,6-tetrachlorophenol CAS Registry No: 935-95-5

Molecular Formula:C6H2Cl4O, C6HCl4OH Molecular Weight: 231.891 Melting Point (°C): 115 (Weast 1982–83; Lide 2003) Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constant, pKa: 5.30 (Sillen & Martell 1971) 5.03 (Konemann 1981; Ugland et al. 1981) 5.40 (Sangster 1993) Molar Volume (cm3/mol): 187.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.131 (mp at 115°C)

Water Solubility (g/m3 or mg/L at 25°C): 100 (shake flask-HPLC/UV, pH 5.0, Ma et al. 1993)

Vapor Pressure (Pa at 25°C):

Henry’s Law Constant (Pa m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 4.90 (Hansch & Leo 1979) 4.42 (calculated-fragment constant, Konemann 1981) 4.88 (HPLC-RT correlation, Butte et al. 1981) 3.88 (shake flask-UV, Beltrame et al. 1984) 4.47 (HPLC-RT correlation, Xie et al. 1984) 3.88 (recommended, Sangster 1993)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC: τ Environmental Fate Rate Constants, k, and Half-Lives, t½, or Lifetimes, : Biodegradation: 100% reduction in concn (2 µM) after incubation with cells of Rhodococcus chlorophenolicus for 14 d under aerobic conditions (Neilson et al. 1991) Biotransformation:

Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2922 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.2.13 Pentachlorophenol

OH Cl Cl

Cl Cl Cl

Common Name: Pentachlorophenol Synonym: chlorophen, PCP, penchlorol Chemical Name: pentachlorophenol CAS Registry No: 87-86-5

Molecular Formula: C6Cl5OH Molecular Weight: 266.336 Melting Point (°C): 191.0 (Firestone 1977; Weast 198–83) 174 (Lide 2003) Boiling Point (°C): 309–310 (dec., Weast 1982–83) 310 (dec., Lide 2003) Density (g/cm3): 1.987 (Firestone 1977) 1.978 (22°C, Weast 1982–83)

Acid Dissociation Constant, pKa: 4.80 (Blackman et al. 1955; Sillén & Martell 1971; McLeese et al. 1979; Kaiser et al. 1984) 5.00 (Farquharson et al. 1958; Renner 1990) 4.74 (Drahonovsky & Vacek 1971) 4.71 (spectrophotometric, Cessna & Grover 1978) 5.20 (Renberg 1981; Renner 1990; Larsson et al. 1993) 5.25 (Schellenberg et al. 1984) 4.90 (Xie & Dyrssen 1984; Xie et al. 1986; Shigeoka et al. 1988; Söderström et al. 1994) 4.60 (Nendza & Seydel 1988) Molar Volume (cm3/mol): 207.9 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 17.5 (exptl., Chickos et al. 1999) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.0350 (mp at 174°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 15.4* (gravimetric method, measured range 0–70°C, Carswell & Nason 1938) 18.0 (27°C, gravimetric method, Carswell & Nason 1938) 9.59 (shake flask-UV, at pH 5.1, Blackman et al. 1955) 14.0 (20°C, shake flask-UV, at pH 3.0, Bevenue & Beckman 1967) 10.0 (shake flask-gravimetric, at pH 5.0, Toyota & Kuwahara 1967) 14.0 (gravimetric at pH 5.0, Toyota & Kuwahara 1967) 5–10 (at pH 5–6 in contaminated water, Goerlitz et al. 1985) 14.0 (IUPAC recommended at pH 4.5–5.5, Horvath & Getzen 1985) 8.0 ± 2 (shake flask-UV at pH 2.5, Valsaraj et al. 1991) 32 ± 3 (shake flask-UV at pH 5.0, Valsaraj et al. 1991) 18.4 (shake flask-HPLC/UV, at pH 4.8, Ma et al. 1993) 5.0 (solid-phase microextraction SPME-GC, Buchholz & Pawliszyn 1994) 21.4* (25.1°C, shake flask-conductimetry, measured range 25.1–46.8°C, Achard et al. 1996)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2923

13.0 (shake flask-HPLC/UV, pH 4.55, Huang et al. 2000) 102* (60.05°C, shake flask-optical method, measured range 333.2–422.3 K, Jaoui et al. 1999)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.0227* (20°C, extrapolated-static method, measured range 100–220°C, Carswell & Nason 1938) 2666* (192.2°C, summary of literature data, temp range 192.2–309.3°C, Stull 1947) 0.108* (46.0°C, ebulliometry, measured range 46.0–233.87°C, McDonald et al. 1959) 0.0147–0.0227 (20°C, Goll 1954; Bevenue & Beckman 1967; Neumüller 1974) 0.0147 (20°C, Bevenue & Beckman 1967) 0.100 (extrapolated-Antoine eq., Weast 1972–73) log (P/mmHg) = [–0.2185 × 16742.6/(T/K)] + 9.150200; temp range 192.2–309.3°C (Antoine eq., Weast 1972–73) 0.231 (supercooled liq. extrapolated-Antoine eq., Weast 1976–77; quoted, Bidleman & Renberg 1985) 0.0213 (Firestone 1977) 0.0956 (supercooled liquid, GC-RT correlation, Hamilton 1980) 0.00415 (23°C, OECD, Klöpffer et al. 1982) 0.1153 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 7.22246 – 2846.009/(230.158 + t/°C), temp range 200–253°C (Antoine eq. from reported exptl. data, Boublik et al. 1984)

0.115 (capillary GC-RT, supercooled liquid PL, Bidleman & Renberg 1985) 0.127 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 8.198 – 3606/(T/K), temp range 463–507 K (Antoine eq., Stephenson & Malanowski 1987) 0.0070* (gas saturation-GC, measured range 25–125°C, Rordorf 1989) 0.0147 (Howard 1991)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.284 (calculated-P/C, Mabey et al. 1982) 0.0025 (calculated-P/C, Hellmann 1987) 0.0127 (estimated-bond contribution, Hellmann 1987) 0.277 (calculated-P/C, Howard 1991) 0.079 (calculated-P/C, Shiu et al. 1994)

Octanol/Water Partition Coefficient, log KOW: 5.01 (Leo et al. 1971) 3.81 (Lu & Metcalf 1975) 5.01, 5.12, 5.86, 3.81 (lit. values, Hansch & Leo 1979) 5.01 (HPLC-RT correlation, Veith et al. 1979b) 5.10 (HPLC-k′ correlation, Butte et al. 1981) 4.00 (at pH 4, Renberg 1981) 5.08 (RP-HPLC-k′ correlation, Miyake & Terada 1982) 5.15 (shake flask-GC, Saarikoski & Viluksela 1982; Saarikoski et al. 1986) 4.84 (shake flask-GC, apparent value at pH 1.2, Kaiser & Valdmanis 1982) 1.30 (shake flask-GC, apparent value at pH 10.5, Kaiser & Valdmanis 1982) 3.69 (Geyer et al. 1982, Schmidt-Bleek et al. 1982) 3.29 (shake flask average, OECD/EEC Lab. comparison tests, Harnish et al. 1983) 5.11 ± 0.07 (HPLC-retention volume correlation-ALPM, Garst & Wilson 1984) 3.69, 3.81 (shake flask, OECD 1981 Guidelines, Geyer et al. 1984) 5.24 (shake flask-HPLC/UV, Schellenberg et al. 1984) 5.04, 5.08 shake flask-GC, HPLC-k′, Xie et al. 1984) 5.12 (Hansch & Leo 1985) 5.24 (OECD 1981 guidelines, Leuenberger et al. 1985) 4.71 (RP-HPLC-RT correlation, Chin et al. 1986) 2.50 (at pH 4.7, Geyer et al. 1987) 4.47 (centrifugal partition chromatography CPC-RV, Terada et al. 1987) 5.04 (HPLC-RT correlation, Shigeoka et al. 1988)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2924 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

5.00 (shake flask/batch equilibration-UV, Beltrame et al. 1988) 5.18 (recommended, LOGKOW databank, Sangster 1993) 5.06, 5.12 (COMPUTOX databank, Kaiser 1993) 5.02 (shake flask-GC/ECD, Kishino & Kobayashi 1994) 5.12 (recommended, pH 1.4, Hansch et al. 1995) 4.74, 4.60, 4.27, 3.69, 3.59 (pH 2.1–3.1, 5.0, 6.1, 7.2, 8.0, shake flask-GC (octanol phase)/HPLC (aqueous phase), measured range pH 2.1–13.3, Nowosielski & Fein 1998)

Bioconcentration Factor, log BCF: 3.75 (fish, Statham et al. 1976) 3.04 (fish, Körte et al. 1978) 2.89 (fathead minnow, Veith et al. 1979) 2.89 (fathead minnow, calculated value, Veith et al. 1979b) 3.09, 2.64 (algae: exptl., calculated, Geyer et al. 1981) 2.00 (trout, Hattula et al. 1981) 3.04, 3.10, 3.02 (activated sludge, algae, golden orfe, Freitag et al. 1982) 2.54 (mussel Mytilus edulis, Geyer et al. 1982)

3.69 (calculated-KOW, Mackay 1982) 4.20 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 1.60 (killifish, Trujillo et al. 1982) 1.86, 1.72, 1.60 (low-PCP flowing, high-PCP flowing, high-PCP static soft water; Brockway et al. 1984) 1.66, 1.62, 1.26 (low-PCP flowing, high-PCP flowing, high-PCP static hard water; Brockway et al. 1984) 3.10 (alga Chlorella fusca in culture flasks, Geyer et al. 1984; quoted, Brockway et al. 1984)

3.10, 2.72 (algae: exptl, calculated-KOW, Geyer et al. 1984) 3.10, 3.02, 3.04 (algae, fish, sludge, Klein et al. 1984) 3.00 (quoted, LeBlanc 1984) 3.04, 3.10, 2.42 (activated sludge, algae, golden ide, Freitag et al. 1985) 0.57 (human fat, Geyer et al. 1987) 2.99 (zebrafish, Butte et al. 1987; quoted, Devillers et al. 1996) 0.46 (15°C, initial concn. 1.0 mg/L uptake by allolobophora caliginosa at 24 h, Haque & Ebing 1988) 0.38 (15°C, initial concn. 10.0 mg/L uptake by allolobophora caliginosa at 24 h, Haque & Ebing 1988) 0.80 (whole allolobophora caliginosa/soil, uptake from soil after 131 d exposure in outdoor lysimeters, Haque & Ebing 1988) 1.35 (whole lumbricus terrestris/soil, uptake from soil after 131 d exposure in outdoor lysimeters, Haque & Ebing 1988) 2.89 (quoted, Isnard & Lambert 1988) 2.80, 2.63 (earthworm e. fetida andrei: in Kooyenburg soil, Holten soil, van Gestel & Ma 1988) 2.80, 2.63 (earthworm e. fetida andrei: in Kooyenburg soil, Holten soil, van Gestel & Ma 1988) –2.66 (daily intake/cow adipose tissue, Travis & Arms 1988; quoted, Hattemer-Frey & Travis 1989) 4.38, 4.50, 4.53, 4.90 (earthworm system, collated from literature, Connell & Markwell 1990) 4.00, 5.30, 3.40, 8.00 (earthworm system, derived data, Connell & Markwell 1990) 2.97, 2.11 (p. hoyi, m. relicta, Landrum & Dupuis 1990) 2.16–2.53 (soft tissue of freshwater mussel, Mäkelä & Oikari 1990) 2.33; 3.21 (flagfish: whole fish; fish lipid, Smith et al. 1990) 2.78, 2.11, 1.72 (goldfish at pH 7, pH 8, pH 9, Stehly & Hayton 1990) 3.0, 3.4, 3.9, 4.0 (perch bile to water, Söderström et al. 1994) 2.33; 2.58; 2.89; 2.99; 3.23 (quoted: Jordanella floridae; Oryzias latipes; Pimephales promelas, Brachydanio rerio; Oryzias latipes; Devillers et al. 1996) 3.10 (algae Chlorella fusca, wet wt basis, Wang et al. 1996)

1.41–1.59, 1.58, 2.01–2.28 (eggshell, yolk sac, embryo of lake salmon Salmo salar m. sebago, calculated-CB/CW, Mäenpää et al. 2004)

Sorption Partition Coefficient, log KOC:

2.95 (soil, calculated-KOW, Kenaga & Goring 1980) 4.72 (sediment-water, calculated-KOW, Mabey et al. 1982)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2925

3.11–5.65 (soil, calculated-KOW, model of Karickhoff et al. 1979, Sabljic 1987a,b) 3.17–4.54 (soil, calculated-KOW, model of Kenaga & Goring 1980, Sabljic 1987a,b) 3.37–3.69 (soil, calculated-KOW, model of Briggs 1981, Sabljic 1987a,b) 3.00–5.54 (soil, calculated-KOW, model of Means et al. 1982, Sabljic 1987a,b) 2.21–4.49 (soil, calculated-KOW, model of Chiou et al. 1983, Sabljic 1987a,b) 4.52 (sediment, Schellenberg et al. 1984; quoted, Baker et al. 2000) 3.73 (quoted average of Kenaga & Goring 1980 & Schellenberg et al. 1984 values, Sabljic 1987a,b) 3.46 (soil, calculated-MCI χ, Sabljic 1987a,b) 2.95 (soil, calculated-MCI χ, Bahnick & Doucette 1988) 4.04 (estimated, HPLC-k′, mobile phase buffered to pH 3, Hodson & Williams 1988) 4.40 (calculated, Lagas 1988) 3.10, 3.26 (totally dissociated as phenolate-calculated, Lagas 1988) 5.27, 5.71 (Bluepoint soil at pH 7.8, pH 7.4, Bellin et al. 1990) 5.58, 5.52 (Glendale soil at pH 7.3, pH 4.3, Bellin et al. 1990) 3.49, 3.57 (Norfolk soil at pH 4.3, pH 4.4, Bellin et al. 1990) 4.32–4.65 (Norfolk + lime soil at pH 6.9, Bellin et al. 1990) 4.51, 4.54 (neutral form, silt-clay slurries, Jafvert & Weber 1991)

3.06 (calculated-KOW, Kollig 1993) 3.73 (soil, calculated-MCI 1χ, Sabljic et al. 1995) 2.67; 3.53 (HPLC-screening method; calculated-PCKOC fragment method, Müller & Kördel 1998) 3.67, 3.45 (pH 5, 6.5, humic acid from sediments of River Arno, De Paolis & Kukkonen 1997) 3.64, 3.02 (pH 5, 6.5, HA + FA extracted from sediments of River Arno, De Paolis & Kukkonen 1997) 3.90, 3.53, 3.29 (pH 5, 6.5, 8, HA extracted from sediments of Tyrrenhian Sea, De Paolis & Kukkonen 1997) 3.51, 3.26 (pH 5, 6.5, 8, HA + FA from sediments of Tyrrenhian Sea, De Paolis & Kukkonen 1997) 3.15 (pH 5, HA extracted from water of River Arno, De Paolis & Kukkonen 1997) 3.40 (pH 5, HA + FA extracted from water of River Arno, De Paolis & Kukkonen 1997) 3.28, 3.28, 3.15 (soils: organic carbon OC ≥ 0.1%, OC ≥ 0.5%, 0.1 ≤ OC < 0.5%, and pH 2.0- > 10, average, Delle Site 2001) 3.38, 3.51, 2.92 (soils: organic carbon OC ≥ 0.1%, OC ≥ 0.5%, 0.1 ≤ OC < 0.5%, and pH 3.4–6.9, average, Delle Site 2001) 4.48, 4.54, 4.38 (soils: organic carbon OC ≥ 0.1%, OC ≥ 0.5%, 0.1 ≤ OC < 0.5%, and pH ≤ 3 undissociated, average, Delle Site 2001) 2.82, 2.89, 2.63 (soils: organic carbon OC ≥ 0.1%, OC ≥ 0.5%, 0.1 ≤ OC < 0.5%, and pH –7.1 dissociated, average, Delle Site 2001)

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Volatilization/evaporation: t½ = 84 h from the rate of loss experiment on watch glass for an exposure period of 192 h (Dobbs & Grant 1980); stripping loss rate constant k = 0.0076 d–1 (Moos et al. 1983); k = 0.028 d–1 for nondissociated PCP, assuming diffusion coefficient in air to be 7 × 10–6 m2/s and in water 7×10–10 m2/s with wind speed 0.1 m above the pond is 2 m/s and the average temperature is 15°C for water depth of 1 m (Crossland & Wolff 1985); k(calc) = 5 × 10–4 d–1 to 1 × 10–7 d–1 for total PCP (Crossland & Wolff 1985). –4 –1 Photolysis: photolysis: t½(calc) = 4.75 h from observed rate k = 3.4 × 10 s for a depth of 300 cm at pH 7 with light intensity of 0.04 watts/cm2 between 290 and 330 nm on a midsummer day at the latitude of Cleveland, Ohio (Hiatt et al. 1960; quoted, Callahan et al. 1979);

photolysis t½ = 1.5 d was estimated from photolytic destruction by sunlight in an aqueous solution at Davis, California (Wong & Crosby 1978; quoted, Callahan et al. 1979); exposure of aqueous PCP solutions to either sunlight or laboratory ultraviolet light resulted in rapid degradation at pH 7.3 and slower degradation at pH 3.3 (Wong & Crosby 1981); –1 photolytic t½ = 10–15 d (Brockway et al. 1984); k = 0.23 to 0.46 d for direct photo-transformation, is the main loss process for PCP from ponds, with t½ = 1.5 to 3.0 d (Crossland & Wolff 1985); –1 photo-transformation rate constants k = 0.6 h with t½ = 1 h for distilled water in summer (mean temperature –1 –1 25°C) and k = 0.37 h with t½ = 2 h in winter (mean temperature 11°C); k = 0.37 h with t½ = 2 h for

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2926 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

–1 both poisoned estuarine water and estuarine water in summer and k = 0.27 h with t½ = 3 h in winter during days when exposed to full sunlight and microbes (Hwang et al. 1986); –1 photo-mineralization rate constants k = 0.11 h with t½ = 6 d for distilled water in summer (mean temperature –1 –1 25°C) and k = 0.049 h with t½ = 14 d in winter (mean temperature 11°C); k = 0.12 h with t½ = of 6 –1 –1 d for poisoned estuarine water in summer and t½ = 0.07 h with t½ = 10 d in winter; k = 0.25 h with –1 t½ = 10 d for estuarine water in summer and k = 0.10 h with t½ = 7 d for winter during days when exposed to full sunlight and microbes (Hwang et al. 1986);

photochemical transformation t½ = 0.75 h in Xenotest 1200 (Svenson & Björndal 1988); aqueous t½ = 1–110 h (Hwang et al. 1986; Sugiura et al. 1984; selected, Howard et al. 1991) t½ = 7.43 d, assuming a linear rate of photolysis during 96-h period,(Smith et al. 1987) –1 –1 photodegradation k = 0.60 h corresponding to a t½ = 1.0 h (summer), k = 0.37 h corresponding to a –1 –1 t½ = 2 h (winter) in distilled water; and t½ = 0.37 h corresponding to a t½ = 2 h (summer), 0.27 h corresponding to a t½ = 3.0 h (winter) in estuarine water under irradiation by natural sunlight (quoted from Hwang et al. 1987, Sanders et al. 1993). Oxidation: aqueous oxidation rate constant k < 7 × 103 M–1 h–1 for singlet oxygen and k = 1 × 105 M–1 h–1 for peroxy radical at 25°C (Mabey et al. 1982); k >> 3.0 × 105 M–1 s–1 with 3 mM AcOH as scavenger for the reaction with ozone in water at pH 2.0 (Hoigné & Bader 1983b);

photooxidation t½ = 66–3480 h in water, based on reported reaction rate constants for reaction of OH and RO2 radicals with phenol class in aqueous solution (Mill & Mabey 1985; Güesten et al. 1981; quoted, Howard et al. 1991);

photooxidation t½ = 139.2–1392 h, based on an estimated rate constant for the vapor phase reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991); rate constant k = 4.7 × 10–13 cm3 molecule s–1 for reaction with OH radical in air (Bunce et al. 1991) rate constant k = (0.2 ± 5.5) × 106 M–1 s–1 for the reaction with singlet oxygen in aqueous phosphate buffer at 27 ± 1°C (Tratnyek & Hoigné 1991);

atmospheric t½ < 24 h at noon in mid-summer to t½ = 216 h in January at latitude of 41.79°N for reaction with OH radical (Bunce et al. 1991). Hydrolysis: is not expected to occur (Crossland & Wolff 1985). Biodegradation: first order microbial degradation rate constant k = 7.4 × 10–4 h–1 in sediment and water (Yoshida & Kojima 1978, quoted, Addison et al. 1983); ∞ t½ = 1800–2160 h and 480- h to obtain 75% degradation in mineral medium and seawater, respectively (de Kreuk & Hanstveit 1981); –1 –1 k = 0.10 d with a t½ = 7 d in unadapted Nutrient Broth and k = 1.0 d with a t½ = 0.7 d in adapted Nutrient Broth under aerobic conditions (Mills et al. 1982);

aqueous aerobic t½ = 552–4272 h, based on unacclimated and acclimated aerobic sediment grab sample data (Delaune et al. 1983; Baker & Mayfield 1980; quoted, Howard et al. 1991);

aqueous anaerobic t½ = 1008–36480 h, based on unacclimated anaerobic grab sample data for soil and ground water (Ide et al. 1972; Baker & Mayfield 1980; quoted, Howard et al. 1991); aerobic degradation rate constant k = 0.0017 L µg–1·d–1 (Moos et al. 1983); microbial degradation negligible in darkness (Hwang et al. 1986); 100% reduction in concn (2 µM) after incubation with cells of Rhodococcus chlorophenolicus for 14 d under aerobic conditions (Neilson et al. 1991) degradation rate constant k = 0.12 ± 0.01 h–1 in the absence of light (Minero et al. 1993).

t½(aerobic) = 23 d, t½(anaerobic) = 42 d in natural waters (Capel & Larson 1995) Biotransformation: first order fish metabolism k = 1.5 × 10–5 h–1 (Sanborn et al. 1975, quoted, Addision et al. 1983); bacterial transformation k = 3 × 109 mL cell–1 h–1 in water (Mabey et al. 1982); degradation rate k = 3 × 10–14 mol cell–1 h–1 with microorganisms in Seneca River waters (Banerjee et al. 1984).

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants: –1 –1 –1 k1 = 18.3 h , 19 h (at 1 mM buffer concn.), 18.5 h (at 10 mM buffer concn.) at pH 8 (guppy p. reticulata, Saarikoski et al. 1986) –1 –1 k1 = 222 d , 1677 d (flagfish: whole fish; fish lipid, Smith et al. 1990) –1 –1 k2 = 1.03 d , 1.03 d (flagfish: whole fish; fish lipid, Smith et al. 1990)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2927

–1 –1 k2 = 1.03 d , 0.95 d (flagfish: BCF based, toxicity based, Smith et al. 1990) –1 k2 = 0.00195 ± 0.00063 h (m. relicta, Landrum & Dupuis 1990) –1 k2 = 0.00330 ± 0.00140 h (p. hoyi, Landrum & Dupuis 1990) –1 –1 k1 = 662.4 d , k2 = 0.502 d (algae Chlorella fusca, Wang et al. 1996) –1 –1 k1 = 0.733 d , k2 = 0.020 d (eggshell of dissected parts of lake salmon, Mäenpää et al. 2004) –1 –1 k1 = 0.680 d , k2 = 0.000 d (yolk sac of dissected parts of lake salmon, Mäenpää et al. 2004) –1 –1 k1 = 2.828 d , k2 = 0.015 d (embryo of dissected parts of lake salmon, Mäenpää et al. 2004)

Half-Lives in the Environment: Air: tropospheric lifetime of 4 d for reaction with OH radical on March 21 at 43°N (Bunce et al. 1991);

t½ = 139.2–1392 h, based on an estimated rate constant for the vapor phase reaction with hydroxyl radicals in air; photolysis t½ = 6.5 h in noonday summer sunshine (Howard 1991); atmospheric transformation lifetime was estimated to be > 5 d (Kelly et al. 1994). –4 –1 Surface water: calculated photolysis t½ = 4.75 h from a determined rate k = 3.4 × 10 s for a depth of 300 cm at pH 7 with light intensity of 0.04 watts/cm2 between 290 and 330 nm on a midsummer day at the latitude of Cleveland, Ohio (Hiatt et al. 1960; quoted, Callahan et al. 1979);

photolysis t½ = 1.5 d was estimated from photolytic destruction by sunlight in an aqueous solution at Davis, California (Wong & Crosby 1978; quoted, Callahan et al. 1979);

photolytic t½ = 10–15 d (Brockway et al. 1984); rate constant k >> 3.0 × 105 M–1 s–1 for the reaction with ozone at pH 2.0 (Hoigné & Bader 1983); –1 estimated direct photolysis midday t½ = 20 min from experimentally determined rate constant k = 2.1 h (quoted unpublished result, Zepp et al. 1984);

t½ = 1.5 to 3.0 d for direct photo-transformation from outdoor ponds (Crossland & Wolff 1985); t½ = 1 h (summer), t½ = 2 h (winter) for distilled water; t½ = 2 h (summer), t½ = 3 h (winter) for estuarine water; t½ = 2 h (summer), t½ = 3 h (winter) for poisoned estuarine water, based on photo-transformation rate constants (Hwang et al. 1986); t½ = 6 d (summer), t½ = 14 d (winter) for distilled water; t½ = 3 d (summer), t½ = 7 d (winter) for estuarine water; t½ = 6 d (summer), t½ = 10 d (winter) for poisoned estuarine water, based on photo-mineralization rate constants (Hwang et al. 1986);

t½ = 0.75 h and 0.96 h, based on photochemical transformation in Xenotest 1200 (Svenson & Björndal 1988); t½ = 1–110 h, based on aqueous photolysis half-life (Howard et al. 1991); photodegradation half-lives ranging from hours to days, more rapid at the surface (Howard 1991);

photodegradation t½ = 1.0 h (summer), t½ = 2.0 h (winter) in distilled water and t½ = 2.0 h (summer), t½ = 3.0 h (winter) in estuarine water under irradiation by natural sunlight (quoted from Hwang et al. 1987, Sanders et al. 1993).

t½(aerobic) = 23 d, t½(anaerobic) = 42 d in natural waters (Capel & Larson 1995) Ground water: t½ = 1104–36480 h, based on estimated unacclimated aqueous aerobic sediment grab sample data (Delaune et at. 1983; selected, Howard et al. 1991) and unacclimated anaerobic grab sample data for ground water (Baker & Mayfield 1980; selected, Howard et al. 1991). Sediment: first order microbial degradation rate constant k = 7.4 × 10–4 h–1 in sediment and water (Yoshida & Kojima 1978, quoted, Addison et al. 1983). Soil: Days for complete disappearance by microbial decomposition in soil suspension: 72 + d in Dunkirk silt loam (Alexander & Aleem 1961)

disappearance t½ = 23.2 d from Kooyenburg soil, t½ = 47.9 d from Holten soil with earthworm e. fetida andrei and t½ = 27.4 d from Kooyenburg soil, t½ = 31.8 d from Holten soil with earthworm l. rubellus (van Gestel & Ma 1988);

t½ = 552–4272 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991);

t½ = 2.0 d in an acidic clay soil with < 1.0% organic matter and t½ = 6.7 d in a slightly basic sandy loam soil with 3.25% organic matter, based on aerobic batch lab microcosm experiments (Loehr & Matthews 1992).

Biota: biological t½ = 30 d in guppy lebistes reticulatus(Landner et al. 1977); elimination t½ = 23, 9.3, 6.9, and 6.2 h for fat, liver muscle, and blood, respectively (rainbow trout, Call et al. 1980);

estimated t½ = 7.0 d in trout (Niimi & Cho 1983; quoted, Niimi & Palazzo 1985); clearance from flagfish: t½ = 0.68 d from whole fish and t½ = 0.68 d from fish lipid (Smith et al. 1990).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2928 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.2.13.1 Reported aqueous solubilities of pentachlorophenol at various temperatures

Carswell & Nason 1938 Achard et al. 1996 Jaoui et al. 1999

shake flask shake flask-conductivity static visual method

t/°CS/g·m–3 t/°CS/g·m–3 T/K S/g·m–3 0 5 25.1 21.4 333.2 102 27 18 34.5 57.8 342.7 118.4 50 35 46.8 86.2 353.2 140.6 62 58 361.2 156.8 70 85 372.0 173.1 386.0 195.3 402.0 211.6 407.0 232.3 422.3 253.0

Note: PCP data in Table I incorrect, correction made Figure 3 in ref based on Figure 3 in ref.

Pentachlorophenol: solubility vs. 1/T -10.5

-11.5

-12.5 x n x l -13.5

-14.5 Carswell & Nason 1938 Achard et al. 1996 Jaoui et al. 1999 experimental data Horvath & Getzen 1985 (IUPAC recommended) -15.5 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 14.1.2.13.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for pentachlo- rophenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2929

TABLE 14.1.2.13.2 Reported vapor pressures of pentachlorophenol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P= A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Carswell & Nason 1938 Stull 1947 McDonald et al. 1959 Rordorf 1989

static method summary of literature data ebulliometry gas saturation-GC

t/°CP/Pat/°CP/Pat/°CP/Pat/°CP/Pa 0 0.00227* 192.2 2666 46.0 0.108 25 0.0070 20 0.0227* 211.2 5333 60.0 0.1853 50 0.110 50 0.4133* 223.4 7999 70.0 0.2573 75 1.20 75 3.200* 239.6 13332 71.8 0.3960 100 9.50 100 18.67 261.8 26664 80.0 0.9746 125 57.0 120 63.99 285.0 53329 93.6 3.3597 140 200.0 309.3 101325 106.5 8.5460 for solid

160 573.3 119.5 23.60 eq. 1 PS/Pa 180 1453 mp/°C 188.5 200.6 4133 A 13.413 200 3413 215.51 6759 B 4640.9 220 7493 233.87 12279 240 14705* for liquid

260 30358* eq. 2 P/mmHg eq. 1 PL/Pa 280 56622* A 9.073 A 11.47085 300 101112* B 3606.0 B 3750.68 300.6 101325 C 273.15 measured range 100–220°C mp/°C 189.65 *extrapolated from graph .

Pentachlorophenol: vapor pressure vs. 1/T 6.0 Carswell & Nason 1938 5.0 MacDonald et al. 1959 Stull 1947 4.0

3.0 )aP/ 2.0 S P(gol 1.0

0.0

-1.0

-2.0 b.p. =310 °C dec m.p. = 174 °C -3.0 0.0016 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 14.1.2.13.2 Logarithm of vapor pressure versus reciprocal temperature for pentachlorophenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2930 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.2.14 4-Chloro-m-cresol

OH

Cl

Common Name: 4-Chloro-m-cresol Synonym: p-chloro-m-cresol, 2-chloro-5-hydroxytoluene, 4-chloro-3-methylphenol Chemical Name: 4-chloro-m-cresol, 4-chloro-3-methylphenol CAS Registry No: 59-50-7

Molecular Formula: C7H7ClO, CH3(Cl)C6H3OH Molecular Weight: 142.583 Melting Point (°C): 67 (Lide 2003) Boiling Point (°C): 235.0 (Weast 1977; Callahan et al. 1979; Dean 1985; Lide 2003) Density (g/cm3):

Acid Dissociation Constant, pKa: Molar Volume (cm3/mol): 146.5 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.387 (mp at 67°C)

Water Solubility (g/m3 or mg/L at 25°C): 3990 (shake flask-UV with buffer at pH 5.1, Blackman et al. 1955) 3990 (IUPAC selected, Horvath & Getzen 1985) 3650 (solid-phase microextraction SPME-GC, Buchholz & Pawliszyn 1994)

Vapor Pressure (Pa at 25°C): 6.67 (Mabey et al. 1982)

Henry’s Law Constant (Pa m3/mol at 25°C): 0.253 (20°C, calculated-P/C, Mabey et al. 1982)

Octanol/Water Partition Coefficient, log KOW: 2.18 (Hansch & Leo 1979) 2.95 (calculated as per Tute 1971, Callahan et al. 1979) 3.10 (HPLC-RT correlation, Veith et al. 1979) 3.10 (recommended, Sangster 1993) 3.10 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

2.60 (microorganisms-water, calculated-KOW, Mabey et al. 1982)

Sorption Partition Coefficient, log KOC:

2.78 (sediment-water, calculated-KOW, Mabey et al. 1982) Environmental Fate Rate Constants, k, and Half-Lives, t½: Oxidation: rate constants k < 7 × 105 M–1 h–1 for singlet oxygen and k =1 × 107 M–1 h–1 for peroxy radical (Mabey et al. 1982). Biotransformation: bacterial transformation k = 3 × 10–9 mL cell–1 h–1 in water (Mabey et al. 1982).

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2931

14.1.3 NITROPHENOLS 14.1.3.1 2-Nitrophenol

OH

NO2

Common Name: 2-Nitrophenol Synonym: o-nitrophenol, 2-hydroxynitrobenzene Chemical Name: 2-nitrophenol CAS Registry No: 88-75-5

Molecular Formula: C6H5NO2, C6H4(NO2)OH Molecular Weight: 139.109 Melting Point (°C): 44.8 (Lide 2003) Boiling Point (°C): 216.0 (Weast 1982-83; Lide 2003) Density (g/cm3 at 20°C): 1.485, 1.2942 (14, 40°C, Weast 1982–83) 131.9 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 7.21 (Pearce & Simkins 1968) 7.23 (Serjeant & Dempsey 1979) 8.28 (Mabey et al. 1982) 7.22 (Dean 1985) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 17.57 (Tsonopoulos & Prausnitz 1971) 17.44 (Beneš & Dohnal 1999) ∆ Entropy of Fusion, Sfus (J/mol K): 55.23 (Tsonopoulos & Prausnitz 1971) 48.95, 56.5 (observed, estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.630 (mp at 44.8°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 3210* (38.4°C, shake flask-residue volume method, measured range 34.8–196°C, critical solution temp above 200°C, Sidgwick et al. 1915) 1390, 1095 (20°C, shake flask-UV, calculated, Hashimoto et al. 1984) 1080* (20 ± 0.5°C, shake flask-UV with buffer at pH 1.5, measured range 5–30°C, Schwarzenbach et al. 1985) 2100 (solid-phase microextraction SPME-GC, Buchholz & Pawliszyn 1994) 1697* (24.8°C, shake flask-conductimetry, measured range 15.6–34.7°C, Achard et al. 1996) 1350* (20°C, shake flask-UV spectrophotometry, measured range 10–40°C, Beneš & Dohnal 1999) 1169* (17.35°C, shake flask-optical method, measured range 290.5–322.7 K, Jaoui et al. 2002) ln [S/(mol kg–1)] = 16.237 – 4672.3/(T/K); temp range 288–308 K (eq. derived using reported exptl. data, Jaoui et al. 2002) ln [S/(mol kg–1)] = 6.9022 – 1784.4/(T/K); temp range 308–332 K (eq. derived using reported exptl. data, Jaoui et al. 2002)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 29.10* (extrapolated-regression of tabulated data, temp range 49.3–214.5°C, Stull 1947) log (P/mmHg) = [–0.2185 × 12497.3/(T/K)] + 8.497320; temp range 49.3–214.5°C (Antoine eq., Weast 1972–73)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2932 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

24.43 (extrapolated-Cox eq., Chao et al. 1983) log (P/mmHg) = [1– 487.905/(T/K)] × 10^{0.885400 – 6.30106 × 10–4·(T/K) + 6.42867 × 10–7·(T/K)2}; temp range: 322.5–487.7 K (Cox eq., Chao et al. 1983) 12.4 ± 0.2 (gas saturation-HPLC/UV, Sonnefeld et al. 1983) 17.25 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PS/kPa) = 7.8446 – 2864.6/(T/K), temp range 273–292 K (solid, Antoine eq-I., Stephenson & Malanowski 1987) log (PL/kPa) = 6.04963 – 1571.7/(–101.17 + T/K), temp range 366–490 K (liquid, Antoine eq.-II, Stephenson & Malanowski 1987)

18.86 (supercooled liquid PL at 20°C, GC-RT correlation, Schwarzenbach et al. 1988) ∆ 10.61 (20°C, solid PS, converted from PL with Sfus and mp, Schwarzenbach et al. 1988) log (P/atm) = 5.735 – 2776/(T/K) (Antoine eq., GC-RT correlation, Schwarzenbach et al. 1988)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.766 (calculated-P/C, Mabey et al. 1982) 0.355 (Leuenberger et al. 1985) 1.367 (20°C, calculated-P/C, Schwarzenbach et al. 1988) 1.25* (gas stripping-UV, measured range 5–40°C, Müller & Heal 2001) ln [H=/(M atm–1)] = 6290/(T/K) – 16.6; temp range 278–303 K (gas stripping-UV, Müller & Heal 2001) 1.178* (gas stripping-UV, measured range 284–302 K, Harrison et al. 2002) ln [H/(M atm–1)] = 6270/(T/K) – 16.6; temp range 284–302 K, Harrison et al. 2002)

Octanol/Water Partition Coefficient, log KOW: 1.79 (shake flask-UV, Fujita et al. 1964; quoted, Leo et al. 1971) 2.00 (shake flask, Umeyama et al. 1971) 1.25, 1.18 (calculated-fragment const., calculated-π const., Rekker 1977) 1.79 (shake flask, Korenman et al. 1977) 1.68 (shake flask at pH 7, Unger et al. 1978) 1.35 (HPLC-RT correlation, Veith et al. 1979) 1.91 (HPLC-RT correlation, Miyake et al. 1986) 1.89 (21.5 ± 0.5°C, shake flask-UV with buffer at pH 1.5, Schwarzenbach et al. 1988) 1.76 (shake flask-UV, Kramer & Henze 1990) 1.68 (CPC-RV at pH 7.4, El Tayar et al. 1991) 2.24 (HPLC-RT correlation, Saito et al. 1993) 1.77 (recommended, Sangster 1993) 1.85, 1.79 (COMPUTOX databank, Kaiser 1993) 1.79, 1.68 (recommended, value at pH 7.4; Hansch et al. 1995) 2.03 (solid-phase microextraction, Dean et al. 1996) 1.63, 1.99, 2.28, 1.90 (HPLC-k′ correlation, different combinations of stationary and mobile phases under isocratic conditions, Makovskaya et al. 1995a)

Bioconcentration Factor, log BCF: 2.10 (bluegill sunfish, Veith et al. 1980)

1.23 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 1.15 (calculated-KOW, Howard 1989)

Sorption Partition Coefficient, log KOC:

1.43 (sediment-water, calculated-KOW, Mabey et al. 1982) 1.81 (soil, calculated-S, quoted, Howard 1989) 2.17; 2.50 (HPLC-screening method; calculated-PCKOC fragment method, Müller & Kördel 1998) 2.424, 1.507, 1.852, 1.763, 2.336 (first generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-HPLC/UV, Gawlik et al. 1998, 1999) 2.043, 1.758, 1.854, 1.708, 2.283 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-HPLC/UV, Gawlik et al. 1999)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2933

2.043, 1.758, 1.854, 1.708, 2.283 (second generation Eurosoils ES-1, ES-2, ES-3, ES-4, ES-5, shake flask/batch equilibrium-HPLC/UV and HPLC-k′ correlation, Gawlik et al. 2000)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: volatilization t½ = 296 h from a model river was estimated using Henry’s law constant for a model river of 1 m deep with 1 m/s current and a 3 m/s wind (Howard 1989) Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: rate constant k < 2 × 105 M–1·h–1 for singlet oxygen, and k = 2 × 106 M–1·h–1 for peroxy radical at 25°C (Mabey et al. 1982); –12 3 –1 –1 kOH = 0.922 × 10 cm ·molecule ·s at 296 K (Becker et al. 1984; quoted, Carlier et al. 1986); –12 3 –1 –1 –12 3 –1 –1 kOH(exptl) = 0.92 × 10 cm molecule s , kOH(calc) = 3.4 × 10 cm molecule s at room temp. (Atkinson 1985) –12 3 –1 –1 –12 3 –1 –1 kOH(exptl) = 0.9 × 10 cm molecule s , kOH(calc) = 4.4 × 10 cm molecule s at room temp. (Atkinson 1987) –12 3 –1 –1 kOH = 0.90 × 10 cm molecule s at 294 K (Atkinson 1989) photooxidation t½ = 7–71 h, based on measured rate data for the vapor phase reaction with OH radical in air (Howard et al. 1991) –23 3 –1 –1 kO3 = 2.0 × 10 cm ·molecule s at 298 K, measured range 298–323 K (quoted, Atkinson & Carter 1984) –12 3 –1 –1 kOH = (2.34 ± 0.33) × 10 cm molecule s at (24.6 ± 0.4)°C (Edney et al. 1986) –12 3 –1 –1 –17 3 –1 –1 kOH = 2.34 × 10 cm ·molecule s at 298 K, kNO3 = 9.7 × 10 cm molecule s at 296 K (Atkinson 1990) –12 3 –1 –1 –12 3 –1 –1 kNO3 < 0.02 × 10 cm ·molecule s at 296 K and kOH = 0.90 × 10 cm molecule s at room temp. (Atkinson 1991)

aqueous photooxidation t½ = 480 min in the presence of hydrogen peroxide, irradiated with a mercury-xenon lamp (Lipczynska-Kochany 1992) –1 photo-transformation decay rate constant k = 0.27 min on 0.2 g/L of TiO2 solution (Minero et al. 1993). Hydrolysis: resistant to hydrolysis (Howard 1989). Biodegradation: 95% degradation in 3–6 d in mixed bacteria cultures (Tabak et al. 1964); average rate of biodegradation 14.0 mg COD g–1·h–1 based on measurements of COD decrease using activated sludge inoculum with 20 d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982); time necessary for complete degradation of 16 mg/L in 3–5 d by wastewater and 7–14 d by soil (Haller 1978);

aqueous aerobic t½ = 168–672 h, based on unacclimated aerobic screening test data (Sasaki 1978; Gerike & Fischer 1979; selected, Howard et al. 1991);

aqueous anaerobic t½ = 168–672 h, based on anaerobic soil grab sample data (Sudhakar-Barik & Sethun- nathan 1978; selected, Howard et al. 1991). Biotransformation: estimated bacterial transformation rate constant of 2 × 10–9 mL·cell–1·h–1 in water (Mabey et al. 1982).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 14 h for the gas phase reaction with hydroxyl radical (GEMS 1986; quoted, Howard 1989) photooxidation t½ = 7–71 h, based on measured rate data for the vapor phase reaction with hydroxyl radical in air (Howard et al. 1991).

Surface water: t½ = 168–672 h, based on aerobic river die-away test data (Ludzack et al. 1958; selected value, Howard et al. 1991);

volatilization t½ = 12 d from a model river was estimated using Henry’s law constant for a model river of 1 m deep with 1 m/s current and a 3 m/s wind and t½ = 1–8 d in freshwater (Howard 1989); calculated t½= 390 h for a body of water with 1 m in depth (Schmidt-Bleek et al. 1982; quoted, Howard 1989); photooxidation t½ = 480 min in the presence of hydrogen peroxide, irradiated with a mercury-xenon lamp (Lipczynska-Kochany 1992).

Groundwater: t½ = 336–672 h, based on estimated aqueous aerobic and anaerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 10 d in flooded soil (Howard 1989);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2934 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

t½ = 168–672 h, based on estimated aqueous aerobic biodegradation half-life and anaerobic soil grab sample data (Sudhakar-Barik & Sethunnathan 1978; selected, Howard et al. 1991). Biota:

TABLE 14.1.3.1.1 Reported aqueous solubilities of 2-nitrophenol at various temperatures

Sidgwick et al. 1915 Schwarzenbach et al. 1988 Beneš & Dohnal 1999 Jaoui et al. 2002

shake flask-synthetic method shake flask-UV spec. shake flask-UV spec shake flask-optical method

t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 solid 38.4 3210 0 747 10 895 17.35 1169 42.8 3460 10 898 20 1350 31.35 2434 47.5 3760 20 1080 30 2000 36.85 3144 59.4 4550 30 1457 40 2840 49.55 3951 65.7 5130 for supercooled liquid 17.35 1169 72.8 5890 0 2058 mp/K 317.95 30.05 2281 ∆ –1 80.3 6900 10 1920 Hfus/(kJ mol ) = 17.44 37.55 3186 88.9 8330 20 2011 Enthalpies of solution*: 49.55 3951 ∆ –1 109.9 13430 30 1877 Hsol(solid) = 28.7 kJ mol 17.35 1169 ∆ –1 151.8 30300 Hsol(liq.) = 11.2 kJ mol 31.25 2434 169.5 50400 36.85 3144 196.5 99000 49.55 3951 ...... Achard et al. 1996 196.5 906800 shake flask-conductimetry 163.4 951400 t/°CS/g·m–3 91.7 984800 82.9 987300 15.6 1076 59.3 992400 24.8 1697 43.6 995100 34.7 2935 44.9 1000000 critical solution temp >200° triple point 43.5°C

*Enthalpies of solution at infinite dilution for solid at environmental temperatures and for hypothetical liquid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2935

2-Nitrophenol: solubility vs. 1/T -1.0 Sidgwick et al. 1915 Schwarzenbach et al. 1988 Achard et al. 1996 -3.0 Beneš & Dohnal 1999 Jaoui et al. 2002 Hashimoto et al. 1984

-5.0 ln x -7.0

-9.0 critical solution temp. = >200 °C m.p. = 44.8 °C -11.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K)

FIGURE 14.1.3.1.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2-nitrophenol.

TABLE 14.1.3.1.2 Reported vapor pressures and Henry’s law constants of 2-nitrophenol at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4) Vapor pressure Henry’s law constant Stull 1947 Müller & Heal 2001 Harrison et al. 2002 summary of literature data gas stripping-UV spec. gas stripping-UV t/°CP/Pat/°CH/(Pa m3/mol) T/K H/(Pa m3/mol) non-equilibrium 49.3 133 5 0.274 281 0.362 76.8 666.6 10 0.442 284.5 0.396 90.4 1333 15 0.600 289.5 0.607 105.8 2666 20 0.641 293.5 0.930 122.1 5333 25 1.267 298 1.178 132.6 7999 30 1.689 302 1.559 146.4 13332 equilibrium 167.6 26664 5 0.242 eq. 4 H=/(M atm–1) 191.0 53329 10 0.409 A –16.6 214.5 101325 15 0.569 B –6270 20 0.714 mp/°C 45 25 1.251 30 1.608

eq.4 H=/(M atm–1) A –16.6 B –6290 For gas-to-liquid transfer ∆Ho/(kJ mol–1) = –52.3 ± 8.1 ∆So/(J mol–1K–1) = –138 ± 28

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2936 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

2-Nitrophenol: vapor pressure vs. 1/T 8.0 Stull 1947 Sonnefeld et al. 1983 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 216 °C m.p. = 44.8 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.3.1.2 Logarithm of vapor pressure versus reciprocal temperature for 2-nitrophenol.

2-Nitrophenol: Henry's law constant vs. 1/T 7.0

5.0

)lom/ 3.0 3 m.aP(/H nl m.aP(/H 1.0

-1.0

-3.0 Müller & Heal 2001 Harrison et al. 2002 -5.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 14.1.3.1.3 Logarithm of Henry’s law constant versus reciprocal temperature for 2-nitrophenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2937

14.1.3.2 3-Nitrophenol

OH

NO2

Common Name: 3-Nitrophenol Synonym: m-nitrophenol Chemical Name: 3-nitrophenol CAS Registry No: 554-84-7

Molecular Formula: C6H5NO2, C6H4(NO2)OH Molecular Weight: 139.109 Melting Point (°C): 96.8 (Lide 2003) Boiling Point (°C): 194.0 (at 70 mm Hg, Weast 1982–83) Density (g/cm3 at 20°C): 1.2797 (10°C, Verschueren 1983) Molar Volume (cm3/mol): 108.7 (100°C, Stephenson & Malanowski 1987) 131.9 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 8.00 (Fieser & Fieser 1958) 8.36 (Serjeant & Dempsey 1979; Dean 1985; Howard 1989; Haderlein & Schwarzenbach 1993) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 21.34 (Tsonopoulos & Prausnitz 1971) 19.20 (Beneš & Dohnal 1999) ∆ Entropy of Fusion, Sfus (J/mol K): 57.74 (Tsonopoulos & Prausnitz 1971) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.197 (mp at 96.8°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 30300* (40.4°C, shake flask-residue volume method, measured range 40.4–98.7°C, critical solution temp 98.7°C, Sidgwick et al. 1915) 13000 (shake flask-UV spectrophotometry, Roberts et al. 1977) 11546 (20°C, shake flask-UV, Hashimoto et al. 1984) 10800* (20°C, shake flask-UV spectrophotometry, measured range 10–40°C, Beneš & Dohnal 1999)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 3.83 × 10–2 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PS/kPa) = 8.93697 – 3981.386/(T/K), temp range 305–334 K (solid, Antoine eq., Stephenson & Malanowski 1987) 99.98 (Weber et al. 1981)

Henry’s Law Constant (Pa·m3/mol at 25°C): 2.203 × 10–4 (quoted, Gaffney et al. 1987) 1.033 (calculated-P/C, Howard 1989)

Octanol/Water Partition Coefficient, log KOW: 2.00 (shake flask-UV, Fujita et al. 1964; Leo et al. 1971) 2.00 (shake flask-UV at pH 5.6, Umeyama et al. 1971) 2.00 (20°C, shake flask, Korenman et al. 1976)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2938 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

2.02 (Scherrer & Howard 1979) 1.74 (HPLC-RT correlation, Butte et al. 1981) 2.05 (Beltrame et al. 1988, 1989) 2.01, 2.03 (shake flask, HPLC-RT correlation, Wang et al. 1989) 1.88 (shake flask-UV, Kramer & Henze 1990) 1.74 (centrifugal partition chromatography CPC-RV at pH 7.4, El Tayar et al. 1991) 2.00 (recommended, Sangster 1993) 1.92, 1.51 (COMPUTOX databank, Kaiser 1993) 2.00 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

1.40 (goldfish, ratio of rate constant k1/k2, Nagel & Urich 1980) 1.40 (Brachydanio rerio, Butte et al. 1987)

1.28 (estimated-KOW, Howard 1989)

Sorption Partition Coefficient, log KOC: 1.72 (Brookton clay loam, Boyd 1982) 1.36 (soil, estimated-S, Howard 1989)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: volatilization t½ = 4.2 d from a model river was estimated using Henry’s law constant for a model river of 1 m deep with 1 m/s current and a 3 m/s wind (Howard 1989). Photolysis:

Oxidation: photooxidation t½ ~ 14 h, based on estimated rate data for the vapor phase reaction with hydroxyl radical in air (Howard 1989); –1 phototransformation decay rate k = 0.18 min in 0.2 g/L of TiO2 solution (Minero et al. 1993). Hydrolysis: resistant to hydrolysis (Howard 1989). Biodegradation: 95% degradation in 3–6 d in mixed bacteria cultures (Tabak et al. 1964); decomposition by a soil microflora in 4 d (Alexander & Lustigman 1966; quoted, Verschueren 1983) complete degradation of 16 mg/L in 3–5 d by wastewater, and 3–5 d by soil (Haller 1978); average rate of biodegradation 17.5 mg COD g–1·h–1 based on measurements of COD decrease using activated sludge inoculum with 20 d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982);

t½ = 6.3 d or less in flooded soil under anaerobic conditions (Howard 1989) t½(aerobic) = 0.76 d, t½(anaerobic) = 6.8 d in natural waters (Capel & Larson 1995). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: –1 –1 k1 = 1.54 h ; k2 = 0.00 h (goldfish, Nagel & Urich 1980)

Half-Lives in the Environment:

Air: t½ = 14 h for reaction with hydroxyl radical in vapor phase (Howard 1989). Surface water: t½ = 4.2 d in a model river (Howard 1989) t½(aerobic) = 0.76 d, t½(anaerobic) = 6.8 d in natural waters (Capel & Larson 1995). Groundwater: Sediment:

Soil: t½ = 6.3 d in flooded soil under anaerobic conditions (Howard 1989). Biota: elimination from goldfish within 4 h (Nagel & Urich 1980).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2939

TABLE 14.1.3.2.1 Reported aqueous solubilities of 3-nitrophenol at various temperatures

Sidgwick et al. 1915 Beneš & Dohnal 1999

shake flask-synthetic method shake flask-UV spec

t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 40.4 30300 98.5 291000 72.7 673800 10 7200 49.5 36500 98.5 351300 55.8 715600 20 10800 61.1 46600 98.6 388400 42.3 758900 30 16700 67.1 54200 98.7 409400 43.9 793200 40 19000 79.1 76400 98.5 431200 62.0 899000 85.1 94700 97.9 481200 95.1 1000000 mp/K 369.95 ∆ –1 88.5 109400 94.5 539500 Hfus/(kJ mol ) = 19.20 93.2 139200 91.9 571900 critical solution temp 98.7°C Enthalpies of solution*: ∆ –1 97.1 188500 87.3 607400 triple point 41.5°C Hsol(solid) = 29.3 kJ mol ∆ –1 98.0 215500 82.6 634700 Hsol(liq.) = 16.1 kJ mol

*Enthalpies of solution at infinite dilution for solid at environmental temperatures and for hypothetical liquid.

3-Nitrophenol: solubility vs. 1/T -1.0 Sidgwick et al. 1915 -2.0 Beneš & Dohnal 1999 Roberts et al. 1977 Hashimoto et al. 1984 -3.0

-4.0

x nl x -5.0

-6.0

-7.0 critical solution -8.0 temp. = 98.7 °C m.p. = 96.8 °C -9.0 0.0023 0.0025 0.0027 0.0029 0.0031 0.0033 0.0035 0.0037 1/(T/K) FIGURE 14.1.3.2.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 3-nitrophenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2940 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.3.3 4-Nitrophenol

OH

NO2

Common Name: 4-Nitrophenol Synonym: p-nitrophenol, 4-hydroxynitrobenzene Chemical Name: 4-nitrophenol CAS Registry No: 100-02-7

Molecular Formula: C6H5NO2, C6H4(NO2)OH Molecular Weight: 139.109 113.6 (Lide 2003) Boiling Point (°C): 279.0 (decomposes, Weast 1982–83; Lide 2003) Density (g/cm3 at 20°C): 1.479 (Weast 1982–83) Molar Volume (cm3/mol): 131.9 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 7.08 (21.5°C, UV, Schwarzenbach et al. 1988) 7.17 (Fieser & Fieser 1958) 7.16 (Serjeant & Dempsey 1979; Howard 1989; Haderlein & Schwarzenbach 1993) 7.15 (Dean 1985; Miyake et al. 1987; Brecken-Folse et al. 1994; Howe et al. 1994) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 15.90 (Tsonopoulos & Prausnitz 1971) 18.25 (Beneš & Dohnal 1999) ∆ Entropy of Fusion, Sfus (J/mol K): 41.09 (Tsonopoulos & Prausnitz 1971) 62.76, 56.5 (observed, estimated, Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.135 (mp at 113.6°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 29100* (34.8°C, shake flask-residue volume method, measured range 34.8–92.8°C, critical solution temp 92.8°C, Sidgwick et al. 1915) 14000 (shake flask-spectrophotometry, Roberts et al. 1977) 9950, 14800 (15, 25°C, shake flask, average values of 6 laboratories, OECD 1981) 13490, 11140 (20°C, shake flask-UV, calculated, Hashimoto et al. 1984) 11570 (20 ± 0.5°C, shake flask-UV with buffer at pH 1.5, Schwarzenbach et al. 1988) 16000 (solid-phase microextraction SPME-GC, Buchholz & Pawliszyn 1994) 15599* (shake flask-conductimetry, measured range 15.3–34.9°C, Achard et al. 1996) 12200* (20°C, shake flask-UV spectrophotometry, measured range 10–38°C, Beneš & Dohnal 1999) 15052* (23.65°C, shake flask-optical method, measured range 285.9–313.8 K, Jaoui et al. 2002) ln [S/(mol kg–1)] = 17.110 – 4273.4/(T/K); temp range 288–314 K (eq. derived using reported exptl. data, Jaoui et al. 2002)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 0.0054 (20°C, Schmidt-Bleek et al. 1982) 0.0012 (selected, Yoshida et al. 1983) 0.0044 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PS/kPa) = 11.9529 – 5159.7/(T/K), temp range 304–352 K (solid, Antoine eq., Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2941

0.111 (supercooled liquid PL at 20°C, GC-RT correlation, Schwarzenbach et al. 1988) ∆ 0.0131 (20°C, solid PS, converted from PL with Sfus and mp, Schwarzenbach et al. 1988) log (P/mmHg) = 8.305 – 4180/(T/K) (Antoine eq., GC-RT correlation, Schwarzenbach et al. 1988) 0.133 (Howard 1989)

Henry’s Law Constant (Pa·m3/mol at 25°C): 4.21 × 10–5 (exptl., Hine & Mookerjee 1975) 5.55 × 10–4, 9.87 × 10–3 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 1.04 × 10–5 (calculated-P/C, Yoshida et al. 1983) 0.00335 (20°C, calculated-P/C, Schwarzenbach et al. 1988)

Octanol/Water Partition Coefficient, log KOW: 1.91 (shake flask-UV, Fujita et al. 1964; quoted, Leo et al. 1971; Hansch & Leo 1979) 1.18, 1.27 (calculated-π const., calculated-fragment const., Rekker 1977) 1.68 ± 0.01 (RP-HPLC-k′ correlation, Unger et al. 1978) 2.07 (RP-HPLC-k′ correlation, Miyake & Terada 1982) 1.86 (HPLC-ref. substances extrapolated, Harnish et al. 1983) 1.88 (shake flask average, OECD/EEC lab. comparison tests, Harnish et al. 1983) 1.96 ± 0.08 (HPLC-RV correlation.-ALPM, Garst 1984; Garst & Wilson 1984) 1.85, 1.92 (shake flask, OECD 1981 Guidelines, Geyer et al. 1984) 0.70 (calculated-γ from UNIFAC, Campbell & Luthy 1985) 1.90 (HPLC-RV correlation, Brooke et al. 1986) 2.10 (HPLC-k′ correlation, Miyake et al. 1987) 1.93 (shake flask/batch equilibration-UV, Beltrame et al. 1988, 1989) 2.04 (21.5 ± 1.5°C, shake flask-UV with buffer at pH 1.5, Schwarzenbach et al. 1988) 1.77 (CPC-RV at pH 7.4, El Tayar et al. 1991) 1.85, 1.91 (COMPUTOX databank, Kaiser 1993) 1.91 (recommended, Sangster 1993) 1.90 ± 0.14, 1.09 ± 0.53 (solvent generated liquid-liquid chromatography SGLLC-correlation, RP-HPLC-k′ cor- relation, Cichna et al. 1995) 1.91 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF: 2.10 (fathead minnow, Veith et al. 1980) 2.56 (mean whole body 14C in fathead minnow, Call et al. 1980) 1.90, 2.34 (total 14C in fathead minnow: observed, calculated, mean exposure level 0.0041 µg·mL–1, Call et al. 1980) 2.44, 2.65 (total 14C in fathead minnow: observed, calculated, mean exposure level 0.0441 µg·mL–1, Call et al. 1980) 1.76; 1.04 (golden orfe; green algae, Freitag et al. 1982) 1.48 (activated sludge, Freitag et al. 1982)

1.43 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 0.301 (calculated-KOW, Yoshida et al. 1983) 1.48, 1.45 (alga chlorella fusca, wet wt. basis, calculated-KOW, Geyer et al. 1984) 1.60, 1.48, 1.48 (golden ide, algae, activated sludge, Freitag et al. 1985) 1.90 (fathead minnow, quoted, Howard 1989)

Sorption Partition Coefficient, log KOC:

1.65 (sediment-water, calculated-KOW, Mabey et al. 1982) 2.41 (soil, calculated-KOW, Yoshida et al. 1983) 1.74 (Brookston clay loam, Boyd 1982) 2.18 (HPLC-k′ correlation, cyanopropyl column, mobile phase buffered to pH 3, Hodson & Williams 1988) 1.32 (soil, calculated-S, Howard 1989) 2.37 (soil, quoted exptl., Meylan et al. 1992) 2.49 (soil, calculated-MCI χ and fragment contribution, Meylan et al. 1992)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2942 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

2.16, 2.07 (RP-HPLC-k′ correlation including MCI related to non-dispersive intermolecular interactions, hydrogen-bonding indicator variable, Hong et al. 1996) 2.05; 2.49 (HPLC-screening method; calculated-PCKOC fragment method, Müller & Kördel 1998) 2.03, 1.94 (soils: organic carbon OC ≥ 0.1%, OC ≥ 0.5%, and pH ≤ 5.4, average, Delle Site 2001)

Environmental Fate Rate Constants, k or Half-Lives, t½: Volatilization:

Photolysis: atmospheric photolysis t½ = 3.1–329 h, based on sunlight photolysis at pH 9 and pH 4 (Hustert et al. 1981; Lemaire et al. 1985; selected, Howard et al. 1991); rate constant k = 3.96 × 10–3 h–1 for the direct photolysis in water (Yoshida et al. 1983);

photolysis t½ range from hours to a week or more in atmosphere and t½ = 2–14 d in clear surface waters (Howard 1989). Oxidation: oxidation rate constant k < 2 × 105 M–1·h–1 for singlet oxygen, k = 2 × 106 M–1·h–1 for peroxy radical (Mabey et al. 1982);

photooxidation t½ = 21 d to 5.6 y in water, based on rate constants for reaction in water with hydroxyl radical (Dorfman & Adams 1973; Scully & Hoigné 1987; selected, Howard et al. 1991); rate constant k < 50 M–1·s–1 for 0.01–14 mM to react with ozone in water using PrOH as scavenger at pH 1.7 and 20–23°C in water (Hoigné & Bader 1983a,b); rate constant k = 8.3 × 10–12 cm3·molecule–1·s–1 for the gas-phase reaction with OH radical at 296 K in the atmosphere (Becker et al. 1984; quoted, Carlier et al. 1986);

photooxidation t½ = 14.5–145 h in air, based on estimated rate data for the vapor phase reaction with hydroxyl radical in air (Howard et al. 1991);

aqueous photooxidation t½ = 440 min in the presence of hydrogen peroxide, irradiated with a mercury-xenon lamp (Lipczynska-Kochany 1992); –1 phototransformation decay k = 0.15 min on 0.20 g/L of TiO2 solution (Minero et al. 1993). Hydrolysis: Biodegradation: 95% degradation in 3–6 d in mixture bacteria cultures (Tabak et al. 1964); decomposition by a soil microflora in 16 d (Alexander & Lustigman 1966; quoted, Verschueren 1983); average rate of biodegradation 17.5 mg COD g–1·h–1 based on measurements of COD decrease using activated sludge inoculum with 20 d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982); time necessary for complete degradation of 16 mg/L in 3–5 d by wastewater and 7–14 d by soil (Haller 1978);

aqueous aerobic t½ = 18.2–168 h, based on pond die-away test data (Paris et al. 1983; Bourquin 1984; selected, Howard et al. 1991);

aqueous anaerobic t½ = 163–235 h, based on anaerobic die-away data in two different flooded soils (Sudhakar- Barik & Sethunnathan 1978; selected, Howard et al. 1991); was not biodegraded with activated sludge at a concn. of 94 mg/L but completely degraded with a decreased concn. of 19 mg/L in 28 d expt. (Kool 1984). Biotransformation: estimated bacterial transformation rate constant of 1.00 × 10–7 mL·cell–1·h–1 in water (Mabey et al. 1982); rate constant of (3.80 ± 1.40) × 10–11 L·organism–1·h–1 (Paris et al. 1983; quoted, Steen 1991).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: photooxidation t½ = 14.5–145 h, based on estimated rate data for the vapor phase reaction with hydroxyl radical in air (Howard et al. 1991); atmospheric transformation lifetime was estimated to be 1–5 to > 5 d (Kelly et al. 1994).

Surface water: photodegradation t½ = 5.7 d at pH 5, t½ = 6.7 d at pH 7 and t½ = 13.7 d at pH 9 in water (Hustert et al. 1981);

t½ = 1–8 d in freshwater, t½ = 1–3 yr in marine systems but decreased to 13–20 d with the presence of sediment, the mean t½ = 7.7 d estimated by a nonsteady-state equilibrium model, and photolysis t½ = 2–14 d in clear surface waters (Howard 1989);

t½ = 18.2–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991);

t½ = 440 min for photolysis in the presence of hydrogen peroxide, irradiated with a mercury-xenon lamp (Lipczynska-Kochany 1992).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2943

Groundwater: t½ = 36.4–235 h, based on pond die-away test data and anaerobic die-away data in two different flooded soils (Paris et al. 1983; Sudhakar-Barik & Sethunnathan 1978; quoted, Howard et al. 1991). Sediment:

Soil: t½ ~ 1 d in agricultural topsoil and t½ = 10 d in flooded soil, t½ > 40 d in subsoil under aerobic conditions and longer still under anaerobic conditions (Howard 1989);

t½ = 17–29 h, based on aerobic soil die-away test data (Loekke 1985; selected, Howard et al. 1998). t½ = 75 d in a coarse sandy soil, t½ = 145 d in sandy loam (Kjeldsen et al. 1990) µ –1 Biota: depuration t½(obs.)= 72 h, t½(calc) = 37 h for mean exposure level of 0.0041 g·mL and t½(obs.) = 228 h, µ –1 t½(calc) = 206 h for mean exposure level of 0.041 g·mL (Call et al. 1980).

TABLE 14.1.3.3.1 Reported aqueous solubilities of 4-nitrophenol at various temperatures

Sidgwick et al. 1915 Achard et al. 1996 Beneš & Dohnal 1999 Jaoui et al. 2002

shake flask-synthetic method shake flask-conductimetry shake flask-UV spec. shake flask-optical method

t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 34.8 29100 15.3 10162 10 8050 12.75 8694 37.2 31100 25.0 15599 20 12000 18.15 11477 40.4 33400 30.3 29600 30 17800 23.65 15052 47.7 39300 34.9 28845 38 23900 34.55 25082 51.2 43000 41.05 33428 59.1 53300 mp/K 386.95 14.65 9599 ∆ –1 67.8 69900 Hfus/(kJ mol ) = 18.25 19.65 12367 72.6 82800 Enthalpies of solution*: 25.35 16345 ∆ –1 79.3 106100 OECD 1981 Hsol(solid) = 28.9 kJ mol 33.55 23969 ∆ –1 84.4 137000 shake flask (6 laboratories) Hsol(liq.) = 16.9 kJ mol 39.25 30896 87.9 175300 t/°C S/g·m–3 11.15 7999 90.2 215800 15 9950† 15.85 10211 91.3 261600 25 14800‡ 23.15 14690 92.3 304100. 34.55 25082 92.8 331900 †mean, 8880–10900 g·m–3 40.65 32844 ...... ‡mean, 13800–15900 g·m–3 critical solution temp 92.8°C triple point 39.6°C

*Enthalpies of solution at infinite dilution for solid at environmental temperatures and for hypothetical liquid.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2944 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

4-Nitrophenol: solubility vs. 1/T -1.0 Sidgwick et al. 1915 OECD 1981 -2.0 Achard et al. 1996 Beneš & Dohnal 1999 -3.0 Jaoui et al. 2002 experimental data -4.0

x nl x -5.0

-6.0

-7.0

critical solution -8.0 temp. = 92.8 °C m.p. = 113.6 °C -9.0 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.3.3.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 4-nitrophenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2945

14.1.3.4 2,4-Dinitrophenol

OH

NO2

NO2

Common Name: 2,4-Dinitrophenol Synonym: 2,4-hydroxynitrobenzene, Aldifen, 2,4-DNP Chemical Name: 2,4-dinitrophenol CAS Registry No: 57-28-5

Molecular Formula: C6H4N2O5, C6H3(NO2)2OH Molecular Weight: 184.106 Melting Point (°C): 114.8 (Lide 2003) Boiling Point (°C): sublimation (Weast 1982–83; Lide 2003) Density (g/cm3 at 20°C): 1.684 (24°C, Weast 1982–83) Molar Volume (cm3/mol): 160.4 (calculated-Le Bas method at normal boiling point)

Acid Dissociation Constant, pKa: 4.09 (Pearce & Simkins 1968) 3.94 (Schwarzenbach et al. 1988; Haderlein & Schwarzenbach 1993) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.132 (mp at 114.8°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 6000 (Morrison & Boyd 1959, Howard 1989) 5600 (18°C, Verschueren 1977) 335* (20 ± 0.5°C, shake flask-UV at pH 1.5, Schwarzenbach et al. 1988)

2787 (20 ± 0.5°C, supercooled liquid SL, Schwarzenbach et al. 1988 5000 (selected, Brecken-Folse et al. 1994; Howe et al. 1994) 560 (solid-phase microextraction SPME-GC, Buchholz & Pawliszyn 1994) 691* (shake flask-conductimetry, measured range 15.1–35°C, Achard et al. 1996)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 5.52 × 10–3 (Knudsen effusion method, Hoyer & Peperle 1958) log (P/mmHg) = 13.95 – 5466/(T/K), temp range 20–60°C (Knudsen effusion method, Hoyer & Peperle 1958) 1.987 × 10–3 (18°C, Mabey et al. 1982) 5.520 × 10–3 (Interpolated-Antoine eq., Stephenson & Malanowski 1987)

log (PS/kPa) = 13.075 – 5466/(T/K), temp range 291–333 K (solid, Antoine eq., Stephenson & Malanowski 1987) 0.111 (20°C: supercooled liquid PL, GC-RT correlation, Schwarzenbach et al. 1988) ∆ 0.0207 (20°C: solid PS, converted from PL with Sfus and mp, Schwarzenbach et al. 1988) log (PL/atm) = 7.392 – 3680/(T/K) (Antoine eq., GC-RT correlation, Schwarzenbach et al. 1988)

Henry’s Law Constant (Pa·m3/mol at 25°C): 6.54 × 10–5 (18°C, calculated-P/C, Mabey et al. 1982) 0.00335 (20°C, calculated-P/C, Schwarzenbach et al. 1988) 8.880 × 10–5 (calculated-P/C, Howard 1989)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2946 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Octanol/Water Partition Coefficient, log KOW: 1.53 (Leo et al. 1971) 1.50 (shake flask-UV, Stockdale & Selwyn 1971) 1.54 (shake flask-GC, Kurihara et al. 1973) 1.56 (shake flask-UV, Korenman et al.1977) 1.52 (QSAR, Scherrer & Howard 1979) 1.55 (shake flask-UV, Terada et al. 1981) 1.79 ± 0.06 (HPLC-RV correlation-ALPM, Garst 1984) 1.51 (shake flask, Log P Database, Hansch & Leo 1987) 1.67 (21 ± 1.5°C, shake flask-UV, both phases, Schwarzenbach et al. 1988) 1.54 (recommended, Sangster 1993) 1.53 (22°C, shake flask, Brecken-Folse et al. 1994) –0.23 (shake flask, pH 7.5, Howe et al. 1994) 1.67 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

1.19 (microorganism-water, calculated-KOW, Mabey et al. 1982) < 1.0 (calculated, Howard 1989)

Sorption Partition Coefficient, log KOC:

1.22 (sediment-water, calculated-KOW, Mabey et al. 1982) 1.56, 2.14 (calculated-S, KOW, Howard 1989) –0.09 (calculated-KOW, Kollig 1993) 3.09 (activated carbon, Blum et al. 1994)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Oxidation: aqueous oxidation rate constants k = 3 × 104 M–1·h–1 for singlet oxygen, and k = 5 × 105 M–1·h–1 for peroxy radical (Mabey et al. 1982);

photooxidation t½ = 77–3840 h in water, based on reported reaction rate constants for RO2 with the phenol class (Mill & Mabey 1985; selected, Howard et al. 1991); –11 3 photooxidation t½ = 111–1114 h in air, based on the estimated reaction rate constant k =1.7 × 10 cm ·mol- ecule–1·s–1 with an ambient hydroxyl radical concentration of 8 × 105 molecules·cm–3 for the vapor phase reaction with hydroxyl radical in air (Howard et al. 1991);

aqueous photooxidation t½ = 200 min in the presence of hydrogen peroxide irradiated with a mercury-xenon lamp (Lipczynska-Kochany 1992). Hydrolysis: Biodegradation: 95% degradation in 7–10 d in mixed bacteria cultures (Tabak et al. 1964); average rate of biodegradation 6.0 mg COD g–1·h–1 based on measurements of COD decrease using activated sludge inoculum with 20 d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982); –1 first-order rate constant k = 0.2 d corresponding to a t½ = 3.6 d in adapted activated sludge under aerobic conditions (Mills et al. 1982);

aqueous aerobic t½ = 1622–6312 h, based on data from aerobic soil column studies (Kincannon & Lin 1985; selected, Howard et al. 1991) and aerobic soil die-away test data (Sudhakar-Barik & Sethunnathan 1978; selected, Howard et al. 1991)

aqueous anaerobic t½ = 68–170 h, based on anaerobic flooded soil die-away tests (Sudhakar-Barik & Sethunnathan 1978; selected, Howard et al. 1991)

t½(aerobic) = 68 d, t½(anaerobic) = 2.8 d in natural waters (Capel & Larson 1995) Biotransformation: bacterial transformation rate constant k = 3 × 10–9 mL·cell–1·h–1 in water (Mabey et al. 1982).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: calculated vapor-phase t½ = 14 h for reaction with photochemically generated OH radical (Howard 1989)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2947

photooxidation t½ = 111–1114 h, based on estimated rate data for the vapor phase reaction with hydroxyl radical in air (Howard et al. 1991); atmospheric transformation lifetime was estimated to be > 5 d (Kelly et al. 1994).

Surface water: calculated t½ = 58 d for reaction with alkylperoxy radical in water (Howard 1989); t½ = 77–3840 h, based on reported reaction rate constants for RO2 radical with the phenol class (Mill & Mabey 1985; selected, Howard et al. 1991);

photooxidation t½ = 200 min in the presence of hydrogen peroxide, irradiated with a mercury-xenon lamp (Lipczynska-Kochany 1992)

t½(aerobic) = 69 d, t½(anaerobic) = 2.8 d in natural waters (Capel & Larson 1995) Groundwater: t½ = 68–14624 h, based on estimated aqueous aerobic biodegradation half-life and estimated aqueous anaerobic biodegradation half-life (quoted, Howard et al. 1991). Sediment:

Soil: t½ = 1622–6312 h, based on data from aerobic soil column studies (Kincannon & Lin 1985) and aerobic soil die-away test data (Sudhakar-Barik & Sethunnathan 1978; selected, Howard et al. 1991);

a Class C compounds with a t½ > 50 d in soil (Ryan et al. 1988). t½ = 145 d in sandy loam (Kjeldsen et al. 1990) Biota:

TABLE 14.1.3.4.1 Reported aqueous solubilities of 2,4-dinitrophenol at various temperatures

Schwarzenbach et al. 1988 Achard et al. 1996

shake flask-UV spec. shake flask-conductimetry

t/°CS/g·m–3 t/°CS/g·m–3 t/°CS/g·m–3 solid supercooled liquid 5 171.8 0 2019 15.1 415 10 206.6 10 2213 25.0 691 20 335.0 20 2852 35.0 975 30 473.2 30 3199

2,4-Dinitrophenol: solubility vs. 1/T -8.0

-8.5

-9.0

-9.5

x nl x -10.0

-10.5

-11.0

-11.5 Schwarzenbach et al. 1988 Achard et al. 1996 Buchholz & Pawliszyn 1994 -12.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 14.1.3.4.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 2,4-dinitro- phenol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2948 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.3.5 2,4,6-Trinitrophenol (Picric acid)

OH

O2N NO2

NO2

Common Name: 2,4,6-Trinitrophenol Synonym: Picric acid Chemical Name: 2,4,6-trinitrophenol CAS Registry No: 88-89-1

Molecular Formula: C6H3N3O7, C6H2(NO2)3OH Molecular Weight: 229.104 Melting Point (°C): 122.5 (Lide 2003) Boiling Point (°C): > 300 (explodes, Weast 1982–83; Dean 1985; Lide 2003) Density (g/cm3 at 20°C): 1.763 (Weast 1982–83; Dean 1985)

Acid Dissociation Constant, pKa: 0.78 (Schwarzenbach et al. 1988) Molar Volume (cm3/mol): 188.9 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 19.50 (Tsonopoulos & Prausnitz 1971) ∆ Entropy of Fusion, Sfus (J/mol K): 49.37 (Tsonopoulos & Prausnitz 1971) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.111 (mp at 122.5°C)

Water Solubility (g/m3 or mg/L at 25°C): 14000 (Morrison & Boyd 1959) 13750 (selected, Tsonopoulos & Prausnitz 1971) 14000 (20°C, Verschueren 1983) 13000 (Dean 1985)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 4.68 × 10–5 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 11.319 – 5560/(T/K), temp range 468–598 K (liquid, Antoine eq., Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa·m3/mol at 25°C): 7.66 × 10–7 (calculated-P/C, this work)

Octanol/Water Partition Coefficient, log KOW: 1.44 (shake flask-GC, Korenman et al. 1977) 1.34 (Scherrer & Howard 1979) 1.46 (HPLC-RV correlation, Garst 1984) –0.97, 0.87 (shake flask, Log P database: pH 2.7, pH 1, Hansch & Leo 1987) 2.03 (shake flask, Log P Database, Hansch Leo 1987) 1.33 (recommended, Sangster 1993) 1.82 (COMPUTOX databank, Kaiser 1993)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2949

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis:

Oxidation: photooxidation t½ = 677–4320 h, based on estimated reaction rates with OH and NO3 radicals in air (Howard et al. 1991). Hydrolysis: no hydrolyzable group (Howard et al. 1991). Biodegradation: 95% degradation in 3–6 d in mixed bacteria cultures (Tabak et al. 1964);

aqueous aerobic t½ = 672–8640 h, based on aerobic biodegradation screening test (Howard et al. 1991); aqueous anaerobic t½ = 48–300 h, based on aqueous anaerobic natural water die-away test data (Howard et al. 1991) Biotransformation:

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environmental Compartments:

Air: t½ = 672–4320 h, based on estimated photooxidation half-lives in air (Howard et al. 1991). Surface water: t½ = 672–4320 h, based on estimated aqueous aerobic biodegradation half-lives (Howard et al. 1991).

Ground water: t½ = 48–8640 h, based on estimated both aqueous aerobic and aqueous anaerobic biodegradation half-lives (Howard et al. 1991). Sediment:

Soil: t½ = 672–4320 h, based on estimated photooxidation aqueous aerobic biodegradation half-lives (Howard et al. 1991). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2950 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.3.6 4,6-Dinitro-o-cresol

OH

O2N

NO2

Common Name: 4,6-Dinitro-o-cresol Synonym: 2,4-dinitro-6-methylphenol, DNOC, 2-methyl-4,6-dinitrophenol, 6-methyl-2,4-dinitrophenol Chemical Name: 4,6-dinitro-o-cresol, 2,4-dinitro-6-methylphenol CAS Registry No: 534-52-1

Molecular Formula: C7H6N2O5, CH3C6H2(NO2)2OH Molecular Weight: 198.133 Melting Point (°C): 86.5 (Weast 1982–83; Stephenson & Malanowski 1987; Lide 2003) Boiling Point (°C): 312 (Howard 1991) Density (g/cm3 at 20°C): Acid Dissociation Constant, pKa: 4.35 (Pearce & Simkins 1968; Callahan et al. 1979; Westall et al. 1985) 4.31 (Schwarzenbach et al. 1988; Howard 1991) 4.46 (Jafvert 1990; quoted, Bintein & Devillers 1994) Molar Volume (cm3/mol): 182.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.249 (mp at 86.5°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated): 258, 250 (Günther et al. 1968)

290 (calculated-KOW, Mabey et al. 1982) 198 (20°C, neutral species at pH 1.5 of buffer solution HCl/NaH2PO4, shake flask-UV, Schwarzenbach et al. 1988) 150 (20°C, quoted, Howard 1991)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 0.048 (35°C, Knudsen effusion method, Hamaker & Kerlinger 1969) 6.670 (20°C, estimated, Mabey et al. 1982) 0.0142 (interpolated-Antoine eq., solid, Stephenson & Malanowski 1987)

log (PS/kPa) = 13.265 – 5400/(T/K); temp range 290–324 K (Antoine eq., solid, Stephenson & Malanowski 1987) 0.240 (20°C, GC-RT correlation, supercooled liquid value PL, Schwarzenbach et al. 1988) 0.0432 (20°C, solid PS, Schwarzenbach et al. 1988) 0.0111 (20°C, quoted, Howard 1991)

Henry’s Law Constant (Pa·m3/mol): 4.050 (calculated-P/C, Mabey et al. 1982) 43.22 (20°C, calculated-P/C, Schwarzenbach et al. 1988)

Octanol/Water Partition Coefficient, log KOW at 25°C or as indicated: 2.70 (calculated-fragment const., Mabey et al. 1982) 2.12 (21.5°C, neutral species, shake flask-UV, Schwarzenbach et al. 1988) –0.81 (21.5°C, ionic species at pH 12, Schwarzenbach et al. 1988) 2.12 (Howard 1991)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2951

2.12 (Sangster 1993) 2.56, 1.98 (COMPUTOX databank, Kaiser 1993)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

2.10 (microorganism-water, calculated-KOW, Mabey et al. 1982) 1.38, 1.57 (calculated-S, KOW regression equations., Howard 1991)

Sorption Partition Coefficient, log KOC:

2.38 (sediment-water, calculated-KOW, Mabey et al. 1982) 3.57 ± 0.130 (natural sediment, Jafvert 1990)

2.44, 2.0–2.53 (calculated-S, KOW regression eq., Howard 1991) 2.41, 2.78 (soil, quoted, calculated-MCI χ and fragment contribution, Meylan et al. 1992) 3.28 (activated carbon, Blum et al. 1994)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: nonvolatile from water, based on low Henry’s law constant value (Howard 1991). Photolysis: Oxidation: aqueous oxidation rate constant k = 3 × 104 M–1 h–1 for singlet oxygen and k = 5 × 105 M–1 h–1 for peroxy radical at 25°C (Mabey et al. 1982);

photooxidation t½ = 77–3840 h in water, based on reported reaction rate constants for RO2 radical with the phenol class (Mill & Mabey 1985; selected, Howard et al. 1991);

photooxidation t½: = 310–3098 h in air, based on estimated rate constant for the vapor phase reaction with hydroxyl radical in air (Atkinson 1987; selected, Howard et al. 1991). Hydrolysis:

Biodegradation: aqueous aerobic t½ = 168–504 h, based on data from a soil die-away study (Kincannon & Lin 1985; selected, Howard et al. 1991); aqueous anaerobic t½ = 68–170 h, based on flooded soil die-away tests for 2,4-dinitrophenol (Sudhakar-Barik & Sethunnathan 1978; selected, Howard et al. 1991)

t½(aerobic) = 7 d, t½(anaerobic) = 28 d in natural waters (Capel & Larson 1995) Biotransformation: estimated bacterial transformation rate constant k = 3 × 109 mL·cell–1·h–1 in water (Mabey et al. 1982).

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: photooxidation t½ = 310–3098 h in air, based on estimated rate constant for the vapor phase reaction with OH radical in air (Atkinson 1987; selected, Howard et al. 1991); 5 –3 t½ = 77 d for the vapor-phase reaction with OH radical (concn. of 5 × 10 molecule·cm ) (Howard 1991); atmospheric transformation lifetime was estimated to be > 5 d (Kelly et al. 1994).

Surface water: photooxidation t½ = of 77–3840 h in water, based on reported reaction rate constants for RO2 radical with the phenol class (Mill & Mabey 1985; selected, Howard et al. 1991);

t½ ~ 58 d, estimated for photooxidation via peroxy radicals and t½ = 2600 yr for reaction with singlet oxygen in water (Howard 1991)

t½(aerobic) = 7 d, t½(anaerobic) = 2.8 d in natural waters (Capel & Larson 1995) Ground water: t½ = 68–1008 h, based on estimated aqueous aerobic and anaerobic biodegradation half-lives (Howard et al. 1991). Sediment:

Soil: t½ = 168–504 h, based on data from a soil die-away study (Kincannon & Lin 1985; selected, Howard et al. 1991). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2952 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.4 DIHYDROXYBENZENES, METHOXYPHENOLS AND CHLOROGUAIACOLS 14.1.4.1 Catechol (1,2-Dihydroxybenzene)

OH OH

Common Name: Catechol Synonym: 1,2-dihydroxybenzene, 1,2-benzenediol, pyrocatechol Chemical Name: 1,2-dihydroxybenzene CAS Registry No: 120-80-9

Molecular Formula: C6H4(OH)2 Molecular Weight: 110.111 Melting Point (°C): 104.6 (Lide 2003) Boiling Point (°C): 245 (Weast 1982–83; Stephenson & Malanowski 1987; Lide 2003) Density (g/cm3): 1.1493 (22°C, Weast 1982–83)

Acid Dissociation Constant, pKa: 9.40 (Fieser & Fieser 1958) 9.50 (McLeese et al. 1979) Molar Volume (cm3/mol): 110.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 22.76 (Tsonopoulos & Prausnitz 1971) ∆ Entropy of Fusion, Sfus (J/mol K): 60.25 (Tsonopoulos & Prausnitz 1971) 60.21 (Yalkowsky & Valvani 1980) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.166 (mp at 104.6°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated): 71166 (30°C, synthetic method, Walker et al. 1931) 45000 (Fieser & Fieser 1958; Morrison & Boyd 1959) 636190 (quoted, Tsonopoulos & Prausnitz 1971)

35630 (calculated-KOW, Yalkowsky & Morozowich 1980) ∆ 42724, 38610 (calculated- Sfus and mp, estimated, Yalkowsky & Valvani 1980) 43000 (Dean 1985)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 666.6* (104°C, summary of literature data, temp range 104–245.5°C, Stull 1947) 1333* (118.5°C, ebulliometry, measured range 118.5–245.5°C, Vonterres et al. 1955) log (P/mmHg) = [–0.2185 × 13779.7/(T/K)] + 8.694319; temp range 104–245.5°C (Antoine eq., Weast 1972–73) 1.34 (extrapolated-Antoine eq., Boublik et al. 1973) log (P/mmHg) = 7.57299 – 2024.422/(186.533 + t/°C); temp range 118.5–245.5°C (Antoine eq. from reported exptl. data, Boublik et al. 1973) log (P/mmHg) = [1– 517.477/(T/K)] × 10^{0.902426 – 6.04783 × 10–4·(T/K) + 6.58278 × 10–7·(T/K)2}; temp range: 377.15–518.65 K, (Cox eq., Chao et al. 1983) 5.44 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 7.9896 – 3144.241/(281.825 + t/°C); temp range 118.5–245.5°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 1.03(extrapolated-Antoine eq., Dean 1985)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2953

log (P/mmHg) = 7.577 – 2054/(187.0 + t/°C); temp range 118–246°C (Antoine eq., Dean 1985, 1992)

1.06(PL, extrapolated-Antoine eq., Stephenson & Malanowski 1987) log (PL/kPa) = 6.61028 – 1954.6/(–94.25 + T/K); temp range 395–519y K (Antoine eq., Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.022 (calculated-P/C)

Octanol/Water Partition Coefficient, log KOW: 0.86 (shake flask-UV, Fujita et al. 1964) 0.95 (Leo et al. 1971) 0.85 (shake flask-UV, pH 5.6, Umeyama et al. 1971) 0.84 (shake flask, Korenman 1972) 0.86 (shake flask at pH 7, Unger et al. 1978) 0.88, 1.01, 0.85, 0.84 (literature values, Hansch & Leo 1979) 0.95 (GC-RT correlation, Veith et al. 1979) 1.10 (HPLC-RT correlation, Butte et al. 1981) 0.53 (HPLC-k′ correlation, Haky & Young 1984) 1.10 (HPLC-RT correlation, Webster et al. 1985) 0.88 (recommended, LOGKOW databank, Sangster 1993) 0.88 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 2.03 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

1.42; 1.74, 2.25, 2.01, 1.98, 1.82 (soil: calculated-KOW; HPLC-screening method using LC-columns of different stationary phases, Szabo et al. 1999)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis: 2 –1 –1 Oxidation: t½ < 2 × 10 M s for the reaction with singlet oxygen at 25°C in aquatic systems with t½ > 100 yr (Foote 1976; Mill 1979; quoted, Mill 1982);

photooxidation t½ = 2.6–26 h in air, based on vapor-phase reaction rate constant with OH radical in atmosphere (Howard et al. 1991);

aqueous photooxidation t½ = 77–3840 h, based on reaction rate constant for RO2- radical in aqueous solution (Mill & Mabey 1985; selected, Howard et al. 1991). Hydrolysis: Biodegradation: 95% degradation in 1–2 d in mixed bacteria cultures (Tabak et al. 1964); average rate of biodegradation k = 55.5 mg COD g–1·h–1 based on measurements of COD decrease using activated sludge inoculum with 20 d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982);

2 mM catechol rapidly degraded by strain Cat½ in batch culture in 9 d (Schnell et al. 1989); aqueous aerobic t½ = 24–168 h, based on aerobic biological screening test data (Heukelekian & Rand 1955; Okey & Bogan 1965; Pitter 1976; Urushigawa et al. 1983; Gerike & Fischer 1979; selected, Howard et al.1991);

aqueous anaerobic t½ = 96–672 h, based on estimated aqueous aerobic biodegradation half-lives (Howard et al. 1991). Biotransformation:

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environmental Compartments:

Air: t½ = 24–168 h, based on estimated photooxidation half-lives in air (Atkinson 1987; selected, Howard et al. 1991); atmospheric transformation lifetime was estimated to be 1 d (Kelly et al. 1994).

Surface water: t½ = 24–168 h, based on estimated aqueous aerobic biodegradation half-lives (Howard et al. 1991).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2954 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Ground water: t½ = 48–336 h, based on estimated aqueous aerobic biodegradation half-lives (Howard et al. 1991). Sediment:

Soil: t½ = 24–168 h, based on estimated aqueous aerobic biodegradation half-lives (Howard et al. 1991). Biota:

TABLE 14.1.4.1.1 Reported vapor pressures of catechol (1,2-dihydroxybenzene) at various temperatures

Stull 1947 Vonterres et al. 1955

summary of literature data ebulliometry

t/°CP/Pat/°CP/Pa 104.0 666.6 118.5 1333 118.3 1333 139.3 3333 134.0 2666 157.0 6666 150.6 5333 168.0 9999 161.7 7999 176.2 13332 176.0 13332 188.2 19998 197.7 26664 198.0 26664 221.5 53329 204.0 33330 245.5 101325 210.9 39997 213.3 43330 mp/°C 105 215.8 46663 220.0 53329 224.6 59995 228.2 66661 231.4 73327 235.0 79993 237.8 86659 241.0 93325 245.5 101327 bp/°C 243.823

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2955

Catechol (1,2-Dihydroxybenzene): vapor pressure vs. 1/T 8.0 Vonterres et al. 1955 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 245 °C m.p. = 104.6 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.4.1.1 Logarithm of vapor pressure versus reciprocal temperature for catechol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2956 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.4.2 3,5-Dichlorocatechol

OH OH

Cl Cl

Common Name: 3,5-Dichlorocatechol Synonym: Chemical Name: 3,5-dichlorocatechol CAS Registry No: 13673-92-2

Molecular Formula: C6H4Cl2O2, C6H2Cl2(OH)2 Molecular Weight: 179.001 Melting Point (°C): 83–84 (Varhaníčková 1995) Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constants, pKa: 7.78 (Varhaníčková 1995) Molar Volume (cm3/mol): 152.6 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 7910 (at pH 4.70. shake flask-HPLC/UV, Varhaníčková 1995) Vapor Pressure (Pa at 25°C):

Henry’s Law Constant (Pa m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW:

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2957

14.1.4.3 4,5-Dichlorocatechol

OH OH

Cl Cl

Common Name: 4,5-Dichlorocatechol Synonym: Chemical Name: 4,5-dichlorocatechol CAS Registry No: 3428-24-8

Molecular Formula: C6H4Cl2O2, C6H2Cl2(OH)2 Molecular Weight: 179.001 Melting Point (°C): 116–117 (Varhaníčková 1995) Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constant, pKa: 8.17 (Varhaníčková 1995) Molar Volume (cm3/mol): 152.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 12000 (at pH 3.20, shake flask-HPLC/UV, Varhaníčková 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations

0.408 (supercooled liquid PL, GC-RT correlation, Lei et al. 1999) log (PL/Pa) = –3680/(T/K) – 11.95, (GC-RT correlation, Lei et al. 1999)

Henry’s Law Constant (Pa m3/mol at 25°C):

0.00078 (calculated-PL/CL, Lei et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 2.51–2.93 (NCASI 1992)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

1.18–1.51 (estimated-KOW, NCASI 1992)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2958 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.4.4 3,4,5-Trichlorocatechol

OH OH

Cl Cl Cl Common Name: 3,4,5-Trichlorocatechol Synonym: 3,4,5-trichloro-1,2-benzenediol Chemical Name: 3,4,5-trichlorocatechol CAS Registry No: 56961-20-7

Molecular Formula: C6H3Cl3O2, C6HCl2(OH)2 Molecular Weight: 213.446 Melting Point (°C): 130 (Varhaníčková 1995) 134 (Lide 2003) Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constant, pKa: 6.95 (Varhaníčková 1995) Molar Volume (cm3/mol): 173.5 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 79.3 (Lei et al. 1999) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.085 (mp at 134°C)

Water Solubility (g/m3 or mg/L at 25°C): 511 (at pH 4.05, shake flask-HPLC/UV, Varhaníčková 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations):

0.106 (supercooled liquid PL, GC-RT correlation, Lei et al. 1999) log (PL/Pa) = –4135/(T/K) – 12.89, (GC-RT correlation, Lei et al. 1999)

Henry’s Law Constant (Pa m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 3.79, 3.71 (shake flask-GC, HPLC-RT correlation, Xie et al. 1984) 3.89, 3.17 (calculated-π constant, fragment constant, Xie et al. 1984) 3.71 (HPLC-RT correlation, Xie et al. 1984; quoted, Sangster 1993) 3.75 (quoted, NCASI 1992)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

2.16 (estimated-KOW, NCASI 1992)

Sorption Partition Coefficient, log KOC: –1 4.35 (sediment, KP = 22 ml·(kg of organic C) , batch sorption equilibrium, Remberger et al. 1986; Neilson et al. 1991)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2959

14.1.4.5 Tetrachlorocatechol

OH Cl OH

Cl Cl Cl

Common Name: Tetrachlorocatechol Synonym: 3,4,5,6-tetrachloro-1,2-benzenediol Chemical Name: tetrachlorocatechol CAS Registry No: 1198-55-6

Molecular Formula: C6H2Cl4O2, C6Cl4(OH)2 Molecular Weight: 247.891 Melting Point (°C): 194 (Lide 2003) Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constant, pKa: 5.83 (Varhaníčková 1995) Molar Volume (cm3/mol): 194.4 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 77.9 (Lei et al. 1999) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.022 (mp at 194°C)

Water Solubility (g/m3 or mg/L at 25°C): 70.5 (at pH 5.13, shake flask-HPLC/UV, Varhaníčková 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations):

0.068 (supercooled liquid PL, GC-RT correlation, Lei et al. 1999) log (PL/Pa) = –4070/(T/K) – 12.48, (GC-RT correlation, Lei et al. 1999)

Henry’s Law Constant (Pa m3/mol at 25°C):

0.035 (calculated-PL/CL, Lei et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 4.29 (shake flask-GC, Fujita et al. 1964) 4.27 (HPLC-RT correlation, Saarikoski & Viluksela 1982) 4.19, 4.27 (shake flask-GC, HPLC-RT correlation, Xie et al. 1984) 4.29 (recommended, Sangster 1993) 4.29 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

2.54 (estimated-KOW, NCASI 1992)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2960 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Sorption Partition Coefficient, log KOC: –1 4.56 (sediment, KP = 36.1 ml·(kg of organic C0 , batch sorption equilibrium, Remberger et al. 1986; Neilson et al. 1991)

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2961

14.1.4.6 Resorcinol (1,3-Dihydroxybenzene)

OH

OH

Common Name: Resorcinol Synonym: 1,3-benzenediol, m-dihydroxybenzene, m-hydroxyphenol, resorcin Chemical Name: 1,3-dihydroxybenzene CAS Registry No: 108-46-3

Molecular Formula: C6H6O2, C6H4(OH)2 Molecular Weight: 110.111 Melting Point (°C): 109.4 (Lide 2003) Boiling Point (°C): 276.5 (Lide 2003) Density (g/cm3): 1.2717 (Weast 1982–83)

Acid Dissociation Constant, pKa: 9.40 (Fieser & Fieser 1958; McLeese et al. 1979) Molar Volume (cm3/mol): 110.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 21.30 (Tsonopoulos & Prausnitz 1971) ∆ Entropy of Fusion, Sfus (J/mol K): 55.65 (Tsonopoulos & Prausnitz 1971) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.149 (mp at 109.4°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated): 2188900 (33.6°C, synthetic method, Walker et al. 1931) 1230000 (Fieser & Fieser 1958; Morrison & Boyd 1959) 1309000 (Tsonopoulos & Prausnitz 1971) 840000, 2290000 (0, 30°C, Verschueren 1983) 110000 (Dean 1985)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.3300* (extrapolated-regression of tabulated data, temp range 108.4–276.5°C, Stull 1947) 1333* (151.5°C, ebulliometry, measured range 151.5–276.5°C, Vonterres et al. 1955) 0.0118 (Knudsen method, calculated-Antoine eq., Hoyer & Peperle 1958) log (P/mmHg) = [–0.2185 × 16400.8/(T/K)] + 9.413304; temp range 108.4–276.5°C (Antoine eq., Weast 1972–73) 0.0280* (gas saturation, extrapolated-Antoine eq., measured range 55–106°C, Bender et al. 1983) log (P/mmHg) = [1– 549.041/(T/K)] × 10^{0.958295 – 5.78954 × 10–4·(T/K) + 6.46841 × 10–7·(T/K)2}; temp range 381.55–549.65 K (Cox eq., Chao et al. 1983) 0.0515 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 7.16673 – 2359.273/(180.962 + t/°C); temp range 151.5–216.5°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 0.0300 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.889 – 2231/(169.0 + t/°C), temp range 151–276°C (Antoine eq., Dean 1985, 1992)

0.0118 (PS, interpolated-Antoine eq.-I, temp range 10–50°C, Stephenson & Malanowski 1987) log (PS/kPa) = 11.425 – 4876/(T/K); temp range 283–323 K (Antoine eq.-I, solid, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2962 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (PL/kPa) = 6.52635 – 1918.1/(–128.65 + T/K); temp range 419–550 K (Antoine eq.-II, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.1041 – 1745.2/(–133.81 + T/K); temp range 392–463 K (Antoine eq.-III, Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa·m3/mol): 4.0 × 10–8 (calculated-P/C, this work)

Octanol/Water Partition Coefficient, log KOW: 0.80 (shake flask-UV, Fujita et al. 1964; Leo et al. 1969) 0.78 (20°C, shake flask-UV, Korenman 1972) 0.80, 0.77, 0.78 (Hansch & Leo 1979) 0.77 (shake flask-UV, Beezer et al. 1980) 0.88 (shake flask-HPLC both phases, Nahum & Horvath 1980) 0.36 (HPLC-RT correlation, Butte et al. 1981) 0.77 (shake flask, Log P Database, Hansch & Leo 1987) 0.82 (HPLC-RT correlation, Minnick et al. 1988) 0.79 (shake flask-UV, pH 2-8, Wang et al. 1989) 0.80 (COMPUTOX, Kaiser 1993) 0.80 (recommended, Sangster 1993) 0.72 ± 0.15 (solvent generated liquid-liquid chromatography SGLLC-correlation, Cichna et al. 1995) 0.80 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis: measured pseudo-first-order reaction rate constant k = 0.014 min–1 for direct photolysis in aqueous

solutions with t½ = 50.7 min. (Peijnenburg et al. 1992). Photooxidation: rate constant k > 3 × 105 M–1·s–1 for the reaction with ozone in water using 1 mM t-BuOH as scavenger at pH 2.0 and 20–23°C in water (Hoigné & Bader 1983a,b). Hydrolysis: Biodegradation: 95% degradation in 1–2 d in mixed bacteria cultures (Tabak et al. 1964); average rate of biodegradation k = 57.5 mg COD g–1·h–1 based on measurements of COD decrease using activated sludge inoculum with 20 d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982); 2 mM resorcinol solution degraded by strain Re10 within 4 d (Schnell et al. 1989). Biotransformation:

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environmental Compartments: Air:

Surface water: t½ = (50.7 ± 1.0) min for directly photolysis in aqueous solutions (Peijnenburg et al. 1992). Ground water: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2963

TABLE 14.1.4.6.1 Reported vapor pressures of resorcinol (1,3-dihydroxybenzene) at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Vonterres et al. 1955 Bender et al. 1983

summary of literature data ebulliometry gas saturation-IR

t/°CP/Pat/°CP/Pat/°CP/Pa solid 108.4 133.3 151.5 1333 55.35 0.86 138.0 666.6 175.0 3333 66.35 2.73 152.1 1333 190.3 6666 76.45 6.94 168.0 2666 201.7 9999 85.45 14.4 185.3 5333 210.0 13332 92.65 29.2 195.8 7999 221.7 19998 100.05 50.8 209.8 13332 230.1 26664 105.95 81.3 230.8 26664 237.0 33330 253.4 53329 240.2 39997 276.5 101325 246.0 43330 eq. 1a PS/Pa 248.0 46663 A 33.807 mp/°C 110.7 252.0 53329 B 11147 257.0 59995 261.0 66661 264.0 73327 267.0 79993 270.0 86659 273.0 93325 276.5 101325 bp/°C 276.205

Resorcinol (1,3-Dihydroxybenzene): vapor pressure vs. 1/T 6.0 Vonterres et al. 1955 Bender et al. 1983 5.0 Hoyer & Peperle 1957 Stull 1947 4.0

3.0 )aP/ 2.0 S P(gol 1.0

0.0

-1.0

-2.0 b.p. = 276.5 °C m.p. = 109.4 °C -3.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.4.6.1 Logarithm of vapor pressure versus reciprocal temperature for resorcinol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2964 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.4.7 Hydroquinone (1,4-Dihydroxybenzene)

OH

OH Common Name: Hydroquinone Synonym: 1,4-benzenediol, p-dihydroxybenzene, p-hydroxyphenol, quinol, hydroquinol Chemical Name: 1,4-dihydroxybenzene CAS Registry No: 123-31-9

Molecular Formula: C6H4(OH)2 Molecular Weight: 110.111 Melting Point (°C): 172.4 (Lide 2003) Boiling Point (°C): 285 (Weast 1982–83; Lide 2003) Density (g/cm3): 1.328 (15°C, Weast 1982–83)

Acid Dissociation Constant, pKa: 9.90 (McLeese et al. 1979) Molar Volume (cm3/mol): 110.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 27.11 (Tsonopoulos & Prausnitz 1971) ∆ Entropy of Fusion, Sfus (J/mol K): 60.67 (Tsonopoulos & Prausnitz 1971) ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.036 (mp at 172.4°C)

Water Solubility (g/m3 or mg/L at 25°C): 73700 (synthetic method, Walker et al. 1931) 80140 (shake flask-interferometry, Korman & La Mer 1936) 80000 (Fieser & Fieser 1958; Morrison & Boyd 1959) 80750 (selected, Tsonopoulos & Prausnitz 1971) 70000 (20–25°C, Geyer et al. 1981) 70000 (Rott et al. 1982; Verschueren 1983; Dean 1985) 86450 (Windholz 1983)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (132.4°C, summary of literature data, temp range 132.4–286.2°C, Stull 1947) log (P/mmHg) = [–0.2185 × 18734.0/(T/K)] + 10.309301; temp range 132.4–286.2°C (Antoine eq., Weast 1972–73) 0.00276* (gas saturation, extrapolated - Antoine eq., measured range 68–126°C, Bender et al. 1983) log (P/mmHg) = [1– 558.031/(T/K)] × 10^{0.941185 – 5.32724 × 10–4·(T/K) + 5.41185 × 10–7·(T/K)2}; temp range: 432.25–559.15 K, (Cox eq., Chao et al. 1983) 0.03940 (extrapolated - liquid, Antoine eq., Boublik et al. 1984) log (P/kPa) = 7.41617 – 2397.626/(194.743 + t/°C); temp range 159.1–286°C (Antoine eq. from reported exptl. data, Boublik et al. 1984)

0.00255 (PS, interpolated, Antoine eq., Stephenson & Malanowski 1987) log (PS/kPa) = 12.585 – 5420/(T/K); temp range 298–346 K (Antoine eq.-I, solid, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.00575 – 2321.92/(–95.235 + T/K); temp range 448–559 K (Antoine eq.-II, liquid, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2965

Henry’s Law Constant (Pa·m3/mol at 25°C): 3.89 × 10–6 (quoted, Meylan & Howard 1991) 5.91 × 10–6 (estimated-bond contribution, Meylan & Howard 1991) 4.00 × 10–6 (calculated-P/C, this work)

Octanol/Water Partition Coefficient, log KOW: 0.59 (Leo et al. 1971) 0.495 (shake flask-UV at pH 5.62, Umeyama et al. 1971) 0.59 (shake flask-GC, Kurihara et al. 1973) 0.61 (20°C, shake flask, Korenman 1974) 0.55, 0.59 (shake flask, OECD 1981 Guidelines, Geyer et al. 1984) 0.61 (HPLC-RT correlation, Nahum & Horvath 1980) 0.54 (shake flask-HPLC, Nahum & Horvath 1980) 0.99 (HPLC-RT correlation, Fujisawa & Masuhara 1981) 0.50 (shake flask, Log P Database, Hansch & Leo 1987) 0.50 (centrifugal partition chromatography CPC, Berthod et al. 1988) 0.59 (shake flask, Wang et al. 1989) 0.59 (recommended, Sangster 1993) 0.59 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF: 1.81 (green algae, Chlorella, exposure to 50 µg/L for 24 h, Geyer et al. 1981) 0.95 (calculated-S, Geyer et al. 1981) 1.60, 2.72 (golden orfe, activated sludge, Freitag et al. 1982) 1.60, 1.60 (algae, fish, Freitag et al. 1984) 1.54 (algae, wet weight basis after 1 d, Geyer et al. 1984)

0.602 (calculated-KOW, Geyer et al. 1984) 2.93 (activated sludge, Freitag et al. 1987)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis: 6 –1 –1 Oxidation: k = 1 × 10 M s for the reaction with RO2 radical at 30°C in aquatic systems with t½ = 12 min (Howard 1972; Hendry et al. 1974; quoted, Mill 1982); 2 –1 –1 k < 2 × 10 M s for the reaction with singlet oxygen at 25°C in aquatic systems with t½ > 100 yr (Foote 1976; Mill 1979; quoted, Mill 1982);

aqueous photooxidation t½ = 0.39–19.3 h in surface water, based on measured rate data for the reaction with alkyl peroxyl radical in aqueous solution (Mill 1982; selected, Howard et al. 1991);

photooxidation t½ = 6–26.1 h in air, based on estimated rate constant for the vapor-phase reaction with hydroxyl radical in air (Atkinson 1987; selected, Howard et al. 1991); 72.1 mg/L of total organic carbon (TOC) degraded to 98% TOC after 5 h of illumination with a 250 W tungsten lamp by photo-Fenton reaction (Ruppert et al. 1993). Hydrolysis: no hydrolyzable group (Howard et al. 1991). Biodegradation: 95% degradation in 1–2 d in mixed bacteria cultures (Tabak et al. 1964); average rate of biodegradation 54.2 mg COD g–1·h–1 based on measurements of COD decrease using activated sludge inoculum with 20 d of adaptation to the substrate (Pitter 1976; quoted, Scow 1982);

aqueous aerobic t½ = 24–168 h, based on aqueous screening test data (Ludzack & Ettinger 1960; Belly & Goodhue 1976; Gerike & Fischer 1979; selected, Howard et al. 1991);

aqueous anaerobic t½ = 96–672 h, based on estimated unacclimated aqueous aerobic biodegradation half- life (Howard et al. 1991). Biotransformation:

Bioconcentration Uptake (k1) and Elimination (k2) Rate Constants:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2966 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Half-Lives in the Environmental Compartments:

Air: photooxidation t½ = 6–26.1 h, based on estimated rate constant for the vapor-phase reaction with hydroxyl radical in air (Howard et al. 1991); atmospheric transformation lifetime was estimated to be 1 to 5 d (Kelly et al. 1994).

Surface water: aqueous photooxidation t½ = 0.39–19.3 h, based on measured rate data for the reaction with alkylperoxyl radical in aqueous solution (Mill 1982; quoted, Howard et al. 1991).

Ground water: t½ = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

TABLE 14.1.4.7.1 Reported vapor pressures of hydroquinone (1,4-dihydroxybenzene) at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log (P/mmHg) = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log (P/Pa) = A – B/(C + T/K) (3) log (P/mmHg) = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Vonterres et al. 1955 Bender et al. 1983

summary of literature data ebulliometry gas saturation-IR

t/°CP/Pat/°CP/Pat/°CP/Pa solid 132.4 133.3* 159.1 1333 67.85 0.46 153.3 666.6* 181.0 3333 79.95 1.70 163.5 1333* 199.1 6666 90.75 4.79 174.6 2666 210.0 9999 100.75 11.2 192.0 5333 218.5 13332 111.25 26.9 203.0 7999 230.1 19998 116.05 40.2 216.5 13332 239.2 26664 121.15 61.1 238.0 26664 246.1 33330 126.45 92.3 262.5 53329 252.0 39997 286.2 101325 254.8 43330 eq. 1a PS/Pa 257.2 46663 A 35.137 *solid 259.0 53329 B 12233 mp/°C 170.3 266.1 59995 269.5 66661 273.0 73327 276.7 79993 278.8 86659 282.0 93325 286.0 101325 bp/°C 276.17

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2967

Hydroquinone (1,4-Dihydroxybenzene): vapor pressure vs. 1/T 7.0 Vonterres et al. 1955 Bender et al. 1983 6.0 Stull 1947

5.0

4.0 )aP/

S 3.0 P(gol

2.0

1.0

0.0 b.p. = 285 °C m.p. = 172.4 °C -1.0 0.0016 0.002 0.0024 0.0028 0.0032 0.0036 1/(T/K) FIGURE 14.1.4.7.1 Logarithm of vapor pressure versus reciprocal temperature for hydroquinone.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2968 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.4.8 2-Methoxyphenol (Guaiacol)

OH O

Common Name: Guaiacol Synonym: 2-methoxyphenol, methylcatechol, o-hydroxyanisole, 1-hydroxy-2-methoxybenzene, pyrocatechol mono- methylether Chemical Name: o-methoxyphenol CAS Registry No: 90-05-1

Molecular Formula: C7H8O2, C6H4(OCH3)OH Molecular Weight: 124.138 Melting Point (°C): 32 (Stephenson & Malanowski 1987; Lide 2003) Boiling Point (°C): 204–206 205 (Lide 2003) Density (g/cm3): 1.129 (crystal) 1.112 (liquid, solidified at 28°C) Acid Dissociation Constant, pK: Molar Volume (cm3/mol): 134.7 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 5 J/mol K), F: 0.854 (mp at 32°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated): 143000–16700 (Windholz 1983) 16000 (15°C, Verschueren 1983) 15000 (room temp., Dean 1985) 18700, 1316 (15°C, 37°C, Yalkowsky et al. 1987) 24800 (25°C, shake flask-HPLC/UV, Tam et al. 1994)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 133.3* (52.4°C, summary of literature data, temp range 52.4–205°C, Stull 1947) 1333* (82.0°C, ebulliometry, measured range 82.0–205.0°C, Vonterres et al. 1955) log (P/mmHg) = [–0.2185 × 13425.8/(T/K)] + 9.027299; temp range 52.4–205°C (Antoine eq., Weast 1972–73) log (P/mmHg) = [1– 477.010/(T/K)] × 10^{0.858892 – 4.47192 × 10–4·(T/K) + 3.228549 × 10–7·(T/K)2}; temp range 355.15–478.15 K (Cox eq., Chao et al. 1983) 13.73 (Verschueren 1983) 8.88 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 5.40415 – 1121.391/(125.407 + t/°C); temp range 82–205°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 6.79 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 6.161 – 1051/(116.0 + t/°C); temp range 82–205°C (Antoine eq., Dean 1985, 1992) 24.5 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.44572 – 1786.15/(–76.43 + T/K); temp range 378–479 K (Antoine eq., Stephenson & Mal- anowski 1987) 21.00 (quoted, Sagebiel & Seiber 1993)

Henry’s Law Constant (Pa m3/mol at 25°C): 0.30 (calculated-P/C, Sagebiel et al. 1992)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2969

0.13, 0.11 (gas stripping-UV, headspace-GC, Sagebiel et al. 1992) 0.132 (bubble chamber, Sagebiel & Seiber 1993) 0.049 (calculated-group contribution, Lee et al. 2000) 0.0724 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 6.198 – 3144/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 1.33 (shake flask-UV, Umeyama et al. 1971) 1.35 (shake flask-UV, Korenman 1973) 1.33 (shake flask-UV, Norrington et al. 1975) 1.58 (Hansch & Leo 1979) 1.25 (HPLC-RT correlation, Butte et al. 1981) 1.32 (shake flask, Log P Database, Hansch & Leo 1987) 1.32 (recommended, LOGKOW databank, Sangster 1993) 1.32 (recommended, Hansch et al. 1995;)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 1.56 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

TABLE 14.1.4.8.1 Reported vapor pressures of 2-methoxyphenol (guaiacol) at various temperatures

Stull 1947 Vonterres et al. 1955

summary of literature data ebulliometry

t/°CP/Pat/°CP/Pa 52.4 133.3 82.0 1333 79.1 666.6 102.0 3333 92.0 1333 119.0 6666 106.0 2666 129.5 9999 121.6 5333 136.0 13332 131.0 7999 149.0 19998 144.0 13332 155.5 26664 162.7 26664 164.8 33330 184.1 53329 169.0 39997 205.0 101325 173.0 43330 175.9 46663 mp/°C 28.5 179.0 53329 184.7 59995 187.0 66661 191.0 73327 194.0 79993 198.0 86659 201.0 93325 205.0 101325 bp/°C 204.566

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2970 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

2-Methoxyphenol (Guaiacol): vapor pressure vs. 1/T 8.0 Vonterres et al. 1955 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 205 °C m.p. = 32 °C 0.0 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 14.1.4.8.1 Logarithm of vapor pressure versus reciprocal temperature for 2-methoxyphenol (guaiacol).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2971

14.1.4.9 3-Methoxyphenol

OH

O

Common Name: 3-Methoxyphenol Synonym: m-methoxyphenol, m-hydroxyanisole, resorcinol monomethylether Chemical Name: 3-methoxyphenol CAS Registry No: 150-19-6

Molecular Formula: CH3OC6H4OH Molecular Weight: 124.138 Melting Point (°C): < –17(Lide 2003) Boiling Point (°C): 244 (Stephenson & Malanowski 1987) Density (g/cm3):

Acid Dissociation Constant, pKa: Molar Volume (cm3/mol): 134.7 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 67800 (shake flask-HPLC/UV, Varhaníčková et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 0.262 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.12536 – 1572.51/(–136.16 + T/K); temp range 413–518 K (Antoine eq., Stephenson & Mal- anowski 1987)

Henry’s Law Constant (Pa-m3/mol at 25°C): 0.10 (estimated as per Sagebiel et al. 1992 data on 2-methoxyphenol)

Octanol/Water Partition Coefficient, log KOW: 1.58 (Leo et al. 1969; Hansch & Leo 1979) 1.47 (HPLC-k′ correlation, Minick et al. 1988) 1.58 (COMPUTOX databank, Kaiser 1993) 1.58 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 1.50 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2972 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.4.10 4-Methoxyphenol

OH

O

Common Name: 4-Methoxyphenol Synonym: p-methoxyphenol, p-hydroxyanisole, hydroquinone monomethylether Chemical Name: 4-methoxyphenol CAS Registry No: 150-76-5

Molecular Formula: CH3OC6H4OH Molecular Weight: 124.138 Melting Point (°C): 57 (Lide 2003) Boiling Point (°C): 243 (Stephenson & Malanowski 1987; Lide 2003) Density (g/cm3):

Acid Dissociation Constant, pKa: Molar Volume (cm3/mol): 134.7 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.485 (mp at 57°C)

Water Solubility (g/m3 or mg/L at 25°C): 40000 (Verschueren 1977, 1983) 19500 (shake flask-HPLC/UV, Varhaníčková et al. 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 0.033 (extrapolated-Antoine eq., Boublik et al. 1984) 0.556 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PS/kPa) = 12.27865 – 4631.266/(T/K); temp range 278–300 K (Antoine eq.-I, solid, Stephenson & Malanowski 1987) log (PL/kPa) = 6.8462 – 2111.03/(–81.56 + T/K); temp range 418–518 K (Antoine eq.-II, liquid, Stephenson & Malanowski 1987)

0.979 (supercooled liquid PL, GC-RT correlation, Lei et al. 1999) log (PL/Pa) = –3664/(T/K) + 12.28 (GC-RT correlation, Lei et al. 1999) 1.05 (supercooled liquid PL, calculated-group contribution, Lee et al. 2000)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 1.34 (shake flask-UV, Fujita et al. 1964) 1.37 (shake flask-UV at pH 7.45, Umeyama et al. 1971) 1.34, 1.33, 1.37 (lit. values, Hansch & Leo 1979) 1.47 (shake flask, Korenman et al. 1980) 1.62 (HPLC-k′ correlation, Miyake & Terada 1982) 1.24 (HPLC-k correlation, Minick et al. 1988) 1.34 (recommended, LOGKOW databank, Sangster 1993) 1.34 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2973

14.1.4.11 4-Chloroguaiacol

OH O

Cl Common Name: 4-Chloroguaiacol Synonym: 4-chloromethoxyphenol Chemical Name: 4-chloroguaiacol, 4-chloromethoxyphenol CAS Registry No: 16766-30-6

Molecular Formula: C7H7ClO2 Molecular Weight: 158.582 Melting Point (°C): liquid Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constant, pKa: Molar Volume (cm3/mol): 155.6(calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol·K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 5140 (shake flask-HPLC/UV, pH 2.8, Tam et al. 1994) 5604 (shake flask-GC/ECD, pH 2.8, Tam et al. 1994) 5370 (selected, Tam et al. 1994) 4856* (19°C, shake flask-HPLC/UV, measured range 10–50°C, Larachi et al. 2000) 5132; 13200, 10500 (quoted exptl.; calculated-group contribution, calculated-AQAUFAC, Lee et al. 2000)

Vapor Pressure (Pa at 25°C):

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 2.15 (calculated-fragment const., Niimi et al. 1990) 2.11–2.52 (literature range, NCASI 1992)

Bioconcentration Factor, log BCF: 0.0 (trout, 1–21 d exposure, BCF < 1, Niimi et al. 1990) 0.86–1.19 (quoted, NCASI 1992)

Sorption Partition Coefficient, log KOC:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2974 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.4.11.1 Reported aqueous solubilities of 4-chloroguaiacol at various temperatures

Larachi et al. 2000

shake flask-HPLC/UV

t/°CS/g·m–3 10.0 4395 11.0 4467 15.0 4548 19.0 4856 36.3 5406 41.0 6658 50.0 6213 54.5 7054 66.0 7040 70.5 8639 78.0 9171 85.6 9540 90.0 10255

4-Chloroguaiacol: solubility vs. 1/T -5.0

-5.5

-6.0

-6.5

x nl x -7.0

-7.5

-8.0

-8.5 Larachi et al. 2000 Tam et al. 1994 -9.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 14.1.4.11.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 4-chloroguaiacol.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2975

14.1.4.12 4,5-Dichloroguaiacol

OH O

Cl Cl

Common Name: 4,5-Dichloroguaiacol Synonym: 4,5-dichloro-2-methoxyphenol Chemical Name: 4,5-dichloroguaiacol CAS Registry No: 2460-49-3

Molecular Formula: C7H6Cl2O2 Molecular Weight: 193.028 Melting Point (°C): 69–70 Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constant, pKa: 8.26, 8.52 (20°C, regressions, Xie & Dyrssen 1984) Molar Volume (cm3/mol): 176.5 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 584 (shake flask-HPLC/UV, pH 5.6, Tam et al. 1994) 565 (shake flask-GC/ECD, pH 5.6, Tam et al. 1994) 3130, 1086 (supercooled liquid values: calculated-group contribution, calculated- AQUAFAC, Lee et al. 2000)

Vapor Pressure (Pa at 25°C):

1.54 (supercooled liquid PL, correlated-GC-RT, Bidleman & Renberg 1985)

Henry’s Law Constant (Pa·m3/mol at 25°C):

0.44 (calculated-PL/CL, Lei et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 3.04 (calculated-fragment const., Rekker 1977) 3.28 (Hansch & Leo 1979) 3.26 (shake flask-UV, Saarikoski & Viluksela 1982) 3.18 (shake flask-GC, Xie et al. 1984) 3.28 (HPLC-k′ correlation, Xie et al. 1984) 3.20, 3.19, 3.19 (shake flask-GC, regressions, Xie & Dryssen 1984) 3.26 (recommended, Sangster 1993)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB: 1.74–2.05, 2.03 (rainbow trout: 1–21 d exposure, mean value, Niimi et al. 1990) 1.18–1.51, 1.75 (quoted, estimated, NCASI 1992) 2.03 (Oncorhynhus mykiss, quoted, Devillers et al. 1996)

Sorption Partition Coefficient, log KOC:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2976 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Oxidation: Hydrolysis: Biodegradation: 5% reduction in concn (5 -M) after incubation with cells of Rhodococcus chlorophenolicus for 14 d (Neilson et al. 1991) Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2977

14.1.4.13 3,4,5-Trichloroguaiacol

OH O

Cl Cl Cl Common Name: 3,4,5-Trichloroguaiacol Synonym: 3,4,5-trichloro-2-methoxyphenol Chemical Name: 3,4,5-trichloroguaiacol CAS Registry No: 57057-83-7

Molecular Formula: C7H5Cl3O2 Molecular Weight: 227.473 Melting Point (°C): 85–86 Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constant, pKa: 7.55 (Könemann 1981) 7.43, 7.52, 7.56 (20°C, regressions, Xie & Dyrssen 1984) 7.90 (Leuenberger et al. 1985) 7.56 (Xie et al. 1986) Molar Volume (cm3/mol): 197.4 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 305 (shake flask-HPLC/UV, pH 5.9, Tam et al. 1994) 313 (shake flask-GC/ECD, pH 5.9, Tam et al. 1994)

Vapor Pressure (Pa at 25°C): 0.64 (supercooled liquid value, correlated-GC-RT, Bidleman & Renberg 1985)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.12 (calculated-P/C, Lei et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 3.77 (shake flask-UV, Saarikoski & Viluksela 1982) 4.11 (shake flask-GC, Xie et al. 1984) 4.18 (HPLC-k′ correlation, Xie et al. 1984) 4.14 (shake flask-GC, Xie & Dyrssen 1984) 3.77 (recommended, Sangster 1993) 3.77 (COMPUTOX databank, Kaiser 1993)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB: 1.60 (rainbow trout, Oikari et al. 1985) 2.06–2.51, 2.41 (rainbow trout: 1–21 d exposure, mean value, Niimi et al. 1990) 1.78–1.95 (field studies, bile of rainbow trout, Niimi et al. 1990) 2.47 (estimated, NCASI 1992) 2.20 (Oncorhynchus mykiss, Devillers et al. 1996)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2978 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Sorption coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Half-Lives in the Environment:

Biota: t½ = 1–2 d in bleak and t½ = 2 d in trout (Niimi et al. 1990).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2979

14.1.4.14 4,5,6-Trichloroguaiacol

OH Cl O

Cl Cl

Common Name: 4,5,6-Trichloroguaiacol Synonym: 2,3,4-trichloro-6-methoxyphenol Chemical Name: 4,5,6-trichloroguaiacol CAS Registry No: 2668-24-8

Molecular Formula: C7H5Cl3O2 Molecular Weight: 227.473 Melting Point (°C): 112–115 Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constant, pKa: 7.07 (Leuenberger et al. 1985) 7.20 (20°C, regressions, Xie & Dyrssen 1984) Molar Volume (cm3/mol): 197.4 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 57.0 (shake flask-HPLC/UV, pH 5.8, Tam et al. 1994) 50.0 (shake flask-GC/ECD, pH 5.8, Tam et al. 1994)

Vapor Pressure (Pa at 25°C): 0.249 (supercooled liquid value, correlated-GC-RT, Bidleman & Renberg 1985)

Henry’s Law Constant (Pa·m3/mol at 25°C): 8.82 (calculated-P/C) 0.14 (calculated-P/C, Lei et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 3.74 (shake flask-GC, Xie et al. 1984) 3.92, 3.91, 3.78 (HPLC-k′ correlation, calculated-π const., calculated-f const., Xie et al. 1984) 3.73, 3.74. 3.72 (shake flask-GC, regressions, Xie & Dyrssen 1984) 3.57 (calculated-fragment const., Niimi et al. 1990) 3.72, 3.92 (literature values, Sangster 1993) 3.82 (COMPUTOX databank, Kaiser 1993) 3.72, 3.92 (literature values, Hansch et al. 1995) 3.19 (from Panoma database or calculated from MedChem program, Sabljic et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF: 2.60 (bleaks, Renberg et al. 1980) 1.90–2.11 (rainbow trout, Oikari et al. 1985) 2.59 (bleaks, Walden et al. 1986)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2980 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

1.88–2.05, 1.97 (rainbow trout: 1–21 d exposure, mean value, Niimi et al. 1990) 1.78–1.95 (field studies, bile of trout, Niimi et al. 1990) 4.81 (fourhorn sculpin myoxocephalus quadricornis, bile BCF in brackish water, during 6–20 d exposure under continuous water-flow conditions, Wachtmeister et al. 1991) 2.22 (estimated, NCASI 1992) 1.97 (Oncorhynchus mykiss, Devillers et al. 1996)

Sorption Partition Coefficient, log KOC: –1 3.11 (sediment, KP = 1.3 ml·(kg of organic C) , batch sorption equilibrium, Remberger et al. 1986, quoted, Neilson et al. 1991) 2.80, 2.94 (soil, quoted, calculated-MCI χ and fragment contribution, Meylan et al. 1992) 2.80 (soil, calculated-MCI 1χ, Sabljic et al. 1995) –1 1.35 (sediment, KP = 22 ml kg of organic C , batch sorption equilibrium, Remberger et al. 1986; Neilson et al. 1991)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Oxidation: Hydrolysis: Biodegradation: 16% reduction in concn (5 -M) after incubation with cells of Rhodococcus chlorophenolicus for 14 d under aerobic conditions (Neilson et al. 1991) Biotransformation:

Bioconcentration, Uptake(k1) and Elimination (k2) Rate Constants Rates:

Half-Lives in the Environment:

Biota: t½ = 1 to 2 d in bleak (Niimi et al. 1990).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2981

14.1.4.15 3,4,5,6-Tetrachloroguaiacol

OH Cl O

Cl Cl Cl

Common Name: 3,4,5,6-Tetrachloroguaiacol Synonym: 2,3,4,5-tetrachloro-6-methoxyphenol Chemical Name: 3,4,5,6-tetrachloroguaiacol CAS Registry No: 2539-17-5

Molecular Formula: C7H4Cl4O2 Molecular Weight: 261.918 Melting Point (°C): 121–122 Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constant, pKa: 6.26 (Leuenberger et al. 1985) 6.19, 6.12, 6.26 (20°C, regressions, Xie & Dyrssen 1984) Molar Volume (cm3/mol): 218.3 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 27.0 (shake flask-HPLC/UV, pH 4.2, Tam et al. 1994) 25.0 (shake flask-GC/ECD, pH 4.2, Tam et al. 1994) 165, 28 (supercooled liquid values: calculated-group contribution, calculated-AQAUFAC, Lee et al. 2000)

Vapor Pressure (Pa at 25°C): 0.138 (supercooled liquid value, correlated-GC-RT, Bidleman & Renberg 1985)

Henry’s Law Constant (Pa·m3/mol at 25°C): 1.013 (Leuenberger et al. 1985; quoted, Barton 1987) 0.15 (calculated-P/C, Lei et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 4.29 (Saarikoski & Viluksela 1982) 4.45 (shake flask-GC, Xie et al. 1984) 4.76, 5.01, 4.52 (HPLC-k′ correlation, calculated-π const., calculated-fragment const., Xie et al. 1984) 4.41, 4.43, 4.42 (shake flask, regressions, Xie & Dyrssen 1984) 4.53 (Leuenberger et al. 1985) 4.28 (calculated-fragment, Niimi et al. 1990) 4.59 (COMPUTOX databank, Kaiser 1993) 4.42, 4.76 (literature values, Sangster 1993) 4.42 (selected, Hansch et al. 1995) 3.83 (from Panoma database or calculated from MedChem program, Sabljic et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF: 2.60 (bleaks, after 2 weeks exposure, Renberg et al. 1980) 1.60–2.18 (rainbow trout, Oikari et al. 1985)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2982 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

1.78–1.95 (bile of rainbow trout, field studies, Niimi et al. 1990) 2.04–2.38, 2.26 (rainbow trout: 1–21 d exposure, mean value, Niimi et al. 1990) 3.20 (roach, Niimi et al. 1990, quoted, NCASI 1992) 2.84 (estimated, NCASI 1992) 2.26 (Oncorhynchus mykiss, Devillers et al. 1996)

Sorption Partition Coefficient, log KOC: 2.85 (soil, Seip et al. 1986) –1 3.15 (sediment, KP = 1.5 ml·(kg of organic C) , batch sorption equilibrium, Remberger et al. 1986) 2.30 (soil, calculated-MCI χ, Bahnick & Doucette 1988) 2.85, 3.17 (soil, quoted, calculated-MCI χ and fragment contribution, Meylan et al. 1992) 2.85 (soil, calculated-MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Oxidation: Hydrolysis: Biodegradation: 100% reduction in concn (5 -M) after incubation with cells of Rhodococcus chlorophenolicus for 14 d under aerobic conditions (Neilson et al. 1991) Biotransformation:

Bioconcentration, Uptake(k1) and Elimination (k2) Rate Constants Rates:

Half-Lives in the Environment:

Biota: t½ < 10 d in trout liver (Niimi et al. 1990); t½ = 1–2 d in bleak (Niimi et al. 1990).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2983

14.1.4.16 Vanillin (4-Hydroxy-3-methoxybenzaldehyde)

O

O OH

Common Name: Vanillin Synonym: 4-hydroxy-3-methoxybenzaldehyde, vanillic aldehyde, methylprotocatechuic aldehyde Chemical Name: 4-hydroxy-3-methoxybenzaldehyde CAS Registry No: 121-33-5

Molecular Formula: C8H8O3, C6H3OHCHO(OCH3) Molecular Weight: 152.148 Melting Point (°C): 81.5 (Lide 2003) Boiling Point (°C): 285 (Weast 1982–83; Lide 2003) 284 (decomposes, Stephenson & Malanowski 1987) Density (g/cm3): 1.056 (Weast 1982–83)

Acid Dissociation Constant, pKa: 7.40 (Sangster 1993) 7.62 (Varhaníčková et al 1995) Molar Volume (cm3/mol): 156.9 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.279 (mp at 81.5°C)

Water Solubility (g/m3 or mg/L at 25°C): 2480 (at pH 4.50, shake flask-HPLC/UV, Varhaníčková et al 1995)

Vapor Pressure (Pa at 25°Cor as indicated and reported temperature dependence equations): 133.3 (107°C, summary of literature data, temp range 107–285°C, Stull 1947)

log (PS/kPa) = 10.997 – 4623/(T/K); temp range 288–333 K (solid, Antoine eq.-I, Stephenson & Malanowski 1987)

log (PS/kPa) = 10.93562 – 4535.023/(T/K); temp range 297–328 K (solid, Antoine eq.-II, Stephenson & Mal- anowski 1987)

log (PL/kPa) = 7.01734 – 3198.18/(–17.047 + T/K); temp range 380–558 K (Antoine eq.-III, Stephenson & Malanowski 1987) log (P/mmHg) = –25.583 – 4.086 × 103/(T/K) + 17.515·log (T/K) – 2.8177 × 10–2·(T/K) + 1.0912 × 10–5·(T/K)2; temp range 355–777 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 1.31 (shake flask-UV, Korenman & Sotnikova 1975) 1.21 (shake flask-UV, Holmes & Lough 1976) 1.21 (shake flask-HPLC, Bazaco & Coca 1989) 1.21 (recommended, Sangster 1993) 1.21 (recommended, Hansch et al. 1995)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2984 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2985

14.1.4.17 5-Chlorovanillin

O

Cl O OH

Common Name: 5-Chlorovanillin Synonym: Chemical Name: 5-chlorovanillin CAS Registry No: 19463-48-0

Molecular Formula: C8H7ClO3, C6H2ClCHO(OCH3) Molecular Weight: 185.593 Melting Point (°C): 165 (Weast 1982–83; Lide 2003) 169 (Varhaníčková et al 1995) Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constant, pKa 6.80 (Varhaníčková et al 1995) Molar Volume (cm3/mol): 177.8 (Le Bas method -calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.042 (mp at 165°C)

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 932 (at pH 4.55, shake flask-HPLC/UV, Varhaníčková et al 1995) 249* (24°C, shake flask-HPLC/UV, measured range 7.5–85.9°C, Larachi et al. 2000)

Vapor Pressure (Pa at 25°C):

Henry’s Law Constant (Pa m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 1.76 (NCASI 1992)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

0.59 (estimated-KOW, NCASI 1992)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2986 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.1.4.17.1 Reported aqueous solubilities of 5-chlorovanillin at various temperatures

Larachi et al. 2000

shake flask-HPLC/UV

t/°CS/g·m–3 7.5 171 12.0 171 16.8 184 19.8 168 24.0 249 30.0 286 36.5 505 46.0 629 50.0 760 59.0 932 65.0 1139 70.0 1267 80.0 1767 85.9 2314 ∆ –1 Sfus/(kJ mol ) = 89.1

5-Chlorovanillin: solubility vs. 1/T -8.0

-8.5

-9.0

-9.5

-10.0 ln x

-10.5

-11.0

-11.5 Larachi et al. 2000 Varhaníčková et al 1995 -12.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 14.1.4.17.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for 5-chlorovanillin.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2987

14.1.4.18 6-Chlorovanillin

O

Cl

O OH

Common Name: 6-Chlorovanillin Synonym: Chemical Name: 6-chlorovanillin CAS Registry No: 18268-76-3

Molecular Formula: C8H7ClO3, C6H2ClCHO(OCH3) Molecular Weight: 185.593 Melting Point (°C): 171–172 (Varhaníčková et al 1995) Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constant, pKa: 6.11 (Varhaníčková et al 1995) Molar Volume (cm3/mol): 177.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 132 (at pH 5.35, shake flask-HPLC/UV, Varhaníčková et al 1995)

Vapor Pressure (Pa at 25°C):

Henry’s Law Constant (Pa m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 1.76 (NCASI 1992)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

0.59 (estimated-KOW, NCASI 1992)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2988 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.4.19 5,6-Dichlorovanillin

O

Cl

Cl O OH Common Name: 5,6-Dichlorovanillin Synonym: Chemical Name: 5,6-dichlorovanillin CAS Registry No: 18268-69-4

Molecular Formula: C8H6Cl2O3, C6HCl2CHO(OCH3) Molecular Weight: 221.038 Melting Point (°C): 198–199 (Varhaníčková et al 1995) Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constant, pKa: 5.28 (Varhaníčková et al 1995) Molar Volume (cm3/mol): 198.7 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 23.0 (at pH 4.0, shake flask-HPLC/UV, Varhaníčková et al 1995)

Vapor Pressure (Pa at 25°C):

Henry’s Law Constant (Pa m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 2.47 (NCASI 1992)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

1.76 (estimated, KOW, NCASI 1996)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2989

14.1.4.20 Syringol (2,6-Dimethoxyphenol)

OH O O

Common Name: Syringol Synonym: 2,6-dimethoxyphenol Chemical Name: 2,6-dimethoxyphenol CAS Registry No: 91-10-1

Molecular Formula: C8H10O3, C6H3OH(OCH3)2 Molecular Weight: 154.163 Melting Point (°C): 53–56 (Aldrich catalog 1998–1999) 56.5 (Lide 2003) Boiling Point (°C): 261 (Aldrich catalog 1998–1999; Lide 2003) Density (g/cm3):

Acid Dissociation Constant, pKa: Molar Volume (cm3/mol): 166.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 18200 (shake flask-UV spectroscopy, Sagebiel & Seiber 1993)

Vapor Pressure (Pa at 25°C): 0.45 (GC-RT correlation, Sagebiel & Seiber 1993)

Henry’s Law Constant (Pa m3/mol at 25°C): 0.00271 (gas stripping-GC, Sagebiel & Seiber 1993)

Octanol/Water Partition Coefficient, log KOW: 1.15 (shake flask-UV, Fujita et al. 1964) 1.15 (recommended, Sangster 1993) 1.15 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2990 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.4.21 3-Chlorosyringol

OH O O

Cl

Common Name: 3-Chlorosyringol Synonym: 3-chloro-2,6-dimethoxyphenol Chemical Name: 3-chlorosyringol CAS Registry No: 18113-22-9

Molecular Formula:C8H9ClO3, C6H2(OH)Cl(OCH3)2 Molecular Weight: 188.608 Melting Point (°C): 35-36 (Varhaníčková et al 1995) Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constant, pKa: 9.09 (Varhaníčková et al 1995) Molar Volume (cm3/mol): 186.9 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 68.6 (Lei et al. 1999) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 5170 (at pH 4.30, shake flask-HPLC/UV, Varhaníčková et al 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations):

0.825 (supercooled liquid PL, GC-RT correlation, Lei et al. 1999) log (PL/Pa) = –3580/(T/K) – 11.93 (GC-RT correlation, Lei et al. 2001)

Henry’s Law Constant (Pa m3/mol at 25°C):

0.011 (calculated-PL/CL, Lei et al. 1999)

Octanol/Water Partition Coefficient, log KOW:

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2991

14.1.4.22 3,5-Dichlorosyringol

OH O O

Cl Cl

Common Name: 3,5-Dichlorosyringol Synonym: 3,5-dichloro-2,6-dimethoxyphenol Chemical Name: 3,5-dichlorosyringol CAS Registry No: 78782-46-4

Molecular Formula: C8H8Cl2O2, C6H(OH)Cl2(OCH3)2 Molecular Weight: 223.054 Melting Point (°C): 105–106 (Varhaníčková et al 1995) Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constants, pKa: 7.27 (Varhaníčková et al 1995) Molar Volume (cm3/mol): 207.8 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 70.4 (Lei et al. 1999) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 244 (at pH 5.80, shake flask-HPLC/UV, Varhaníčková et al 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations):

0.465 (supercooled liquid PL, GC-RT correlation, Lei et al. 1999) log (PL/Pa) = –3679/(T/K) – 12.01, (GC-RT correlation, Lei et al. 1999)

Henry’s Law Constant (Pa m3/mol at 25°C):

0.069 (calculated-PL/CL, Lei et al. 1999)

Octanol/Water Partition Coefficient, log KOW:

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2992 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.4.23 Trichlorosyringol

OH O O

Cl Cl Cl

Common Name: Trichlorosyringol Synonym: 3,4,5-trichloro-2,6-dimethoxyphenol Chemical Name: 3,4,5-trichloro-2,6-dimethoxyphenol CAS Registry No: 2539-26-6

Molecular Formula: C8H7Cl3O3, C6(OH)Cl3(OCH3)2 Molecular Weight: 257.499 Melting Point (°C): 122–123 (Varhaníčková et al 1995) Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constant, pKa: 7.73 (Varhaníčková et al 1995) Molar Volume (cm3/mol): 228.7 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 77.4 (Lei et al. 1999) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 100 (at pH 3.90, shake flask-HPLC/UV, Varhaníčková et al 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations):

0.077 (supercooled liquid PL, GC-RT correlation; Lei et al. 1999) log (PL/Pa) = –4014/(T/K) – 12.44, (GC-RT correlation, Lei et al. 1999)

Henry’s Law Constant (Pa m3/mol at 25°C):

0.022 (calculated-PL/CL, Lei et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 3.74 (shake flask-GC, Saarikoski & Viluksela 1982) 4.20 (quoted, NCASI 1992) 3.74 (recommended, Sangster 1993) 3.74 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

1.19 (estimated-KOW, NCASI 1992)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2993

14.1.4.24 2-Chlorosyringaldehyde

O

Cl

O O OH

Common Name: 2-Chlorosyringaldehyde Synonym: Chemical Name: 2-chlorosyringaldehyde CAS Registry No: 76341-69-0

Molecular Formula: C9H9ClO4, C6H(OH)Cl(CHO)(OCH3)2 Molecular Weight: 216.619 Melting Point (°C): 196–197 (Varhaníčková et al 1995) Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constant, pKa: 6.80 (Varhaníčková et al 1995) Molar Volume (cm3/mol): 209.1 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 77.7 (Lei et al. 1999) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 33 (at pH 5.30, shake flask-HPLC/UV, Varhaníčková et al 1995)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations):

0.079 (supercooled liquid PL, GC-RT correlation; Lei et al. 1999) log (PL/Pa) = –4058/(T/K) – 12.51, (GC-RT correlation, Lei et al. 1999)

Henry’s Law Constant (Pa m3/mol at 25°C):

0.069 (calculated-PL/CL, Lei et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 1.81 (quoted, NCASI 1992)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

0.62 (estimated-KOW, NCASI 1992)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 2994 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.1.4.25 2,6-Dichlorosyringaldehyde

O

Cl Cl

O O OH

Common Name: 2,6-Dichlorosyringaldehyde Synonym: Chemical Name: CAS Registry No: 76330-06-8

Molecular Formula: C9H8Cl2O4, C6(OH)Cl2(CHO)(OCH3)2 Molecular Weight: 251.064 Melting Point (°C): 195.6 (Varhaníčková et al 1995) Boiling Point (°C): Density (g/cm3):

Acid Dissociation Constant, pKa: Molar Volume (cm3/mol): 230.0 (Le Bas method-calculated at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 82.2 (Lei et al. 1999) ∆ Enthalpy of Sublimation, Hsubl (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 26.0 (at pH 4.60, shake flask-HPLC/UV, Varhaníčková et al. 1995)

Vapor Pressure (Pa at 25°C):

0.025 (supercooled liquid PL, GC-RT correlation; Lei et al. 1999) log (PL/Pa) = –4293/(T/K) – 12.79, (GC-RT correlation, Lei et al. 1999)

Henry’s Law Constant (Pa m3/mol at 25°C):

0.0037 (calculated-PL/CL, Lei et al. 1999)

Octanol/Water Partition Coefficient, log KOW: 2.52 (quoted, NCASI 1992)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

1.19 (estimated-KOW, NCASI 1992)

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2995 a pK (Continued) M 147.8 103.4 9.89 170.0 147.8 170.0 147.8 147.8 10.3 170.0 303.2 147.8 170.0 192.2 170.0 10.6 170.0 10.3 170.0 170.0 10.1 170.0 10.9 192.2 10.3 147.8147.8 10.6 10.2 192.2 147.8 10.6 /mol 3 cm at ρ ° C Le Bas Molar volume, V Molar volume, 124.28 147.8 10.4 134.98 170.0 10.3 105.26104.62 125.6106.25 125.6 125.6 10.26 10 10.26 20 MW/ 0.424 ratio, F Fugacity Fugacity at 25 ° C* ° C 228 1 220 1 232 0.346 265 0.354 248 1 220 0.338 b.p. ° C m.p. g/mol 94.111 40.89 181.87 0.698 88.99 Molecular weight, MW weight, )OH)OH 108.138)OH 108.138 108.138 31.03 12.24 34.77 191.04 202.27 201.98 0.873 1 0.802 3 3 3 O 220.351 71 OOO 150.217 150.217 150.217 22 16 B6.8 223 1 OOOO 122.164O 122.164O 122.164O 122.164 72.5O 122.164 24.5O 122.164 74.8O 136.190 45.8 216.9O 136.190 210.98 65.1O 136.190 63.4 211.1O 136.190 201.07 94.5O 0.342 136.190 1 63 O 227 136.190 221.74 72 O 0.325 122.164 0.625 73 O 233 108 122.164O 0.404 122.164 0.420 O 136.190 18 0.208 136.190 –4 248.5 136.190 45 136.190 7 204.5 22 0.153 218.4 15.5 217.9 62.3 1 232.6 1 213.5 0.636 230 1 1 0.431 OH (CH (CH (CH 24 14 14 14 10 10 10 10 10 10 12 12 12 12 12 12 10 10 10 12 12 12 12 5 4 4 4 formula H H H H H H H H H H H H H H H H H H H H H H H H H H H Molecular 8 8 8 8 8 8 9 9 9 9 9 9 8 8 8 9 9 9 9 6 6 6 6 15 10 10 10 C CAS no. CAS 526-75-0 C 105-67-998-87-4576-26-1 C 95-65-8 C 108-68-9 C C C 108-39-4 C 95-48-7 C 89–72–5 C 106-44-5 C 1638-22-8 C 88-69-7 C 620-17-7 C 644-35-9645-56-7 C C 527-60-6 C 697-82-52416-94-6 C C 527-54-8 C 496-78-6 C 99–89–8 C 90-00-6 C 108-95-2 C 123-07-9 C 88-18-6 C butyl-4-methylphenol 128-37-0 C t- Butylphenol Butylphenol Cresol (3-Methylphenol) Cresol Ethylphenol © 2006 by Taylor & Francis Group, LLC o- Cresol (2-Methylphenol) 2,3-Dimethylphenol 2- sec- 2,4,6-Trimethylphenol m- p- Cresol (4-Methylphenol) 2,6-Di- TABLE 14.2.1 TABLE properties of phenolic of physical Summary compounds Compound 2- tert- 2,4-Dimethylphenol 2,5-Dimethylphenol 2,6-Dimethylphenol 3,4-Dimethylphenol 3,5-Dimethylphenol 2,3,5-Trimethylphenol 2,3,6-Trimethylphenol 3-Methyl-5-ethylphenol o- Ethylphenol m- p- Ethylphenol 2-Propylphenol 4-Propylphenol 2-Isopropylpheonol 4-Isopropylphenol 4-Butylphenol Alkylphenols and other substituted phenols : Phenol 3,4,5-Trimethylphenol 2,4,5-Trimethylphenol 14.2 PLOTS AND QSPR TABLES SUMMARY

© 2006 by Taylor & Francis Group, LLC 2996 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals a pK M 192.2 281.0 192.0 166.1 7.66 192.0 155.0 145.2 6.44 281.0 281.0 236.6 281.0 214.4 214.4 258.8 258.8 192.2 10.1 162.6 166.1166.1 7.37 7.13 145.2145.2145.2 7.68 145.2 6.45 7.39 6.92 166.1 7.43 192.0 124.3 8.85 145.2 6.8 192.2 9.9 303.2 /mol 3 cm at ρ ° C Le Bas Molar volume, V Molar volume, 112.63 155.0 101.75 124.3 8.49 101.62 124.3 9.18 20 MW/ 0.729 0.241 0.854 0.666 0.433 0.474 ratio, F Fugacity Fugacity at 25 ° C* ° C 220 1 305 0.0414 288 0.206 206 0.474 210211253 0.636 233 0.464 0.379 0.379 247 0.370 237 0.192 b.p. ° C m.p. g/mol Molecular weight, MW weight, OOOO 163.001O 163.001O 163.001O 163.001 58 O 163.001 45 O 163.001 59 O 197.446 68.5 197.446 68 197.446 68 197.446 83.5 220 62 58 sublim 69 0.374 0.267 2 2 2 2 2 2 3 3 3 3 OOOO 150.217O 150.217O 150.217O 164.244 42.3O 206.324 61.5O 206.323 98 O 164.244 O 240 178.270 39 O 241 192.297 88 O 192.297 0.676 206.324 32 0.438 206.324O 220.351O 43 O 85.8 170.206 42 170.206 170.206 279 295 approx. 57.5 78 166 0.681 0.253 286 >300 0.480 0.302 OO 144.170 144.170O 95 121.5 134.174 285 B6 0.113 8 8 14 14 14 16 22 22 16 18 20 20 22 22 24 10 10 10 OHClOHClOHCl 128.556Cl 128.556Cl 128.556Cl Cl 9.4 32.6Cl 42.8Cl Cl 174.9Cl 214Cl 220Cl 1 0.842 0.669 10 4 4 4 4 4 4 4 4 4 3 3 3 3 H H formula H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H Molecular 10 10 9 10 10 10 11 14 14 11 12 13 13 14 14 15 12 12 12 6 6 6 6 6 6 6 6 6 6 6 6 6 C C C CAS no. CAS 933-78-8933-75-595-95-4 C C C 15950-66-0 C 128–39–2 C 95-57-8 C 108-43-0 C 106-48-9 C 99-71-8 C 135-19-3 C 90-15-3 C 1987–50–4 C 104-40-5 C 1138–52–9 C 1745-81-9 C 140–66–9 C 120-83-2 C 95-77-2 C 576-24-9 C 583-78-887-65-0 C 591-35-5 C C 1806–26–4 C 98-54-4 C 585-34-2 C 2446–69–7 C (Continued) butylphenol : tert- butylphenol butylphenol sec- tert- Butylphenol Butylphenol Octylphenol Butylphenol © 2006 by Taylor & Francis Group, LLC 2,4-Dichlorophenol 4-Phenylphenol (4-Hydroxybiphenyl)4-Phenylphenol 92-69-3 C 2-Naphthol Chlorophenols 2-Chlorophenol 3,4-Dichlorophenol 2,3,5-Trichlorophenol 2,3,6-Trichlorophenol 2,4,5-Trichlorophenol 3-Chlorophenol 2,3-Dichlorophenol TABLE 14.2.1 TABLE Compound 4-Chlorophenol 4- sec- 4- tert- 2-Methyl-5- 2,6-Di- 4-Hexylphenol 4-Heptylphenol 4-Octylphenol 4-Nonylphenol 1-Naphthol (3-Hydroxybiphenyl)3-Phenylphenol 588-51-8 C 2-Phenylphenol (2-Hydroxybiphenyl)2-Phenylphenol 90-43-7 C 3- tert- 2,5-Dichlorophenol 2,6-Dichlorophenol 3,5-Dichlorophenol 2,3,4-Trichlorophenol 3,5-Di- 3-Pentylphenol 2-Heptylphenol 4- tert- 2-Allylphenol

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2997 (Continued) 187.0 6.96 160.4 4.09 160.4 155.6 131.9 8.36 182.6 4.35 152.6 155.6 176.5 134.7 134.7 110.8 197.4 7.56 187.0 5.48 131.9 7.23 156.9 7.42 131.9 7.08 176.5 8.52 207.9 4.92 146.5 187.0 5.38 152.6 7.78 166.1 7.42 173.5194.4 6.95 5.83 134.7 177.8 6.80 218.3177.8 6.26 6.11 166.1 7.74 110.8 9.4 188.9 0.8 110.8 9.5 197.4 7.2 1 0.197 0.249 0.153 0.131 0.127 0.0850 0.0220 0.0423 0.807 0.419 0.362 0.267 0.255 0.0365 0.331 0.113 0.137 205243 0.854 0.485 246 0.370 275 0.180 235 0.387 139.109139.109139.109184.106 44.8184.106 96.8 113.6229.104 114.8198.133 216 108 122.5 279 sublim110.111 86.5 179.001 0.639 300 exp179.001 0.135 0.132 104.6213.446 83–84 247.891 116-117 0.111 110.111 94.06 134 110.111 245 194 109.4124.138 172.4124.138 0.166 124.138 276.5158.582 32 < B17158.582 285193.028 57 liquid 193.028 0.149 34-35 244227.473 85-86 69-79 0.0358 227.473 63-64 261.918152.148 112-115 1 185.593 121-122 185.593 81.5 165 171–172 285 0.279 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 5 5 7 5 2 2 3 3 OOOO 197.446O 197.446 231.891 231.891 69 101 231.891 116.5 70 115 sublim 0.127 (OH) (OH) O O O O O O O O O 3 3 4 4 4 O 266.336 174 310 dec 0.0345 2 2 (OH) 2 2 3 3 4 2 2 2 3 2 2 3 2 5 3 (OH) O O O O Cl Cl Cl Cl Cl ClOOHNO OHNO 142.583OHNO N N 67 N N (OH) Cl Cl (OH) (OH) ClO ClO Cl Cl Cl Cl Cl ClO ClO 4 8 8 8 8 3 3 2 2 2 7 4 4 4 4 4 3 6 4 2 2 4 4 7 7 6 6 5 5 4 7 7 H H H H H H H H H HCl H H H H H H H H H H H HCl Cl H H H H H H H H H H H 7 7 7 8 6 6 6 6 6 6 7 6 6 6 6 6 6 7 6 6 6 6 6 6 6 7 7 7 7 7 7 7 8 8 13673-9-23428-24-8 C C 90-05-1 C 57057-83-7 C 2668-24-8 C 4901-51-3 C 935-95-5 C 88-06-2 C 609-19-8 C 56961-20-7 C 554-84-7100-02-7 C C 16766-30-6 C 51-28-5329-71-5 C C 3753-23-5 C 88-75-5 C 19463-48-0 C 18268-69-4 C 58-90-3 C 121-33-5 C 2460-49-3 C 150-19-6 C 150-76-5 C 2460-49-3 C 59–50–7 C 87-86-5 C 2539-17-5 C 123-31-9 C 1198-55-6 C 534-52-1 C oxybenzenene) 120-80-9 C cresol : o- -cresol m © 2006 by Taylor & Francis Group, LLC (1,4-Dihydroxybenzene) and chloroguaiacols: 4,5-Dichloroguaiacol 3,4,5-Trichloroguaiacol 2,4,6-Trinitrophenol (Picric acid)2,4,6-Trinitrophenol 88-89-1 C 3-Methoxyphenol 4-Chloroguaiacol 2,3,4,5-Tetrachlorophenol Pentachlorophenol Hydroquinone 4-Methoxyphenol 4,6-Dichloroguaiacol 4,5,6-Trichloroguaiacol Vanillin 2,3,4,6-Tetrachlorophenol 2,3,5,6-Tetrachlorophenol 3-Nitrophenol 4-Nitrophenol 2,4-Dinitrophenol 2,6-Dinitrophenol 4,6-Dinitro- methoxyphenols Dihydroxybenzenes, Catechol (1,2-Dihydr 3,5-Dichlorocatechol 4,5-Dichlorocatechol (Guaiacol) 2-Methoxyphenol 5-Chloroguaiacol Tetrachloroguaiacol 5-Chlorovanillin 2,4,6-Trichlorophenol 4-Chloro- 3,4,5-Trichlorophenol 3,4,5-Trichlorocatechol Tetrachlorocatechol (1,3-Dihydroxybenzene)Resorcinol 108-46-3 C 6-Chlorovanillin Nitrophenols 2-Nitrophenol

© 2006 by Taylor & Francis Group, LLC 2998 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals a pK M 166.0 230.0 207.8228.7 7.27 7.73 186.9 9.09 198.7 5.28 209.1 6.80 /mol 3 cm at ρ ° C Le Bas Molar volume, V Molar volume, 20 MW/ 0.0212 0.789 0.0198 0.162 0.111 0.0208 ratio, F Fugacity Fugacity at 25 ° C* ° C b.p. ° C m.p. g/mol 221.038154.163188.608 198–199 223.054257.499 56.5 35–36 216.619 105–106 251.064 122–123 196–197 261 195.6 0.491 Molecular weight, MW weight, 3 3 3 4 3 4 O O O O 3 2 2 3 2 O Cl ClO Cl Cl ClO Cl 6 10 9 8 7 9 8 formula H H H H H H H Molecular 8 8 8 8 8 9 9 CAS no. CAS 78782–46–4 C 76330–06–8 C 76341–69–0 C 2539–26–6 C 18113–22–9 C 18113–22–9 C (Continued) = 56 J/mol K. J/mol = 56 fus S ∆ © 2006 by Taylor & Francis Group, LLC Syringol (2,6-Dimethoxyphenol)Syringol 91–10–1Trichlorosyringol 2-Chlorosyringaldehyde 2,6-Dichlorosyringaldehyde C 3-Chlorosyringol 3,5-Dichlorosyringol TABLE 14.2.1 TABLE Compound * Assuming 5,6-Dichlorovanillin

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 2999 /mol) /mol) 3 (Continued) 0.1775 0.1489 0.0564 0.0617 0.2741 0.0500 0.7511 0.0786 0.1335 0.1808 0.0290 0.3834 0.0860 0.5753 0.4022 0.4022 0.0487 0.0560 0.0217 0.0351 H/(Pa·m calculated P/C calculated Henry's law constant law Henry's OW 2.47 1.98 3.04 1.96 2.1 1.46 4.4 2.7 2.73 2.67 2.88 2.93 3.2 2.35 1.98 2.5 2.8 2.5 2.23 2.6 2.35 )log K )log 3 ,/(mol/m L )C 3 /(mol/m Solubility S C ° )C 3 580 3.861 20.11 800 5.874 28.24 960 6.391 14.59 617 4.107 4.107 3.65 Selected properties 1728 12.69 12.69 7980 65.32 102.7 2070 13.78 20.38 3263 23.96 55.59 26000 240.4 237.32 20000 184.9 230.6 22000 203.4 203.4 /Pa S/(g/m 4 1.24 2.43 2.144 1540 11.31 73.91 5 7.3 1.18 2314 16.99 8.05 6000 49.11 143.6 7.73 5 3.688 410 2.496 6.7 2.241 5100 41.753.76 103.3 5500 45.02 107.2 L 41 13 20.4 14042 114.9 114.9 19.58 1200 8.81 26.07 1 6 67.66 88360 938.9 1345 12.45 4423 32.48 32.48 10.68 3176 26.00 80.00 11.2 13.02 8795 71.99 71.99 32.82 6230 51.00 2.36 81.60 Vapor pressure Vapor /Pa P 47 S P operties of phenolic compounds at 25 : butylphenol tert- butylphenol Butylphenol Butylphenol Butylphenol Butylphenol Butylphenol Cresol (3-Methylphenol) Ethylphenol © 2006 by Taylor & Francis Group, LLC m- 2,4-Dimethylphenol Cresol (2-Methylphenol) o- Cresol 2,3-Dimethylphenol 2,5-Dimethylphenol 2,6-Dimethylphenol 3,4-Dimethylphenol 3,5-Dimethylphenol 2,3,5-Trimethylphenol TABLE 14.2.2 TABLE pr physical-chemical selected of Summary Compound Alkylphenols and other substituted phenols Phenol 2-Methyl-5- sec- 2,6-Di- 4- tert- 3- tert- 4- sec- Cresol (4-Methylphenol) p- Cresol 4-Isopropylphenol 4-Butylphenol 2- sec- 2- tert- 2,4,5-Trimethylphenol 2,4,6-Trimethylphenol 3,4,5-Trimethylphenol 3-Methyl-5-ethylphenol o- Ethylphenol m- 2-Propylphenol 4-Propylphenol 2-Isopropylphenol p- Ethylphenol

© 2006 by Taylor & Francis Group, LLC 3000 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals B3 /mol) /mol) 3 (Continued) 0.7743 0.0952 0.2045 0.6884 3.501 0.7451 6.256 2.764 0.3949 0.3949 0.0339 8.81×10 0.5207 0.4347 0.5687 H/(Pa·m calculated P/C calculated Henry's law constant law Henry's OW 2.4 2.5 2.17 3.2 4.3 3.7 5.76 5.61 2.64 3.13 4.45 4.15 2.86 4.17 2.7 2.84 3.2 3.72 3.37 3.15 3.2 )log K )log 3 ,/(mol/m L )C 3 /(mol/m Solubility S )C 3 5.43 0.0246 0.0362 4.48 9.8 0.0576 1.391 3.2 12.6 0.0611 0.0917 4.12 14 0.0678 0.2816 700 4.113 8.568 3.09 391 2.193 2.568 3.6 740 5.133 45.42 438 3.038 14.75 500500 2.532 2.532 9.484 5.848 3.8 3.69 948 4.801 12.98 434 2.198 5.941 3.69 450 2.279 4.808 3.8 9256 56.79 149.8 8215 50.40 106.3 7394 45.36 119.7 24650 191.7 191.7 /Pa S/(g/m 0.071 0.1 8.7 0.4 0.5 0.0338 3.74 2.31 6. 76 3.44 L 29.90 27000 210.0 313.9 41.57 22000 171.1 203.2 30 32.09 2625 16.10 43.06 18.87 4500 27.61 43.41 Vapor pressure Vapor 1 1 /Pa P 20 35 12 12 S 2.5 132 132 1.25 P Selected properties Selected (Continued) : butyl-4-methylphenol butylphenol Octylphenol © 2006 by Taylor & Francis Group, LLC 2,6-Dichlorophenol 2,5-Dichlorophenol 3,4-Dichlorophenol 3,5-Dichlorophenol 2,3,4-Trichlorophenol 2,3,5-Trichlorophenol 2,3,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 3,4,5-Trichlorophenol 2,3-Dichlorophenol 2,4-Dichlorophenol 4-Chlorophenol 3-Chlorophenol 2-Nonylphenol 3-Nonylphenol 4-Nonylphenol Chlorophenols 2-Chlorophenol tert- 2,6-Di- 4- tert- 2-Naphthol 4-Phenylphenol 2-Allylphenol TABLE 14.2.2 TABLE Compound tert- 3,5-Di- 2-Phenylphenol 4-Hexylphenol 2-Heptylphenol 4-Heptylphenol 4-Octylphenol 3-Pentylphenol 1-Naphthol

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 3001 B4 B5 B6 0.1612 0.1913 0.1042 4.01×10 1.18×10 5.44×10 1.646 0.1348 0.0789 0.1996 0.3548 0.1397 0.2319 1.58 1.34 0.59 0.80 1.33 0.88 2 1.8 1.91 2.15 1.67 1.33 9.000 3.26 6705 26 0.0993 0.8785 4.45 54 0.2374 1.733 3.74 14 0.0526 1.524 5.05 575 2.98 166100 0.7158 0.4312 5.637 3.292 4.8 4.9 310 1.363 5.344 3.77 708 3.668 8.754 2.86 222 1.120 4.500 2.12 183 0.7892 2.180 4.45 335 1.820 13.78 3960 24.97 30.94 5370 33.86 33.86 1080 7.764 12.15 6780019500 546.2 157.1 546.2 323.9 11550 83.03 421.5 13500 97.05 718.9 13750 60.02 540.7 0.14 1.72 0.79 0.78 1.34 45000 408.7 2462 0.23 0.64 0.12 0.071 70000 635.7 17758 0.78 20 B3 B3 825 24.4 24800 199.8 233.9 0.1 0.1 0.28 0.016 0.570 0.032 0.163 20. 0.0118 0.079 110000 999.0 4.15×10 : © 2006 by Taylor & Francis Group, LLC chloroguaiacols: 4,5,6-Trichloroguaiacol Tetrachloroguaiacol 2,3,4,6-Tetrachlorophenol 2,3,5,6-Tetrachlorophenol Pentachlorophenol 3-Methoxyphenol 4-Methoxyphenol 4-Chloroguaiacol 4,6-Dichloroguaiacol 3,4,5-Trichloroguaiacol 2,3,4,5-Tetrachlorophenol Resorcinol (1,3-Dihydroxybenzene) Hydroquinone (1,4-Dihydroxybenzene)2-Methoxyphenol (Guaiacol) 2.55×10 5-Chloroguaiacol 4,5-Dichloroguaiacol Nitrophenols 2-Nitrophenol 3-Nitrophenol 4-Nitrophenol 2,4-Dinitrophenol (Picric acid) 2,4,6-Trinitrophenol o- cresol 4,6-Dinitro- methoxyphenols and Dihydroxybenzenes, Catechol (1,2-Dihydroxybenzene)

© 2006 by Taylor & Francis Group, LLC 3002 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 14.2.3 Suggested half-life classes for phenolic compounds in various environmental compartments at 25°C

Compound Air class Water class Soil class Sediment class Alkylphenols and other substituted phenols: Phenol 2345 o-Cresol 1234 p-Cresol 1234 2,4-Dimethylphenol2345 Chlorophenols: 2,4-Dichlorophenol3356 2,4,5-Trichlorophenol 4467 2,4,6-Trichlorophenol 4467 2,3,4,6-Tetrachlorophenol 5567 Pentachlorophenol 5567 Nitrophenols: 2-Nitrophenol 3356 4-Nitrophenol 3356 2,4-Dinitrophenol4467 2,4,6-Trinitrophenol 4,6-Dinitro-o-cresol4467 Dihydroxybenzenes, methoxyphenols and chloroguaiacols: Catechol 2345 2-Methoxyphenol (Guaiacol) 2345 Tetrachloroguaiacol 4467

where,

Class Mean half-life (hours) Range (hours) 15< 10 2 17 (~ 1 day) 10–30 3 55 (~ 2 days) 30–100 4 170 (~ 1 week) 100–300 5 550 (~ 3 weeks) 300–1,000 6 1700 (~ 2 months) 1,000–3,000 7 5500 (~ 8 months) 3,000–10,000 8 17000 (~ 2 years) 10,000–30,000 9 ~ 5 years > 30,000

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 3003

solubility vs. Le Bas molar volume 4 Alkylphenols Chlorophenols 3 Nitrophenols Chloroguaiacols )

3 2 mc/lom(/

1 L C gol C

0

-1

-2 100 120 140 160 180 200 220 240 260 280 300 320 3 Le Bas molar volume, VM/(cm /mol) FIGURE 14.2.1 Molar solubility (liquid or supercooled liquid) versus Le Bas molar volume for phenolic compounds.

vapor pressure vs. Le Bas molar volume 3 Alkylphenols Chlorophenols Nitrophenols 2 Chloroguaiacols

aP/ 1 L P gol P

0

-1

-2 100 120 140 160 180 200 220 240 260 280 300 320 3 Le Bas molar volume, VM/(cm /mol) FIGURE 14.2.2 Vapor pressure (liquid or supercooled liquid) versus Le Bas molar volume for phenolic com- pounds.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3004 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log K vs. Le Bas molar volume 6 OW

5

4 WO

K gol K 3

2

Alkylphenols 1 Chlorophenols Nitrophenols Chloroguaiacols 0 100 120 140 160 180 200 220 240 260 280 300 320 3 Le Bas molar volume, VM/(cm /mol) FIGURE 14.2.3 Octanol-water partition coefficient versus Le Bas molar volume for phenolic compounds.

Henry's law constant vs. Le Bas molar volume 2

1

)lom/ 0 3 m.

aP( -1 /H gol /H

-2

Alkylphenols -3 Chlorophenols Nitrophenols Chloroguaiacols -4 100 120 140 160 180 200 220 240 260 280 300 320 3 Le Bas molar volume, VM/(cm /mol) FIGURE 14.2.4 Henry’s law constant versus Le Bas molar volume for phenolic compounds.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 3005

log K vs. solubility 6 OW

5

4 WO

K gol K 3

2

Alkylphenol 1 Chlorophenol Nitrophenols Chloroguaiacols 0 -2 -1 0 1 2 3 4 3 log CL/(mol/cm ) FIGURE 14.2.5 Octanol-water partition coefficient versus molar solubility (liquid or supercooled liquid) for phenolic compounds.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3006 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

14.3 REFERENCES Abd-El-Bary, M.F., Hamoda, M.F., Tanisho, S., Wakao, N. (1986) Henry’s constants for phenol over its diluted aqueous solution. J. Chem. Eng. Data 31, 229–230. Achard, C., Jaoui, M., Schwing, M., Rogalski, M. (1996) Aqueous solubilities of phenol derivatives by conductivity measurements. J. Chem. Eng. Data 41, 504–507. Addision, R.F., Paterson, S., Mackay, D. (1983) The predicted environmental distribution of some PCB replacements. Chemosphere 12, 827–834. Ahel, M., Giger, W. (1993a) Aqueous solubility of phenols and alkylphenol polyethoxylates. Chemosphere 26, 1461–1470. Ahel, M., Giger, W. (1993b) Partitioning of alkylphenols and alkylphenol polyethoxylates between water and organic solvents. Chemosphere 26, 1471–1478. Aldrich Chemical Company 1998–1999 Catalog (1998). Handbook of Fine Chemicals. Milwaukee, WI. Alexander, M., Aleem, M.I.H. (1961) Effect of chemical structure on microbial decomposition of aromatic herbicides. J. Agric. Food Chem. 2, 44–47. Alexander, M., Lustigman, B.K. (1966) Effect of chemical structure on microbial degradation of substituted benzenes. J. Agric Food Chem. 14, 410–413. Altschuh, J., Brüggemann, Santl, H., Eichinger, G., Piringer, O.G.(1999) Henry’s law constants for a diverse set of organic chemicals: Experimental determination and comparison of estimation methods. Chemosphere 39, 1871–1887. Aly, O.M., Faust, S.D. (1964) Studies on the fate of 2,4-dichlorophenol and ester derivatives in natural surface waters. J. Agric. Food Chem. 12, 451–456. Anbar, M., Neta, P. (1967) A compilation of specific bimolecular rate and hydroxyl radical with inorganic and organic compounds in aqueous solution. Int’l. J. Appl. Radiation Isotopes 18, 493–523. Andon, R.J.L., Biddiscombe, D.P., Cox, J.D., Handley, R., Harrop, D., Herington, E.F.G., Martin, J.F. (1960) Thermodynamic properties of organic oxygen compounds. Part 1. Preparation and physical properties of pure phenol, cresols, and xylenols. J. Chem. Soc. 5246–5254. Andersson, J.T., Schrăder, W. (1999) A method for measuring 1-octanol-water partition coefficients. Anal. Chem. 71, 3610–3614. Arbuckle, W.B. (1983) Estimating activity coefficients for use in calculating environmental parameters. Environ. Sci. Technol. 17, 537–542. Argese, E., Bettiol, C., Fiurin, G., Miana, P. (1999) Quantitative structure-activity relationships for the toxicity of chlorophenols to mammalian submitochondrial particles. Chemosphere 38, 2281–2292. Armenante, P.M., Kafkewitz, D., Lewandowski, G.A., Jou, C.-J. (1999) Anaerobic-aerobic treatment of halogenated phenolic com- pounds. Water Res. 33, 681–692. Ashworth, R.A., Howe, G.B., Mullins, M.E., Rogers, T.N. (1988) Air-water partition coefficients of organics in dilute aqueous solutions. J. Hazard. Materials 18, 25–36. Atkinson, R. (1985) Kinetics and mechanisms of the gas-phase reactions of hydroxyl radical with organic compounds under atmospheric conditions. Chem. Rev. 85, 69–201. Atkinson, R. (1987) Structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds. Int’l. J. Chem. Kinetics 19, 799–828. Atkinson, R. (1987) Estimation of OH radical rate constants and atmospheric lifetimes for polychlorobiphenyls, dibenzo-p-dioxins. Environ. Sci. Technol. 21, 305–307. Atkinson, R. (1989) Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J. Phys. Chem. Ref. Data Monograph 1, 1–246. Atkinson, R. (1990) Gas-phase tropospheric chemistry of organic compounds: A review. Atmos. Environ. 24A(1), 1–41.

Atkinson, R. (1991) Kinetics and mechanisms for the gas-phase reactions of the NO3 radical with organic compounds. J. Phys. Chem. Ref. Data 20(2), 459–507.

Atkinson, R. (2000) Atmospheric chemistry of VOCs and Nox. Atmos. Environ. 34, 2063–2101. Atkinson, R., Aschmann, S.M., Arey, J. (1992) Reactions of OH and NO3 radicals with phenol, cresols, and 2-nitrophenol at 296 ± 2 K. Environ. Sci. Technol. 26(70), 1397–1403.

Atkinson, R., Aschmann, S.M., Fitz, D.R., Winer, A.M., Pitts, Jr., J.N. (1982) Rate constants for the gas-phase reactions of O3 with selected organics at 296 K. Int’l. Chem. Kinetics 14, 13–18.

Atkinson, R., Aschmann, S.M., Pitts, Jr., J.N. (1988) Rate constants for the gas-phase reactions of the NO3 radicals with a series of organic compounds at 296 ± 2 K. J. Phys. Chem. 92, 3454–3457. Atkinson, R., Aschmann, S.M., Pitts, Jr., J.N. (1985) Atmospheric gas phase loss processes for chlorobenzene, benzotrifluoride, and 4-chlorobenzotrifluoride, and generalization of predictive techniques for atmospheric lifetimes of aromatic compounds. Arch. Environ. Contam. Toxicol. 14, 417–425. Atkinson, R., Carter, W.P.L. (1984) Kinetics and mechanisms of the gas-phase reactions of ozone with organic compounds under atmospheric conditions. Chem. Rev. 84, 437–470.

Atkinson, R., Carter, W.P.L., Plum C. N., Winer, A.M., Pitts, Jr., J.N. (1984) Kinetics of the gas-phase reactions of NO3 radicals with a series of aromatics at 296 ± 2 K. Int. J. Chem. Kinetics 16, 887–898.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 3007

Atkinson, R., Darnall, K.R., Lloyd, A.C., Winer, A.M., Pitts, J.N. Jr. (1979) Kinetics and mechanisms for the reaction of hydroxyl radicals with organic chemicals in the gas phase. Adv. Photochem. II, 375–488. Atkinson, R., Lloyd, A.C. (1984) Evaluation of kinetic and mechanism data for modeling of photochemical smog. J. Phys. Chem. Ref. Data 13, 315–444. Bahnick, D.A., Doucette, W.J. (1988) Use of molecular connectivity indices to estimate soil sorption coefficients for organic chemicals. Chemosphere 17, 1703–1715. Baker, M.D., Mayfield, C.I. (1980) Microbial and non-biological decomposition of chlorophenols and phenols in soil. Water Air Soil Pollut. 13, 411. Baker, M.D., Mayfield, C.I., Inniss, W.E. (1980) Degradation of chlorophenols in soil, sediment and water at low temperature. Water Res. 14, 1765–1771.

Baker, J.R., Mihelcic, J.R., Shea, E. (2000) Estimating persistent organic pollutants: limitations of correlations with KOW. Chemosphere, 41, 813–817. Banerjee, S., Howard, P.H. (1988) Improved estimation of solubility and partitioning through correction of UNIFAC-derived activity coefficients. Environ. Sci. Technol. 22, 839–841. Banerjee, S., Howard, P.H., Rosenberg, A.M., Dombrowski, A.E., Sikka, H., Tullis, D.L. (1984) Development of general kinetic model for biodegradation and its application to chlorophenols and related compounds. Environ. Sci. Technol. 18, 416–422. Banerjee, S., Yalkowsky, S.H., Valvani, S.C. (1980) Water solubility and octanol/water partition coefficients of organics. Limitation of the solubility-partition coefficient correlation. Environ. Sci. Technol. 14, 1227–1229. Barrows, M.E., Petrocelli, S.R., Macek, K.J. (1980) Bioconcentration and elimination of selected water pollutants by bluegill sunfish (lepomis macrochirus). In: Dynamic, Exposure, and Hazard Assessment of Toxic Chemicals. Haque, R., Editor, pp. 379–392, Ann Arbor Science, MI. Barton, D.A. (1987) Intermedia transport of organic compounds in biological wastewater treatment processes. Environ. Progress 6(4), 246–256. Battersby, N.S. (1990) A review of biodegradation kinetics in the aquatic environment. Chemosphere 12, 1242–1284.

Bazaco, J.F., Coca, C.M. (1989) Relation between the partition coefficient (log POW) and capacity factor (log k’) derived from reversed- phase HPLC of a series of benzaldehyde derivatives. Cienc. Ind. Farm. 8, 223–226. Becker, K.H., Biehl, H.M., Bruckmann, P., Fink, E.H., Führ, F., Klöpffer, W., Zellner, R., Zetsch, C. (1984) OH Reaction Constants and Tropospheric Lifetimes of Selected Environmental Chemicals. Kernforschungsanlage. Jülich, GmbH. November ISSN 0343–7639. Beezer, A.E., Hunter, W.H., Storey, D.E. (1980) Quantitative structure-activity relationships: the Van’t Hoff heats of transfer of resorcinol monoethers from water to n-octanol. J. Pharm. Pharmacol. 32. 815–819. Bellin, C.A., O’Connor, G.A., Jin, Y. (1990) Sorption and degradation of pentachlorophenol in sludge-amended soils. J. Environ. Qual. 19, 603–608. Belly, R.T., Goodhue, C.T. (1976) A radiorespirometric technique for measuring the biodegradation of specific components in a complex effluent. In: Proc. Int’l Biodegrad. Symposium 3rd., pp. 1130–1137. Beltrame, P., Beltrame, P.L., Cartini, P. (1984) Inhibiting action of chloro- and nitro-phenols on biodegradation of phenols: A structure- toxicity relationship. Chemosphere 13, 3–9. Beltrame, P., Beltrame, P.L., Cartini, P. (1984) Influence of feed concentration on the kinetics of biodegradation of phenol in a continuous stirred reactor. Water Res. 18(4), 403–407. Beltrame, P., Beltrame, P.L., Cartini, P. (1989) Lipophilic and electrophilic factors in the inhibiting action of substituted phenols on the biodegradation of phenol. Chemosphere 19(10/11), 1623–1627. Beltrame, P., Beltrame, P.L., Cartini, P., Guardione, D., Lanzetta, C. (1988) Inhibiting action of chlorophenols on biodegradation of phenol and its correlation with structural properties of inhibitors. Biotechn. & Bioeng. 31, 821–828. Beltrame, P., Beltrame, P.L., Cartini, P., Lanzetta, C. (1988) New results on the inhibiting action of chloro-and nitro-substituted phenols on the biodegradation of phenol. Chemosphere 17, 235–242. Bender, R., Bieling, V., Maurer, G. (1983) The vapor pressures of solids: anthracene, hydroquinone, and resorcinol. J. Chem. Thermodyn. 15, 585–594. Beneš, M., Dohnal, V. (1999) Limiting activity coefficients of some aromatic and aliphatic nitro compounds in water. J. Chem. Eng. Data 44, 1097–1102. Benitez, F.J., Beltran-Heredia, J., Acero, J.L., Rubio, F.J. (2000) Contribution of free radicals to chlorophenols decomposition by several advanced oxidation processes. Chemosphere, 41, 1271–1277. Berthod, A., Han, Y.I., Armstrong, D.W. (1988) Centrifugal partition chromatography. V. Octanol-water partition coefficients, direct and indirect determination. J. Liq. Chromatogr. 11, 1441–1456. Berthod, A., Menges, R.A., Armstrong, D.W. (1992) Direct octanol-water partition coefficient determination using counter-current chromatography. J. Liq. Chromatogr. 15, 2769–2785. Bevenue, A., Beckman, H. (1967) Pentachlorophenol: A discussion of its properties and its occurrence as a residue in human and animal tissues. Res. Rev. 19, 83–134. Biddiscombe, D.P., Martin, J.F. (1958) Vapor pressures of phenol and the cresols. Trans. Faraday Soc. 54, 1316–1322. Biddiscombe, D.P., Handley, R., Harrop, D., Head, J., Lewis, G.B., Martin, J.F., Sprake, H.S. (1963) Thermodynamic properties of organic oxygen compounds. Part XIII. Preparation and physical properties of ethyl phenols. J. Chem. Soc. 5764–5768.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3008 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Bidleman, T.F., Renberg, L. (1985) Determination of vapor pressures for chloroguaiacols, chloroveratroles, and nonylphenol by gas chromatography. Chemosphere 14, 1475–1481. Bintein, S., Devillers, J. (1994) QSAR for organic chemical sorption in soils and sediments. Chemosphere 28(6), 1171–1188. Birch, R.R., Fletcher, R.J. (1991) The application of dissolved inorganic carbon measurements to the study of aerobic biodegradability. Chemosphere 23, 507–524. Blackman, G.E., Parke, M.H., Garton, G. (1955) The physiological activity of substituted phenols. I. Relationships between chemical structure and physiological activity. Arch. Biochem. Biophys. 54(1), 55–71. Blades-Fillmore, L.A., Clement, W.H., Faust, S.D. (1982) The effect of sediment on the biodegradation of 2,4,6-trichlorophenol in Delaware River water. J. Environ. Sci. Health A17, 797–818. Blum, D.J.W., Suffet, I.H., Duguet, J.P. (1994) Quantitative structure-activity relationship using molecular connectivity for the activated carbon adsorption of organic chemicals in water. Water Res. 28, 687–699. Booth, H.S., Everson, H.E. (1948) Hydrotropic solubilities. Solubilities in 40 per cent sodium xylenesulfonate. Ind. Eng. Chem. 40(8), 1491–1493. Boublik, T., Fried, V., Hala, E. (1973) The Vapour Pressures of Pure Substances. Elsevier, Amsterdam, The Netherlands. Boublik, T., Fried, V., Hala, E. (1984) The Vapour Pressures of Pure Substances. 2nd ed., Elsevier, Amsterdam, The Netherlands. Bourquin, A.W. (1984) Biodegradation in the Estuarine-Marine Environments and the Genetically Altered Microbe. EPA-600/D- 84–051. NTIS PB84–151 315. U.S. EPA Environmental Research Lab., Gulf Breeze, Florida. 35pp. Boyd, S.A. (1982) Adsorption of substituted phenols by soil. Soil Sci. 134, 337–343. Boyd, S.A., Shelton, D.R., Berry, D., Tiedje, J.M. (1983) Anaerobic biodegradation of phenolic compounds in digested sludge. Appl. Environ. Microbiol. 46, 50–54. Brecken-Folse, J.A., Mayer, F.L., Pedigo, L.E., Marking, L.L. (1994) Acute toxicity of 4-nitrophenol, 2,4-dinitrophenol, terbufos and trichlorfon to grass shrimp (Palaemonetes spp.) and sheephead minnows (Cyprinodon variegatus) as affected by salinity and temperature. Environ. Toxicol. Chem. 13, 67–77. Briggs, G.G. (1981) Theoretical and experimental relationships between soil adsorption, octanol-water partition coefficients, water solubilities, bioconcentration factors and the parachor. J. Agric. Food Chem. 29, 1050–1059. Brix, R., Hvit, S., Carlsen, L. (2001) Solubility of nonylphenol and nonylphenol ethoxylates. On the possible role of micelles. Chemosphere 44, 759–763. Brockway, D.L., Smith, P.D., Stancil, F.E. (1984) Fates and effects of pentachlorophenol in hard- and soft-water microcosms. Chemosphere 13, 1363–1377. Brooke, D.N., Dobbs, A.J., Williams, N. (1986) Octanol/water partition coefficients (P): measurement, estimation, and interpretation, particularly for chemicals with P >105. Ecotoxicol. Environ. Safety 11, 251–260. Buchholz, K.D., Pawliszyn, J. (1994) Optimization of solid-phase microextraction conditions for determination of phenols. Anal. Chem. 66, 160–167. Budavari, S., Editor (1989) The Merck Index. An Encyclopedia of Chemicals, Drugs and Biologicals. 11th Edition, Merck & Co. Rahway, New Jersey. Bunce, N.J., Nakai, J.S., Yawching, M. (1991) A model for estimating the rate of chemical transformation of a VOC in the troposphere by two pathways: photolysis by sunlight and hydroxyl radical attack. Chemosphere 22, 305–315. Butte, W., Fooken, C., Klussman, R., Schulller, D. (1981) Evaluation of lipophilic properties for a series of phenols, using reversed- phase high-performance liquid chromatography and high-performance thin-layer chromatography. J. Chromatogr. 214, 59–67. Butte, W., Willing, A., Zauke, G.-P. (1987) Bioaccumulation of phenols in zebrafish determined by a dynamic flow through test. In: QSAR in Environmental Toxicology II, pp.43–53. Kaiser, K.L.E., Editor, D. Reidel Publishing Company, Dordrecht, the Netherlands. Bysshe, S.E. (1982) Bioconcentration factor in aquatic organisms. In: Handbook of Chemical Property Estimation Methods. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, Chapter 5, Ann Arbor Science, MI. Call, D.J., Brooke, L.T., Lu, P.Y. (1980) Uptake, elimination and metabolism of three phenols by fathead minnows. Arch. Environ. Contam. Toxicol. 9, 699–714. Callahan, M.A., Slimak, M.W., Gabel, N.W., May, I.P., Fowler, C.F., Freed, J.R., Jennings, P., Durfee, R.L., Whitmore, F.C., Maestri, B., Mabey, W.R., Holt, B.R., Gould, C. (1979) Water Related Environmental Fate of 129 Priority Pollutants. EPA-440–4- 79–029a,b. Versar, Springfield, VA. Campbell, J.R., Luthy, R.G. (1985) Prediction of aromatic solute partition coefficient using the UNIFAC group contribution model. Environ. Sci. Technol. 19, 980–985. Capel, P.D., Larson, S.J. (1995) A chemodynamic approach for estimating losses of target organic chemicals from water during sample holding time. Chemosphere 30, 1097–1107. Carlberg, G.E., Martinsen, K., Kringstad, A., Gjessing, E., Grande, M., Källqvist, T., Skåre, J.U. (1986) Influence of aquatic humus on the bioavailability of chlorinated micropollutants in Atlantic salmon. Arch. Environ. Comtam. Toxicol. 15, 543–548. Carlier, P., Hannachi, H., Mouvier, G. (1986) The chemistry of carbonyl compounds in the atmosphere-A review. Atmos. Environ. 20(11), 2079–2099. Carlson, R.M., Carlson, R.E., Kopperman, H.L. (1975) Determination of partition coefficients by liquid chromatography. J. Chro- matogr. 107, 219–223. Carswell, T.G., Nason, H.K. (1938) Properties and uses of pentachlorophenol. Ind. Eng. Chem. 30, 622–626.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 3009

Carter, W.P., Winer, A.M., Pitts, J.N., Jr. (1981) Major atmospheric sink for phenol and the cresols. Reaction with nitrate radical. Environ. Sci. Technol. 15, 829–834. CESARS (1988) Chemical Evaluation Search and Retrieval System. Ontario Ministry of the Environment and Michigan Department of Natural Resources. Cessna, A.J., Grover, R. (1978) Spectrophotometric determination of dissociation constants of selected acidic herbicides. J. Agric. Food Chem. 26, 289. Chambers, C.W., Tabak, H.H., Kabler, P.W. (1963) Degradation of aromatic compounds by phenol-adapted bacteria. J. Water Pollut. Control Fed. 35, 1517–1528. Chao, J., Lin, C.T., Chung, T.H. (1983) Vapor pressure of coal chemicals. J. Phys. Chem. Ref. Data 12(4), 1034–1063. Chickos, J.S., Acree, Jr., W.E., Liebman, J.F. (1999) Estimating solid-liquid phase change enthalpies and entropies. J. Phys. Chem. Ref. Data 28, 1535–1673. Chin, Y.-P., Weber Jr., W.J., Voice, T.C. (1986) Determination of partition coefficients and aqueous solubilities by reverse phase chromatography-II. Water Res. 20, 1443–1450. Chiou, C.T., Freed, V.H., Peters, W., Kohnert, R.L. (1980) Evaporation of solutes from water. Environ. Int’l. 3, 231–236. Chiou, C.T., Porter, P.E., Schmedding, D.W. (1983) Partition equilibria of nonionic organic compounds between soil organic matter and water. Environ. Sci. Technol. 17, 227–231. Chudoba, J., Alboková, J., Lentge, B., Kümmel, R. (1989) Biodegradation of 2,4-dichlorophenol by activated sludge microorganisms. Water Res. 23, 1439–1442. Cichna, M., Markl, P., Huber, J.F.K. (1995) Determination of true octanol-water partition coefficients by means of solvent generated liquid-liquid chromatography. J. Pharmaceu. Biomed. Anal. 11, 339–351. Connell, D.W., Markwell, R.D. (1990) Bioaccumulation in the soil to earthworm system. Chemosphere 20(1–2), 91–100. Crossland, N.O., Wolff, C.J.M. (1985) Fate and biological effects of pentachlorophenol in outdoor ponds. Environ. Toxicol. Chem. 4, 73–86. Daccomo, C. (1885) Ber. Deutsch. Chem. Ges. 18, 1163–1164. Dallos, A., Wienke, G., Ilchman, A., Gmehling, J. (1993) Vauausberechnung von octanol/wasser-vertilungskoeffizienten mit hilfe der UNIFAC-method. Chem.-Ing.-Tech. 65(2), 201–203. D’Amboise, M., Hanai, T. (1982) Hydrophobicity and retention in reversed phased liquid chromatography. J. Liq. Chromatogr. 5, 229–244. Dauble, D.D., Carlile, D.W., Hanf, Jr., R.W. (1986) Bioaccumulation of fossil fuel components during single-compound and complex- mixture exposures of daphnia magna. Bull. Environ. Contam. Toxicol. 37, 125–132. Davis, S.S., Elson, G., Tomlinson, E., Harrison, G., Dearden, J.C. (1976) The rapid determination of partition coefficient data using a continuous solvent extraction system. (AKUFVE). Chem. Ind. (London), 16, 677–683. de Kreuk, J.F., Hanstveit, A.O. (1981) Determination of the biodegradability of the organic fraction of chemical wastes. Chemosphere 10, 561–575. Dean, J. (1985) Lange’s Handbook of Chemistry. 13th ed., McGraw-Hill, New York. Dean, J. (1992) Lange’s Handbook of Chemistry. 14th ed., McGraw-Hill, New York. Dean, J.R., Tomlinson, W.R., Makovskaya, V., Cumming, R., Hetheridge, M., Comber, M. (1996) Solid-phase microextraction as a method for estimating the octanol-water partition coefficient. Anal. Chem. 68, 130–133. Dearden, J.C., Bresnen, G.M. (1981) Thermodynamics of partitioning - some considerations of intramolecular hydrogen bonding and steric effects. J. Pharm. Pharmocol., Suppl., 33, 107p. Delaune, R.D., Gambrell, R.P., Reddy, K.S. (1983) Fate of pentachlorophenol in estuarine sediment. Environ. Pollut. Series B6, 297–308. Delle Site, A. (2001) Factors affecting sorption of organic compounds in natural sorbent/water systems and sorption coefficients for selected pollutants. A review. J. Phys. Chem. Ref. Data 30, 187–439. De Paolis, F., Kukkonen, J. (1997) Binding of organic pollutants to humic and fulvic acids: Influence of pH and the structure of humic material. Chemosphere 34, 1693–1704. Devillers, J., Bintein, S., Donine, D. (1996) Comparison of BCF models based on log P. Chemosphere 33, 1047–1065. Dobbs, A.J., Grant, C. (1980) Pesticide volatilisation rate: A new measurement of the vapour pressure of pentachlorophenol at room temperature. Pestic. Sci. 11, 29–32. Doedens, J.D., Editor (1967) Lange’s Handbook of Chemistry. McGraw-Hill, New York. Dohnal, V., Fenclová, D. (1995) Air-water partitioning and aqueous solubility of phenols. J. Chem. Eng. Data 40, 478–483. Dorfman, L.M., Adams, G.E. (1973) Reactivity of the Hydroxyl Radical in Aqueous Solution. NSRD-NDB-46. NTIS COM-73–50623. National Bureau of Standards, Washington D.C. 51 pp. Drahonovsky, J., Vacek, Z. (1971) Dissoziationskonstanten und austauscherchromatographie chlorierter phenole. Coll. Czech. Chem. Commun. 36(10), 3431–3440. Dreisbach, P.R. (1955) Physical Chemical Properties of Chemical Compounds. No. 15, Am. Chem. Soc. Adv. Chemistry Series. American Chemical Society, Washington, DC. Dreisbach, R.,R., Martin, A.A.I. (1949) Physical data on some organic compounds. Ind. Eng. Chem. 41, 2875–2878. Dreisbach, R.R., Shrader, A.A.I. (1949) Vapor pressure-temperature data on some organic compounds. Ind. Eng. Chem. 41, 2879–2880. fEadsforth, C.V. (1986) Application of reverse-phase HPLC for the determination of partition coefficients. Pest. Sci. 17(3), 311–325.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3010 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Eadsforth, C.V., Moser, P. (1983) Assessment of reversed phase chromatographic methods for determining partition coefficients. Chemosphere 12, 1459–1475. Edney, E.O., Kleindienst, T.E., Corse, E.W. (1986) Room temperature rate constants for the reaction of OH with selected chlorinated and oxygenated hydrocarbons. Int. J. Chem. Kinet. 18, 1355–1371. El Tayar, N, Tsai, R.-S., Vallat, P., Altomare, C., Testa, B. (1991) Measurement of partition coefficients by various centrifugal partition chromatographic techniques. J. Chromatogr. 556, 181–194. Ericksen, L.V., Dobbert, E. (1955) Das gegeseitige löslichkeitsverhalten von alkylphenolen und wasser. Brennstoff-Chemie 36(21/22), 338–345. Farquharson, M. E., Gage, J. C., Northover, J. (1958) The biological action of chlorophenols. Brit. J. Pharmacol. 13, 20. Feigenbrugel, V., Le Calvé, S., Mirabel, P., Louis, F. (2004) Henry’s law constant measurements for phenol, o-, m-, and p-cresol as a function of temperature. Atmos. Environ. 38, 5577–5588. Firestone, D. (1977) Chemistry and Analysis of Pentachlorophenol and its Contaminants. Division of Chemistry and Physics, Bureau of Foods. FDA By-Lines No.2, September 1977. Fieser, L.F., Fieser, M. (1958) Introduction to Organic Chemistry. D.C. Heath & Co., Boston, Mass. Foote, C.S. (1976) Free Radicals in Biology. Pryor, W.A., Editor, Academic Press, New York. Freitag, D., Scheunert, I., Korte, F. (1987) Correlation between the bioconcentration potential of organic environmental chemicals in humans and their n-octanol/water partition coefficients. Chemosphere 16, 239–252. Freitag, D., Ballhorn, L., Geyer, H., Körte, F. (1985) Environmental hazard profile of organic chemicals. An experimental method for assessment of the behavior of chemicals in the ecosphere by simple laboratory tests with C-14 labelled chemicals. Chemosphere 14, 1589–1616. Freitag, D., Geyer, H., Kraus, A., Viswanathan, R., Kotzias, D., Attar, A., Klein, W. Körte, F. (1982) Ecotoxicological profile analysis. VII. Screening chemicals for their environmental behavior by comparative evaluation. Ecotoxicol. Environ. Saf. 14, 60–81. Fujisawa, S., Masuhara, E. (1981) Determination of partition coefficients of acrylates, methacrylates, and vinyl monomers using high performance liquid chromatography (HPLC). J. Biomed. Mat. Res. 15, 787–793. Fujita, T., Iwasa, J., Hansch, C. (1964) A new substituent constant derived from partition coefficients. J. Am. Chem. Soc. 86, 5175–5180.

Gaffney, J.S., Streit, G.E., Spall, W.D., Holl, J.H. (1987) Beyond acid rain. Do soluble oxidants and organic toxins interact with SO2 and NO2 to increase ecosystem effects? Environ. Sci. Technol. 21(6), 519–524. Garst, J.E. (1984) Accurate, wide-range, automated, high-performance liquid chromatographic method for the estimation of octanol/water partition coefficients. II: Equilibrium in partition coefficient measurements, additivity of substituent constants, and correlation of biological data. J. Pharm. Sci. 73(11), 1623–1629. Garst, J.E., Wilson, W.C. (1984) Accurate, wide-range, automated, high-performance liquid chromatographic method for the estima- tion of octanol/water partition coefficients. I: Effect of chromatographic conditions and procedure variables on accuracy and reproducibility of the method. J. Pharm. Sci. 73(11), 1616–1623. Gawlik, B.M., Feicht, E.A., Karcher, W., Kettrup, A., Muntau, H. (1998) Application of the European soil set (Eurosoils) to a HPLC- screening method for the estimation of soil adsorption coefficients of organic compounds. Chemosphere 36, 2903–2919. Gawlik, B.M., Kettrup, A., Muntau, H. (1999) Characterisation of a second generation of European reference soils for sorption studies in the framework of chemical testing - Part II: soil adsorption behaviour of organic chemicals. Sci. Total Environ. 229, 109–120. Gawlik, B.M., Kettrup, A., Muntau, H. (2000) Estimation of soil adsorption coefficients of organic compounds by HPLC screening using the second generation of the European reference soil set. Chemosphere 41, 1337–1347. GEMS (1986) Graphical Exposure Modeling System. FAP. Fate of Atmospheric Pollution. Gerike, P., Fischer, W.K. (1979) A correlation study of biodegradability determinations with various chemicals in various tests. Ecotoxicol. Environ. Saf. 3, 159–173. Geyer, H., Kraus, A.G., Klein, W. (1980) Relationship between water solubility and bioaccumulation potential of organic chemicals in rats. Chemosphere 9, 277–291. Geyer, H., Viswanathan, R., Freitag, D., Körte, F. (1981) Relationship between water solubility of organic chemicals and their bioaccumulation by the Alga chlorella. Chemosphere 10, 1307–1313. Geyer, H., Sheehan, P., Kotzias, D., Freitag, D., Körte, F. (1982) Prediction of ecotoxicological behaviour of chemicals: relationship between physico-chemical properties and bioaccumulation of organic chemicals in the mussel Mytilus edulis. Chemosphere 11, 1121–1134. Geyer, H., Politzki, G., Freitag, D. (1984) Prediction of ecotoxicological behaviour of chemicals: relationship between n-octanol/water partition coefficient and bioaccumulation of organic chemicals by Alga chlorella. Chemosphere 13, 269–284. Geyer H.J., Scheunert, I., Körte, F. (1987) Correlation between the bioconcentration potential of organic environmental chemicals in humans and their n-octanol/water partition coefficients. Chemosphere 16, 239–252. Geyer, H., Scheunert, I., Bruggemann, R., Steinberg, C., Körte, F., Dettrup, A. (1991) QSAR for organic chemical bioconcentration in daphnia, algae, and mussels. Sci. Tot. Environ. 109/110, 387–394. Gibson, S.A., Suflita, J.M. (1986) Extrapolation of biodegradation results to ground water aquifers: Reductive dehalogenation of aromatic compounds. Appl. Environ. Microbiol. 52, 681–688. Gluck, S.J., Martin, E.J. (1990) Extended octanol-water partition coefficient determination by dual-mode centrifugal partition chromatography. J. Liq. Chromatogr. 13(18), 3559–3570.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 3011

Goerlitz, D.F., Troutman, D.E., Godsy, E.M., Franks, B.J. (1985) Migration of wood-preserving chemicals in contaminated ground- water in sand aquifer at Pensacola, Florida. Environ. Sci. Technol. 19, 955–961. Goldblum, K.B., Martin, R.W., Young, R.B. (1947) Vapor pressure data for phenols. Ind. Eng. Chem. 39, 1474–1476. Goll, O. (1954) Chlorophenol. In: Ullmans Encyklopädie der Technischen Cheme. Foerst, W., Editor, Urban & Schwarzenberg, Munich/Berlin. pp. 494–499. Gonsior, S.J., Bailey, R.E., Rhinehart, W.L., Spence, M.W. (1984) Biodegradation of o-phenylphenol in river water and activated sludge. J. Agric. Food Chem. 32, 593–596. Graham, R.A., Johnston, H.S. (1978) The photochemistry of the nitrate radical and the kinetics of the nitrogen pentoxide-ozone system. J. Phys. Chem. 82, 254. Grosjean, D. (1985) Wall loss of gaseous pollutants in outdoor Teflon chambers. Environ. Sci. Technol. 19, 1059–1065. Güesten, H., Filby, W.G., Schoop, S. (1981) Prediction of hydroxyl radical reaction rates with organic compounds in the gas-phase. Atoms. Environ. 15, 1763–1765. Guinee, J., Heijungs, R. (1993) A proposal for the classification of toxic substances within the framework of life cycle assessment of products. Chemosphere 26(1)0, 1925–1944. Günther, F.A., Westlake, W.E., Jaglan, P.S. (1968) Reported solubilities of 738 pesticide chemicals in water. Res. Rev. 20, 1–148. Haderlein, S.B., Schwarzenbach, R.P. (1993) Adsorption of substituted nitrobenzenes and nitrophenols to mineral surfaces. Environ. Sci. Technol. 27, 316–326. Häggblom, M.M., Young, L.Y. (1990) Chlorophenol degradation coupled to sulfate reduction. Appl. Environ. Microbiol. 56, 3255–3260. Haider, K., Jagnow, G., Kohnen, R., Lim, S.U. (1974) Degradation of chlorinated benzenes, phenols, and cyclohexane derivatives by benzene and phenol utilizing soil bacteria under aerobic conditions. Arch. Microbiol. 96, 183–200. Haky, J.E., Young, A.M. (1984) Evaluation of simple HPLC correlation method for the estimation of the octanol-water partition coefficients of organic compounds. J. Chromatogr. 7, 675–689. Hale, D.D., Rogers, J.E., Wiegel, J. (1991) Environmental factors correlated to dichlorophenol dechlorination in anoxic freshwater sediments. Environ. Toxicol. Chem. 10, 1255–1265. Haller, H. (1978) Degradation of mono-substituted benzoates and phenols by wastewater. J. Water Poll. Control Fed. 2771–2777. Hamaker, J.W., Kerlinger, H.O. (1969) Vapor pressure of pesticides. Adv. Chem. Series 86, 39–54. Hamilton, D.J. (1980) Gas chromatographic measurement of volatility of herbicide esters. J. Chromatogr. 195, 75–83. Hammers, W.E., Meurs, G.J., DeLigny, C.L. (1982) Correlations between liquid chromatographic capacity factors ratio data on Lichrosorb RP-18 and partition coefficients in the octanol-water system. J. Chromatogr. 247, 1–13. Hanai, T., Hubert, J. (1982) Hydrophobicity and chromatographic behaviour of aromatic acids found in urine. J. Chromatogr. 239, 527–536. Handley, R., Harrop, D., Martin, J.F., Sprake, C.H.S. (1964) Thermodynamic properties of organic oxygen compounds. Part XIV. Purification and vapor pressures of some alkylphenols. J. Chem. Soc. 4404–4406. Hansch, C., Anderson, S. (1967) The effect of intermolecular hydrophobic bonding on partition coefficients. J. Org. Chem. 32, 2583. Hansch, C., Leo, A. (1979) Substituent Constants for Correlation Analysis in Chemistry and Biology. John Wiley & Sons, New York. Hansch, C., Leo, A. (1985) Medchem. Project, Pomona College, Claremont, CA. Hansch, C., Leo, A. (1987) Medchem Project, Pomona College, Claremont, CA. Hansch. C., Leo, A.J., Hoekman, D. (1995) Exploring QSAR, Hydrophobic, Electronic, and Steric Constants. ACS Professional Reference Book, American Chemical Society, Washington, DC. Haque, A., Ebing, W. (1988) Uptake and accumulation of pentachlorophenol and sodium pentachlorophenate by earthworms from water and soil. Sci. Total Environ. 68, 113–125. Haque, R., Falco, J., Cohen, S., Riordan, C. (1980) Role of transport and fate studies in exposure, assessment and screening toxic chemicals. In: Dynamics, Exposure and Hazard Assessment of Toxic Chemicals. Haque, R., Editor, pp.47–67. Ann Arbor Science Publishers Inc., Ann Arbor, MI. Hardy, J.T., Dauble, D.D., Felice, L.J. (1985) Aquatic fate of synfuel residuals: Bioaccumulation of aniline and phenol by the freshwater phytoplankter scenedesmus quadricauda. Environ. Toxicol. Chem. 4, 29–35.

Harnish, M., Möckel, H.J., Schulze, G. (1983) Relationship between log POW shake-flask values and capacity factors derived from reversed-phase high-performance liquid chromatography of n-alkylbenzenes and some OECD reference substances. J. Chromatogr. 282, 315–332. Harrison, M.A.J., Cape, J.N., Heal, M.R. (2002) Experimentally determined Henry’s law coefficients of phenol, 2-methylphenol and 2-nitrophenol in the temperature range 281–302 K. Atmos. Environ. 36, 1643–1851. Hashimoto, Y., Tokura, K., Kishi, H., Strachan, W.M.J. (1984) Prediction seawater solubility of aromatic compounds. Chemosphere 13(8), 881–888. Hassett, J.J., Banwart, W.L., Wood, S.G., Means, J.C. (1981) Sorption of α-naphthol: Implications concerning the limits of hydro- phobic sorption. Soil Sci. Soc. Am. J. 45, 38–42. Hattemer-Frey, H.A., Travis, C.C. (1989) Pentachlorophenol: Environmental partitioning and human exposure. Arch. Environ. Contam. Toxicol. 18, 482–489. Hattula, M.L., Wasenius, V.-M., Reunanen, H., Arstila, A.U. (1981) Acute toxicity of some chlorinated phenols, catechols and cresols in trout. Bull. Environ. Contam. Toxicol. 26, 295–298.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3012 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Hawthorne, S.B., Sievers, R.E., Barkley, R.M. (1985) Organic emissions from shale oil waste waters and their implications for air quality. Environ. Sci. Technol. 19, 992–997. Hellmann, H. (1987) Model tests on volatilization of organic trace substances in surface waters. Fresenius Z. Anal. Chem. 328, 475–479. Hendry, D.G., Kenley, R.A. (1979) Atmospheric Reaction Products of Organic Compounds. EPA Final Report. EPA 560/12–79–001. Hendry, D.G., Mill, T., Piszkiewicz, L., Howard, J.A., Eigenmann, H.K. (1974) Critical review of hydrogen-atom transfer in the liquid phase. Chlorine atom, alkyltrichloromethyl, alkoxy, and alkyl peroxy radicals. J. Phys. Chem. Ref. Data 3, 937–978. Herington, E.F.G., Kynaston, W. (1957) The ultraviolet absorption spectra and dissociation constants of certain phenols in aqueous solution. Trans. Farad. Soc. 53, 138–142. Hersey, A., Hill, A.P., Hyde, R.M., Livingstone, D.J. (1989) Principles of method selection in partition studies. Quant. Struct.-Act. Relat. 8, 288–296. Heukelekian, H., Rand, M.C. (1955) Biochemical oxygen demand of pure organic compounds. J. Water Pollut. Control Assoc. 29, 1040–1053. Hiatt, C.W., Haskins, W.T., Olivier, L. (1960) The action of sunlight on sodium pentachlorophenate. Am. J. Trop. Med. Hyg. 9, 527–531. Hill, A.E., Malisoff, W.M. (1926) The mutual solubility of liquids. III. The mutual solubility of phenol and water. IV. The mutual solubility of normal butyl alcohol and water. J. Am. Chem. Soc. 48, 918–927. Hine, J., Mookerjee, P.K. (1975) The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contributions. J. Org. Chem. 40, 292–298.

Hodson, J., Willams, N.A. (1988) The estimation of the adsorption coefficient (KOC) for soils by high performance liquid chroma- tography. Chemosphere 17, 67–77. Hoigné, J., Bader, H. (1983a) Rate constants of reactions of ozone with organic and inorganic compounds in water - I. Non-dissociating organic compounds. Water Res. 17, 173–183. Hoigné, J., Bader, H. (1983b) Rate constants of reactions of ozone with organic and inorganic compounds in water - II. Dissociation organic compounds. Water Res. 17, 185–194. Holmes, H.L., Lough, C.E. (1976) Effect of Intramolecular Hydrogen Bonding on Partition Coefficients. Suffield Technical Note No. DRES-TN-365. Defence Research Establishment Suffield-Information Canada. U.S. NTIS Report No. AD-A030683. Hon, H.C., Singh, R.P., Kudchadker, A.P. (1976) Vapor pressure-boiling point measurement of five organic substances by twin ebulliometry. J. Chem. Eng. Data 21, 430–431. Hong, H., Wang, L., Han, S. (1996) Prediction adsorption coefficients (KOC) for aromatic compounds by HPLC retention factors (K’). Chemosphere 32, 343–351. Horowitz, A., Shelton, D.R., Cornell, C.P., Tiedje, J.M. (1982) Anaerobic degradation of aromatic compounds in sediment and digested sludge. Dev. Ind. Microbiol. 23, 435–444. Horvath, A.L., Getzen, F.W., Editors (1985) Solubility Data Series: Halogenated Benzenes, Toluenes and Phenols with Water. Volum e 20, Pergamon Press, Oxford, England. Howard, J.A. (1972) Absolute rate constants for reactions of oxy radicals. Adv. Free Radical Chem. 4, 49–173. Howard, P.H., Ed. (1989) Handbook of Environmental Fate and Exposure Data. Vol. I. Large Production and Priority Pollutants. Lewis Publishers, Chelsea, MI. Howard, P.H., Ed. (1990) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. II, Solvents. Lewis Publishers, Inc., Chelsea, MI. Howard, P.H., Ed. (1991) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. III, Pesticides. Lewis Publishers, Inc., Chelsea, MI. Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., Michalenko, E.M., Editors (1991) Handbook of Environmental Degra- dation Rates. Lewis Publishers Inc., Chelsea, Michigan. Howard, P.H., Hueber, A.E., Mulesky, B.C., Crisman, J.S., Meylan, W., Crosbie, E., Gray, D.A., Sage, G.W., Howard, K.P., LaMacchia, A., Boethling, R.S., Troast, R. (1986) BILOG, BIODEG, and FATE/EXPOS: New files on microbial degradation and toxicity as well as environmental fate/exposure of chemicals. Environ. Toxicol. Chem. 5, 977–988. Howe, G.E., Marking, L.L., Bills, T.D., Rach, J.J., Mayer, Jr., F.L. (1994) Effects of water temperature and pH on toxicity of terbufos, trichlorfon, 4-nitrophenol and 2,4-dinitrophenol to the amphipod gammarus pseudolimnaeus and rainbow trout (Oncorhyn- chus mykiss). Environ. Toxicol. Chem. 13, 51–66. Hoyer, von H., Peperle, W. (1958) Dampfdruckmessungen an organischen substanzen und ihre sublimations wärmen. Zeit. Elektro- chemie 62(1), 61–66. Huang, G.L., Xiao, H., Chi, J., Shiu, W.Y., Mackay, D. (2000) Effects of pH on the aqueous solubility of selected chlorinated phenols. J. Chem. Eng. Data 45, 411–414. Hulzebos, E.M., Adema, D.M.M., Breemen, E.M. D.-van, Henzen, L., van Dis, W.A., Herbold, H.A., Hoekstra, J.A., Baerselman, R., van Gestel, C.A.M. (1993) Phytotoxicity studies with lactuca sativa in soil and nutrient solution. Environ. Toxicol. Chem. 12, 1079–1094. Hustert, K., Mansour, M., Parlar, H., Körte, F. (1981) The EPA test: a method to determine the photochemical degradation of organic compounds in aquatic systems. Chemosphere 10, 995–998. Hwang, H.-M., Hodson, R.E., Lee, R.F. (1986) Degradation of phenol and chlorophenols by sunlight and microbes in estuarine water. Environ. Sci. Technol. 20, 1002–1007.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 3013

Hwang, H.M., Hodson, R.E., Lee, R.F. (1987) Photolysis of phenol and chlorophenols in estuarine water. In: Photochemistry of Environmental Aquatic Systems. American Chemical Society, Washington, D.C. Ide, A., Niki, Y., Sakamoto, F., Watanabe, I. (1972) Decomposition of pentachlorophenol in paddy soil. Agric. Biol. Chem. 36, 1937–1944. Isaacson, P.J., Frink, C.R. (1984) Nonreversible sorption of phenolic compounds by sediment fractions: The role of sediment organic matter. Environ. Sci. Technol. 18, 43. Isnard, P., Lambert, S. (1988) Estimating bioconcentration factors from octanol partition coefficient and aqueous solubility. Chemo- sphere 17, 21–34. Itokawa, H., Totsuka, N., Hakahara, K., Meazuru, M., Takeya, K., Konda, M., Inamatsu, M., Morita, H. (1989) A quantitative structure- activity relationship for antitumor activity of long-chain phenols from Ginkgo biloba L. Chem. Pharm. Bull. 36, 1619–1621. Iwasa, J. Fujita, T., Hansch, C. (1965) Substituent constants for aliphatic functions obtained from partition coefficients. J. Med. Chem. 8, 150–153. Jafvert, C.T. (1990) Sorption of organic acid compounds to sediments: initial model development. Environ. Toxicol. Chem. 9, 1259–1268. Jafvert, C.T., Weber, E.J. (1991) Sorption of Ionizable Organic Compounds to Sediments and Soils. U.S. EPA Report EPA/600/3–91/017, U.S. Environ. Research Lab., Athens, GA. Japar, S.M., Niki, H. (1975) Gas phase reactions of the nitrate radical with olefins. J. Phys. Chem. 79(16), 1629–1632. Jaoui, M., Achard, C., Rogalski, M. (2002) Solubility as a function of temperature of selected chlorophenols and nitrophenols in aqueous solutions containing electrolytes of surfactants. J. Chem. Eng. Data 47, 297–303. Jaoui, M., Luszczyk, M., Rogalski, M. (1999) Liquid-liquid and liquid-solid equilibria of systems containing water and selected chlorophenols. J. Chem. Eng. Data 44, 1269–1272. Jaworska, J.S., Schultz, T.W. (1993) Quantitative relationships of structure-activity and volume fraction for selected nonpolar and polar narcotic chemicals. SAR and QSAR in Environ. Res. 1, 3–19. Jones, D.C. (1929) The system n-butyl alcohol-water and n-butyl alcohol-acetone-water. J. Chem. Soc. (London) 799–816. Jones, P.A. (1981) Chlorophenols and Their Impurities in the Canadian Environment. Environment Canada, Report SPE 3-EC-81–2F. p. 3–22. Jones, C.J., Hudson, B.C., McGugan, Smith, A.J. (1977/1978) The leaching of some halogenated organic compounds from domestic waste. J. Haz. Materials 2(3), 227-233. Jordan, T.E. (1954) Vapor Pressure of Organic Compounds. Interscience Publishers, New York. Kahlbaum, G.W.A. (1898) Studien über dampfspunkraftmessungen. II. Z. Phys. Chem. 26, 577–658. Kaiser, K.L.E. (1993) COMPUTOX Database, National Water Research Institute, Burlington, Ontario, Canada. Kaiser, K.L.E., Dixon, D.G., Hodson, P.V. (1984) QSAR studies on chlorophenols, chlorobenzenes and para-substituted phenols. In: QSAR in Experimental Toxicology. Kaiser, K.L.E., Editor, pp.189–206, D. Reidel Publishing Co., Dordrecht, The Netherlands. Kaiser, K.L.E., Valdmanis, I. (1982) Apparent octanol/water partition coefficients of pentachlorophenol as a function of pH. Can. J. Chem. 60, 2104–2106. Karickhoff, S.W., Brown, D.S., Scott, T.A. (1979) Sorption of hydrophilic organic pollutants on natural sediments. Water Res. 13, 241–248. Kawaguchi, H. (1992) Photooxidation of phenol in aqueous solution in the presence of hydrogen peroxide. Chemosphere 24, 1707–1712. Kawaguchi, H. (1992) Determination of direct and indirect photolysis of 2-chlorophenol in humic acid solution and natural waters. Chemosphere 25, 635–641. Kelly, T.J., Mukund, R., Spicer, C.W., Pollack, A.J. (1994) Concentrations and transformations of hazardous air pollutants. Environ. Sci. Technol. 28, 378a-387A. Kenaga, E.E., Goring, C.A.I. (1980) Relationship between water solubility, soil sorption, octanol-water partitioning, and concentration of chemicals in biota. In: Aquatic Toxicology, ASTM STP 707, Eaton, J.G., Parrish, P.R., Hendricks, A.C., Editors, pp.78–115, Am. Soc. for Testing Material, Philadelphia, Pa. Kiezyk, P.R., Mackay, D. (1971) Waste water treatment by solvent extraction. Can. J. Chem. Eng. 49(6), 747–752. Kincannon, D.F., Lin, Y.S. (1985) Microbial degradation of hazardous wastes by land treatment. Proc. Indust. Waste Conf. 40, 607–619. Kishino, T, Kobayashi, K. (1994) Relation between the chemical structures of chlorophenols and their dissociation constants and partition coefficients in several solvent-water systems. Water Res. 7, 1547–1552. Kjeldsen, P., Kjølholt, J., Schultz, B., Christensen, T.H., Tjell, J.C. (1990) Sorption and degradation of chlorophenols, nitrophenols and organophosphorus pesticides in the subsoil under landfills - laboratory studies. J. Contam. Hydrology 6, 165–184. Klamt, A. (1993) Estimation of gas-phase hydroxyl radical rate constants of organic compounds from molecular orbital calculations. Chemosphere 26, 1273–1289. Klara, C.M., Mohamed, R.S., Dempsey, D.M., Holder G.D. (1987) Vapor-liquid equilibria for the binary systems of benzene/toluene, diphenylmethane/toluene, m-cresol/1,2,3,4-tetrahydronaphthalene and quinoline/benzene. J. Chem. Eng. Data 32, 143–147. Klein, W., Geyer, H., Freitag, D., Rohleder, H. (1984) Sensitivity of schemes for ecotoxicological hazard ranking of chemicals. Chemosphere 13, 203–211. Klöpffer, W., Kaufmann, G., Rippen, G., Poremski, H.J. (1982) A laboratory method for testing the volatility from aqueous solution: First results and comparison with theory. Ecotox. Environ. Saf. 6, 545–559.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3014 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Kobayashi, K.H. (1979) Metabolism of pentachlorophenol in fish. In: Pesticide and Xenobiotic Metabolism in Aquatic Organisms. American Chemical Society, Symposium Series 99. Kobayashi, K.H., Akitake, H., Manabe, K. (1979) Relation between toxicity and accumulation of various chlorophenols in gold fish. Bull. Japan Soc. Sci. Fish 45, 173–175. Kollig, H.P., Ed. (1993) Environmental Fate Constants for Organic Chemicals Under Consideration for EPA’s Hazardous Waste Identification Projects. EPA Report EPA/600/R-93/132, Environmental Research Lab., U.S. EPA, Athens, GA. Kollig, H.P., Ellington, J.J., Hamrick, K.J., Jafverts, C.T., Weber, E.J., Wolfe, N.L. (1987) Hydrolysis Rate Constants, Partition Coefficients, and Water Solubilities for 129 Chemicals. A summary of fate constants provided for the concentration-based Listing Program of 1987. U.S. EPA Environ. Res. Lab., Off. Res. Development Prepublication. Athens, Georgia. Könemann, W.H. (1981) Quantitative structure-activity relationships in fish toxicity studies. Part 1: Relationship for 50 industrial pollutants. Toxicology 19, 209–221. Könemann, H., Musch, A. (1981) Quantitative structure-activity relationships in fish toxicity studies. Part 2: The influence of pH on the QSAR of chlorophenols. Toxicology 19, 223–228. Kool, H.J. (1984) Influence of microbial biomass on the biodegradability of organic compounds. Chemosphere 13, 751–761. Korenman, Ya I. (1972) Phenol solvates in organic solvents. Russ. J. Phys. Chem. 46, 42–43. Korenman, Ya.I. (1972) Extraction of dihydric phenols. J. Appl. Chem. USSR (Engl. Transl.) 45, 2120–2123. Korenman, Ya I. (1973) Extraction of p-halophenols. Zh. Prikl. Khim. (Leningrad) 46(11), 2599–2600. Korenman, Ya. I. (1974) Extraction of 2-halophenols from aqueous solutions. J. Appl. Chem. USSR (Engl. Translation) 47, 1663–1666. Korenman, Ya. I., Bortnikova, R.N., Kirillova, N.D. (1977) Increase in the degree of extraction of picric acid from aqueous solutions under the influence of higher alcohols. J. Appl. Chem. USSR (Enbl. Transl.) 50, 2478–2479. Korenman, Ya I., Kotelyanskaya, E.B., Nefedova, T.A. (1976) Extraction of mononitrophenols from aqueous solutions. J Appl. Chem. USSR (Engl. Transl.) 49, 1150–1152. Korenman, Ya I., Nefedova, T.E., Byukova, R.I. (1977) Extraction of picramic acid. Int. J. Pharmacol. Ther. Toxicol. 51, 734–735. Korenman, Ya I., Pereshein, V.V. (1970) Extractions of o-cresols from aqueous solutions. J. Appl. Chem. USSR (English Translation) 43, 1410–1412. Korenman, Ya I., Sotnikova, N.G. (1975) Extraction of vanillins from aqueous solutions. J. Appl. Chem. USSR (English Translation), 48, 188–191. Korenman, Ya.I., Tishchenko, E.M., Sel’manschchuk, N.N. (1980) Isomerism and extraction of aklylphenol. Russ. J. Phys. Chem. 54, 745–746. Korenman, Ya I., Udalova, V. Yu. (1974) Influence of temperature on the extraction of phenols. Russ. J. Physical Chem. 48, 708–711. Korman, S., La Mer, V.K. (1936) Deuterium exchange equilibria in solution and the quinhydrone electrode. J. Am. Chem. Soc. 58, 1396–1403. Kraij, F., Sincic, D. (1980) Mutual solubilities of phenol, salicylaldehyde, phenol-salicylaldehyde mixture, and water with and without the presence of sodium chloride or sodium chloride plus sodium sulfate. J. Chem. Eng. Data 25, 335–338. Kramer, C.-R., Henze, U. (1990) Partitioning properties of benzene derivatives. I. Temperature dependence of the partitioning of monosubstituted benzenes and nitrobenzenes in the octanol/water system. Z. Phys. Chem. (Leipzig) 271(3), 503–513. Krijgsheld, K.R., van der Gen, A. (1986) Assessment of the impact of the emission of certain organochlorine compounds on the aquatic environment. Part I: Monochlorophenols and 2,4-dichlorophenol. Chemosphere 15, 825–860. Kubá, V. (1991) Determination of octan-1-ol-water partition coefficients by flow-injection extraction without phase separation. Anal. Chim. Acta 248, 493–499. Kühne, R., Ebert, R.-U., Kleint, F., Schmidt, G., Schüürmann, G. (1995) Group contribution methods to estimate water solubility of organic chemicals. Chemosphere, 30, 2061–2077. Kurihara, N., Fujita, T., Nakajima, M. (1973) Studies of BHC isomers and related compounds. V. Some physicochemical properties of BHC isomers. Pestic. Biochem. Physiol. 2, 383–390. Kwok, W.S.C., Atkinson, R. (1995) Estimation of hydroxyl radical reaction rate constants for gas-phase organic compounds using a structure reactivity relationship: an update. Atmos. Environ. 29, 1685–1695. Laake, M., Editor (1982) Ecotoxicological Methods for the Aquatic Environment (in Norwegian). Nordforsk Miljøvårdsserien Publikation. pp. 116–119. Lagas, P. (1988) Sorption of chlorophenols in soil. Chemosphere 17, 205–216. Landner, L., Lindström, K., Karlsson, M., Nordin, J., Sörensen, L. (1977) Bioaccumulation in fish of chlorinated phenols from kraft pulp mill bleachery effluents. Bull. Environ. Contam. Toxicol. 18, 663–673. Landrum, P.F., Dupuis, W.S. (1990) Toxicity and toxicokinetics of pentachlorophenol and carbaryl to Pontoporeia hoyi and Mysis relicta. In: Aquatic Toxicology and Risk Assessment, Thirteenth Volume ASTM STP 1096. Landis, W.G., van der Schalie, W.H., Editors, American Society for Testing and Materials, Philadelphia. Lange, N.A., Editor (1973) Lange’s Handbook of Chemistry. McGraw-Hill, New York. Larachi, F., Leroux, M., Hamoudi, S., Bernis, A., Sayari, A. (2000) Solubility and infinite dilution activity coefficient for 5-chlorovanillin and 4-chloroguaiacol in water over the temperature range 280 to 363 K. J. Chem. Eng. Data 45, 404–408. Larsson, P., Bremle, G., Okla, L. (1993) Uptake of pentachlorophenol in fish of acidified and nonacidified lakes. Bull. Environ. Contam. Toxicol. 50, 653–658. LeBlanc, G.A. (1984) Interspecies relationships in acute toxicity of chemicals to aquatic organisms. Environ. Toxicol. Chem. 3, 47–60.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 3015

Lee, R.F., Ryan, C. (1979) Microbial degradation of organochlorine compounds in estuarine water and sediments. In: Microbial Degradation of Pollutants in Marine Environments. Bourquin, A.W., Pritchard, P.H., Editors, EPA-600/9–79–012. U.S. Environmental Protection Agency, Washington, D.C. Lee, S.C., Hung, H., Shiu, W.Y., Mackay, D. (2000) Estimations of vapor pressure and activity coefficients in water and octanol for selected aromatic chemicals at 25°C. Environ. Toxicol. Chem. 19, 2623–2630. Leet, W.A., Lin, H.-M., Chao, K.-C. (1987) Mutual solubilities in six binary mixtures of water + a heavy hydrocarbon or a derivative. J. Chem. Eng. Data 32, 37–40. Lei, Y.D., Wania, F., Shiu, W.Y., Boocock, D.G.B. (1999) Temperature dependent vapor pressures of chlorinated catechols, syringols, and syringaldehydes. J. Chem. Eng. Data 44, 200–202. Lemaire, J., Guth, J.A., Klais, O., Leahy, J., Merz, W., Philp, J., Wilmers, R., Wolff, C.J.M. (1985) Ring test of a method for assessing the phototransformation of chemicals in water. Chemosphere 14, 53–77. Leo, A., Hansch, C., Church, C. (1969) Comparison of parameters currently used in the study of structure-activity relationships. J. Med. Chem. 12, 766–771. Leo, A., Hansch, C., Elkins, D. (1971) Partition coefficients and their uses. Chem. Rev. 71, 525–616. Leuenberger, C., Giger, W., Coney, R., Graydon, J.W., Molnar-Kubica, E. (1985a) Persistence chemicals in pulp mill effluents, occurrence and behaviour in an activated sludge treatment plant. Water Res. 19, 885–894. Leuenberger, C., Ligocki, M.P., Pankow, J.F. (1985b) Trace organic compounds in rain. 4. Identities, concentrations, and scavenging mechanisms, for phenols in urban air and rain. Environ. Sci. Technol. 19, 1053–1058. Lewis, R.J., Sr. (1996) SAX’s Dangerous Properties of Industrial Materials. 9th Ed. p. 2525. Van Nostrand Reinhold, New York. Li, H., Lee, L.S., Jafvert, C.T., Graveel, J.J. (2000) Effect of substitution on irreversible binding and transformation aromatic amines with soils in aqueous systems. Environ. Sci. Technol. 34, 2674–3680. Lide, D.R., Editor (2003) Handbook of Chemistry and Physics. 84th Edition, CRC Press, Boca Raton, Florida. Lipczynska-Kochany, E. (1992) Degradation of nitrobenzene and nitrophenols by means of advanced oxidation processes in a homogenous phase: photolysis in the presence of hydrogen peroxide versus the Fenton reaction. Chemosphere 24, 1369–1380. Loehr, R.C., Matthews, J.E. (1992) Loss of organic chemicals in soil: Pure compound treatability studies. J. Soil Contam. 1, 339–360. Loekke, H. (1985) Degradation of 4-nitrophenol in two Danish soils. Environ. Pollut. Ser. A 38, 171–181. Lu, P.-Y., Metcalf, R.L. (1975) Environmental fate and biodegradability of benzene derivatives as studied in a model aquatic ecosystem. Environ. Health Perspect. 10, 269–284. Lu, P.-Y., Metacalf, R.L., Cole, L.K. (1978) The environmental fate 14C-pentachlorophenol in laboratory model ecosystems. In: Pentachlorophenol, Chemistry, Pharmacology and Environmental Toxicology. Rao, K.R., Ed., pp. 53–63, Plenum Press, New York, N.Y. Ludzack, F.J., Ettinger, M.B. (1960) Chemical structures resistant to aerobic biochemical stabilization. J. Pollut. Control Fed. 32, 1173–1200. Ludzack, F.J., Schaffer, R.B., Bloomhuff, R.N., Ettinger, M.B. (1958) Biochemical oxidation of some commercially important organic cyanides. I. River oxidation. In: Proc. 13th Indust. Waste Conf. Eng. Bull. Purdue Univ. Eng. Ext. Ser. pp. 297–312. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H. (1982) Handbook on Chemical Property Estimation Methods. Environmental Behavior of Organic Compounds. McGraw-Hill, New York. Ma, K.C., Shiu, W.Y., Mackay, D. (1990) A Critically Reviewed Compilation of Physical and Chemical Persistence Data for 110 Selected EMPPL Substances. A report prepared for the Ministry of Environment, Water Resources Branch, Toronto, Ontario. Ma, K.C., Shiu, W.Y., Mackay, D. (1993) Aqueous solubility of chlorophenols at 25°C. J. Chem. Eng. Data 38, 364–366. Mabey, W., Smith, J.H., Podoll, R.T., Johnson, H.L., Mill, T., Chiou, T.W., Gate, J., Waight-Partridge, I., Jaber, H., Vandenberg, D. (1982) Aquatic Fate Process for Organic Priority Pollutants. EPA Report, No. 440/4–81–14. Mackay, D. (1982) Correlation of bioconcentration factors. Environ. Sci. Technol. 16, 274–278. Mackay, D., Wolkoff, A.W. (1973) Rate of evaporation of low-solubility contaminants from water bodies to atmosphere. Environ. Sci. Technol. 7, 611–614. Mäenpää, K.a., Penttinen, O.-P., Kukkonen, J.V.K. (2004) Pentachlorophenol (PCP) bioaccumulation and effect of heat production on salmon eggs at different stages of development. Aqua. Toxicol. 68, 75–85. Mäkelä, P. Oikari, O.J. (1990) Uptake and body distribution of chlorinated phenolics in the freshwater mussel, Anodonta anatina L. Ecotox. Environ. Saf. 20, 354–362. Makovskaya, V., Dean, J.R., Tomlinson, W.R., Comber, M. (1995a) Determination of octanol-water partition coefficients using gradient liquid chromatography. Anal. Chim. Acta 315, 183–192. Makovskaya, V., Dean, J.R., Tomlinson, W.R., Comber, M. (1995b) Octanol-water partition coefficients of substituted phenols and their correlation with molecular descriptors. Anal. Chim. Acta 315, 193–200. McCune, L.K., Wilhelm, R.H. (1949) Mass and momentum transfer in solid-liquid system. Fixed and fluidized beds. Ind. Eng. Chem. 41, 1124. McDonald, R.A., Shrader, S.A., Stull, D.R. (1959) Vapor pressures and freezing points of 30 organics. J. Chem. Eng. Data 4, 311–313. McLeese, D.W., Zitko, V., Peterson, M.R. (1979) Structure-lethality relationships for phenols, anilines and other aromatic compounds in shrimp and clams. Chemosphere 2, 53–57. McLeese, D.W., Zitko, V., Sergent, D.B., Burridge, L., Metcalfe, C.D. (1981) Lethality and accumulation of alkylphenols in aquatic fauna. Chemosphere 10, 723–730.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3016 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Means, J.C., Woods, S.G., Hassett, J.J., Banwart, W.L. (1982) Sorption of amino- and carboxy-substituted polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Technol. 16, 93–98. Menges, R.A., Bertrand, G.L., Armstrong, D.W. (1990) Direct measurement of octanol-water partition coefficient using centrifugal partition chromatography with a back-flashing technique. J. Liq. Chromatogr. 13(15), 3061–3077. Meylan, W., Howard, P.H. (1991) Bond contribution method for estimating Henry’s law constants. Environ. Toxicol. Chem. 10, 1283–1293. Meylan, W., Howard, P.H. (1993) Computer estimation of the atmospheric gas-phase reaction rate of organic compounds with hydroxyl radicals and ozone. Chemosphere 26, 2293–2299. Meylan, W., Howard, P.H., Boethling, R.S. (1992) Molecular topology/fragment contribution method for predicting soil sorption coefficients. Environ. Sci. Technol. 26, 1560–1567. Mill, T. (1979) Structure Reactivity Correlations for Environmental Reactions. EPA Final Report, EPA 560/11–79–012. Mill, T. (1982) Hydrolysis and oxidation processes in the environment. Environ. Toxicol. Chem. 1, 135–141. Mill, T., Mabey, W. (1985) Photochemical transformations. Environ. Exposure Chem. 1, 175–216. Mills, W.B., Dean, J.D., Porcella, D.B., Gherini, S.A., Hudson, R.J.M., Frick, W.E., Rupp, G.L., Bowie, G.L. (1982). Water Quality Assessment: A Screening Procedure for Toxic and Conventional Pollutants, Part 1, EPA Report No. EPA-600/6–82–004a, Environmental Research Lab., US EPA, Athens, GA. Minero, C., Pelizzetti, E., Malato, S., Blanco, J. (1993) Large solar plant photocatalytic water decontamination: Degradation of pentachlorophenol. Chemosphere 26, 2103–2119. Minick, D.J., Frenz, J.H., Patrick, M.A., Brent, D.A. (1988) A comprehensive method for determining hydrophobicity constants by reversed-phase high-performance liquid chromatography. J. Med. Chem. 31, 1923–1933. Mirrlees, M.S., Moulton, J.J., Murphy, C.T., Taylor, P.J. (1976) Direct measurement of octanol-water partition coefficients by high pressure liquid chromatography. J. Med. Chem. 19, 615–619. Miyake, K., Kitaura, F., Mizuno, N., Terada, H. (1987) Determination of partition coefficient and acid dissociation constant by high- performance liquid chromatography on porous polymer gel as a stationary phase. Chem. Pharm. Bull. 35, 377–388. Miyake, K., Mizuno, N., Terada, H. (1986) Method for determination of partition coefficients by high-performance liquid chroma- tography on a octadecylsilane column. Examination of its applicability. Chem. Pharm. Bull. 34, 4787–4796. Miyake, K., Terada, H. (1982) Determination of partition coefficients of very hydrophobic compounds by high-performance liquid chromatography on glyceryl-coated controlled-pore glass. J. Chromatogr. 240, 9–20. Moos, L.P., Kiesch, E.J., Wukasch, R.F., Grady, C.P.L., Jr. (1983) Pentachlorophenol biodegradation-I. Aerobic. Water Res. 17, 1575–1583. Moos, L.P., Kiesch, E.J., Wukasch, R.F., Grady, C.P.L., Jr. (1984) Pentachlorophenol biodegradation-II. Anaerobic. Water Res. 18, 451–461. Morrison, R.T., Boyd, R.N. (1973) Organic Chemistry. 3rd Edition, Allyn and Bacon, Boston. Mosso, U. (1887) Jahresber. Fortacgr. Chem., 1800.-reference from IUPAC Solubility Data Series, Volume 20, Halogenated Benzenes, Toluenes, and Phenols with Water, Horvath, A.L., Getzen, F.W., Eds., Pergamon Press, Oxford 1985. Moyle, M.P., Tyner, M. (1953) Solubility and diffusivity of 2-naphthol in water. Ind. Eng. Chem. 45, 1794–1797. Müller, B., Heal, M.R. (2001) The Henry’s law coefficient of 2-nitrophenol over the temperature range 278–303 K. Chemosphere 45, 309–314. Müller, M., Klein, W. (1991) Estimating atmospheric degradation processes by SARs. Sci. Total Environ. 109/110, 261–273. Müller, M., Kördel, W. (1998) Comparison of screening methods for the estimation of adsorption coefficients on soil. Chemosphere 32, 2493–2504. Mulley, B.A., Metcalf, A.D. (1966) Solubilization of phenols by non-ionic surface-active agents. Sci. Pharm. 8, 481–488. Nagel, R., Urich, K. (1980) Kinetic studies on the elimination of different substituted phenols by goldfish (carassius auratus). Bull. Environ. Contam. Toxicol. 24, 374–378. Nahum, A., Horvath, C. (1980) Evaluation of octanol-water partition coefficients by using high-performance liquid chromatography. J. Chromatogr. 192, 315–322. Nasir, P., Hwang, S.C., Kobayashi, R. (1980) Development of an apparatus to measure vapor pressures at high temperatures and its application to three high-boiling compounds. J. Chem. Eng. Data 25, 298–301. NCASI (1992) A Compilation of Data on Chemical and Biological Properties of 28 Chlorinated Phenolic Compounds. Special Report No. 92–12, National Council of the Paper Industry for Air Stream Improvement, New York, N.Y. Neely, W.B., Blau, G.E., Editors (1985) Environmental Exposure from Chemicals. Vol. I, CRC Press, Boca Raton, Florida. Neilson, A.H., Allard, A.-S., Hynning, P.-Å., Remberger, M. (1991) Distribution, fate and persistence of organochlorine compounds formed during production of bleached pulp. Toxicol. Environ. Chem. 30, 3–41. Nendza, M., Seydel, J.K. (1988) Quantitative structure-toxicity relationship for ecotoxicologically relevant biotest systems and chemicals. Chemosphere 17, 1585–1602. Nesterova, T.N., Nazimudinov, A.G., Tsvetkov, V.S., Rozhnov, A.M., Roshchupkina, I.Y. (1990) Vapour pressures and enthalpies of vaporization of alkylphenols. J. Chem. Thermodyn. 22, 365–377. Neumüller, O.A. (1974) Römpp’s Chemie-Lexikon. p.2538, Frank’sche Verlagsbuchhandlung, Stuttgart. Niimi, A.J. (1987) Biological half-lives of chemicals in fishes. Rev. Environ. Contam. Toxicol. 99, 1–46.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 3017

Niimi, A.J., Cho, C.Y. (1983) Laboratory and field analysis of pentachlorophenol (PCP) accumulation by salmonids. Water Res. 17(12), 1791–1795. Niimi, A.J., Lee, H.B., Kissoon, G.P. (1990) Kinetics of chloroguaiacols and other chlorinated phenolic derivatives in rainbow trout (Salmo gairdneri). Environ. Toxicol. Chem. 9, 649–653. Niimi, A.J., Palazzo, V. (1985) Temperature effect on the elimination of pentachlorophenol, hexachlorobenzene and mirex by rainbow trout (Salmo gairdneri). Water Res. 19(2), 205–207. Nirmalakhandan, N.N., Speece, R.E. (1988) QSAR model for predicting Henry’s law constant. Environ. Sci. Technol. 22, 1349–1357. Norrington, F.E., Hyde, R.M., Williams, S.G., Wootton, R. (1975) Physicochemical-activity relations in practice. 1. A rational and self-consistent data bank. J. Med. Chem. 18, 604–607. Nowosielski, B.E., Fein, J.B. (1998) Experimental study of octanol-water partition coefficients for 2,4,6-trichlorophenol and pen- tachlorophenol: Derivation of an empirical model of chlorophenol partitioning behaviour. Appl. Geochem. 13, 893–904. OECD (1981) OECD Guidelines for Testing of Chemicals. Section 1: Physical-Chemical Properties. Organization for Economic Co- operation and Development, Paris. Oikari, A., Anäs, E. (1985) Chlorinated phenols and their conjugates in the bile of trout (Salmo gairdneri) exposed to contaminated water. Bull. Environ. Contam. Toxicol. 35, 802–809. Okey, R.W., Bogan, R.H. (1965) Apparent involvement of electronic mechanisms in limiting microbial metabolism of pesticides. J. Water Pollut. Control Fed. 37, 692–712. Paasivirta, J. (1992) Predicted and observed fate of selected persistent chemicals in the environment. Organohalogen Compounds 1, 367–375. Palit, S.R. (1947) Electronic interpretations of organic chemistry. II. Interpretations of the solubility of organic chemistry. J. Phys. Chem. 51, 837–857. Paris, D.F., Wolfe, N.L., Steen, W.C. (1982) Structure-activity relationships in microbial transformation of phenols. Appl. Environ. Microbiol. 44, 153–158. Paris, D.F., Wolfe, N.L., Steen, W.C., Baughman, G.L. (1983) Effect of phenol molecular structure on bacterial transformation rate constants in pond and river samples. Appl. Environ. Microbiol. 45(3), 1153–1155. Pearce, P.J., Simkins, R.J.J. (1968) Acid strengths of some substituted picric acids. Can. J. Chem. 46(2), 241–248. Peijnenburg, W.J.G.M., de Beer, K.G.M., de Haan, M.W.A., den Hollander, H.A., Stegeman, M.H.L., Verboom, H. (1992) Develop- ment of a Structure-Reactivity Relationship for the photohydrolysis of substituted aromatic halides. Environ. Sci. Technol. 26, 2116–2121. Perry, R.A., Atkinson, R., Pitts, J.N. (1977) Kinetics and mechanisms of the gas phase reaction of OH radicals with methoxybenzene and o-cresol over temperature range 299–435 K. J. Phys. Chem. 81, 1607–1611. Petrasek, A.C., Kugelman, I.J., Austern, B.M., Pressley, T.A., Winslow, L.A., Wise, R.H. (1983) Fate of toxic organic compounds in wastewater treatment plants. J. Water Pollut. Control Fed. 55, 286–296. Pfaender, F.K., Bartholomew, G.W. (1982) Measurements of aquatic biodegradation rates by determining heterotropic uptake of radiolabelled pollutants. Appl. Environ. Microbiol. 44, 159–164. Pitter, P. (1976) Determination of biological degradability of organic substances. Water Res. 10, 231–235. Politzki, G.R., Bieniek, D., Lahaniatis, E.S., Scheunert, I., Klein, W., Körte, F. (1982) Determination of vapour pressures of nine organic chemicals adsorbed on silica gel. Chemosphere 11, 1217–1229. Pritchard, P.H. (1987) Assessing the Biodegradation of Sediment Associated Chemicals. In: Fate and Effects of Sediment-Bound Chemicals in Aquatic Systems. Dickson, K.L., Maki, A.W., Brungs, W.A., Eds., pp. 109–135, Pergamon Press, New York. Rekker, R.F. (1977) The Hydrophobic Fragmental Constant. Its Derivation and Application. A Means of Characterizing Membrane Systems. Elsevier Sci. Publishing Co., Amsterdam, The Netherlands. Remberger, M., Allard, A.-S., Neilson, A.H. (1986) Biotransformations of chloroguaiacols, chlorocatechols, and chloroveratroles in sediments. Appl. Environ. Microbiol. 51(3), 552–558. Renberg, L. (1981) Gas chromatographic determination of chlorophenols in environmental samples. National Swedish Environment Protection Board Report 1410, 135 pp. Renberg, L., Svanberg, O., Bengtson, B.E., Sundström, G. (1980) Chlorinated guaiacols and catechols bioaccumulation potential in bleaks (Alburnus alburnus Pisces) and reproductive and toxic effects on the harpaticoid Nitocra spinipes (Crustacea). Chemosphere 9, 143–150. Renner, G. (1990) Gas chromatographic studies of chlorinated phenols, chlorinated anisoles, and chlorinated phenylacetates. Toxicol. Environ. Chem. 27, 217–224. Riddick, J., Bunger, W.B., Sakano, T.K. (1986) Organic Solvents: Physical Properties and Method of Purification. 4th Edition, John Wiley & Sons, New York. Ritter, S., Hauthal, W.H., Maurer, G. (1994) Partition coefficients of some environmentally important organic compounds between 1-octanol and water from reversed-phase high-performance liquid chromatography. J. Chem. Eng. Data 39, 414–417. Roberts, M.S., Anderson, R.A., Swarbrick, J. (1977) Permeability of human epidermis to phenolic compounds. J. Pharm. Pharmac. 29, 677–683. Robinson, K., Novak, J.T. (1994) Fate of 2,4,6-trichloro-(14C)-phenol bound to dissolved humic acid. Water Res. 445–452. Rogers, J.A., Wong, A. (1980) The temperature dependence and thermodynamics of partitioning of phenols in the n-octanol-water system. Int’l. J. Pharmaceut. 6, 339.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3018 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Rogers, J.E., Li, S.W., Felice, L.J. (1984) Microbial Transformation Kinetics of Xenobiotics in Aquatic Environment. EPA- 600/3–84–043. (NTIS PB84–162866). Richland, WA: Battelle Pacific Northwest Labs. 105 pp. Rogers, K.S., Cammarata, A. (1969) Molecular orbital description of the partitioning aromatic compounds between polar and nonpolar phases. Biochim. Biophys. Acta 193(1), 22–29. Rohrschneider, L. (1973) Solvent characterization of gas-liquid partition coefficients of selected solutes. Anal. Chem. 45, 1241–1247. Rordorf, B.F. (1989) Prediction of vapor pressures, boiling points and enthalpies of fusion for twenty-nine halogenated dibenzo-p- dioxins and fifty-five dibenzofurans by a vapor pressure correlation method. Chemosphere 18, 783–788. Rott, B., Viswanathan, R., Freitag, D., Korte, F. (1982) Vergleichende untersuchung der anwendbrakeit von unweltchemikalien. Chemosphere 11, 531–538. Ruppert, G., Bauer, R., Heisler, G., Vovalic, S. (1993) Mineralization of cyclic organic water contaminants by the photo-Fenton reaction-Influence of structure and substituents. Chemosphere 27(8), 1339–1347. Ryan, J.A., Bell, R.M., Davidson, J.M., O’Connor, G.A. (1988) Plant uptake of non-ionic organic chemicals from soils. Chemosphere 17, 2299–2323. Saarikoski, J., Viluksela, M. (1981) Influence of pH on the toxicity of substituted phenols to fish. Arch. Environ. Contam. Toxicol. 10, 747–753. Saarikoski, J., Viluksela, M. (1982) Relation between physicochemical properties of phenols and their toxicity and accumulation in fish. Ecotox. Environ. Saf. 6, 501–512. Saarikoski, J., Lindström, R., Tyynelä, M., Viliksela, M. (1986) Factors affecting the absorption of phenolics and carboxylic acids in the guppy (Poecilia reticulata). Ecotox. Environ. Saf. 11, 158–173. Sabljic, A. (1987a) Nonempirical modeling of environmental distribution and toxicity of major organic pollutants. In: QSAR in Environmental Toxicology-II. pp.309–332. Kaiser, K.L.E., Editor, D. Reidel Publishing Company, Dordrecht, The Netherlands. Sabljic, A. (1987b) On the prediction of soil sorption coefficients of organic pollutants from molecular structure: Application of molecular topology model. Environ. Sci. Technol. 21,358–366.

Sabljic, A., Güesten, H. (1990) Predicting the night-time NO3 radical reactivity in the troposphere. Atmos. Environ. 24A, 73–78. Sabjic, A., Güsten, H., Verhaar, H., Hermens, J. (1995) QSAR modelling of soil sorption. Improvements and systematics of log KOC vs. log KOW correlations. Chemosphere 31, 4489–4514. Sagebiel, J.C., Seiber, J.N. (1993) Studies on the occurrence and distribution of wood smoke marker compounds in foggy atmospheres. Environ. Toxicol. Chem. 12, 813–822. Sagebiel, J.C., Seiber, J.N., Woodrow, J.E. (1992) Comparison of headspace and gas-stripping methods for determining the Henry’s law constant (H) for organic compounds of low to intermediate H. Chemosphere 25(12), 1763–1768. Saito, H., Koyasu, J., Yoshida, K., Shigeoka, T., Koike, S. (1993) Cytotoxicity of 109 chemicals to goldfish GFS cells and relationships with 1-octanol/water partition coefficients. Chemosphere 26, 1015–1028. Sanborn, J.R., Childers, W.F., Metcalf, R.L. (1975) Uptake of three polychlorinated biphenyls, DDT and DDE by green sunfish, Lepomis cyanellus Raf. Bull. Environ. Contam. Toxicol. 13, 209–217. Sanders, G., Jones, K.C., Hamilton-Taylor, J. (1993) A simple method to assess the susceptibility of polynuclear aromatic hydrocarbons to photolytic decomposition. Atmos. Environ. 27A, 139–144. Sangster, J. (1989) Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data 18, 1111–1230. Sangster, J. (1993) LOGKOW Databank, Sangster Research Laboratory, Montreal, Quebec. Sasaki, S. (1978) The scientific aspects of the chemical substance control law in Japan. In: Aquatic Pollutants: Transformation and Biological Effects. Hutzinger, O. et al., Editors, Pergamon Press, Oxford, U.K. pp. 283–298. Schauerte, W., Lay, J.P., Klein, W., Körte, F. (1982) Influence of 2,4,6-trichlorophenol and pentachlorophenol on the biota of aquatic systems. Chemosphere 11, 71–79. Schellenberg, K., Leuenberger, C., Schwarzenbach, R.P. (1984) Sorption of chlorinated phenols by natural sediments and aquifer materials. Environ. Sci. Technol. 18, 652–657. Scherrer, R.A., Howard, S.M. (1979) The analysis of electronic factors in quantitative structure-activity relationships using distribution coefficients. Adv. Chem. Ser. 112, 507–526. Schmidt-Bleek, F., Haberland, W., Klein, A.W., Caroli, S. (1982) Steps toward environmental hazard assessment of new chemicals (including a hazard ranking scheme, based upon directive 78/831/EEC). Chemosphere 11, 383–415. Schnell, S., Bak, F., Pfennig, N. (1989) Anaerobic degradation of aniline and dihydroxybenzenes by newly isolated sulfate-reducing bacteria and description of Desulfobacterium anilini. Arch. Microbiol. 152, 556–563. Schultz, T.W., Cajina-Quezada, M. (1987) Structure-activity relationships for mono alkylated or halogenated phenols. Toxicol. Lett. 37(2), 121–130. Schwarzenbach, R.P., Westall, J. (1985) Sorption of hydrophobic trace organic compounds in groundwater systems. Wat. Sci. Technol. 17, 35–55. Schwarzenbach, R.P., Stierli, R., Folsom, B.R., Zeyer, J. (1988) Compound properties relevant for assessing the environmental partitioning of nitrophenols. Environ. Sci. Technol. 22(1), 83–92. Scott, H.D., Wolf, D.C., Lavy, T.L. (1983) Adsorption and degradation of phenol at low concentrations in soil. J. Environ. Qual. 12, 91–95. Scow, K.M. (1982) Chapter 9, Rate biodegradation. In: Handbook of Chemical Property Estimation Methods. Environmental Behaviour of Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, McGraw-Hill, New York.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 3019

Scully, F.E., Jr., Hoigné, J. (1987) Rate constants for reactions of singlet oxygen with phenols and other compounds in water. Chemosphere 16, 681–694. Seidell, A. (1941) Solubilities of Organic Compounds. Vol. 2, Van Nostrand, New York. Seip, H.M., Alstad, J., Carlberg, G.E., Martinsen, K., Skaane, R. (1986) Measurement of mobility of organic compounds in soils. Sci. Total Environ. 50, 87–101. Serjeant, E.P., Dempsey, B. (1979) Ionization Constants of Organic Acids in Aqueous Solution. Pergamon, Oxford, U.K. Shelton, D.R., Tiedje, J.M. (1981) Development Tests for Determining Anaerobic Degradation Potential. EPA-560/5–81–013. NTIS PB84–166495. Mich. State Univ., Dept. Crop Soil Science, East Lansing, Michigan. 92 pp. Sheikheldin, S.Y., Cardwell, T.J., Cattrall, R.W., Luque De Castro, M.D., Kolev, S.D. (2001) Determination of Henry’s law constants of phenols by pervaporation-flow injection analysis. Environ. Sci. Technol. 35, 178–181. Shigeoka, T., Sato, Y., Takeda, Y., Yoshida, K., Yamauchi, F. (1988) Acute toxicity of chlorophenols to green algae, Selenastrum capricornutum and chlorella vulgaris, and quantitative structure-activity relationships. Environ. Toxico. Chem. 7, 847–854. Shigeoka, T., Yamagata, T., Minoda, T., Yamauchi, F. (1988) Acute toxicity and hatching inhibition of chlorophenols to Japanese medaka, Oryzias latipes, and structure-activity relationships. Jpn. J. Toxicol. Environ. Health 34(4), 343–349. Shiu, W.Y., Ma, K.C., Varhaníčková, D., Mackay, D. (1994) Chlorophenols and alkylphenols: A review and correlation of environ- mentally relevant properties and fate in an evaluative environment. Chemosphere 29(6), 1155–1224. Sidgwick, N.V., Spurrell, W.J. Davies, T.E. (1915) CXXXII. The solubility of nitrophenols and other isomeric disubstitution products of benzene. J. Chem. Soc. 1202–1213. Sidgwick, N.V., Turner, S.L. (1922) CCLXXI.-The solubility of chlorophenols. J. Chem. Soc. (London) 2256–2263. Sillén, L.G., Martell, A.E. (1971) Stability Constants of Metal-Ion Complexes. Supplement No.1, Spec. Publ. No.25, The Chemical Society, London. Slater, B., McCormack, A., Avdeef, A., Comer, J.E.A. (1994) pH-metric log P. Comparison of partition coefficients determined by HPLC and potentiometric methods to literature values. J. Pharm. Sci. 83, 1290–1283. Smith, A.D., Bharath, A., Mallard, C., Orr, D., McCarty, L.S., Ozbum, G.W. (1990) Bioconcentration kinetics of some chlorinated benzenes and chlorinated phenols in American flagfish, Jordanella floridae (Goode and Bean). Chemosphere 20, 379–386. Smith, J.H., Mabey, W.R., Bohonos, N., Holt, B.R., Lee, S.S., Chou, T.W., Venberger, D.C., Mill, T. (1978) Environmental Pathways of Selected Chemicals in Freshwater System. Part II. Laboratory Studies. EPA-600/7–78–074. U.S. EPA, Athens, Georgia. Smith, P.D., Brockway, D.L., Stancil, F.E., Jr. (1987) Effects of hardness, alkalinity and pH on the toxicity of pentachlorophenol to Selenastrum capricornutum (printz). Environ. Toxicol. Chem. 6, 891–900. Söderström, M., Wachtmeister, C.A., Förlin, L. (1994) Analysis of chlorophenolics from bleach Kraft Mill effluents (BKME) in bile of perch (Perca fluviatilis) from the Baltic Sea and development of an analytical procedure also measuring chlorocatechols. Chemosphere 28, 1701–1719. Sonnefeld, W.J., Zoller, W.H., May, W.E. (1983) Dynamic coupled-column liquid chromatographic determination of ambient tem- perature vapor pressures of polynuclear aromatic hydrocarbons. Anal. Chem. 55, 275–280. Spain, J.C., Zylstra, G.J., Blake, C.K., Gibson, D.T. (1989) Monohydroxylation of phenol and 2,5-dichlorophenol by toluene dioxygenase in pseudomonas putida F1. Appl. Environ. Microbiol. 55, 2648–2652. Statham, C.N., Melancon, M.J., Jr., Leck, J.L. (1976) Bioconcentration of xenobiotics in trout bile: A proposed monitoring aid for some water borne chemicals. Science 193, 680–681. Staudinger, J., Roberts, P.V. (2001) A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions. Chemosphere 44, 561–576. Steen, W.C. (1991) Microbial Transformation Rate Constants of Structurally Diverse Man-made Chemicals. EPA 600/3–91/016, PB91–181958. Environmental Research Lab., Office of Research and Development, U.S. Environmental Protection Agency, Athens, Georgia. Stegeman, M.H.L., Peijnenberg, W.J.G.M., Verboom, H. (1993) A quality structure-activity relationship for the direct photohydrolysis of meta-substituted halobenzene derivatives in water. Chemosphere 26(5), 837–849. Stehly, G.R., Hayton, W.L. (1990) Effect of pH on the accumulation kinetics of pentachlorophenol in goldfish. Arch. Environ. Contam. Toxicol. 19, 464–470. Stephenson, R.M., Malanowski, A. (1987) Handbook of the Thermodynamics of Organic Compounds. Elsevier, New York. Stockdale, M., Selwyn, M.J. (1971) Effects of ring substituents on the activity of phenols as inhibitors and uncouplers of mitochondrial respiration. Eur. J. Biochem. 21, 565–574. Stull, D.R. (1947) Vapor pressure of pure substances: Organic compounds. Ind. Eng. Chem. 39(4), 517–560. Sudhakar-Barik, Sethunnathan, N. (1978) Metabolism of nitrophenols in flooded soils. J. Environ. Quality 7, 349–352. Suflita, J.M., Miller, G.D. (1985) Microbial metabolism of chlorophenolic compounds in groundwater aquifers. Environ. Toxicol. Chem. 4, 751–758. Sugiura, K., Aoki, M., Kaneko, S., Daisaku, I., Komatsu, Y., Shibuya, H., Suzuki, H., Goto, M. (1984) Fate of 2,4,6-trichlorophenol, pentachlorophenol, p-chlorobiphenyl, and hexachlorobenzene in an outdoor experimental pond: Comparison between obser- vations and predictions based on laboratory data. Arch. Environ. Contam. Toxicol. 13, 745–758. Svenson, S., Björndal, H. (1988) A convenient test method for photochemical transformation of pollutants in the aquatic environment. Chemosphere 17, 2397–2405.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3020 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Szabo, G., Guczi, J., Bulman, R.A. (1995) Examination of silica-salicylic acid and silica-8-hydroxyquinoline HPLC stationary phases for estimation of the adsorption coefficient of soil for some aromatic hydrocarbons. Chemosphere 30, 1717–1727. Szabo, G., Guczi, J., Ködel, W., Zsolnay, A., Major, V., Keresztes, P. (1999) Comparison of different HPLC stationary phases for

determination of soil-water distribution coefficient, KOC, values of organic chemicals in RP-HPLC system. Chemosphere 39, 431–442. Tabai, S., Rogalski, M., Solimando, R., Malanowski, S.K. (1997) Activity coefficients of chlorophenols in water at infinite dilution. J. Chem. Eng. Data 42, 1147–1150. Tabak, H.H., Chambers, C.W., Kabler, P.W. (1964) Microbial metabolism of aromatic compounds. I. Decomposition of phenolic compounds and aromatic hydrocarbons by phenol-adapted bacteria. J. Bacteriology 87, 910–919. Tabak, H.H., Govind, R. (1993) Prediction of biodegradation kinetics using a nonlinear group contribution method. Environ. Toxicol. Chem. 12, 251–260. Takemoto, S., Kuge, Y., Nakamoto, M. (1981) The measurement of BOD in seawater. Suishitsu Odaku Kenkyu. 4, 80–90. Tam, D., Varhaníčková, D., Shiu, W.Y., Mackay, D. (1994) Aqueous solubility of chloroguaiacols. J. Chem. Eng. Data 39, 83–86. Terada, H., Kosuge, Y., Murayama, W., Nakaya, N., Nunogaki, Y., Nunogaki, K.-I. (1987) Correlation of hydrophobic parameters of organic compounds determined by centrifugal partition chromatography with partition coefficients between octanol and water. J. Chromatogr. 400, 343–351. Tewari, Y.B., Miller, M.M., Wasik, S.P., Martire, D.E. (1982) Aqueous solubility and octanol/water partition coefficient of organic compounds at 25.0°C. J. Chem. Eng. Data 27, 451–454. Thomas, R.G. (1982) Chapter 15, Volatilization from water. In: Handbook of Chemical Property Estimation Methods. Enviromental Behaviour of Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors, McGraw-Hill, New York. Toyota, H., Kuwahara, M. (1967) The study on production of PCP chemical fertilizer and its effect as herbicide and fertilizer, the solubility in water of PCP in PCP chemical fertilizer. Nippon Dojohiryogaku Zasshi 38, 93–97. Tratnyek, P.G., Hoigné, J. (1991) Oxidation of substituted phenols in the environment: A QSAR analysis of rate constants for reaction with singlet oxygen. Environ. Sci. Technol. 25(9) 626–631. Travis, C.C., Arms, A.D. (1988) Bioconcentration of organics in beef, milk, and vegetation. Environ. Sci. Technol. 22, 271–274. Trujillo, D.A., Ray, L.E., Murray, H.E., Giam, C.S. (1982) Bioaccumulation of pentachlorophenol by killifish (Fundulus similus). Chemosphere 11, 25–31. Tsonopoulos, C., Prausnitz, J.M. (1971) Activity coefficients of aromatic solutes in dilute aqueous solutions. Ind. Eng. Chem. Fundam. 10, 593–600. Supplementary materials. Tsuda, T., Takino, A., Kojima, M., Harada, H., Muraki, K., Tsuji, M. (2000) 4-Nonylphenols and 2-tert-octylphenol in water and fish from rives flowing into Lake Biwa. Chemosphere, 41, 757–762. Tute, M.S. (1971) Principle and practice of Hansch analysis: A guide structure-activity correlation for the medical chemist. Adv. Drug Res. 6, 1–77. Ugland, K., Lundanes, E., Greibrokk, T., Bjorseth, A. (1981) Determination of chlorinated phenols by high-performance liquid chromatography. J. Chromatogr. 213, 83–90. Umeyama, H., Nagai, T., Nogami, H. (1971) Mechanism of adsorption of phenols by carbon black from aqueous solution. Chem. Pharm. Bull. 19, 1714–1721. Unger, S.H., Cook, J.R., Hollenberg, J.S. (1978) Simple procedure for determining octanol-aqueous partition, distribution, and ionization coefficients by reversed-phase high-pressure liquid chromatography. J. Pharm. Sci. 67, 1364–1367. Urano, K., Kato, Z. (1986) A method to classify biodegradability of organic compounds. J. Hazard. Material 13, 135–145. Urano, K., Maeda, H., Ogura, K., Wada, H. (1982) Direct analytical method for aromatic compounds in water by steam carrier gas chromatography. Water Res. 16, 323–327. Urushigawa, Y., Yonezawa, Y., Masunaga, S., Tashiro, T., Hirai, M., Tanaka, M. (1983) Biodegradability of mono-substituted phenols. I. Biodegradability by non-acclimated activated sludge microorganisms. Kogai Shigen Kenkyuso Iho. 12, 37–46. Vaishnav, D.D., Babeu, L. (1987) Comparison of occurrence and rates of chemical biodegradation in natural waters. Bull. Environ. Contam. Toxicol. 39, 237–244. Valsaraj, K.T., Thibodeaux, L.J., Lu, X.-Y. (1991) Studies in batch and continuous solvent sublation. III. Solubility of pentachlo- rophenol in alcohol-water mixtures and its effects on solvent sublation. Sep. Sci. Technol. 26, 529–538. Van Gestel, C.A.M., Ma, W.-C. (1988) Toxicity and bioaccumulation of chlorophenols in earthworms, in relation to bioavailability in soil. Ecotox. Environ. Saf. 16, 289–297. Van Veld, P.A., Spain, J.C. (1983) Degradation of selected xenobiotic compounds in three types of aquatic test systems. Chemosphere 12, 1291–1305. Varhaníčková, D., Shiu, W.Y., Mackay, D. (1995) Aqueous solubilities of alkylphenols and methoxyphenols at 25°C. J. Chem. Eng. Data 40, 448–451. Vashon, R.D., Schwab, B.S. (1982) Mineralization of linear alcohol ethoxylates and linear alcohol ethoxy sulfates at trace concen- trations in estuarine water. Environ. Sci. Technol. 16, 433–436. Veith, G.D., Austin, N.M., Morris, R.T. (1979a) A rapid method for estimating log P for organic chemicals. Water Res. 13, 43–47. Veith, G.D., DeFoe, D.L., Bergstedt, B.V. (1979b) Measuring and estimating the bioconcentration factors of chemicals in fish. J. Fish. Res. Board. Can. 26, 1040–1048.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Phenolic Compounds 3021

Veith, G.D., Macek, K.J., Petrocelli, S.R., Carroll, J. (1980) An evaluation of using partition coefficients and solubility to estimate bioconcentration factors for organic chemicals in fish. In: Aquatic Toxicology, ASTM 707 Eaton, J.G., Parrish, P.R., Hendrickm A.C., Eds., pp.116–129, Am. Soc. for Testing Materials, Philadelphia, Pa. Verschueren, K. (1977) Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Co., New York. Verschueren, K. (1983) Handbook of Environmental Data on Organic Chemicals. 2nd ed., Van Nostrand Reinhold Co., New York. Virtanen, M.T., Hattula, M.L. (1982) The fate of 2,4,6-trichlorophenol in aquatic continuous-flow system. Chemosphere 11, 641–649. Vonterres, E. et al. (1955) Brennstoff Chem. 36, 272.—reference from Boublik et al. 1984. Wachtmeister, C.A., Förlin, L., Arnoldsson, K.C., Larsson, J. (1991) Fish bile as a tool for monitoring aquatic pollutants: studies with radioactivity labelled 4,5,6-trichloroguaiacol. Chemosphere 22, 39–46. Walden, C.C., McLeay, D.J., McKague, A.B. (1986) Cellulose production processes. In: Handbook of Environmental Chemistry, Volume 3/Part D: Anthropogenic Compounds. Hutzinger, O., Ed., pp. 1–34, Springer-Verlag, Berlin. Walker, W.H., Collett, A.R., Lazzell, C.L. (1931) The solubility relations of the isomeric dihydroxybenzenes. J. Phys. Chem. 35, 3259. Wang, L, Shao, Y., Hong, G. (1992) Predicting aqueous solubility and octanol/water partition coefficients of organic chemicals from molar volume. Environ. Chem. 11, 55–70. Wang, L., Wang, X., Xu, O., Tian, L. (1986) Determination of the n-octanol/water partition coefficients of polycyclic aromatic hydrocarbons and estimation of aqueous solubilities. Hungjing Kexue Xuebao 6, 491–497. Wang, L., Xu, L., Xu, O., Tian, L., Zhang, Z. (1989) Determination of partition coefficients of organic acids and bases and the correlation of partition coefficients in different systems. Huanjing Kezue Xuebao 9, 418–424. Wang, X., Harada, S., Watanabe, M., Koshikawa, H., Geyer, P.R. (1996) Modelling the bioconcentration of hydrophobic organic organisms. Chemosphere 32, 1783–1793. Warner, H.P., Cohen, J.M., Ireland, J.C. (1987) Determination Henry’s Law Constants of Selected Priority Pollutants. EPA/600/D- 87/229, U.S. EPA, Cincinnati, Ohio. Wasik, S.P., Tewari, Y.B., Miller, M.M., Martire, D.E. (1981) Octanol/Water Partition Coefficients and Aqueous Solubilities of Organic Compounds. NBSIR No.81–2406. U.S. Dept. of Commerce, Washington. Weast, R.C., Editor (1972–73) Handbook of Chemistry and Physics. 53rd Edition, CRC Press, Cleveland, Ohio. Weast, R.C., Editor (1982–83) Handbook of Chemistry and Physics. 63th ed., CRC Press, Boca Raton, Florida. Webster, G.R.B., Friesen, K.J., Sarna, L.P., Muir, D.C.G. (1985) Environmental fate modelling of chlorodioxins: Determination of physical constants. Chemosphere 14, 609–622. Westall, J.C., Leuenberger, C., Schwarzenbach, R.P. (1985) Influence of pH and ionic strength on the aqueous-nonaqueous distribution of chlorinated phenols. Environ. Sci. Technol. 19(2), 193–198. Windholz, M., Editor (1983) The Merck Index. 10th Edition, Merck & Co., Rahway, New Jersey. Wong, A.S., Crosby, D.B. (1978) Photolysis of pentachlorophenol in water. In: Pentachlorophenol: Chemistry, Pharmacology, and Environmental Toxicology. Rao, K.R., Editor, pp. 19–25, Plenum Press, New York. Wong, A.S., Crosby, D.B. (1981) Photodecomposition of pentachlorophenol in water. J. Agric. Food Chem. 29, 125–130. Woodcock, D. (1971) Metabolism of fungicides and nematocides in soils. In: Soil Biochemistry, Vol. 2, Marcel Dekker, New York. Xie, T.M. (1983) Determination of trace amounts of chlorophenols and chloroguaiacols in sediment. Chemosphere 12(9/10), 1183–1191. Xie, T.M., Abrahamsson, K., Fogelqvist, E., Josefsson, B. (1986) Distribution of chlorophenolics in a marine environment. Environ. Sci. Technol. 20, 457–463. Xie, T.M., Dyrssen, D. (1984) Simultaneous determination of partition coefficients and acidity constants of chlorinated phenols and guaiacols by gas chromatography. Anal. Chem. Acta 160, 21–30. Xie, T.M., Hulthe, B., Folestad, S. (1984) Determination partition coefficients of chlorinated phenols, guaiacols and catechols by shake-flask GC and HPLC. Chemosphere 13, 445–459. Xing, B., McGill, W.B., Dudas, M.J. (1994) Sorption of α-naphthol onto organic sorbents varying in polarity and aromaticity. Chemosphere 28, 145–153. Yalkowsky, S.H., Morozowich, W. (1980) Chapter 3. A physical chemical basis for the design of orally active prodrugs. In: Drug Design. Vol. IX. Academic Press, New York. Yalkowsky, S.H., Valvani, S.C. (1980) Solubility and partitioning I: Solubility of nonelectrolytes in water. J. Pharm. Sci. 69(8), 912–922. Yalkowsky, S.H., Valvani, S.C., Kuu, W.-Y., Dannenfelser, R.M., Editors (1987) Arizona Database of Aqueous Solubility for Organic Compounds. College of Pharmacy, University of Arizona, Tucson, Arizona.

Yaws, C.L. (1994) Handbook of Vapor Pressure, Vol. 1. C1 to C4 Compounds, Vol. 2. C5 to C7 Compounds, Vol. 3, C8 to C28 Compounds. Gulf Publishing Co., Houston, Texas. Yaws, C., Yang, H.C., Pan, X. (1991) Henry’s law constants for 362 organic compounds in water. Chem. Eng. 98(11), 179–185. Yoshida, K., Mizuno, T., Ose, Y., Sato, T. (1986) The estimation for toxicity of chemicals on fish by physico-chemical properties. Chemosphere 15, 195–203. Yoshida, K., Shigeoka, T., Yamauchi, F. (1983) Non-steady-state equilibrium model for the preliminary prediction of the fate of chemicals in the environment. Ecotox. Environ. Saf. 7, 179–190. Yoshida, K., Shigeoka, T., Yamauchi, F. (1987) Evaluation of aquatic environmental fate of 2,4,6-trichlorophenol with a mathematical model. Chemosphere 16, 2531–2544.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3022 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Yashida, T., Kojima, H. (1978) Chemosphere 7, 497–501. Zamy, C., Mazellier, P., Legube, B. (2004) Phototransformation of selected organophosphorus pesticides in dilute aqueous solutions. Water Res. 38, 2305–2314. Zepp, R.G., Schlotzhauer, P.F., Simmons, M.S., Miller, G.C., Baughman, G.L., Wolfe, N.L. (1984) Dynamics of pollutant photore- actions in the hydrosphere. Fresenius Z. Anal. Chem. 319, 119–125. Zhang, X., Wiegel, J. (1990) Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments. Appl. Environ. Microbiol. 56, 1119–1127. Zoeteman, B.C.J., De Greef, E., Brinkmann, F.J.J. (1981) Persistency of organic contaminants in groundwater, lessons from soil pollution incidents in The Netherlands. Sci. Total. Environ. 21, 187–192.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 15 Esters

CONTENTS 15.1 List of Chemicals and Data Compilations...... 3025 15.1.1 Aliphatic esters ...... 3025 15.1.1.1 Methyl formate ...... 3025 15.1.1.2 Ethyl formate...... 3028 15.1.1.3 Propyl formate...... 3031 15.1.1.4 Methyl acetate...... 3034 15.1.1.5 Vinyl acetate ...... 3038 15.1.1.6 Ethyl acetate ...... 3041 15.1.1.7 Propyl acetate ...... 3047 15.1.1.8 Butyl acetate ...... 3052 15.1.1.9 Pentyl acetate ...... 3057 15.1.1.10 Methyl acrylate ...... 3060 15.1.1.11 Ethyl acrylate ...... 3062 15.1.1.12 Methyl methacrylate ...... 3065 15.1.2 Aromatic esters ...... 3069 15.1.2.1 Methyl benzoate ...... 3069 15.1.2.2 Ethyl benzoate...... 3072 15.1.2.3 n-Propyl benzoate ...... 3075 15.1.2.4 Benzyl benzoate ...... 3077 15.1.3 Phthalate esters ...... 3079 15.1.3.1 Dimethyl phthalate (DMP) ...... 3079 15.1.3.2 Diethyl phthalate (DEP) ...... 3084 15.1.3.3 Diallyl phthalate (DAP) ...... 3090 15.1.3.4 Di-n-propyl phthalate (DnPP)...... 3092 15.1.3.5 Di-isopropyl phthalate (DIPP) ...... 3094 15.1.3.6 Di-n-butyl phthalate (DBP) ...... 3095 15.1.3.7 Di-isobutyl phthalate (DIBP) ...... 3104 15.1.3.8 Dipentyl phthalate (DPP) ...... 3106 15.1.3.9 Di-n-hexyl phthalate (DHP) ...... 3108 15.1.3.10 Butyl-2-ethylhexyl phthalate (BOP)...... 3111 15.1.3.11 Di-n-octyl phthalate (DOP) ...... 3113 15.1.3.12 Di-isooctyl phthalate (DIOP) ...... 3116 15.1.3.13 bis-(2-Ethylhexyl) phthalate (DEHP) ...... 3118 15.1.3.14 Di(hexyl,octyl,decyl) phthalate...... 3125 15.1.3.15 Diisononyl phthalate (DINP) ...... 3127 15.1.3.16 Di-isodecyl phthalate (DIDP) ...... 3129 15.1.3.17 Diundecyl phthalate (DUP) ...... 3131 15.1.3.18 Ditridecyl phthalate (DTDP) ...... 3133 15.1.3.19 Butyl benzyl phthalate (BBP)...... 3135

3023

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3024 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.4 Phosphate Esters ...... 3139 15.1.4.1 Triaryl phosphates...... 3139 15.1.4.1.1 t-Butylphenyl diphenyl phosphate (tBPDP, BPDP) ...... 3139 15.1.4.1.2 Cresyl diphenyl phosphate (CDP) ...... 3141 15.1.4.1.3 Isopropylphenyl diphenyl phosphate (IPPDP) ...... 3143 15.1.4.1.4 4-Cumylphenyl diphenyl phosphate (CPDPP) ...... 3145 15.1.4.1.5 Nonylphenyl diphenyl phosphate (NPDPP) ...... 3147 15.1.4.1.6 Triphenyl phosphate (TPP)...... 3149 15.1.4.1.7 Tricresyl phosphate (TCP) ...... 3152 15.1.4.1.8 Trixylenyl phosphate (TXP) ...... 3157 15.1.4.2 Triaryl/alkyl phosphates ...... 3159 15.1.4.2.1 Dibutyl phenyl phosphate (DBPP) ...... 3159 15.1.4.2.2 2-Ethylhexyl diphenyl phosphate (EHDP) ...... 3161 15.1.4.2.3 Isodecyl diphenyl phosphate (IDDP) ...... 3163 15.1.4.3 Trialkyl phosphate...... 3165 15.1.4.3.1 Tributyl phosphate (TBP) ...... 3165 15.1.4.3.2 Tris(2-ethylhexyl) phosphate (TEHP) ...... 3169 15.1.4.4 Trihaloalkyl phosphates ...... 3171 15.1.4.4.1 Tris(2-chloroethyl) phosphate (TCEP) ...... 3171 15.1.4.4.2 Tris(1,3-dichloropropyl) phosphate (TDCPP) ...... 3173 15.1.4.4.3 Tris(2,3-dibromopropyl) phosphate (TDBPP) ...... 3175 15.2 Summary Tables and QSPR Plots...... 3176 15.3 References ...... 3184

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3025

15.1 LIST OF CHEMICALS AND DATA COMPILATIONS

15.1.1 ALIPHATIC ESTERS 15.1.1.1 Methyl formate

O

HO Common Name: Methyl formate Synonym: formic acid methyl ester, methyl methanoate Chemical Name: methyl formate CAS Registry No: 107-31-3

Molecular Formula: C2H4O2, HCOOCH3 Molecular Weight: 60.052 Melting Point (°C): –99.0 (Weast 1982–83; Dean 1985; Lide 2003) Boiling Point (°C): 31.7 (Lide 2003) Density (g/cm3 at 20°C): 0.9742 (Weast 1982–83) 0.9742, 0.9664 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 62.8 (exptl. at normal bp, Lee et al. 1972) 61.6 (20°C, calculated-density) 62.6 (calculated-Le Bas method at normal boiling point)

Dissociation Constant pKa: ∆ Enthalpy of Vaporization, HV (kJ/mol): 30.59; 29.72 (25°C; bp, Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 7.75 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 230000 (USEPA 1975; quoted, Howard 1993) 304000 (20°C, Verschueren 1983) 230000 (Dean 1985; Riddick et al. 1986) 23800 (solubility data compilation, Yaws et al. 1990)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 83260* (isoteniscope method, measured range 21–31.7°C, Nelson 1928) log (P/mmHg) = 7.2202 – 1320.8/(T/K); temp range 21–31.7°C, Nelson 1928) 53329* (16°C, summary of literature data, temp range –74.2 to 213°C, Stull 1947) log (P/mmHg) = [–0.2185 × 7027.8/(T/K)] + 7.852144; temp range –74.2 to 213°C (Antoine eq., Weast 1972–73) 63980, 93310 (20°C, 30°C, Verschueren 1983) 80840 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 2.11093 – 1.573/(–17.263 + t/°C), temp range: 21–31.7°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 83440 (calculated-Antoine eq., Dean 1985) log (P/mmHg) = 3.207 – 3.02/(–11.9 + t/°C), temp range: 21–32°C (Antoine eq., Dean 1985, 1992) 78060 (selected lit., Riddick et al. 1986) log (P/kPa) = 6.29529 – 1125.2/(174.2 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 78600 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3026 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (PL/kPa) = 6.225693 – 1088.955/(–46.675 + T/K); temp range 279–305 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.39684 – 1196.323/(–32.629 + T/K); temp range 305–443 K (Antoine eq.-II, Stephenson & Malanowski 1987) 78070 (Daubert & Danner 1989) log (P/mmHg) = 28.9576 – 2.3582 × 103/(T/K) –7.4848·log(T/K) + 7.4384 × 10–10·(T/K) + 2.7013 × 10–6·(T/K)2, temp range 174–487 K (vapor pressure eq., Yaws 1994) 114881 (35°C, vapor-liquid equilibrium VLE data, Alderson et al. 2003)

Henry’s Law Constant (Pa·m3/mol at 25°C): 22.61 (exptl., Hine & Mookerjee 1975) 20.15, 17.96 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 15.64 (calculated-MCI χ, Nirmalakhandan & Speece 1988) 26.02 (calculated-P/C, Hoff et al. 1993)

Octanol/Water Partition Coefficient, log KOW:

–0.010 (calculated-intrinsic molar volume VI and solvatochromic parameters, Leahy 1986) –0.264 (estimated, Howard 1993) 0.03 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 1.75 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF: –0.222 (estimated-S, Lyman et al. 1990)

Sorption Partition Coefficient, log KOC: 0.699 (soil, estimated-S, Lyman et al. 1990)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: based on Henry’s law constant, t½ ~ 5.3 h from a model river of one meter deep flowing at 1 m/s with a wind velocity of 3 m/s (Lyman et al. 1990; quoted, Howard 1993). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or Arrhenius equation see reference: –13 3 –1 –1 kOH = (2.27 ± 0.34) × 10 cm molecule s at 296 K, measured range 240–440 K (flash photolysis- resonance fluorescence, Wallington et al. 1988a, quoted, Atkinson 1989) –12 3 –1 –1 kOH(calc) = 0.43 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) –1 –1 Hydrolysis: aqueous base-catalyzed hydrolysis k = 36.6 M s at 25°C corresponds to t½ = 21.9 d, 2.19 d, 9.1 h and 0.91 h at respective pHs of 6, 7, 8, and 9 (Mabey & Mill 1978; quoted, Howard 1993) Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: estimated t½ = 74 d, based on experimental reaction rate constant for the vapor-phase reaction with photochemically produced hydroxyl radical in the atmosphere at 23°C (Atkinson 1989; quoted, Howard 1993).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3027

TABLE 15.1.1.1.1 Reported vapor pressures of methyl formate at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Nelson 1928 Stull 1947

isoteniscope summary of literature data

t/°C P/Pa t/°C P/Pa 21.0 80101 –74.2 133.3 25.0 83260 –57.0 666.6 26.6 86286 –48.6 1333 26.8 87286 –39.2 2666 27.1 88392 –28.7 5333 28.3 90406 –21.9 7999 28.9 94845 –12.9 13332 30.1 96378 0.80 26664 31.4 101431 16.0 53329 31.7 102351 32.0 101325 bp/°C 31.6 mp/°C –99.8 eq. 1 P/mmHg A 7.2203 B 1329.8

Methyl formate: vapor pressure vs. 1/T 8.0 Nelson 1928 Stull 1947 7.0 Alderson et al. 2003

6.0

5.0 )aP / S 4.0 P(gol

3.0

2.0

1.0 b.p. = 32.7 °C 0.0 0.0028 0.0032 0.0036 0.004 0.0044 0.0048 0.0052 0.0056 1/(T/K)

FIGURE 15.1.1.1.1 Logarithm of vapor pressure versus reciprocal temperature for methyl formate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3028 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.1.2 Ethyl formate

O

HO Common Name: Ethyl formate Synonym: ethyl methanoate, formic acid ethyl ester Chemical Name: ethyl formate CAS Registry No: 109-94-4

Molecular Formula: C3H6O2, HCOOCH2CH3 Molecular Weight: 74.079 Melting Point (°C): –79.6 (Lide 2003) Boiling Point (°C): 54.4 (Lide 2003) Density (g/cm3 at 20°C): 0.9168 (Weast 1982–83) 0.9220, 0.9153 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 80.8 (20°C, calculated-density, Stephenson & Malanowski 1987) 86.4 (calculated-Le Bas method at normal boiling point)

Dissociation Constant pKa: ∆ Enthalpy of Vaporization, HV (kJ/mol): 31.64; 29.94 (25°C; bp, Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 9.205 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 88250 (Seidell 1941) 93260 (estimated, McGowan 1954) 52440 (Deno & Berkheimer 1960) 118000 (Verschueren 1983; Riddick et al. 1986) 117000 (Dean 1985)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 34530* (25.4°C, isoteniscope method, measured range 25.4–55.4°C, Nelson 1928) log (P/mmHg) = 7.8457 – 1621.2/(T/K); temp range 25.4–55.4°C (Nelson 1928) 33050* (interpolated-regression of tabulated data, temp range –60.5 to 54.3°C, Stull 1947) 30844* (23.715°C, temp range 3.893–53.56°C, Mertl & Polak 1964 - ref. see Boublik et al. 1984) log (P/mmHg) = [–0.2185 × 7511.7/(T/K)] + 7.842747; temp range –60.5 to 225°C (Antoine eq., Weast 1972–73) 25590, 39990 (20°C, 30°C, Verschueren 1983) 30840, 32610 (23.7°C, quoted exptl., interpolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.13263 – 1123.305/(218.177 + t/°C); temp range 3.89–53.56°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 32540 (interpolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.0090 – 1123.94/(218.2 + t/°C); temp range 4–54°C (Antoine eq., Dean 1985, 1992) 32370 (selected, Riddick et al. 1986) 33070 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.1384 – 1151.08/[–48.94 + (T/K)]; temp range: 213–336 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.4206 – 1326.4/[–26.867 + (T/K)]; temp range: 327–498 K (Antoine eq.-II, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3029

log (P/mmHg) = 29.9404 – 2.5263 × 103/(T/K) – 7.809·log(T/K) – 1.0111 × 10–9·(T/K) + 2.7447 × 10–6·(T/K)2; temp range 194–508 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C): 28.46 (exptl., Hine & Mookerjee 1975) 27.18, 25.96 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 17.55 (calculated-MCI χ, Nirmalakhandan & Speece 1988) 702.0 (calculated, Hoff et al. 1993)

Octanol/Water Partition Coefficient, log KOW: –0.38 (calculated, Iwasa et al. 1965) 0.23 (calculated, Hansch et al. 1968) 0.33 (Leo et al. 1971)

0.55 (calculated-intrinsic molar volume VI and solvatochromic parameters, Leahy 1986) 0.26 (calculated-CLOGP, Müller & Klein 1992)

Octanol/Air Partition Coefficient, log KOA: 2.19 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –12 3 –1 –1 kOH = (10.2 ± 1.4) × 10 cm molecule s at 296 K (flash photolysis-resonance fluorescence, Wallington et al. 1988a; quoted, Atkinson 1989) –12 3 –1 –1 –13 3 –1 –1 kOH = 10.2 × 10 cm molecule s ; k(soln) = 6.5 × 10 cm molecule s for reaction with OH radical in aqueous solution (Wallington et al. 1988a) –12 3 –1 –1 kOH(calc) = 1.17 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment:

TABLE 15.1.1.2.1 Reported vapor pressures of ethyl formate at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Nelson 1928 Stull 1947 Mertl & Polak 1964

isoteniscope summary of literature data ref in Boublik et al. 1984

t/°C P/Pa t/°C P/Pa t/°C P/Pa 25.4 34530 –60.5 133.3 3.893 11870 28.9 40103 –42.2 666.6 5.883 13155 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3030 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 15.1.1.2.1 (Continued)

Nelson 1928 Stull 1947 Mertl & Polak 1964

isoteniscope summary of literature data ref in Boublik et al. 1984

t/°C P/Pa t/°C P/Pa t/°C P/Pa 33.6 48263 –33.0 1333 8.963 15369 35.5 51982 –22.7 2666 12.395 18244 38.2 58555 –11.5 5333 16.185 21869 40.1 61608 –4.30 7999 19.290 25242 42.9 70914 5.40 13332 23.715 30844 44.2 72304 20.0 26664 28.260 37517 47.8 82193 40.0 53329 32.775 45345 50.9 91886 53.4 101325 38.220 56435 52.2 96139 43.630 69674 53.4 100392 mp/°C –79 49.453 86066 54.2 102978 53.560 99805 55.4 109138 eq. in Boublik et al. 1984 bp/°C 53.8 eq. 2 P/kPa A 6.13263 eq. 1 P/mmHg B 1123.305 A 7.8457 C 218.177 B 1621.6 bp/°C 54.013

Ethyl formate: vapor pressure vs. 1/T 8.0 Nelson 1928 Mertl & Polak 1964 7.0 Stull 1947

6.0

5.0 )aP/

S 4.0 P (gol

3.0

2.0

1.0 b.p. = 54.4 °C m.p. = -79.6 °C 0.0 0.0028 0.0032 0.0036 0.004 0.0044 0.0048 0.0052 0.0056 1/(T/K) FIGURE 15.1.1.2.1 Logarithm of vapor pressure versus reciprocal temperature for ethyl formate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3031

15.1.1.3 Propyl formate

O

HO Common Name: Propyl formate Synonym: formic acid propyl ester, methanoic acid n-propyl ester, propyl methanoate Chemical Name: n-propyl formate, propyl formate CAS Registry No: 110-74-7

Molecular Formula: C4H8O2, HCOOCH2CH2CH3 Molecular Weight: 88.10 6 Melting Point (°C): –92.9 (Stull 1947; Weast 1982–83; Dean 1985; Riddick et al. 1986; Lide 2003) Boiling Point (°C): 80.9 (Lide 2003) Density (g/cm3 at 20°C): 0.9058 (Weast 1982–83) 0.9006 (Dean 1985) 0.9055, 0.8996 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 97.3 (20°C, calculated-density) 110.8 (calculated-Le Bas method at normal boiling point)

Dissociation Constant pKa: ∆ Enthalpy of Vaporization, HV (kJ/mol): 37.49; 33.60 (25°C; bp, Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 28445 (Seidell 1941) 27230 (Deno & Berkheimer 1960) 27300 (Hansch et al. 1968; quoted, Hine & Mookerjee 1975; Müller & Klein 1992) 20500 (Dean 1985; Riddick et al. 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 11759* (26.2°C, isoteniscope method, measured range 26.2–82.3°C, Nelson 1928) log (P/mmHg) = 7.9925 – 1806.5/(T/K); temp range 26.2–82.3°C (Nelson 1928) 10620* (interpolated-regression of tabulated data, temp range –43 to 81.3°C Stull 1947) log (P/mmHg) = [–0.2185 × 8208.1/(T/K)] + 7.891833; temp range –43 to 245°C (Antoine eq., Weast 1972–73) 11010 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 5.98912 – 1135.489/(204.518 + t/°C); temp range: 26.2–82.3°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 10710 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 6.848 – 1127/(203 + t/°C); temp range: 26–82°C (Antoine eq., Dean 1985, 1992) 11030 (quoted lit. average, Riddick et al. 1986) log (P/kPa) = 5.97008 – 1132.3/(204.8 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 10810 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.73268 – 1560.69/(–24.287 + T/K); temp range: 230–335 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.2378 – 1301.3/(–46.767 + T/K); temp range: 354–518 K (Antoine eq.-II, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3032 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (P/mmHg) = 28.6983 – 2.6926 × 103/(T/K) –7.2435·log(T/K) – 8.7226 × 10–11·(T/K) + 1.9456 × 10–6·(T/K)2; temp range 180–538 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C): 37.52 (exptl., Hine & Mookerjee 1975) 38.39, 38.39 (calculated-group contribution, calculated-bond contribution, Hine & Mookerjee 1975) 22.61 (calculated-MCI χ, Nirmalakhandan & Speece 1988)

Octanol/Water Partition Coefficient, log KOW: 0.73 (calculated, Hansch et al. 1968) 0.83 (shake flask, unpublished result, Leo et al. 1971; Hansch & Leo 1979) 0.83 (recommended, Sangster 1989; 1993) 0.83 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 2.66 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: –13 3 –1 –1 kOH = (2.38 ± 2.7) × 10 cm molecule s at 296 K (flash photolysis-resonance fluorescence, Wallington et al. 1988; quoted, Atkinson 1989) –12 3 –1 –1 kOH(calc) = 1.87 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

TABLE 15.1.1.3.1 Reported vapor pressures of propyl formate at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

n-propyl formate isopropyl formate

Nelson 1928 Stull 1947 Nelson 1928 Stull 1947

isoteniscope method summary of literature data isoteniscope method summary of literature data

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 26.2 11759 –43.0 133.3 25.1 18198 –52.0 133.3 30.8 14545 –22.7 666.6 29.8 22585 –32.7 666.6 35.2 17932 –12.6 1333 35.0 28958 –22.7 1333 40.5 22718 –1.70 2666 41.2 37530 –12.1 2666

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3033

TABLE 15.1.1.3.1 (Continued)

n-propyl formate isopropyl formate

Nelson 1928 Stull 1947 Nelson 1928 Stull 1947

isoteniscope method summary of literature data isoteniscope method summary of literature data

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 46.2 28864 10.8 5333 48.0 49062 0.20 5333 52.0 33717 18.8 7999 48.2 49609 7.50 7999 58.4 46516 29.5 13332 53.708 61101 17.8 13332 63.7 56235 45.3 26664 57.80 70661 33.6 26664 63.9 57422 62.6 53329 63.90 87726 50.5 53329 70.5 72034 81.3 101325 68.60 102405 68.3 101325 71.0 73967 70.30 108377 73.5 79993 mp/°C –92.5 77.788 113830 mp/°C - 75.1 86513 72.100 116430 78.9 96525 80.5 101245 bp/°C 68.4 82.3 106498 eq. 1 P/mmHg A 7.8909 bp/°C 80.4 B 1710.5 eq. 1 P/mmHg A 7.99255 B 1806.5

n -Propyl formate: vapor pressure vs. 1/T 8.0 Nelson 1928 Stull 1947 7.0

6.0

5.0 /Pa) S 4.0

log(P 3.0

2.0

1.0 b.p. = 80.9 °C 0.0 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 0.005 1/(T/K) FIGURE 15.1.1.3.1 Logarithm of vapor pressure versus reciprocal temperature for n-propyl formate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3034 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.1.4 Methyl acetate

O

O Common Name: Methyl acetate Synonym: acetic acid methyl ester, ethanoic acid methyl ester, methyl ethanoate Chemical Name: methyl acetate CAS Registry No: 79-20-9

Molecular Formula: C3H6O2, CH3COOCH3 Molecular Weight: 74.079 Melting Point (°C): –98.25 Lide 2003) Boiling Point (°C): 56.89 (Lide 2003) Density (g/cm3 at 20°C): 0.9330 (Weast 1982–83) 0.9342 (Dean 1985) 0.9342, 0.9279 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 79.3 (20°C, calculated-density) 84.8 (calculated-Le Bas method at normal boiling point) Dissociation Constant:

22.50 (pKs, Riddick et al. 1986) ∆ Enthalpy of Vaporization, HV (kJ/mol): 32.30, 30.33 (25°C; bp, Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 243730 (20°C, shake flask-turbidity, Fühner 1924) 294920 (estimated, McGowan 1954) 243500 (20°C, Stephen & Stephen 1963) 240000, 319000 (20°C, Verschueren 1983) 240000 (Dean 1985) 245000 (20°C, Riddick et al. 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 27980* (interpolated-regression of tabulated data, –52 to 57.8°C, Stull 1947) 25242* (22.060°C, temp range 1.758–55.840°C, Mertl & Polak 1964; quoted, Boublik et al. 1984) log (P/mmHg) = [–0.2185 × 7732.8/(T/K)] + 7.938782; temp range –57.2 to 225°C (Antoine eq., Weast 1972–73) 28830* (ebulliometry, fitted to Antoine eq., Ambrose et al. 1981) log (P/kPa) = 6.24410 – 1183.700/(T/K) – 50.736; temp range 259.6–351.3 K (Antoine eq., ebulliometry, Ambrose et al. 1981) 31330 (Verschueren 1983) 28830 (interpolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.25449 – 1189.608/(223.115 + t/°C); temp range –13.58 to 78.12°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.19357 – 1159.358/(219.913 + t/°C); temp range 1.76–55.84°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 28200 (calculated-Antoine eq., Dean 1985) log (P/mmHg) = 7.0652 – 1157.63/(219.73 + t/°C); temp range: 1–56°C (Antoine eq., Dean 1985, 1992) 28828 (lit. average, Riddick et al. 1986)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3035

log (P/kPa) = 6.24410 – 1183.70/(222.414 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 28830, 28840 (interpolated-Antoine eq. I and II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.190152 – 1157.622/(–53.426 + T/K); temp range 274–331 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.18771 – 1156.219/(–53.589 + T/K); temp range: 274–331 K (Antoine eq.-II, Stephenson & Malanowski 1987) log (P/mmHg) = 33.7235 – 2.7204 × 103/(T/K) –9.1182·log(T/K) – 9.4316 × 10–11·(T/K) + 3.3102 × 10–6·(T/K)2; temp range 175–507 K (vapor pressure eq., Yaws 1994) 53808 (40°C, vapor-liquid equilibrium VLE data, Alderson et al. 2003)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 9.190 (volatility-partial pressure, Butler & Ramchandani 1935) 11.65 (volatility-partial pressure-GC, Buttery et al. 1969) 8.795 (exptl., Hine & Mookerjee 1975) 11.59, 9.210 (calculated-group contribution, bond contribution, Hine & Mookerjee 1975) 13.06 (vapor-liquid equilibrium, headspace-GC, measured range 25–40°C data presented in graph, ∆H = 39.2 kJ/mol, Kieckbusch & King 1979) 9.210, 25.96 (quoted, calculated-MCI χ, Nirmalakhandan & Speece 1988) 9.80 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 4.590 – 2048/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 0.18 (shake flask-CR, Collander 1951; quoted, Hansch & Leo 1979; Hansch & Leo 1985) 0.23 (calculated, Hansch et al. 1968) 0.70 (calculated-activity coeff. γ from UNIFAC, Banerjee & Howard 1988) 0.18 (recommended, Sangster 1989, 1993) 0.18 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 2.31 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF: –0.224 (calculated-S, Lyman et al. 1982)

–0.092 (calculated-KOW, Lyman et al. 1982)

Sorption Partition Coefficient, log KOC: 0.681 (soil, calculated-S, Lyman et al. 1982; quoted, Howard 1993)

1.474 (soil, calculated-KOW, Lyman et al. 1982; quoted, Howard 1993)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: based on calculated Henry’s law constant, t½ ~ 9.1 h from a model river of 1 m deep flowing at 1 m/s with wind velocity of 3 m/s (Lyman et al. 1982; quoted, Howard 1993). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation half-life of 2.4–24 h for the gas-phase reaction with OH radical in air, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976) 10 3 –1 –1 –13 3 –1 –1 kOH = (1.1 ± 0.03) × 10 dm mol s or (1.7 ± 0.5) × 10 cm molecule s at 292 K using relative rate technique for n-butane (Campbell & Parkinson 1978) –13 3 –1 –1 kOH(exptl) = (1.3 – 3.41) × 10 cm molecule s for the vapor-phase reaction with photochemically produced hydroxyl radical in air (Atkinson et al. 1979; Güesten et al. 1984; Atkinson 1987; Wallington et al. 1988a,b; quoted, Howard 1993) –13 3 –1 –1 –13 3 –1 –1 kOH(calc) = 1.9 × 10 cm molecule s , kOH(obs.) = 1.7 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3036 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

–13 3 –1 –1 –13 3 –1 –1 kOH(calc) = 2.2 × 10 cm molecule s , kOH(obs.) = 1.7 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –13 3 –1 –1 kOH = (3.41 ± 0.29) × 10 cm molecule s at 296 K (absolute rate, flash photolysis-resonance fluores- cence, Wallington 1988a) –13 3 –1 –1 –13 3 –1 –1 kOH = 3.41 × 10 cm molecule s ; k(soln) = 2.0 × 10 cm molecule s for reaction with OH radical in aqueous solution (Wallington et al. 1988b) –13 3 –1 –1 kOH(calc) = 6.9 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: alkaline hydrolysis rate constant k = 0.182 M–1 s–1 at 25°C in water (Salmi & Leimu 1947; quoted, Drossman et al. 1988). Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: photooxidation t½ = 2.4–24 h for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976);

atmospheric t½ = 47–94 d, based on exptl. rate constants for the vapor-phase reaction with photochemically produced hydroxyl radical in air (Atkinson et al. 1979; Güesten et al. 1984; Atkinson 1987; Wallington et al. 1988; quoted, Howard 1993). Surface water: Groundwater: Sediment: Soil: Biota:

TABLE 15.1.1.4.1 Reported vapor pressures of methyl acetate at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Mertl & Polak 1965 Ambrose et al. 1981

summary of literature data ref. in Boublik et al. 1984 comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa –57.2 133.3 1.758 9202 –13.581 3785 57.559 103841 –38.6 666.6 4.058 10415 –10.401 4597 61.773 119919 –29.3 1333 6.568 11870 –7.621 5426 65.575 136076 –19.1 2666 8.563 13155 –4.400 6450 70.114 157575 –7.90 5333 11.635 15369 –1.427 7733 74.442 180470 –0.50 7999 15.145 18244 1.819 9241 78.128 202007 9.40 13332 18.975 21869 4.978 10938 25.0 28828 24.0 26664 22.060 25242 8.278 12977 40.0 53329 26.520 30844 11.635 15386 bp/K 330.018 57.8 101325 31.060 37517 14.886 18029 35.590 45345 19.151 22079 Antoine eq. mp/°C –98.7 41.090 56435 22.787 26098 eq. 3 P/kPa 46.500 69474 26.948 31418 A 6.24410 52.310 86066 31.023 37456 B 1184.700 55.840 97512 35.319 44810 C –50.735

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3037

TABLE 15.1.1.4.1 (Continued)

Stull 1947 Mertl & Polak 1965 Ambrose et al. 1981

summary of literature data ref. in Boublik et al. 1984 comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 40.047 54206 44.148 63603 data also fitted to: 48.507 74964 Chebyshev equation and 53.215 89039 Chebyshev polynomial 56.821 101164 coefficients given in ref.

Methyl acetate: vapor pressure vs. 1/T 8.0 Mertl & Polak 1965 Ambrose et al. 1981 7.0 Stull 1947 Alderson et al. 2003 6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 56.87 °C 0.0 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 0.005 1/(T/K) FIGURE 15.1.1.4.1 Logarithm of vapor pressure versus reciprocal temperature for methyl acetate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3038 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.1.5 Vinyl acetate

O

O Common Name: Vinyl acetate Synonym: ethanoic acid ester, ethenyl acetate, ethenyl ethanoate Chemical Name: ethenyl acetate, vinyl acetate CAS Registry No: 108-05-4

Molecular Formula: C4H6O2, CH3COOCH=CH2 Molecular Weight: 86.090 Melting Point (°C): –93.2 (Weast 1982–83: Lide 2003) Boiling Point (°C): 72.8 (Lide 2003) Density (g/cm3 at 20°C): 0.9317 (Weast 1982–83) Molar Volume (cm3/mol): 92.2 (20°C, calculated-density, Stephenson & Malanowski 1987) 101.2 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: ∆ Enthalpy of Vaporization, HV (kJ/mol): 37.2, 34.35 (25°C, bp. Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 19722 (Deno & Berkheimer 1960) 25000 (Verschueren 1983) 20000 (Dean 1985) 20000 (20°C, Riddick et al. 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 14454* (interpolated-regression of tabulated data, temp range –48 to 72.5°C, Stull 1947) 21.83* (21.83°C, measured range 21.8–72.04°C, Capkova & Fried 1964 - ref see Boublik et al. 1984) 84406* (67°C, vapor-liquid equilibrium data, measured range 67–82°C, Swamy & Van Winkle 1965) 15300 (interpolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 7.17023 – 1766.918/(269.951 + t/°C); temp range: 67–82°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.3363 – 1296.847/(226.731 + t/°C); temp range: 21.83–72.04°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 15300 (interpolated-Antoine eq., Dean 1985, 1992) log (P/mmHg) = 7.2101 – 1296.13/(226.66 + t/°C); temp range: 22–72°C (Antoine eq., Dean 1985, 1992) 14100 (quoted lit. average, Riddick et al. 1986) log (P/kPa) = 7.216 – 1798.4/(T/K); temp range: not specified (Antoine eq., Riddick et al. 1986) 15340, 15305 (interpolated-Antoine eq.-I, II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.3799 – 1320.2716/(–43.96 + T/K); temp range: 293–346 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.34264 – 1300.315/(–46.041 + T/K); temp range 294–346 K (Antoine eq.-II, Stephenson & Malanowski 1987) 11320 (20°C, quoted, Howard 1989)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3039

log (P/mmHg) = 12.722 – 2.177 × 103/(T/K) – 91.458·log (T/K) – 4.5688 × 10–3·(T/K) + 2.9673 × 10–6·(T/K)2; temp range 180–524 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C): 48.74 (calculated-P/C, Howard 1989)

Octanol/Water Partition Coefficient, log KOW: 0.60 (shake flask, Fujisawa & Masuhara 1980) 0.21 (calculated-HPLC-RT, Fujisawa & Masuhara 1981) 0.73 (recommended, Sangster 1989, 1993) 0.73 (recommended, Hansch et al. 1995)

Bioconcentration Factor, log BCF:

0.32–0.37 (estimated-KOW, Howard 1989)

Sorption Partition Coefficient, log KOC:

1.28–1.77 (estimated-KOW, Howard 1989)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: estimated t½ = 4.4 h from a model river of 1 m deep flowing at 1 m/s with a wind velocity of 3m/s, and t½ = 2.2 d from an environmental pond (Howard 1989). Photolysis:

Oxidation: t½ = 13 and 8 d for reactions with OH radical and singlet oxygen in sunlit natural water (Howard 1989). –6 –1 Hydrolysis: overall rate constant kh = 1.10 × 10 s with t½ = 7.3 d at 25°C and pH 7 (Mabey & Mill 1978) degradation t½ = 7.3 d at 25°C and pH 7, the hydrolysis rate will increase as the pH increases (Howard 1989). Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: estimated t½ = 12 h with photochemically produced hydroxyl radical in an average atmosphere (Howard 1989).

Surface water: hydrolysis degradation t½ = 7.3 days at 25°C and pH 7; t½ = 13 and 8 d for reactions with hydroxyl radical and singlet oxygen, respectively, in natural water (Howard 1989). Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3040 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 15.1.1.5.1 Reported vapor pressures of vinyl acetate at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Capkova & Fried 1963 Swamy & Van Winkle 1965

summary of literature data in Boublik et al. 1984 V–L equil. data

t/°C P/Pa t/°C P/Pa t/°C P/Pa –48.0 133.3 21.83 13159 67.0 84406 –28.0 666.6 25.12 15372 69.0 90646 –18.0 1333 28.8 18252 70.0 92899 –7.0 2666 32.85 21891 72.0 100711 5.30 5333 36.13 25264 74.0 107924 13.0 7999 40.82 30864 76.0 115550 23.3 13332 45.64 37543 78.0 123643 38.4 26664 50.37 45356 80.0 132189 55.5 53329 56.12 56448 82.0 131215 72.5 101325 61.83 69487 67.92 86046 mp/°C –73 72.04 99958 eq. 2 P/kPa A 6.33630 B 1296.847 C 226.731 bp/°C 71.731

Vinyl acetate: vapor pressure vs. 1/T 8.0 Capkova & Fried 1963 Swamy & Van Winkle 1965 7.0 Stull 1947

6.0

5.0 /Pa) S 4.0

log(P 3.0

2.0

1.0 b.p. = 72.8 °C 0.0 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 0.005 1/(T/K) FIGURE 15.1.1.5.1 Logarithm of vapor pressure versus reciprocal temperature for vinyl acetate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3041

15.1.1.6 Ethyl acetate

O

O Common Name: Ethyl acetate Synonym: acetic acid ethyl ester, acetic ether, ethanoic acid ester, ethyl ethanoate Chemical Name: n-ethyl acetate, ethyl acetate CAS Registry No: 141-78-6

Molecular Formula: C4H8O2, CH3COOCH2CH3 Molecular Weight: 88.106 Melting Point (°C): –83.8 (Lide 2003) Boiling Point (°C): 77.11 (Lide 2003) Density (g/cm3 at 20°C): 0.9003 (Weast 1982–83) 0.9006, 0.8946 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 106.0 (exptl. at normal bp, Lee et al. 1972) 97.8 (20°C, calculated-density) 108.6 (calculated-Le Bas method at normal boiling point) Dissociation Constant:

22.83 (pKs, Riddick et al. 1986) ∆ Enthalpy of Vaporization, HV (kJ/mol): 35.62, 31.97 (25°C, bp, Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 10.50 (Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 64408 (20°C, shake flask-turbidity, Fühner 1924) 85300 (20°C, synthetic method, Jones 1929) 78720 (shake flask-centrifuge, Booth & Everson 1948) 80100* (turbidimetric method, measured range 20–40°C, Altshuller & Everson 1953) 80400* (average, Altshuller & Everson 1953) 79780 (shake flask-interferometry, Donahue & Bartell 1952) 69990 (estimated, McGowan 1954) 82220 (Deno & Berkheimer 1960) 80350 (shake flask-UV, Hansch et al. 1968) 63960 (generator column-GC, Wasik et al. 1981, 1982; Tewari et al. 1982) 82500, 74000 (20°C, 35°C, literature average, Verschueren 1983) 80000 (shake flask-HPLC, Banerjee 1984) 97000 (Dean 1985) 95000 (shake flask-radiometric method, Lo et al. 1986) 80800 (lit. average, Riddick et al. 1986) 77900* (20.2°C, shake flask-GC/TC, measured range 0–70°C, Stephenson & Stuart 1986) 73700 (solubility data compilation, Yaws et al. 1990)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 13330*, 11860 (27.0°C, interpolated-regression of tabulated data, temp range –43.4 to 78.1°C, Stull 1947) log (P/mmHg) = 7.30588 – 1357.7/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3042 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

13155* (25.86°C, temp range 15.58–75.830°C, Mertl & Polak 1964; quoted, Boublik et al. 1984) log (P/mmHg) = [–0.2185 × 8301.1/(T/K)] + 8.001170; temp range –43.4 to 235°C (Antoine eq., Weast 1972–73) 12600* (ebulliometry, fitted to Antoine eq., Ambrose et al. 1981) log (P/kPa) = 6.18799 – 1224.673/(T/K) – 57.438; temp range: 271–372.865 K (Antoine eq., ebulliometry, Ambrose et al. 1981) 9704 (20°C, Verschueren 1983) 11220 (calculated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.1171 – 1245.172/(217.984 + t/°C), temp range 15.58–75.83°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.20229 – 1232.542/(216.587 + t/°C), temp range –2.08 to 99.71°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 12620 (calculated-Antoine eq., Dean 1985) log (P/mmHg) = 7.10179 – 1244.95/(217.88 + t/°C) temp range 15–76°C (Antoine eq., Dean 1985, 1992) 12600 (lit. average, Riddick et al. 1986) log (P/kPa) = 6.18799 – 1224.673/(215.712 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986) 12620 (interpolated-Antoine eq.-I and III, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.227229 – 1245.239/(–55.239 + T/K); temp range: 288–351 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.38462 – 1369.41/(–37.675 + T/K); temp range: 350–508 K (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.22825 – 1245.68/(–55.193 + T/K); temp range: 288–351 K (Antoine eq.-III, Stephenson & Malanowski 1987) 3240, 5240 (measured, calculated-solvatochromic parameters, Banerjee et al. 1990) log (P/mmHg) = 0.6955 – 2.2498 × 103/(T/K) + 5.4643·log(T/K) – 1.9451 × 10–2·(T/K) + 1.2362 × 10–5·(T/K)2; temp range 190–623 K (vapor pressure eq., Yaws 1994) 25078 (40°C, vapor-liquid equilibrium VLE data, Alderson et al. 2003)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 13.42 (partial pressure, Butler & Ramchandani 1935) 17.78 (28°C, concn. ratio-GC, Nelson & Hoff 1968) 13.62 (exptl., Hine & Mookerjee 1975) 15.64, 13.94 (calculated-group contribution, bond contribution, Hine & Mookerjee 1975) 17.20 (vapor-liquid equilibrium, headspace-GC, measured range 25–40°C data presented in graph, ∆H = 41.4 kJ/mol, Kieckbusch & King 1979) 13.62, 24.22 (quoted, calculated-MCI χ, Nirmalakhandan & Speece 1988) 41.72* (40°C, equilibrium headspace-GC, measured range 40–80°C, Kolb et al. 1992)

ln (1/KAW) = –7.28 + 3563/(T/K), temp range 40–80°C (equilibrium headspace-GC, Kolb et al. 1992) 13.62, 6.23 (quoted, calculated-molecular structure, Russell et al. 1992) 11.33 (calculated, Hoff et al. 1993) 13.51 (solid-phase microextraction SPME-GC, Bartelt 1997) 12.72 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 5.095 – 2163/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 0.66 (shake flask-chemical reaction CR, Collander 1951) 0.73 (shake flask-GC, Hansch & Anderson 1967; quoted, Leo et al. 1969, 1971; Hansch & Leo 1979) 0.73 (shake flask-UV, Hansch et al. 1968; Hansch & Leo 1979) 0.65, 0.66 (calculated-π substituent const.; calculated-fragment const., Rekker 1977) 0.70 (exptl., Valvani et al. 1981; quoted, Amidon & Williams 1982) 0.53 (calculated-activity coeff. γ, Wasik et al. 1981) 0.68 (generator column-GC, Wasik et al. 1981, 1982; Tewari et al. 1982) 1.02 (calculated-activity coeff. γ from UNIFAC, Banerjee & Howard 1988) 0.73 (recommended, Sangster 1989, 1993) 0.73 (recommended, Hansch et al. 1995)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3043

Octanol/Air Partition Coefficient, log KOA: 2.70 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF: 4.13 (alga Chlorella fusca, wet wt. basis, Geyer et al. 1984)

0.70 (alga Chlorella fusca, calculated-KOW, Geyer et al. 1984) 1.48 (golden ide, Freitag et al. 1985) 4.13 (algae, Freitag et al. 1985) 3.52 (activated sludge, Freitag et al. 1985)

Sorption Partition Coefficient, log KOC:

0.361 (calculated-KOW, Kollig 1993)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: using Henry’s law constant, t½ ~ 10.1 h was estimated for a model river of 1 m deep flowing at 1 m/s with a wind velocity of 3 m/s (Lyman et al. 1982; quoted, Howard 1990). –4 –1 –3 –1 Photolysis: rate constant k = 6.8 × 10 h to 2.21 × 10 h with H2O2 under photolysis at 25°C in F-113 solution and with HO- in the gas (Dilling et al. 1988).

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures and/or Arrhenius equation see reference:

photooxidation t½ = 2.75–110 yr in water, based on measured rate constant for the reaction with hydroxyl radical in water (Dorfman & Adams 1973; selected, Howard et al. 1991)

photooxidation t½ = 2.4–24 h for the gas-phase reaction with OH radical in air, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976) 9 3 –1 –1 kOH = (1.16 ± 0.13) × 10 dm mol s at 292 K using relative rate technique for n-butane (Campbell & Parkinson 1978) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 1.3 × 10 cm molecule s , kOH(obs.) = 1.82 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 1.3 × 10 cm molecule s , kOH(obs.) = 1.7 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –12 3 –1 –1 kOH* = (15.1 ± 1.4) × 10 cm molecule s at 296 K, measured range 296–440 K (flash photolysis- resonance fluorescence, Wallington et al. 1988a; quoted Atkinson 1989) –12 3 –1 –1 –13 3 –1 –1 kOH = 1.51 × 10 cm molecule s ; k(soln) = 6.6 × 10 cm molecule s for reaction with OH radical in aqueous solution (Wallington et al. 1988b) –12 3 –1 –1 kOH = 1.6 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) –12 3 –1 –1 kOH(calc) = 1.94 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: alkaline hydrolysis rate constant k = 0.110 M–1 s–1 at 25°C in water (Salmi & Leimu 1947; quoted, Drossman et al. 1988); –8 –1 overall rate constant kh = 1.10 × 10 s with t½ = 2.0 yr at 25°C and pH 7 (Mabey & Mill 1978) t½ = 2.02 yr, based on measured rate constants for acid and base catalyzed and neutral hydrolysis at pH 7 and 20°C (Mabey & Mill 1978; quoted, Howard 1990; Howard et al. 1991; Kollig 1993) 7 t½ = 9.5 × 10 d at pH 2, t½ = 740 d at pH 7 and t½ = 97000 d at pH 12 in natural waters at 20–25°C (Capel & Larson 1995)

Biodegradation: aqueous aerobic t½ = 24–168 h, based on unacclimated aqueous aerobic biodegradation screening test data (Heukelekian & Rand 1955; Price et al. 1974; selected, Howard et al. 1991); aqueous anaerobic

t½ = 96–672 h, based on unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991) t½(aerobic) = 1 d, t½(anaerobic) = 4 d in natural waters (Capel & Larson 1995) Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: photooxidation t½ = 2.75 –110 yr, based on measured rate constant for the reaction with OH radical in water (Dorfman & Adams 1973; selected, Howard et al. 1991);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3044 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

t½ = 2.4–24 h for the gas-phase reaction with OH radical in air, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976);

photodecomposition t½ = 14.6 h under simulated atmospheric conditions, with NO (Dilling et al. 1976) photooxidation t½ = 35.3–353 h, based on measured rate constant for the reaction with OH radical in air (Atkinson 1985; selected, Howard et al. 1991);

calculated lifetimes of 6.9 d and 10 yr for reactions with OH radical, NO3 radical, respectively (Atkinson 2000). Surface water: t½ = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991) 7 Biodegradation t½(aerobic) = 1 d, t½(anaerobic) = 4 d; hydrolysis t½ = 9.5 × 10 d at pH 2, t½ = 740 d at pH 7 and t½ = 97000 d at pH 12 in natural waters at 20–25°C (Capel & Larson 1995) Groundwater: t½ = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

TABLE 15.1.1.6.1 Reported aqueous solubilities and Henry’s law constants of ethyl acetate at various temperatures

Aqueous solubility Henry’s law constant

Altshuller & Everson 1953 Stephenson & Stuart 1986 Kolb et al. 1992

synthetic method-turbidity shake flask-GC/TC equilibrium headspace-GC

t/°C S/g·m–3 t/°C S/g·m–3 t/°C H/(Pa·m3 mol–1) 20 83200 0 97100 40 41.72 25 80100 9.5 86200 60 94.53 30 77000 20.0 77900 70 130.9 35 73900 30.0 68100 80 167.8 40 70800 40.0 62800

50.0 62000 ln (1/KAW) = A – B/(T/K) eq. S/(g/100g) 59.9 60600 A –7.28 S = 9.552 – 0.0618·(t/°C) 70.5 58800 B –3563 summary of lit. average 20 84200 25 80400 30 77000 35 73900 40 71200

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3045

Ethyl acetate: solubility vs. 1/T -3.0 Altschuller & Everson 1953 Stephenson & Stuart 1986 experimental data

-3.5

x nl x -4.0

-4.5

-5.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 15.1.1.6.1 Logarithm of mole fraction solubility (In x) versus reciprocal temperature for ethyl acetate.

TABLE 15.1.1.6.2 Reported vapor pressures of ethyl acetate at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Mertl & Polak 1965 Ambrose et al. 1981

summary of literature data in Boublik et al. 1984 comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa –43.4 133.3 15.58 7838 –2.07 2868 29.112 15339 –23.5 666.6 18.58 9202 –0.096 3236 32.553 17990 –13.5 1333 21.115 10415 2.398 3754 37.060 22031 –3.0 2666 23.775 11870 5.737 4560 40.920 26056 9.10 5333 25.86 13155 8.692 5385 45.333 31374 16.6 7999 29.135 15369 12.098 6494 49.657 37046 27.0 13332 32.830 18244 15.242 7683 54.214 44760 42.0 26664 36.875 21869 18.681 9187 59.231 54168 59.3 53329 40.175 25242 22.022 10878 63.588 63565 77.1 101325 44.905 30844 25.532 12925 68.218 74938 49.715 37517 29.119 15336 73.224 89016 mp/°C –82.4 54.505 45345 32.599 17990 77.056 101144 60.320 56435 37.086 22033 77.053 103823 66.045 69474 40.929 26056 82.321 119902 72.190 86066 25.0 12600 86.359 136066 75.830 97272 91.183 157571 bp/K 350.261 95.786 180471 eq. 2 P/kPa 99.715 202018 A 6.22710 Antoine eq. (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3046 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 15.1.1.6.2 (Continued )

Stull 1947 Mertl & Polak 1965 Ambrose et al. 1981 summary of literature data in Boublik et al. 1984 comparative ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa B 1245.172 eq. 3 P/kPa data also fitted to: C 217.904 A 6.18799 Chebyshev equation and bp 77.064 B 1224.673 Chebyshev polynomial C –57.438 coefficients given in ref. bp/°C 77.115 Bublik P/kPa A 6.20229 B 1232.542 C 216.587 \

Ethyl acetate: vapor pressure vs. 1/T 8.0 Mertl & Polak 1965 Ambrose et al. 1981 7.0 Stull 1947 Alderson et al. 2003 6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 77.11 °C 0.0 0.0026 0.003 0.0034 0.0038 0.0042 0.0046 0.005 1/(T/K) FIGURE 15.1.1.6.2 Logarithm of vapor pressure versus reciprocal temperature for ethyl acetate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3047

15.1.1.7 Propyl acetate

O

O Common Name: Propyl acetate Synonym: acetic acid propyl ester, propyl ethanoate, n-propyl acetate Chemical Name: propyl acetate, n-propyl acetate CAS Registry No: 109-60-4

Molecular Formula: C5H10O2, CH3COOCH2CH2CH3 Molecular Weight: 102.132 Melting Point (°C): –93 (Lide 2003) Boiling Point (°C): 101.54 (Lide 2003) Density (g/cm3 at 20°C): 0.8878 (Weast 1982–83) 0.8830 (25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 115.0 (20°C, calculated-density) 133.0 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: –7.18 (Perrin 1972) ∆ Enthalpy of Vaporization, HV (kJ/mol): 39.83, 33.86 (25°C, bp, Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperature designated * are compiled at the end of this section): 18895 (20°C, shake flask-turbidity, Fühner 1924) 18890 (Fühner 1924; quoted, Hansch et al. 1968) 20380 (estimated, McGowan 1954) 18160 (quoted, Deno & Berkheimer 1960) 18900 (Stephen & Stephen 1963; quoted, Howard 1993) 18895 (shake flask-UV, Hansch et al. 1968) 20430 (generator column-GC, Wasik et al. 1981, 1982; Tewari et al. 1982) 22450 (20°C, literature average, Verschueren 1983) 23000 (Dean 1985) 23000 (20°C, lit. average, Riddick et al. 1986) 22600*, 19800 (20°C, 30°C, shake flask-GC/TC, measured range 0–90.2°C, Stephenson & Stuart 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 4152* (interpolated-regression of tabulated data, temp range –26.7 to 101.8°C Stull 1947) log (P/mmHg) = [–0.2185 × 8794.8/(T/K)] + 8.212268; temp range –38.3 to 89°C (Antoine eq., Weast 1972–73) 4478 (comparative ebulliometry, fitted to Antoine eq., Ambrose et al. 1981) log (P/kPa) = 6.14362 – 1284.080/(T/K) – 64.364; temp range 290.3–398.908 K (Antoine eq., ebulliometry, Ambrose et al. 1981) 4494 (interpolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.16547 – 1297.186/(210.301 + t/°C;. temp range 17.13–125.8°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.14152 – 1282.545/(208.628 + t/°C); temp range 39.8–100.9°C (Antoine eq. from reported exptl. data, Boublik et al. 1984)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3048 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

4486 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.01615 – 1282.28/(208.6 + t/°C), temp range: 39–101°C (Antoine eq., Dean 1985, 1992) 4497 (quoted lit average, Riddick et al. 1986) log (P/kPa) = 6.14362 – 1284.080/(208.786 + t/°C), temp range not specified (Antoine eq., Riddick et al. 1986)

log (PL/kPa) = 6.142106 – 1282.873/(–64.486 + T/K); temp range 312–374 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.48937 – 1544.31/(–30.623 + T/K); temp range 374–542 K (Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.13951 – 1281.682/(–64.58 + T/K); temp range 312–374 K (Antoine eq.-III, Stephenson & Malanowski 1987) log (P/mmHg) = 43.0548 – 3.4692 × 103/(T/K) –12.217·log(T/K) + 2.4748 × 10–10·(T/K) + 3.7508 × 10–6·(T/K)2; temp range 178–549 K (vapor pressure eq., Yaws et al. 1994) 9586 (40°C, vapor-liquid equilibrium VLE data, Alderson et al. 2003)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 20.150 (exptl., Hine & Mookerjee 1975) 22.092, 20.62 (calculated-group contribution, bond contribution, Hine & Mookerjee 1975) 22.09 (vapor-liquid equilibrium, headspace-GC, measured range 25–40°C, data presented in graph, ∆H = 43.2 kJ/mol, Kieckbusch & King 1979) 30.50 (calculated-MCI χ, Nirmalakhandan & Speece 1988) 82.91, 203.7, 290.5, 387.3 (40, 60, 70 80°C, equilibrium headspace-GC, Kolb et al. 1992)

ln (1/KAW) = –9.27 + 3971/(T/K), temp range 40–80°C (equilibrium headspace-GC, Kolb et al. 1992) 10.10 (calculated-molecular structure, Russell et al. 1992) 16.13 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 5.519 – 2257/(T/K), (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 1.23 (calculated, Hansch et al. 1968; quoted, Leo et al. 1969) 1.11 (calculated-activity coeff. γ, Wasik et al. 1981) 1.24 (generator column-GC, Wasik et al. 1981, 1982; Tewari et al. 1982) 1.23 (Hansch & Leo 1985) 1.24 (recommended, Sangster 1989. 1993) 1.24 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 3.17 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

0.380, 0.708 (calculated-S, calculated-KOW, Lyman et al. 1982; quoted, Howard 1993)

Sorption Partition Coefficient, log KOC:

1.288, 2.045 (soil, calculated-S, calculated-KOW, Lyman et al. 1982; quoted, Howard 1993)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: based on Henry’s law constant, t½ ~ 6.5 h from a model river of one meter deep flowing at 1 m/s with a wind velocity of 3 m/s (Lyman et al. 1982; quoted, Howard 1993). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: exptl. photooxidation rate constant of 2.4 to 4.1 × 10–12 cm3 molecule–1 s–1 for the vapor-phase reaction with the photochemically produced hydroxyl radicals in the atmosphere (Conkle et al. 1975; Atkinson et al. 1979; Ambrose et al. 1981; Atkinson 1985, 1987; Drossman et al. 1988; quoted, Howard 1993) photooxidation half-life of 2.4–24 h for the gas-phase reaction with OH radical in air, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3049

–12 3 –1 –1 kOH = 4.2 × 10 cm molecule s at 305 ± 2 K using relative rate technique for 2-methylpropene (Winer et al. 1977; quoted, Atkinson 1985) –12 3 –1 –1 kOH = (1.7 ± 0.2) × 10 cm molecule s at 296 K (Zetzsch 1982; quoted, Atkinson 1985) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 2.7 × 10 cm molecule s , kOH(obs.) = 4.2 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1985) –12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 2.9 × 10 cm molecule s , kOH(obs.) = 2.51 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987) –13 3 –1 –1 kOH = (34.5 ± 3.4) × 10 cm molecule s at 296 K (flash photolysis-resonance fluorescence, Wallington et al. 1988a) –12 3 –1 –1 –12 3 –1 –1 kOH = 3.45 × 10 cm molecule s ; k(soln) = 2.3 × 10 cm molecule s for reaction with OH radical in aqueous solution (Wallington et al. 1988b) –12 3 –1 –1 kOH = 3.4 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) –12 3 –1 –1 kOH(calc) = 2.54 × 10 cm molecule s (molecular orbital calculations, Klamt 1996) Hydrolysis: alkaline hydrolysis rate constant k = 0.087 M–1 s–1 at 25°C in water (Salmi & Leimu 1947; quoted, Drossman et al. 1988). Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: photooxidation t½ = 2.4–24 h for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radicals (Darnall et al. 1976);

t½ = 3.39–6.69 d, based on exptl. rate constant for the vapor-phase reaction with the photochemically produced hydroxyl radical in the atmosphere (Conkle et al. 1975; Atkinson et al. 1979; Ambrose et al. 1981; Atkinson 1985, 1987; Drossman et al. 1988; quoted, Howard 1993).

TABLE 15.1.1.7.1 Reported aqueous solubilities of propyl acetate at various temperatures

Stephenson & Stuart 1986

shake flask-GC/TC

t/°C S/g·m–3 0 32100 9.5 27800 20.0 22600 30.0 19800 40.0 18700 50.0 17200 60.1 16400 70.5 17200 80.0 16600 90.2 13500

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3050 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Propyl acetate: solubility vs. 1/T -4.5 Stephenson & Stuart 1986 Fühner 1924 Wasik et al. 1981

-5.0

x nl x -5.5

-6.0

-6.5 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K)

FIGURE 15.1.1.7.1 Logarithm of mole fraction solubility (In x) versus reciprocal temperature for propyl acetate.

TABLE 15.1.1.7.2 Reported vapor pressures of propyl acetate at various temperatures

Stull 1947

summary of literature data

t/°C P/Pa –26.7 133.3 –5.40 666.6 5.0 1333 16.0 2666 28.8 5333 37.0 7999 47.8 13332 64.0 26664 82.0 53329 101.8 101325 mp/°C –92.5

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3051

Propyl acetate: vapor pressure vs. 1/T 8.0 Stull 1947 Alderson et al. 2003 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 101.54 °C 0.0 0.0024 0.0028 0.0032 0.0036 0.004 0.0044 0.0048 1/(T/K) FIGURE 15.1.1.7.2 Logarithm of vapor pressure versus reciprocal temperature for propyl acetate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3052 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.1.8 Butyl acetate

O

O Common Name: Butyl acetate Synonym: acetic acid butyl ester, butyl ethanoate, n-butyl acetate, ethanoic acid butyl ester Chemical Name: butyl acetate, n-butyl acetate CAS Registry No: 123-86-4

Molecular Formula: C6H12O2, CH3COOCH2CH2CH2CH3 Molecular Weight: 116.158 Melting Point (°C): –78 (Lide 2003) Boiling Point (°C): 126.1 (Lide 2003) Density (g/cm3 at 20°C): 0.8825 (Weast 1982–83) 0.8764 (Riddick et al. 1986) Molar Volume (cm3/mol): 132.5 (20°C, calculated-density) 155.2 (calculated-Le Bas method at normal boiling point) Dissociation Constant:

23.28 (pKs, Riddick et al. 1986) ∆ Enthalpy of Vaporization, HV (kJ/mol): 43.64, 35.81 (25°C, bp, Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 23550 (Seidell 1941) 23180 (estimated, McGowan 1954) 4955 (Deno & Berkheimer 1960) 23580 (shake flask-spectrophotometry, Hansch et al. 1968) 7040 (20°C, quoted, Amidon et al. 1975) 6702 (generator column-GC, Wasik et al. 1981, 1982; Tewari et al. 1982) 3936 (Hine & Mookerjee 1975) 5000, 14000 (Verschueren 1983) 4300 (Dean 1985) 8400 (shake flask-radiometric method, Lo et al. 1986) 6800 (20°C, quoted lit. average, Riddick et al. 1986) 6400*, 5200 (19.7°C, 30.3°C, shake flask-GC/TC, measured range 0–90.5°C, Stephenson & Stuart 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): log (P/mmHg) = 8.099 – 1964/(253 + t/°C) (Davis 1941) 1560* (24.5°C, measured range 24.5–94.1°C, Usanovich & Dembicij 1959) 9210* (59.74°C, temp range 59.74–126.09°C, Kliment et al. 1964; quoted, Boublik et al. 1984) 3386* (67.9°C, ebulliometry, measured range 67.9–124.0°C, Sheehan & Langer 1969) 1505 (Hoy 1970) log (P/mmHg) = 6.9688 – 1326.7/(199.2 + t/°C); temp range 67.0–130°C (ebulliometry, Sheehan & Langer 1969) log (P/mmHg) = [–0.2185 × 9300.8/(T/K)] + 8.095046; temp range –21.2 to 118°C (Antoine eq., Weast 1972–73) 1440 (quoted, Hine & Mookerjee 1975)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3053

1333 (20.0°C, Verschueren 1983) 1530, 1138 (extrapolated-Antoine eq., interpolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 6.25496 – 1432.217/(210.936 + t/°C); temp range 59.74–126°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 4.7514 – 669.809/(117.657 + t/°C); temp range 24.5–94.1°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 1529 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 7.12712 – 1430.418/(210.746 + t/°C); temp range 60–126°C (Antoine eq., Dean 1985, 1992) 1664 (selected, Riddick et al. 1986) log (P/kPa) = 6.151445 – 1368.051/(203.9298 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986)

log (PL/kPa) = 6.176 – 1385.8/(–67.05 + T/K); temp range 332–399 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.13505 – 1355.816/(–70.705 + T/K); temp range: 341–399 K (Antoine eq.-II, Stephenson & Malanowski 1987) 2000, 635 (measured, calculated-solvatochromic parameters, Banerjee et al. 1990) log (P/mmHg) = 4.383 – 2.7134 × 103/(T/K) + 3.9835·log (T/K) – 1.6575 × 10–2·(T/K) + 9.7246 × 10–6·(T/K)2; temp range 200–579 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 33.44 (exptl., Hine & Mookerjee 1975) 30.50, 31.21 (calculated-group contribution, calculated-group contribution, Hine & Mookerjee 1975) 28.51 (vapor-liquid equilibrium, headspace-GC, measured range 25–40°C data presented in graph, ∆H = 47.6 kJ/mol, Kieckbusch & King 1979) 38.39 (predicted-MCI χ, Nirmalakhandan & Speece 1988) 82.91* (40°C, equilibrium headspace-GC, measured range 40–80°C, Kolb et al. 1992) 20.2 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 6.400 – 2486/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 1.73 (calculated, Hansch et al. 1968; quoted, Leo et al. 1969) 1.69 (calculated-activity coeff. γ, Wasik et al. 1981) 1.82 (generator column-GC, Wasik et al. 1981, 1982; Tewari et al. 1982) 1.78 (24°C, shake flask-GC, Catz & Friend 1989) 1.82 (recommended, Sangster 1989, 1993) 1.78 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA at 25°C: 3.65 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

0.602, 1.146 (calculated-S, calculated-KOW, Lyman et al. 1982; quoted, Howard 1990)

Sorption Partition Coefficient, log KOC:

1.531, 2.367 (soil, calculated-S, calculated-KOW, Lyman et al. 1982; quoted, Howard 1990)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: using Henry’s law constant, t½ ~ 6.1 h was estimated for a model river 1 m deep flowing at 1 m/s with a wind velocity of 3 m/s and an estimated t½ ~ 7.4 d for a 10 m deep similar model river (Lyman et al. 1982; quoted, Howard 1990). Photolysis:

Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: photooxidation t½ = 2.4–24 h for the gas-phase reaction with OH radical in air, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3054 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

–12 3 –1 –1 –12 3 –1 –1 kOH(calc) = 4.3 × 10 cm molecule s , kOH(obs.) = 4.3 × 10 cm molecule s at room temp. (SAR structure-activity relationship, Atkinson 1987)

photooxidation t½ = 6.0 d in air was estimated for the vapor-phase reaction with an average atmospheric OH of 8 × 105/cm3 (GEMS 1986; quoted, Howard 1990) –13 3 –1 –1 kOH = (41.5 ± 3.0) × 10 cm molecule s at 296 K (flash photolysis-resonance fluorescence, Wallington et al. 1988) –12 3 –1 –1 kOH = 4.2 × 10 cm molecule s at 298 K (recommended, Atkinson 1989) Hydrolysis: alkaline hydrolysis rate constant k = 0.087 M–1·s–1 at 25°C in water (Salmi & Leimu 1947; quoted, Drossman et al. 1988);

t½ = 3.1 yr, 114 d, 11.4 d at pH 7.0, 8.0, 9.0 were estimated, respectively, based on observed acid and base- catalyzed rate constants at 20°C (Mabey & Mill 1978; quoted, Howard 1990). Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: t½ = 2.4–24 h for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976);

t½ = 6.0 d was estimated for the vapor-phase reaction with an average atmospheric hydroxyl radical of 8×105 per cm3 (GEMS 1986; quoted, Howard 1990).

TABLE 15.1.1.8.1 Reported aqueous solubilities and Henry’s law constants of butyl acetate at various temperatures

Aqueous solubility Henry’s law constant

Stephenson & Stuart 1986 Kolb et al. 1992

shake flask-GC/TC equilibrium headspace-GC

t/°C S/g·m–3 t/°C H/(Pa m3 mol–1) 0 9600 40 82.91 9.1 7600 60 203.7 19.7 6400 70 290.5 30.3 520 80 387.3 39.6 500

50.0 500 ln (1/KAW) = A –B/(T/K) 60.2 500 A –9.27 70.2 470 B –3971 80.1 480 90.5 480

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3055

Butyl acetate: solubility vs. 1/T -5.0 Stephenson & Stuart 1986 Wasik et al. 1981 -5.5 Lo et al. 1986

-6.0

x nl x -6.5

-7.0

-7.5

-8.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K)

FIGURE 15.1.1.8.1 Logarithm of mole fraction solubility (In x) versus reciprocal temperature for butyl acetate.

TABLE 15.1.1.8.2 Reported vapor pressures of butyl acetate at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Usanovich & Dembicij 1959 Kliment et al. 1964 Sheehan & Langer 1969

in Boublik et al. 1984 in Boublik et al. 1984 ebulliometry

t/°C P/Pa t/°C P/Pa t/°C P/Pa 24.5 1560 59.74 9210 67.9 13386 33.0 2533 62.35 10426 96.3 40183 43.0 4133 65.52 11876 100 45663 51.2 6199 67.96 13159 124.0 97325 57.7 8533 71.70 15372 65.2 11999 75.88 18252 Antoine eq. 71.1 15332 80.49 21891 eq. 2 P/mmHg 77.5 20132 84.21 25264 A 6.9688 83.7 25598 89.58 30864 B 1326.7 88.8 31064 95.06 37543 C 199.2 94.1 42130 100.53 45356 107.07 56448 eq in Boublik et al. 1984 113.62 69487 eq. 2 P/kPa 120.62 86053 A 4.75140 126.09 101325 B 669.609 C 117.657 eq in Boublik et al. 1984 bp/°C 60.892 eq. 2 P/kPa at 10 mmHg A 6.25496 B 1432.217 C 218.936 bp/°C 126.116

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3056 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Butyl acetate: vapor pressure vs. 1/T 8.0 Usanovich & Dembicij 1959 7.0 Kliment et al. 1964 Sheehan & Langer 1969

6.0

5.0 /Pa) S 4.0

log(P 3.0

2.0

1.0 b.p. = 126.1 °C 0.0 0.002 0.0024 0.0028 0.0032 0.0036 0.004 0.0044 1/(T/K) FIGURE 15.1.1.8.2 Logarithm of vapor pressure versus reciprocal temperature for butyl acetate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3057

15.1.1.9 Pentyl acetate

O

O

Common Name: Pentyl acetate Synonym: acetic acid pentyl ester, amyl acetate, amylacetic ester, pentyl ethanoate, n-pentyl acetate, ethanoic acid pentyl ester Chemical Name: n-amyl acetate, n-pentyl acetate CAS Registry No: 628-63-7

Molecular Formula: C7H14O2, CH3COOCH2CH2CH2CH2CH3 Molecular Weight: 130.185 Melting Point (°C): –70.8 (Weast 1982–83; Riddick et al. 1986; Lide 2003) Boiling Point (°C): 149.2 (Lide 2003) Density (g/cm3 at 20°C): 0.8756 (Weast 1982–83) 0.8766, 0.8719 (20°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 148.5 (20°C, calculated-density) 177.4 (calculated-Le Bas method at normal boiling point) Dissociation Constant:

24.25 (pKs, Riddick et al. 1986) ∆ Enthalpy of Vaporization, HV (kJ/mol): 41.0 (at bp, Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 1730 (shake flask-turbidimeter, McBain & Richards 1946) 1800 (20°C, Verschueren 1983) 1700 (Dean 1985) 1700 (20°C, Riddick et al. 1986) 2200*, 1600 (19.7°C, 30.3°C, shake flask-GC/TC, measured range 0–80°C, Stephenson & Stuart 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): log (P/mmHg) = 8.078 – 2077/(253 + t/°C) (Davis 1946) 547 (quoted, Hine & Mookerjee 1975) 546 (quoted, Abraham 1984) 1290 (selected lit., Riddick et al. 1986) log (P/kPa) = 5.4315 – 1197/(200 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986)

log (PL/kPa) = 7.356 – 2258.3/(T/K); temp range 329–423 K (Antoine eq., Stephenson & Malanowski 1987) log (P/mmHg) = 7.8848 – 3.0696 × 103/(T/K) + 2.7085·log(T/K) – 1.5165 × 10–2·(T/K) + 8.7135 × 10–6·(T/K)2; temp range 202–598 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C or as indicated and reported temperature dependence equations): 39.29 (exptl., Hine & Mookerjee 1975) 42.10, 42.16 (calculated-group contribution, calculated-group contribution, Hine & Mookerjee 1975) 35.94 (vapor-liquid equilibrium, headspace-GC, measured range 25–40°C data presented in graph, ∆H = 51.4 kJ/mol, Kieckbusch & King 1979) 48.33 (calculated-MCI χ, Nirmalakhandan & Speece 1988)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3058 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

38.39 (calculated-molecular structure, Russell et al. 1992) 24.86 (20°C, selected from literature experimentally measured data, Staudinger & Roberts 2001)

log KAW = 7.167 – 2685/(T/K) (van’t Hoff eq. derived from literature data, Staudinger & Roberts 2001)

Octanol/Water Partition Coefficient, log KOW: 1.70 (calculated, Iwasa et al. 1965) 2.23 (Leo et al. 1969)

2.42 (calculated-VI and solvatochromic parameters, Leahy 1986)

Octanol/Air Partition Coefficient, log KOA: 4.12 (head-space GC, Abraham et al. 2001)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Oxidation:

photooxidation t½ = 2.4–24 h for the gas-phase reaction with OH radical in air, based on the rate of disappearance of hydrocarbon due to reaction with OH radical (Darnall et al. 1976). Hydrolysis: –1 –1 Biodegradation: biodegradation rates k = 0.054 d with t½ = 13 d in Lester river, k = 0.069 d with t½ = 10 d –1 in Superior harbor waters and k = 0.014 d with t½ = 50 d in groundwater (Vaishnav & Babeu 1987). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment:

Air: photooxidation t½ = 2.4–24 h for the gas-phase reaction with hydroxyl radical in air, based on the rate of disappearance of hydrocarbon due to reaction with hydroxyl radical (Darnall et al. 1976).

Surface water: biodegradation t½ = 13 d in Lester river and t½ = 10 d in Superior harbor waters (Vaishnav & Babeu 1987).

Groundwater: biodegradation t½ = 50 d (Vaishnav & Babeu 1987). Sediment: Soil: Biota:

TABLE 15.1.1.9.1 Reported aqueous solubilities of pentyl acetate at various temperatures

Stephenson & Stuart 1986

shake flask-GC/TC

t/°C S/g·m–3 0 2900 19.7 2200 30.6 1600 39.5 1600 50.0 1000 60.3 1000 70.2 1700 80.1 1700

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3059

Pentyl acetate: solubility vs. 1/T -7.5 Stephenson & Stuart 1986 McBain & Richards 1946

-8.0

x nl x -8.5

-9.0

-9.5 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 15.1.1.9.1 Logarithm of mole fraction solubility (In x) versus reciprocal temperature for pentyl acetate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3060 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.1.10 Methyl acrylate

O

O Common Name: Methyl acrylate Synonym: acrylic acid methyl ester, methyl 2-propenoate Chemical Name: methyl acrylate CAS Registry No: 96-33-3

Molecular Formula:C4H6O2, CH2=CHCOOCH3 Molecular Weight: 86.090 Melting Point (°C): –76.5 (Dean 1985) Boiling Point (°C): 80.7 (Lide 2003) Density (g/cm3 at 20°C): 0.9535 (Weast 1982–83; Riddick et al. 1986) 0.9561 (Dean 1985) Molar Volume (cm3/mol): 90.3 (20°C, calculated-density) 99.6 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: ∆ Enthalpy of Vaporization, HV (kJ/mol): 29.20, 33.1 (25°C, bp, Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 60000 (Dean 1985) 49400 (Riddick et al. 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 11250 (interpolated-regression of tabulated data, temp range –43.7 to 80.2°C, Stull 1947) 13330 (28.0°C, Stull 1947) log (P/mmHg) = [–0.2185 × 8598.0/(T/K)] + 8.226778; temp range –43.7 to 80.2°C (Antoine eq., Weast 1972–73) 9330, 14660 (20°C, 30°C, Verschueren 1983) 11000 (Riddick et al. 1986) 3120, 5400, 9090, 11000, 14500, 30000, 70700 (0, 10, 20, 25, 30, 50, 70°C, Riddick et al. 1986)

log (PL/kPa) = 6.5561 – 1467.93/(–30.849 + T/K); temp range: 316–354 K (Antoine eq., Stephenson & Malanowski 1987) log (P/mmHg) = 47.0416 – 3.1218 × 103/(T/K) – 14.86·log(T/K) + 7.1646 × 10–3·(T/K) + 3.4547 × 10–6·(T/K)2; temp range 196–536 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C): 19.17 (calculated-P/C with selected values)

Octanol/Water Partition Coefficient, log KOW: 0.21 (Tute 1971; Laurence et al. 1972) 0.36 (HPLC-RT correlation, Fujisawa & Masuhara 1981) 0.80 (shake flask-GC, Tanii & Hashimoto 1982) 0.80 (recommended, Sangster 1989)

Octanol/Air Partition Coefficient, log KOA:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3061

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: photooxidation t½ = 2.7–27 h in air, based on estimated rate constants for the vapor phase reaction with hydroxyl radical (Atkinson 1987; quoted, Howard et al. 1991)

Hydrolysis: first order hydrolysis t½ = 2.8 yr at pH 7 and 25°C, based on measured base rate constant; acid rate –7 –1 –1 constant k = 1.2 × 10 M ·h using measured rate constant for ethyl acrylate, resulting a t½ = 280 yr; base –1 –1 rate constant k = 0.0779 M ·h at pH 9 and 25°C with t½ = 10 d (Roy 1972; quoted, Howard et al. 1991). Biodegradation: aqueous aerobic t½ = 24–168 h, based on biological screening test data (Sasaki 1978; quoted, Howard et al. 1991); aqueous anaerobic t½ = 96–672 h, based on aqueous aerobic biodegradation half-life (Howard et al. 1991). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: photooxidation t½ = 2.7–27 h, based on estimated rate constants for the vapor phase reaction with hydroxyl radical (Atkinson 1987; quoted, Howard et al. 1991); atmospheric transformation lifetime was estimated to be < 1 to 1 – 5 d (Kelly et al. 1994).

Surface water: t½ = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Groundwater: t½ = 48–336 h, based on measured hydrolysis data and estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 24–168 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3062 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.1.11 Ethyl acrylate

O

O Common Name: Ethyl acrylate Synonym: acrylic acid ethyl ester, ethyl 2-propenoate, propenoic acid ethyl ester Chemical Name: ethyl acrylate, n-ethyl acrylate CAS Registry No: 140-88-5

Molecular Formula: C5H8O2, CH2=CHCOOCH2CH3 Molecular Weight: 100.117 Melting Point (°C): –71.2 (Stull 1947; Weast 1982–83; Dean 1985; Riddick et al. 1986; Lide 2003) Boiling Point (°C): 99.4 (Lide 2003) Density (g/cm3 at 20°C): 0.9234 (Weast 1982–83; Riddick et al. 1986) 0.9405 (Dean 1985) Molar Volume (cm3/mol): 109.2 (Stephenson & Malanowski 1987) 123.8 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: ∆ Enthalpy of Vaporization, HV (kJ/mol): 34.7 (at bp, Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 20000 (Verschueren 1983) 15000 (Dean 1985; Riddick et al. 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 4860* (interpolated-regression of tabulated data, temp range –29.5 to 99.5°C, Stull 1947) log (P/mmHg) = [–0.2185 × 9259.4/(T/K)] + 8.347017; temp range –29.5 to 99.5°C (Antoine eq., Weast 1972–73) 3866, 6532 (20°C, 30°C, Verschueren 1983) 5100 (lit average, Riddick et al. 1986) log (P/kPa) = 7.2103 – 1939.49/(T/K), temp range: not specified, (Antoine eq., Riddick et al. 1986) 5140 (interpolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 6.25041 – 1354.65/(–53.603 + T/K); temp range: 244–373 K (Antoine eq., Stephenson & Malanowski 1987) log (P/mmHg) = 55.0109 – 3.5904 × 103/(T/K) – 17.694·log(T/K) + 8.051 × 10–3·(T/K) – 4.8864 × 10–13·(T/K)2; temp range 202–553 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol 25°C): 34.041 (calculated-P/C with selected values)

Octanol/Water Partition Coefficient, log KOW: 0.73 (Tute 1971; Laurence et al. 1972) 0.88 (calculated-fragment const. per Rekker 1977, Hermens & Leeuwangh 1982) 0.66 (HPLC-RT correlation, Fujisawa & Masuhara 1981) 1.33 (shake flask-GC, Tanii & Hashimoto 1982) 1.32 (recommended, Sangster 1989)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3063

Octanol/Air Partition Coefficient, log KOA: Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: photooxidation t½ = 2.37–22.7 h in air, based on estimated rate constants for the vapor phase reaction with hydroxyl radical (Atkinson 1987; quoted, Howard et al. 1991). –9 –1 Hydrolysis: overall rate constant kh = 6.3 × 10 s with t½ = 3.5 yr at 25°C and pH 7; acid rate constant –13 –1 –9 –1 kA =1.2×10 s and base rate constant kB = 7.8 × 10 s at 25° and pH 7 (Mabey & Mill 1978) t½ = 2.8 yr at pH 7 and 25°C, based on acid and base catalyzed hydrolysis rate constants; acid rate constant –6 –1 –1 –1 –1 kA = 1.2 × 10 M s with t½ = 244 yr at pH 5; measured base rate constant kB = 0.078 M ·h with t½ = 10.4 d at pH 9 and 25°C (Mabey & Mill 1978; quoted, Howard et al. 1991); –2 –1 –1 calculated rate constant for base-catalyzed hydrolysis kB = 5.0 × 10 M s and estimated t½ ~ 25 d in aqueous solutions at pH 8.8 (Freidig et al. 1999).

Biodegradation: aqueous aerobic t½ = 24–168 h, based on aqueous aerobic screening test data (Price et al. 1974; Sasaki 1978; quoted, Howard et al. 1991); aqueous anaerobic t½ = 96–672 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment:

Air: photooxidation t½ = 2.37–22.7 h, based on estimated rate constants for the vapor phase reaction with hydroxyl radical (Atkinson 1987; quoted, Howard et al. 1991).

Surface water: hydrolysis t½ = 3.5 yr at 25°C and pH 7 (Mabey & Mill 1978) t½ = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Groundwater: t½ = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

TABLE 15.1.1.11.1 Reported vapor pressures of ethyl acrylate at various temperatures

Stull 1947

summary of literature data

t/°C P/Pa –29.5 133.3 –8.70 666.6 2.0 1333 13.0 2666 26.0 5333 33.5 7999 44.5 13332 61.5 26664 80.0 53329 99.5 101325 mp/°C –71.2

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3064 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Ethyl acrylate: vapor pressure vs. 1/T 8.0 Stull 1947 7.0

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 99.4 °C 0.0 0.0024 0.0028 0.0032 0.0036 0.004 0.0044 0.0048 1/(T/K)

FIGURE 15.1.1.11.1 Logarithm of vapor pressure versus reciprocal temperature for ethyl acrylate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3065

15.1.1.12 Methyl methacrylate

O

O

Common Name: Methyl methacrylate Synonym: methyl 2-methyl-2-propenoate, methyl ester methacrylic acid, methacrylic acid methyl ester, MMA Chemical Name: 2-methyl-2-propenoic acid methyl ester CAS Registry No: 80-62-6

Molecular Formula: C5H8O2, H2C=C(CH3)COOCH3 Molecular Weight: 100.117 Melting Point (°C): –47.55 (Lide 2003) Boiling Point (°C): 100.5 (Lide 2003) Flash Point (°C): 10 Density (g/cm3 at 20°C): 0.9440 (Weast 1982–83) Molar Volume (cm3/mol): 106.6 (25°C, Stephenson & Malanowski 1987) 121.8 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: ∆ Enthalpy of Vaporization, HV (kJ/mol): 40.7, 36.0 (25°C, bp, Riddick et al. 1986) ∆ Enthalpy of Fusion Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 16000 (Dean 1985) 15000 (USEPA 1985; ENVIROFATE; ISHOW) 15900 (Yalkowsky et al. 1987) 15600 (20°C, Riddick et al. 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 5332*, 4888 (25.5°C, interpolated-regression of tabulated data, temp range –30.5 to 101°C, Stull 1947) 1315* (3.44°C, temp range –45.26 to 3.44°C, Bywater 1952; quoted, Boublik et al. 1984) log (P/mmHg) = [–0.2185 × 8794.9/(T/K)] + 8.140942; temp range –30.5 to 101°C (Antoine eq., Weast 1972–73) 3732, 5333 (20°C, 26°C, Verschueren 1977, 1983) 7003* (32.489°C, temp range 32.489–99.855°C, Boublik & Aim 1979; quoted, Boublik et al. 1984) 5333 (25.5°C, Weast 1982–83) 4440 (extrapolated average-Antoine eq., Boublik et al. 1984) log (P/kPa) = 3.20496 – 4017.882/(126.685 + t/°C); temp range –45.26 to 3.44°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/kPa) = 6.19400 – 1315.670/(213.490 + t/°C); temp range: 32.41–99.855°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) 4846 (extrapolated-Antoine equation, Dean 1985) log (P/mmHg) = 8.4092 – 2050.5/(274.4 + t/°C); temp range: 39–89°C (Antoine eq., Dean 1985, 1992) 5100 (lit. average, Riddick et al. 1986) log (P/kPa) = 7.83859 – 2126.21/(T/K), temp range 0–30°C (Antoine eq., Riddick et al. 1986) 5081, 5020 (interpolated-Antoine eq.-I and II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.63751 – 1597.9/(–28.76 + T/K); temp range: 293–374 K (Antoine eq.-I, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3066 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (PL/kPa) = 6.43088 – 1461.197/(–43.15 + T/K); temp range: 293–373 K (Antoine eq.-II, Stephenson & Malanowski 1987) log (P/mmHg) = 106.896 – 5.2741 × 103/(T/K) – 37.654·log(T/K) + 1.862 × 10–2·(T/K) – 3.6507 × 10–13·(T/K)2; temp range 225–564 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C): 24.31 (calculated-P/C, USEPA 1985) 32.823 (calculated-P/C, Howard 1989) 32.09 (calculated-P/C, this work)

Octanol/Water Partition Coefficient, log KOW: 0.73 (Tute 1971; Laurence et al. 1972) 0.70 (shake flask, Fujisawa & Masuhara 1981) 0.67 (HPLC-RT correlation, Fujisawa & Masuhara 1981) 1.36 (CLOGP, Hansch & Leo 1982) 1.38 (shake flask-GC, Tanii & Hashimoto 1982) 0.79 (calculated-f const. as per Lyman et al. 1982, USEPA 1985) 1.38 (recommended, Sangster 1989) 1.38 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF: –0.03 (correlated as per Veith et al. 1979 for aquatic organisms, USEPA 1985)

0.55 (calculated-KOW, Howard 1989)

Sorption Partition Coefficient, log KOC:

1.80 (calculated-KOW as per Lyman et al. 1982, USEPA 1985) 1.94 (calculated-KOW, Howard 1989) 0.74 (calculated-KOW, Kollig 1993)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: t½ = 6.3 h from model river water (Lyman et al. 1982; quoted, Howard 1989). Photolysis: photodegradation t½ = 2.7 h in air of urban areas and t½ > 3 h in rural areas (Joshi et al. 1982; quoted, Howard 1989) (CHEMFATE; Hazardous Substance Databank).

Oxidation: photooxidation t½ = 1.1–9.7 h in air, based on estimated rate constants for the vapor phase reaction with hydroxyl radical (Atkinson 1987; quoted, Howard et al. 1991). Hydrolysis: alkaline hydrolysis rate constant at 25°C, k = 171 M–1 h–1 (Sharma & Sharma 1970; quoted, Ellington et al. 1987; Ellington 1989); –1 –1 alkaline catalyzed rate constant k(exptl) = 200 M ·h at 25°C with estimated t½ ~ 3.9 yr at pH 7 and t½ = 14 d at pH 9 (Ellington et al. 1987; quoted, Ellington 1989; Howard 1989; Howard et al. 1991; Kollig 1993); –1 –1 hydrolysis t½ = 4 yr at pH 7 and 25°C; base rate constant k = 200 M h with t½ = 14.4 d at pH 9 based on measured rate constant at 25°C and pH 11 (Howard et al. 1991) k(calc) = 9.0 × 10–7 M–1 s–1, 2.6 × 10–2 M–1 s–1 for neutral and base-catalyzed hydrolysis and estimated

t½ ~ 8 d in aqueous solutions at pH 8.8 (Freidig et al. 1999) Biodegradation: completely degraded by activated sludge in approximately 20 h (Slave et al. 1974; quoted, EPA 1985; Howard 1989; Hazardous Substance Databank); expert systems survey found that both aerobic ultimate degradation in receiving waters and anaerobic ultimate degradation were within a month and aerobic primary degradation in receiving waters was within few days (Boethling et al. 1989);

aqueous aerobic t½ = 168–672 h, based on unacclimated screening test data (Pahren & Bloodgood 1961; Sasaki 1978; quoted, Howard et al. 1991); aqueous anaerobic t½ = 672–2688 h, based on unacclimated aerobic biodegradation half-life (Howard et al. 1991).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3067

Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: photooxidation t½ = 1.1–9.7 h, based on estimated rate constants for the vapor phase reaction with hydroxyl radical (Atkinson 1987; quoted, Howard et al. 1991); atmospheric transformation lifetime was estimated to be < 1 to 1–5 d (Kelly et al. 1994).

Surface water: t½ = 168–672 h, based on estimated aqueous unacclimated aerobic biodegradation half-life (Howard et al. 1991).

Groundwater: t½ = 336–1344 h, based on estimated aqueous unacclimated aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: t½ = 168–672 h, based on estimated aqueous unacclimated aerobic biodegradation half-life (Howard et al. 1991). Biota:

TABLE 15.1.1.12.1 Reported vapor pressures of methyl methacrylate at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Stull 1947 Bywater 1952 Boublik & Aim 1979

summary of literature data in Boublik et al. 1984 in Boublik et al. 1984

t/°C P/Pa t/°C P/Pa t/°C P/Pa –30.5 133.3 –45.26 17 32.489 7003 –10.0 666.6 –43.46 25 37.962 9160 1.0 1333 –40.16 43 38.307 9306 11.0 2666 –35.16 64 43.731 12004 25.5 5333 –32.06 95 43.834 12049 34.5 7999 –27.96 140 47.951 14515 47.0 13332 –22.96 223 48.225 14680 63.0 26664 –20.46 260 53.954 18815 82.0 53329 –16.76 347 53.289 18290 101.0 101325 –10.56 547 55.846 20379 –3.46 893 61.670 25849 mp/°C - –0.16 1053 65.350 29910 3.44 1315 69.772 35421 74.142 41676 in Boublik et al. 1984 79.113 49831 eq. 2 P/kPa 84.938 61430 A 3.20496 91.998 77126 B 401.882 99.855 98890 C 126.685 bp/°C –1.292 in Boublik et al. 1984 at 1 mmHg eq. 2 P/kPa A 6.19400 B 1315.670 C 215.490 bp/°C 100.641

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3068 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Methyl methacrylate: vapor pressure vs. 1/T 8.0 Bywater 1952 Boublik & Aim 1979 7.0 Stuall 1947

6.0

5.0 )aP/

S 4.0 P(gol

3.0

2.0

1.0 b.p. = 100.5 °C m.p. = -47.55 °C 0.0 0.0024 0.0028 0.0032 0.0036 0.004 0.0044 0.0048 1/(T/K)

FIGURE 15.1.1.12.1 Logarithm of vapor pressure versus reciprocal temperature for methyl methacrylate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3069

15.1.2 AROMATIC ESTERS 15.1.2.1 Methyl benzoate

O

O

Common Name: Methyl benzoate Synonym: benzoic acid methyl ester Chemical Name: methyl benzoate CAS Registry No: 93-58-3

Molecular Formula: C8H8O2, C6H5COOCH3 Molecular Weight: 136.149 Melting Point (°C): –12.4 (Lide 2003) Boiling Point (°C): 199 (Lide 2003) Density (g/cm3 at 20°C): 1.08854, 1.08377 (20°C, 25°C, Dreisbach 1955) Molar Volume (cm3/mol): 125.0 (Stephenson & Malanowski 1987) 151.2 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: ∆ Enthalpy of Vaporization, HV (kJ/mol): 41.18, 55.84 (normal bp, 25°C, Dreisbach 1955) 43.18, 55.568 (normal bp, 25°C, Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): 9.736 (Dreisbach 1955; Riddick et al. 1986) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 1524 (titration, Booth & Everson 1948) 4018 (Hine & Mookerjee 1975) 2100 (20°C, quoted, Riddick et al. 1986) 1600 (calculated-MCI χ, Nirmalakhandan & Speece 1988) 2130*, 2820 (20.1°C, 29.6°C, shake flask-GC/TC, measured range 0–90.5°C, Stephenson & Stuart 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): log (P/mmHg) = 7.48253 – 1974.6/(230 + t/°C) (Antoine eq., Dreisbach & Martin 1949) 52.58 (calculated by formula, Dreisbach 1955) log (P/mmHg) = 7.07832 – 1656.25/(195.23 + t/°C); temp range: 100–260°C (Antoine eq. for liquid state, Dreisbach 1955) log (P/mmHg) = [–0.2185 × 12077.2/(T/K)] + 8.509910; temp range: 39–199.5°C (Antoine eq., Weast 1972–73) 77.6 (extrapolated-Antoine eq., Dean 1985) log (P/mmHg) = 6.60743 – 1974.6/(230.0 + t/°C); temp range 111–199°C (Antoine eq., Dean 1985, 1992) 52.58 (quoted lit. average, Riddick et al. 1986) log (P/kPa) = 6.60743 – 1974.6/(230 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 54.5 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 8.183 – 2816.6/(T/K); temp range 283–323 K (Antoine eq.-I, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3070 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (PL/kPa) = 6.20322 – 1656.25/(–77.92 + T/K); temp range: 383–533 K (Antoine eq.-II, Stephenson & Malanowski 1987) log (P/mmHg) = –13.6342 –2.9133 × 103/(T/K) + 11.773·log (T/K)–2.3979 × 10–2·(T/K) + 1.1324 × 10–5·(T/K)2; temp range 261–693 K (vapor pressure eq., Yaws 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C):

1.80 (calculated-CW/CA, Hine & Mookerjee 1975) 2.48 (calculated-bond contribution, Hine & Mookerjee 1975)

Octanol/Water Partition Coefficient, log KOW: 2.15 (HPLC-RT correlation, D’Amboise & Hanai 1982) 2.22 (HPLC-k′ correlation, Haky & Young 1984) 2.14 (shake flask-HPLC, Nielson & Bundgaard 1988) 2.10 (recommended, Klein et al. 1988) 2.15 (RP-HPLC-RT correlation, ODS column with masking agent, Bechalany et al. 1989) 2.20 (recommended, Sangster 1989) 2.12 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 2.30, 2.01, 1.98 (Podzol soil, Alfisol soil, sediment, von Oepen et al. 1991) 1.89 (calculated-MCI χ, Meylan et al. 1992) 2.10 (quoted or calculated-QSAR MCI 1χ, Sabljic et al. 1995)

2.14; 2.57, 2.14, 1.94, 2.16, 1.89 (soil: calculated-KOW; HPLC-screening method using LC-columns of dif- ferent stationary phases, Szabo et al. 1999)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Oxidation: –10 –1 Hydrolysis: overall rate constant kh = 1.90 × 10 s with t½ = 118 yr at 25°C and pH 7 (Mabey & Mill 1978) alkaline hydrolysis rate constant k = 0.0794 M–1 s–1 (Drossman et al. 1988, quoted, Collette 1990) Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants::

Half-Lives in the Environment: Air:

Surface water: hydrolysis t½ = 118 yr at 25°C and pH 7 (Mabey & Mill 1978) Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3071

TABLE 15.1.2.1.1 Reported aqueous solubilities of methyl benzoate at various temperatures

Stephenson & Stuart 1986

shake flask-GC/TC

t/°C S/g·m–3 0 2210 9.7 2210 20.1 2130 29.6 2820 40.2 2470 49.8 2580 60.1 2860 70.2 3250 80.3 3580 90.5 4080

Methyl benzoate: solubility vs. 1/T -7.0 Stephenson & Stuart 1986 Booth & Everson 1948

-7.5

x nl x -8.0

-8.5

-9.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K) FIGURE 15.1.2.1.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for methyl benzoate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3072 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.2.2 Ethyl benzoate

O

O

Common Name: Ethyl benzoate Synonym: benzoic acid ethyl ester, ethyl benzenecarboxylate Chemical Name: benzoic acid ethyl ester, ethyl benzenecarboxylate, ethyl benzoate CAS Registry No: 93-89-0

Molecular Formula: C9H10O2, C6H5COOC2H5 Molecular Weight: 150.174 Melting Point (°C): –34 (Lide 2003) Boiling Point (°C): 212 (Lide 2003) Density (g/cm3 at 20°C): 1.0468 (Weast 1982–83) 1.0511, 1.0372 (15°C, 30°C, Riddick et al. 1986) Molar Volume (cm3/mol): 175.0 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: ∆ Enthalpy of Vaporization, HV (kJ/mol): 40.5 (Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 720 (Seidell 1941; quoted, Andrews & Keefer 1950) 598 (Deno & Berkheimer 1960)

702 (calculated-KOW, Hansch et al. 1968) 510 (calculated-KOW, Yalkowsky & Morozowich 1980) 2026 (calculated-KOW and mp, Amidon & Williams 1982), 807 (calculated-intrinsic molar volume VI and solvatochromic parameters, Leahy 1986) 1090 (calculated-intrinsic molar volume VI and solvatochromic parameters, Kamlet et al. 1987) 464 (calculated-intrinsic molar volume VI and mp, Kamlet et al. 1987) 500 (20°C, Riddick et al. 1986) 926 (calculated-fragment const., Wakita et al. 1986) 398 (calculated-MCI χ, Nirmalakhandan & Speece 1988) 850*, 810 (19.6°C, 30. °C, shake flask-GC/TC, measured range 0–90.3°C, Stephenson & Stuart 1986) Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 42.1 (extrapolated-regression of tabulated data, temp range 44–213.4°C, Stull 1947) log (P/mmHg) = [–0.2185 × 11981.5/(T/K)] + 8.279591; temp range 44–213.4°C (Antoine eq., Weast 1972–73) 24.0 (20°C, quoted lit., Riddick et al. 1986) log (P/kPa) = 7.7579 – 2750.0/(T/K); temp range 90–140°C (Antoine eq., Riddick et al. 1986) log (P/kPa) = 7.1599 – 2500.0/(T/K); temp range 140–220°C (Antoine eq., Riddick et al. 1986) 27.5 (interpolated-Antoine eq.-II, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.81152 – 2174.3/(–34.071 + T/K); temp range 358–487 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 8.23958 – 2922.167/(T/K); temp range 288–333 K (Antoine eq.-II, Stephenson & Malanowski 1987)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3073

log (P/mmHg) = 40.8047 – 3.9985 × 103/(T/K) – 11.793·log (T/K) + 4.0697 × 10–3·(T/K) – 1.2372 × 10–13·(T/K)2; temp range 238–698 K (vapor pressure eq., Yaws 1994) Henry’s Law Constant (Pa·m3/mol at 25°C): 10.298 (calculated-P/C with selected values)

Octanol/Water Partition Coefficient, log KOW: 2.62 (calculated, Hansch et al. 1968) 2.20 (shake flask-spectrophotometry, Yaguzhinskii et al. 1973) 2.64 (Valvani et al. 1981, Amidon & Williams 1982) 2.64 (shake flask-HPLC, Nielsen & Bundgaard 1988) 2.60 (recommended, Klein et al. 1988) 2.64 (recommended, Sangster 1989) 2.66, 2.89, 2.90 (centrifugal partition chromatography CPC-RV, Gluck & Martin 1990) 2.70 ± 0.15, 2.63 ± 0.57 (solvent generated liquid-liquid chromatography SGLLC-correlation, RP-HPLC-k′ cor- relation, Cichna et al. 1995) 2.64 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 2.25, 2.17, 2.43 (sediment, Alfisol soil, Podzol soil, von Oepen et al. 1991) 2.16 (calculated-MCI χ and fragment contribution, Meylan et al. 1992) 2.30 (quoted or calculated-QSAR MCI 1χ, Sabljic et al. 1995)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Oxidation: –9 –1 Hydrolysis: overall rate constant kh = 3.0 × 10 s with t½ = 7.3 yr at 25°C and pH 7 (Mabey & Mill 1978) alkaline hydrolysis rate constant k = 0.0316 M–1 s–1 (Drossman et al. 1988, quoted, Collette 1990) Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment: Air:

Surface water: hydrolysis t½ = 7.3 yr at 25°C and pH 7 (Mabey & Mill 1978) Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3074 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 15.1.2.2.1 Reported aqueous solubilities of ethyl benzoate at various temperatures

Stephenson & Stuart 1986

shake flask-GC/TC

t/°C S/g·m–3 01080 19.6 850 30.5 810 40.0 1060 50.0 1080 60.1 1170 70.5 1210 80.2 1210 90.3 1430

Ethyl benzoate: solubility vs. 1/T -8.0 Stephenson & Stuart 1986

-8.5

x nl x -9.0

-9.5

-10.0 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 1/(T/K)

FIGURE 15.1.2.2.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for ethyl benzoate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3075

15.1.2.3 n-Propyl benzoate

O

O

Common Name: n-Propyl benzoate Synonym: benzoic acid n-propyl ester, propyl benzenecarboxylate Chemical Name: benzoic acid n-propyl ester, propyl benzenecarboxylate, propyl benzoate CAS Registry No: 2315-68-6

Molecular Formula: C10H12O2, C6H5COOCH2CH2CH3 Molecular Weight: 164.201 Melting Point (°C): –51.6 (Weast 1982–83; Riddick et al. 1986; Stephenson & Malanowski 1987; Lide 2003) Boiling Point (°C): 211 (Weast 1982–83; Lide 2003) Density (g/cm3 at 20°C): 1.0232 (Riddick et al. 1986) Molar Volume (cm3/mol): 160.5 (20°C, calculated-density, Stephenson & Malanowski 1987) 199.4 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: ∆ Enthalpy of Vaporization, HV (kJ/mol): 51.92; 49.75(25°C; bp, Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 350 (quoted exptl., Kamlet et al. 1987)

292 (calculated-intrinsic molar volume VI and solvatochromic parameters, Kamlet et al. 1987) 140 (calculated-intrinsic molar volume VI and mp, Kamlet et al. 1987) 966 (calculated-MCI χ, Nirmalakhandan & Speece 1988)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations): 133.3 (54.6°C, summary of literature data, temp range 54.6–231°C, Stull 1947) log (P/mmHg) = [–0.2185 × 12318.7/(T/K)] + 8.237827; temp range 54.6–231°C (Antoine eq., Weast 1972–73) 100 (54.6°C, Riddick et al. 1986) log (P/kPa) = 7.42756 – 2172.71/(T/K); temp range 80–160°C (Antoine eq., Riddick et al. 1986)

log (PL/kPa) = 6.68614 – 2165.28/(–41.593 + T/K); temp range 327–504 K (Antoine eq., Stephenson & Malanowski 1987)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 1.80 (shake flask-HPLC, Nielsen & Bundgaard 1988) 3.18 (recommended, Sangster 1989) 3.01 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3076 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Half-Lives in the Environment:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3077

15.1.2.4 Benzyl benzoate

O

O

Common Name: Benzyl benzoate Synonym: benzoic acid benzyl ester, phenylmethyl benzoate, benzyl benzenecarboxylate, benzyl phenylformate, benzenoate Chemical Name: benzyl benzoate, phenylmethyl benzoate, benzyl benzenecarboxylate CAS Registry No: 120-51-4

Molecular Formula: C14H12O2, C6H5COOCH2C6H5 Molecular Weight: 212.244 Melting Point (°C): 19.4 (Riddick et al. 1986) Boiling Point (°C): 323.5 (Lide 2003) Density (g/cm3 at 20°C): 1.1121 (25°C, Weast 1982–83) 1.120, 1.1121 (19.5°C, 25°C, Riddick et al. 1986) Molar Volume (cm3/mol): 190.9 (25°C, calculated-density) 243.6 (calculated-Le Bas method at normal boiling point)

Dissociation Constant, pKa: ∆ Enthalpy of Vaporization, HV (kJ/mol): 53.56 (at normal bp, Hon et al. 1976) 77.8; 53.6 (25°C; bp, Riddick et al. 1986) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 15.73 (Seidell 1941; quoted, Deno & Berkheimer 1960)

61.21 (calculated-intrinsic molar volume VI and solvatochromic parameters, Leahy 1986)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): log (P/mmHg) 6.42726 – 1594.49/(126.36 + t/°C); temp range 224.7–329.09°C (Antoine eq., from twin ebul- liometry measurement, Hon et al. 1976) 0.0137 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 5.59354 – 1628.726/(130.735 + t/°C); temp range 224.7–329°C (Antoine eq. from reported exptl. data of Hon et al. 1976, Boublik et al. 1984) 461 (150°C, quoted lit., Riddick et al. 1986) 0.0104 (calculated-Antoine eq., Riddick et al. 1986) log (P/kPa) = 5.55216 – 1594.49/(126.36 + t/°C); temp range not specified (Antoine eq., Riddick et al. 1986) 0.043 (interpolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 9.240 – 4057/(T/K); temp range 297–353 K (Antoine eq.-I, Stephenson & Malanowski 1987) log (PL/kPa) = 5.63847 – 1666.706/(–137.564 + T/K); temp range 497–602 K (Antoine eq.-II, Stephenson & Malanowski 1987) log (P/mmHg) = –1.654 – 4.6284 × 103/(T/K) + 7.363·log (T/K) – 1.8259 × 10–2·(T/K) + 7.4580 × 10–6·(T/K)2; temp range 293–820 K (vapor pressure eq., Yaws et al. 1994) 0.0178, 0.0107, 0.0135, 0.295, 0.0603 (GC-RT correlation, Sugden’s parachor method, McGowan’s para- chor method, calculated-MCI, calculated-MW, Tsuzuki 2001)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3078 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.57 (calculated-P/C with selected values)

Octanol/Water Partition Coefficient, log KOW:

3.86 (quoted, calculated-VI and solvatochromic parameters, Taft et al. 1985) 4.00 (quoted, calculated-VI and solvatochromic parameters, Leahy 1986) 3.97 (recommended value, Sangster 1989)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Hydrolysis: Oxidation: –10 –1 Hydrolysis: overall rate constant kh = 8.0 × 10 s with t½ = 27 yr at 25°C and pH 7 (Mabey & Mill 1978) alkaline hydrolysis rate constant k = 0.00794 M–1 s–1 (Mabey et al. 1978; quoted, Collette 1990) Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air:

Surface water: hydrolysis t½ = 27 yr at 25°C and pH 7 (Mabey & Mill 1978) Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3079

15.1.3 PHTHALATE ESTERS 15.1.3.1 Dimethyl phthalate (DMP)

O

O O

O Common Name: Dimethyl phthalate Synonym: DMP, 1,2-benzenedicarboxylic acid dimethyl ester, dimethyl-1,2-benzenedicarboxylate, methyl Common phthalate, o-dimethylphthalate, phthalic acid dimethyl ester Chemical Name: dimethyl phthalate, dimethyl-o-phthalate, methyl phthalate CAS Registry No: 131-11-3

Molecular Formula: C10H10O4, o-C6H4(COOCH3)2 Molecular Weight: 194.184 Melting Point (°C): 5.5 (Lide 2003) Boiling Point (°C): 283.7 (Lide 2003) Density (g/cm3 at 20°C): 1.189 (25°C, Fishbein & Albro 1972) 1.1905 (20°C, Weast 1982–83) Molar Volume (cm3/mol): 162.8 (calculated-density, Stephenson & Malanowski 1987) 206.4 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 78.66 (Small et al. 1948) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K) F: 1.0 Water Solubility (g/m3 or mg/L at 25°C or as indicated and reported temperature dependence equations): 3965 (Deno & Berkheimer 1960) 5000 (20°C, Fishbein & Albro 1972) 4000 (32°C, from Monsanto Chemical Co. data sheets, Peakall 1975) 4320 ± 37 (shake flask-GC, Wolfe et al. 1980b; Wolfe et al. 1980a) 4248 (shake flask-LSC, Veith et al. 1980) 4290 (20°C, shake flask-UV, Leyder & Boulanger 1983) 5000, 1744 (20°C, Verschueren 1983) 4000 ± 60 (shake flask-HPLC/UV, Howard et al. 1985) 2810 (21°C, shake flask-HPLC/UV, Nielsen & Bundgaard 1989)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 40* (82°C, ebulliometry, measured range 82–151°C, Gardner & Brewer 1937) log (P/mmHg) = 9.117 –1496.375/(T/K); temp range 82–151°C (Antoine eq. derived by Kim 1985 from exptl data of Gardner & Brewer 1937) 0.863* (extrapolated-regression of tabulated data, temp range 100.3–288.7°C Stull 1947) 0.245 (effusion method, extrapolated-Antoine eq., Small et al. 1948) log (P/mmHg) = 11.06 – 4113/(T/K); temp range 32–55°C or pressure range 5 × 10–2 to 10–4 mmHg (Antoine eq., effusion method, data presented in graph and Antoine eq., Small et al. 1948) 0.559 (20°C, calculated-Antoine eq., Weast 1972–73) log (P/mmHg) = [–0.2185 × 14922.2/(T/K)] + 8.747053; temp range 100.3–287°C (Antoine eq., Weast 1972–73) 0.445 (gas saturation, extrapolated, measured range 60–100°C, Potin-Gautier et al. 1982)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3080 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log (P/mmHg) = 8.899 – 3332.764/(T/K); temp range 60–100°C (Antoine eq., Potin-Gautier et al. 1982) log (P/kPa) = 3.64598 – 699.876/(51.372 + t/°C); temp range 82–151°C (Antoine eq. from reported exptl. data, Boublik et al. 1984) log (P/mmHg) = 4.52232 – 700.31/(51.42 + t/°C); temp range 82–151°C (Antoine eq., Dean 1985, 1992) 0.220 (gas saturation-HPLC/UV, Howard et al. 1985; quoted, Howard et al. 1986; Howard 1989; Banerjee et al. 1990) 0.245, 0.863 (extrapolated-Antoine eq.-I, II, Stephenson & Malanowski 1987)

log (PL/kPa) = 10.185 – 4113/(T/K); temp range 304–371 K (Antoine eq.-I, Stephenson & Malanowski 1987) log (PL/kPa) = 8.095 – 3327/(T/K); temp range 371–547 K (Antoine eq.-II, Stephenson & Malanowski 1987) 1.190 (GC-RT correlation, Hinckley et al. 1990) log (P/mmHg) = 12.6974 – 4.1989 × 103/(T/K) + 0.3463·log(T/K) – 7.6524 × 10–3·(T/K) + 3.349 × 10–6·(T/K)2; temp range 272–766 K (vapor pressure eq., Yaws et al. 1994)

Henry’s Law Constant (Pa m3/mol at 25°C): 0.111 (calculated-P/C, Fishbein & Albro 1972) 0.111 (calculated-P/C, Wolfe et al. 1980a) 0.011 (calculated as per Lyman et al. 1982; quoted, Howard 1989) 0.218 (20°C, calculated-P/C, Mabey et al. 1982) 0.012 (selected, Staples et al. 1997) 0.00978 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Water Partition Coefficient, log KOW: 1.61 (shake flask-LSC, Veith et al. 1980; Veith & Kosian 1983) 1.56 (HPLC-RT correlation, Veith et al. 1980) 1.62, 1.82 (HPLC-k′ correlations, McDuffie 1981) 1.53 (20°C, shake flask-UV, Leyder & Boulanger 1983) 1.47, 1.90 (shake flask-HPLC/UV, HPLC-RT correlation, Howard et al. 1985) 1.56 (shake flask, unpublished data, Hansch & Leo 1985; 1987) 1.66 (shake flask, average from interlaboratory study, Renberg et al. 1985) 1.74, 1.61 (HPLC, RP-TLC, average from interlaboratory study, Renberg et al. 1985) 1.62 (HPLC-RT correlation, Eadsforth 1986) 1.46 (shake flask-HPLC/UV, Nielsen & Bundgaard 1989) 1.56 (recommended, Sangster 1993) 1.56 (recommended, Hansch et al. 1995) 1.61 (recommended, Staples et al. 1997) 1.54 (micro-emulsion electrokinetic chromatography-retention factor correlation, Poole et al. 2000)

Octanol/Air Partition Coefficient, log KOA: 7.01 (calculated-QSPR, Cousin & Mackay 2000)

Bioconcentration Factor, log BCF:

0.67 (calculated-KOW, Veith et al. 1979, 1980) 1.76 (bluegill sunfish, Barrows et al. 1980) 1.76 (bluegill sunfish, Veith et al. 1980; Veith & Kosian 1983)

1.42 (bacteria, calculated-KOW, Wolfe et al. 1980a) 0.49–0.8, 0.67–0.78 (shrimp, fish, Wofford et al. 1981)

1.20 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 0.77 (sheepshead minnow, quoted from Wofford et al. 1981, Zaroogian et al. 1985) 1.76, 2.22 (quoted, calculated-MCI χ, Sabljic 1987) 0.67, 0.73 (brown shrimp, sheepshead minnow, quoted, Howard 1989) 1.76 (fish, highest fish BCF, Matthiessen et al. 1992)

Sorption Partition Coefficient, log KOC: 1.64 (soil, estimated, Kenaga 1980)

2.20 (soil, estimated-KOW, Wolfe et al. 1980a)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3081

1.74 (soil/sediment, Osipoff et al. 1981)

1.24 (sediment-water, calculated-KOW, Mabey et al. 1982) 1.52 (sediment, calculated-KOW, Pavlou & Weston 1983, 1984) 2.69 (activated carbon, calculated- MCI χ, Blum et al. 1994)

1.20 (calculated-KOW, Kollig 1993) 1.60 (quoted or calculated-QSAR MCI 1χ, Sabljic et al. 1995)

4.70 (suspended solids, calculated-Kd assuming a 0.10 organic carbon fraction, Staples et al. 1997) 1.64, 2.14; 2.16, 1.87, 2.53, 1.83, 1.67 (soil: quoted lit., calculated-KOW; HPLC-screening method using LC-columns of different stationary phases, Szabo et al. 1999)

Environmental Fate Rate Constant, k, and Half-Lives t½:

Volatilization: estimated t½ = 46 d from a river of 1 m deep with 1.0 m/s current and a 3.0 m/s wind using calculated Henry’s law constant and considering the volatilization rate being controlled by the diffusion through the air layer (Lyman et al. 1982; quoted, Howard 1989). –4 –1 Photolysis: direct kP = 2 × 10 h (EXAMS model, Wolfe et al. 1980a); abiotic degradation t½ = 3500 h for direct sunlight in surface waters and t½ = 12.7 h in pure water but reduced to 2.8 h in the presence of NO2 when irradiated with a UV lamp through a Pyrex filter (Howard 1989) –1 Indirect photolysis rate k = 0.048 d with t½ = 14.4 d in air (Peterson & Staples 2003) Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: k(aq.) = 18 M–1 s–1 for reaction with free radical in aqueous environment (Wolfe et al. 1980a) k(aq.) << 360 M–1 h–1 for singlet oxygen and 0.05 M–1 h–1 for peroxy radical (Mabey et al. 1982)

photooxidation t½ = 23.8 h (estimated, Howard 1989) atmospheric t½ = 112–1118 h, based on estimated rate data for the reaction with OH radical in air (Howard et al. 1991) –1 –1 k(aq.) = (0.20 ± 0.10) M s for direct reaction with ozone in water at pH 2 and 21 ± 1°C, with a t½ =1.9d at pH 7 (Yao & Haag 1991). k(aq.) = 4 × 109 M–1 s–1 for the reaction with OH radical in aqueous solution (Haag & Yao 1992)

photooxidation t½(predicted) = 9.3–93 d from Atkinson 1988 atmospheric-oxidation program (Staples et al. 1997) –11 3 –1 –1 kOH = 5.74 × 10 cm molecule s and t½ = 14.4 d based on a global, seasonal and diurnal average OH radical concn of 1 × 106 molecule cm–3 in air (Peterson & Staples 2003) Hydrolysis: k(acid-catalyzed) = 0.04 M–1 h–1, k(alkaline) = 2.5 × 102 M–1 h–1; phthalates are susceptible to alkaline

hydrolysis, with theoretical t½ = 4 month to 100 yr at pH 8 and 30°C (Wolfe et al. 1980a) –2 –1 –1 k(second-order alkaline) = 6.9 × 10 M s at pH 8 and 30°C, and t½ = 4 months for hydrolytic degradation in the eutrophic lake system (Wolfe et al. 1980b; quoted, Kollig 1993) –2 –1 –1 k(second-order alkaline) = 6.9 × 10 M s at pH 10–12 and 30°C in water with t½(calc) = 3.2 yr at pH 7 (Callahan et al. 1979)

hydrolysis half-lives: t½ = 3.2 yr under natural conditions at 30°C, t½ = 11.6 d at 30°C and t½ = 25 d at 18°C and at pH 9 (Howard 1989; selected, Staples et al. 1997);

first-order hydrolysis t½ = 1163 d based on a second-order rate constant at pH 7 and 30°C; and a base rate –1 –1 constant k = 111.6 M h corresponding to t½ = 1.2 d at pH 9 and 18°C (Howard et al. 1991) t½ = 1200 d at pH 7, t½ = 0.026 d at pH 12 in natural waters (Capel & Larson 1995) Biodegradation: calculated rate constant k = (9.49 ± 0.41) × 102 min–1 from retention times in reverse phase chromatography (Urushigawa & Yonezawa 1979; quoted, O’Grady et al. 1985); significant degradation with rapid adaption within 7 d in an aerobic environment with a rate k > 0.5 d–1 (Tabak et al. 1981; quoted, Mills et al. 1982); biodegradation rate constant k = 1.2 × 10–4 mL·cell–1·d–1 in river die-away test (Scow 1982); 58–88% mineralization in 7 d in municipal digested sludge (Horowitz et al. 1982); –1 rate constant k = 0.364 d which corresponds to t½ = 1.90 d in shake flask biodegradation experiments (Sugatt et al. 1984); greater than 90% of DMP was degraded within 40 d in digested sludge (Shelton et al. 1984); biodegraded in excess of 90% in activated sludge systems in less than 24 h (O’Grady et al. 1985); soil-water biodegradation studies showed that 85% loss in Broome County soil after 120 hours and 75% loss in leachate sprayed soil after 48 h (Russell et al. 1985);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3082 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

–3 –1 anaerobic digestion of sludge with a first-order k = 8.9 × 10 h and t½ = 78 h (Ziogou et al. 1989); aqueous aerobic t½ = 24–168 h, based on unacclimated aerobic river die-away test data and acclimated aerobic soil grab sample data; aqueous anaerobic t½ = 96–672 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991)

t½(aerobic) = 3 d, t½(anaerobic) = 28 d in natural waters (Capel & Larson 1995) –1 k = 0.0290 h with t½ = 23.9 h for microbial degradation by anaerobic sludge (Wang et al. 2000) –1 Aerobic biodegradation in aquatic environments, first order k = 0.5 d with t½ = 1.39 d in river water, –1 k = 0.5 d with t½ = 1.39 d in MITI inoculum (Peterson & Staples 2003) –1 Aerobic biodegradation in soil, pseudo-first-order rate k = 0.36 d with t½ = 1.93 d in agitated aqueous –1 suspension, and k = 0.40 d with t½ = 1.70 d at 30°C in garden soil. For anaerobic degradation, first –1 –1 order rate k = 0.25–0.696 d with t½ = 2.8–1.0 d in digester sludge, batch incubation; k = 0.033 d with t½ = 21 d in flood soil (Peterson & Staples 2003) Biotransformation: estimated rate constant k ~ 5.2 × 10–6 mL cell–1 h–1 for bacterial transformation in water (Wolfe et al. 1980a; quoted, Mabey et al. 1982).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives: depuration t½ = 24–48 h from bluegill sunfish (Barrows et al. 1980). –1 k2 = 27.7 d (10°C, 0.1 kg staghorn sculpin, lipid content 5%, Gobas et al. 2003) –1 k2 = 2.37 d (10°C, 3 kg dogfish, lipid content 15%, Gobas et al. 2003)

Half-Lives in the Environment:

Air: atmospheric t½ = 23.8 h for reaction with hydroxyl radicals (Howard 1989); t½ = 112–1118 h, based on estimated rate data for the reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991); atmospheric transformation lifetime was estimated to be 1 to 5 d (Kelly et al. 1994).

t½ = 14.41 d based on photooxidation reaction rate with OH radical, indirect photolysis t½ = 14.4 d (Peterson & Staples 2003)

Surface water: estimated t½ < 0.3 d in river waters (Zoeteman et al. 1980); mineralization t½ ~ 7 d in municipal digested sludge (Horowitz et al. 1982); biodegradation t½ = 1.90 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984); t½ < 192–264 h by biodegradation in fresh river water, t½ = 12 h in Rhine River, an estimated t½ ~ 13–27 h in a modelling study of simulated ecosystem; abiotic degradation t½ = 12.7 h in pure water and t½ = 2.8 h in the presence of nitrogen dioxide when irradiated with a UV lamp (Howard 1989);

overall degradation t½ = 24–168 h, based on unacclimated river die-away test data (Howard et al. 1991) Biodegradation t½(aerobic) = 1 d, t½(anaerobic) = 4 d in natural waters (Capel & Larson 1995) –1 –1 k(exptl) = (0.20 ± 0.10) M s for direct reaction with ozone in water at pH 2 and 21- 1°C, with t½ = 1.9 d at pH 7 (Yao & Haag 1991)

Biodegradation t½(aerobic) = 1 d, t½(anaerobic) = 4 d and t½ = 1200 at pH 7, t½ = 0.026 d at pH 12 in natural waters (Capel & Larson 1995)

t½ = 0.5–1.39 d for biodegradation in aerobic aquatic environments (Peterson & Staples 2003) Ground water: t½ = 48–336 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: biodegradation t½ < 5 d (aerobic) and t½ ~ 20 d (anaerobic) in a garden soil (Shanker et al. 1985); t½ = 10–50 d, via volatilization subject to plant uptake from soil (Ryan et al. 1988); t½ = 24–168 h, based on unacclimated aerobic river die-away test data and acclimated aerobic soil grab sample data (Howard et al. 1991)

Biodegradation in aerobic soil: t½ = 1.93 d in agitated aqueous suspension and t½ = 1.70 d in garden soil (Peterson & Staples 2003)

Biota: 24 < t½ < 48 h depuration half-life in tissues of bluefill sunfish in 21 d-exposure experiment (Barrows et al. 1980; quoted, Howard 1989);

t½ = 23.9 h for microbial degradation by anaerobic sludge (Wang et al.2000).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3083

TABLE 15.1.3.1.1 Reported vapor pressures of dimethyl phthalate at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Gardner & Brewer 1937 Stull 1947

ebulliometry summary of literature data

t/°C P/Pa t/°C P/Pa 82.0 40.0 100.3 133.3 85.0 53.3 131.8 666.6 90.0 66.7 147.6 1333 99.0 80.0 164.0 2666 103.0 120 182.8 5333 105.3 160 194.0 7999 107.4 213 210.0 13332 110.6 227 232.7 26664 115.0 267 257.8 53329 118.0 333 283.7 101325 123.8 440 129.5 587 mp/°C 136.9 813 146.5 1293 146.9 1293 150.6 1533 151.0 1547 bp/°C 140.586 at 1 mmHg

Dimethyl phthalate: vapor pressure vs. 1/T 6.0 Gardner & Brewer 1937 Stull 1947 5.0 Small et al. 1948 (32 to 55 °C) Small et al. 1948 (extrapolated) Howard et al. 1985 4.0

3.0 /Pa) S 2.0

log(P 1.0

0.0

-1.0 m.p. = 5.5 °C b.p. = 283.7 °C -2.0 0.0014 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K)

FIGURE 15.1.3.1.1 Logarithm of vapor pressure versus reciprocal temperature for dimethyl phthalate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3084 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.3.2 Diethyl phthalate (DEP)

O

O O

O

Common Name: Diethyl phthalate Synonym: DEP, ethyl phthalate Chemical Name: phthalic acid diethyl ester, ethyl phthalate, 1,2-benzenedicarboxylic acid ethyl ester CAS Registry No: 84-66-2

Molecular Formula: C12H14O4, C6H4(COOC2H5)2 Molecular Weight: 222.237 Melting Point (°C): –40.5 (Patty 1963; Fishbein & Albro 1972; Lide 2003) Boiling Point (°C): 295 (Lide 2003) Density (g/cm3 at 20°C): 1.123 (25°C, Fishbein & Albro 1972) 1.1175 (20°C, Weast 1982–83) Molar Volume (cm3/mol): 198.9 (20°C, calculated-density, Stephenson & Malanowski 1987) 254.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 82.42 (Small et al. 1948) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K) F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 598 (Deno & Berkheimer 1960) 1000 (20°C, Fishbein & Albro 1972) 1000 (32°C, from Monsanto Chemical Co. data sheets, Peakall 1975) 896 (shake flask-GC, Wolfe et al. 1980b) 1200* (20°C, elution chromatography, UV, Schwarz & Miller 1980) 7028 (shake flask-LSC, Veith et al. 1980) 928 (20°C, shake flask-UV, Leyder & Boulanger 1983) 1080 (shake flask-HPLC/UV, Howard et al. 1985) 680 (measured, Russell & McDuffie 1986) 938* (shake flask-surface tension measurement, measured range 10–35°C Thomsen et al. 2001)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.467* (extrapolated-regression of tabulated data, temp range 108.8–294°C, Stull 1947) 0.086 (effusion method, extrapolated-Antoine eq., Small et al. 1948) log (P/mmHg) = 11.26 – 4308/(T/K); temp range 32–60°C or pressure range 5 × 10–2 to 10–4 mmHg (effusion method, data presented in graph and Antoine eq., Small et al. 1948) 0.052 (20°C, torsion-effusion method, Balson 1958) 0.0195 (20°C, aerosol saturation, measured range 25–70°C, Frostling 1970) log (P/mmHg) = 11.13 – 4275/(T/K); temp range 25–70°C (aerosol saturation, Frostling 1970) 0.467 (calculated-Antoine eq., Weast 1972–73) log (P/mmHg) = [–0.2185 × 15383.0/(T/K)] + 8.18275; temp range 108.8–294°C (Antoine eq., Weast 1972–73)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3085

0.046* (20°C, extrapolated, gas-saturation method, measured range 34.2–60.5°C, Grayson & Fosbraey 1982) ln (P/Pa) = 32.50 – 10436/(T/K); temp range 34.2–60.5°C (Antoine eq., gas saturation-GC, Grayson & Fosbraey 1982) 1.867 (gas saturation, measured range 60–120°C. Potin-Gautier et al. 1982) log (P/mmHg) = 8.806 – 1443.039/(T/K); temp range 60–120°C (Potin-Gautier et al. 1982) 0.220 (gas saturation-HPLC/UV, Howard et al. 1985) 0.0064 (extrapolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.04308 – 1866.05/(–115.9 + T/K); temp range 345–453 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 10.6902 – 6768.3/(–209.45 + T/K); temp range 421–570 K (Antoine eq.-II, Stephenson & Malanowski 1987) 0.280 (GC-RT correlation, Hinckley et al. 1990) log (P/mmHg) = 72.1438 – 7.0747 × 103/(T/K) –21.029·log(T/K) – 3.2404 × 10–10·(T/K) + 3.4691 × 10–6·(T/K)2; temp range 269–757 K (vapor pressure eq., Yaws et al. 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.0020 (calculated-P/C, Wolfe et al. 1980a) 0.0486 (Lyman et al. 1982; quoted, Howard 1989) 0.1220 (calculated-P/C, Mabey et al. 1982) 4.7100 (quoted from WERL Treatability Data, Ryan et al. 1988) 0.0269 (selected, Staples et al. 1997)

Octanol/Water Partition Coefficient, log KOW: 3.22 (calculated as per Leo et al. 1971) 3.15 (RP-HPLC-RT correlation, Veith et al. 1979) 1.40 (shake flask-LSC, Veith et al. 1980) 2.67 (RP-HPLC-RT correlation, Veith et al. 1980) 2.21 (HPLC-RT correlation, McDuffie 1981) 2.70 (quoted from Veith et al. 1980, Veith & Kosian 1983; Davies & Dobbs 1984; Saito et al. 1992) 2.35 (20°C, shake flask-UV, Leyder & Boulanger 1983) 2.24, 2.29 (shake flask-HPLC/UV, HPLC-RT correlation, Howard et al. 1985) 2.47 (shake flask, unpublished data, Hansch & Leo 1985; 1987) 3.00 (RP-HPLC-RT correlation, De Koch & Lord 1987) 2.47 (recommended, Sangster 1993) 2.47 (recommended, Hansch et al. 1995)

Octanol/Air Partition Coefficient, log KOA: 7.55 (calculated-QSPR, Cousins & Mackay 2000)

Bioconcentration Factor, log BCF:

0.49–1.56 (calculated-KOW, Veith et al. 1979, 1980) 2.07 (bluegill sunfish, Veith et al. 1980; Barrows et al. 1980; Veith & Kosian 1983)

1.86 (bacteria, calculated-KOW, Wolfe et al. 1980a) 1.08, 1.64 (calculated-S, calculated-KOW, Lyman et al. 1982) 2.04 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 1.19 (mullet, Shimada et al. 1983) 2.10 (Davies & Dobbs 1984) 2.07 (fish, highest fish BCF, Matthiessen et al. 1992)

Sorption Partition Coefficient, log KOC:

2.65 (calculated-KOW, Wolfe et al. 1980a) 2.72 (soil, calculated-S, Lyman et al. 1982; quoted, Howard 1989)

1.97 (soil, calculated-KOW, Lyman et al. 1982; quoted, Howard 1989) 2.15 (sediment-water, calculated-KOW, Mabey et al. 1982)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3086 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

1.34 (sediment, calculated-KOW, Pavlou & Weston 1983, 1984) 1.84 (Broome County of New York soil, shake flask-GC, Russell & McDuffie 1986) 3.00, 2.85, 3.24 (sediment, Alfisol soil, Podzol soil, von Oepen et al. 1991) 2.03 (activated carbon, calculated-MCI χ, Blum et al. 1994)

1.99 (calculated-KOW, Kollig 1993) 1.84 (quoted or calculated-QSAR MCI 1χ, Sabljic et al. 1995) 1.84 (sediment/soil, selected, Staples et al. 1997)

4.90 (suspended solids, calculated-Kd assuming a 0.10 organic carbon fraction, Staples et al. 1997)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: –4 –1 Photolysis: direct kP = 2 × 10 h (EXAMS model, Wolfe et al. 1980a) Oxidation: rate constant k, for gas-phase second order rate constants, kOH for reaction with OH radical, kNO3 with NO3 radical and kO3 with O3 or as indicated, *data at other temperatures see reference: k(aq.) = 18 M s–1 in aquatic environment (Wolfe et al. 1980a) k << 360 M–1 h–1 for singlet oxygen and k = 1.4 M–1 h–1 for peroxy radical (Mabey et al. 1982) –11 3 –1 –1 kOH = 1.08 × 10 cm molecule s corresponding to t½ = 22.2 h and the alkyl peroxy reaction t½(calc) = 6.5 yr (Howard 1989)

photooxidation t½ = 21–212 h in air, based on an estimated rate constant for the vapor phase reaction with hydroxyl radical in air (Howard et al. 1991)

photooxidation t½ = 2.4–12.2 yr in water, based on estimated rate data for the reaction with alkyloxyl radical in aqueous solution (Howard et al. 1991) –1 –1 k(aq.) = (0.14 ± 0.05) M s for direct reaction with ozone in water at pH 2 and 22°C, with t½ = 2.8 d at pH 7 (Yao & Haag 1991). 9 –1 –1 kOH(aq.) = 4 × 10 M s for the reaction with OH radical in aqueous solution (Haag & Yao 1992) predicted atmospheric photooxidation t½ = 1.8–18 d from Atkinson 1988 atmospheric-oxidation program (Staples et al. 1997) –12 3 –1 –1 kOH = 3.466 × 10 cm molecule s and t½ = 2.39 d based on a global, seasonal and diurnal average OH radical concn of 1 × 106 molecule cm–3 in air (Peterson & Staples 2003) Hydrolysis: k(acid-catalyzed) = 0.04 M–1 h–1, k(alkaline) = 79 M–1 h–1; phthalates are susceptible to alkaline

hydrolysis, with theoretical t½ = 4 months to 100 yr at pH 8 and 30°C (Wolfe et al. 1980a) k(second-order alkaline) = 2.5 × 10–2 M–1 s–1 at 30°C (Wolfe et al. 1980b; quoted, Kollig 1993) k(alkaline) = 2.5 × 10–2 M–1 s–1 at 30°C and k (second-order alkaline rate) = 1.2 × 10–2 M–1 s–1 at pH 10–12

at 30°C, with a calculated t½ = 18.3 yr at pH 7 (Callahan et al. 1979) –1 –1 First order hydrolysis t½ = 8.8 yr based on base rate constant at 30°C and pH 7; base rate constant k = 90 M s with t½ = 32 d based on measured rate constant at 30°C and pH from 10 to 12 (Howard et al. 1991) t½ = 3200 d, t½ = 0.032 d in natural waters (Capel & Larson 1995) first-order hydrolysis t½ = 8.8 yr at pH 7 and t½ = 32 d at pH 10–12 based on base rate constant at 30°C (Howard et al. 1991; selected, Staples et al. 1997)

Biodegradation: microbial degradation t½ = 10.5 d by microorganisms isolated from soil and waste water at 30°C (Kurane et al. 1977, quoted, Russell et al. 1985); estimated rate constant k ~ (6.59 ± 0.43) × 102 min–1 from retention times of reverse phase chromatography (Urushigawa & Yonezawa 1979; quoted, O’Grady et al. 1985); microbial degradation k = 2 × 10–4 h–1 in an aquatic environment (Wolfe et al. 1980a); 0 to 32% mineralization in > 8 wk in municipal digested sludge (Horowitz et al. 1982); complete degradation in 7.0 d for 5 and 10 ppm DEP in domestic waste water under aerobic conditions at 25°C (Tabak et al. 1981; quoted, Howard 1989); –1 k = 0.315 d corresponding to t½ = 2.21 d with a mixed microbial population and underwent > 99% degradation in 28-d in shake flask biodegradation experiment (Sugatt et al. 1984); greater than 90% of DEP was degraded within 40 d in digested sludge (Shelton et al. 1984); 85% biodegraded after 14 d incubation in aerobic freshwater sediments at 22°C (Johnson et al. 1984); biodegraded in excess of 90% in less than 24 h in activated sludge systems (O’Grady et al. 1985);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3087

soil-water biodegradation studies showed the 86% loss after 120 h in Broome County soils and 67% loss in leachate sprayed soil after 48 h (Russell et al. 1985); –3 –1 anaerobic digestion of sludge with first-order k = 6.0 × 10 h and t½ = 115 h (Ziogou et al. 1989) aqueous aerobic t½ = 72–1344 h, based on aerobic aqueous grab sample data for fresh and marine water (Howard et al. 1991); aqueous anaerobic t½ = 672–5376 h, based on estimated unacclimated aqueous aerobic biodegradation half-life and anaerobic screening test data (Howard et al. 1991)

t½(aerobic) = 3 d, t½(anaerobic) = 28 d in natural waters (Capel & Larson 1995) –1 Aerobic biodegradation in aquatic environments, first order k = 1.8 d with t½ = 0.39 d in river water, –1 –1 k = 0.16 d with t½ = 4.33 d in MITI inoculum, and k = 0.98 d with t½ = 0.71 d (Peterson & Staples 2003) –1 biodegradation in aerobic soil, pseudo-first-order k = 0.38 d with t½ = 1.83 d in agitated aqueous suspension. –1 For anaerobic degradation, first order rate k = 0.069 to > 0.3 d with t½ = 10.0 to < 2.3 d in digester –1 –1 sludge, batch incubation; k = 0.036 d with t½ = 19.3 d in flood soil; k = 0.27 d with t½ = 2.6 d in –1 –1 pond sediment, k = 0.13 d with t½ = 5.3 d in 10% freshwater sediment and k = 0.31 d with t½ =2.2d in 10% salt marsh sediment (Peterson & Staples 2003) Biotransformation: experimentally determined microbial k = 3.2 × 10–9 mL organism–1 h–1 (Wolfe et al. 1980a,c); estimated k ~ 1 × 10–7 mL cell–1 h–1 for bacterial transformation in water (Mabey et al. 1982); mean microbial k = (7.2 ± 15.4) × 10–7 mL cell–1 h–1 for 54 batch aufwuchs cultures (Lewis & Holm 1981; Lewis et al. 1984).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives: depuration half-life 24 h < t½ < 48 h in tissues of bluegill sunfish (Barrows et al. 1980). –1 k2 = 6.83 d (10°C, 0.1 kg staghorn sculpin, lipid content 5%, Gobas et al. 2003) –1 k2 = 0.584 d (10°C, 3 kg dogfish, lipid content 15%, Gobas et al. 2003)

Half-Lives in the Environment: 5 –3 Air: an estimated t½ = 22.2 h for the vapor reaction with photochemically generated 8 × 10 molecules·cm OH radical in air at 25°C with an estimated k ~ 1.08 × 10–11 cm3·molecule–1·s–1 (Howard 1989);

t½ = 21–212 h, based on an estimated rate constant for the vapor phase reaction with hydroxyl radical in air (Howard et al. 1991) 6 photodegradation t½ = 2.39 d based on a global, seasonal and diurnal average OH radical concn of 1 × 10 molecule cm–3 in air (Peterson & Staples 2003)

Surface water: biodegradation t½ = 2.21 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984); t½ ~ 2 d to > 2 wk for aerobic biodegradation in water; t½ = 3 d when incubated in dirty river water (Howard 1989);

overall degradation t½ = 72–1344 h, based on aerobic aqueous grab sample data for fresh and marine water (Howard et al. 1991); –1 –1 k(exptl) = (0.14 ± 0.5) M s for direct reaction with ozone in water at pH 2 and 22°C, with t½ = 2.8 d at pH 7 (Yao & Haag 1991).

Ground water: t½ = 144–2688 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Sediment: t½ < 14 d in freshwater sediment (Johnson et al. 1984). Soil: degradation t½ = 10.5 d by microorganisms isolated from soil or waste water at 30°C (Kurane et al. 1977); t½ = 10–50 d via volatilization subject to plant uptake from soil (Ryan et al. 1988); t½ = 72–1344 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Biota: 24 h < t½ < 48 h in tissues of bluegill sunfish (Barrows et al. 1980).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3088 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 15.1.3.2.1 Reported vapor pressures and aqueous solubilities of diethyl phthalate at various pressures and solubilities

Aqueous solubility Vapor pressure

Schwarz & Miller 1980 Thomsen et al. 2001 Stull 1947 Grayson & Fosbraey 1982

elution chromatography-UV shake flask-surface tension summary of literature data gas saturation-GC

t/°C g m–3 t/°C g m–3 t/°C P/Pa t/°C P/Pa 20 1200 10 1113 108.8 133.3 34.2 0.222 20 1240 25 838 140.7 666.6 40.0 0.470 20 1160 35 741 156.0 1333 44.8 0.784 30 1370 173.6 2666 50.7 1.368 30 1400 192.1 5333 60.5 3.320 30 1340 204.1 7999 20 0.046 219.5 13332 243.0 26664 ln P = A – B/(T/K) 267.5 53329 P/Pa 294.0 101325 A 32.5 B 10436

Diethyl phthalate: solubility vs. 1/T -7.0 Thomsen et al. 2001 (see text for data) Wolfe et al. 1980b -7.5 Veith et al. 1980 Leyder & Boulanger 1983 Howard et al. 1985 Russell & McDuffie 1986 -8.0

x nl x -8.5

-9.0

-9.5

-10.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K) FIGURE 15.1.3.2.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for diethyl phthalate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3089

Diethyl phthalate: vapor pressure vs. 1/T 6.0 Grayson & Fosbraey 1982 Stull 1947 5.0 Small et al. 1948 (32 to 60 °C) Small et al. 1948 (extrapolated) Balson 1958 4.0 Howard et al. 1985

3.0 )aP/

S 2.0 P(gol

1.0

0.0

-1.0 b.p. = 295 °C -2.0 0.0014 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 15.1.3.2.2 Logarithm of vapor pressure versus reciprocal temperature for diethyl phthalate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3090 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.3.3 Diallyl phthalate (DAP)

O

O O

O Common Name: Diallyl phthalate Synonym: DAP Chemical Name: di(2-propenyl) phthalate, bis(2-propenyl)ester, 1,2-benzenedicarboxylic acid CAS Registry No: 131-17-9

Molecular Formula: C14H14O4, C6H4-1,2-(CO2CH2CH=CH2)2 Molecular Weight: 246.259 Melting Point (°C): –77 (Fishbein & Albro 1972) Boiling Point (°C): 290 (Fishbein & Albro 1972) Density (g/cm3 at 20°C): 1.121 (Fishbein & Albro 1972) Molar Volume (cm3/mol): 219.7 (20°C, calculated-density) 288.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0 Water Solubility (g/m3 or mg/L at 25°C or as indicated): < 100 (Fishbein & Albro 1972) 182 (20°C, shake flask-GC, Leyder & Boulanger 1983) 182; 43, 100 (recommended; calculated-QSAR, Staples 1997) 94 (calculated-UNIFAC, Thomsen et al. 1999) 156 (calculated-QSPR, Cousins & Mackay 2000)

Vapor Pressure (Pa at 25°C): 0.0213; 0.00493, 0.155 (recommended; calculated-QSAR, Staples et al. 1997) 0.0271 (calculated-QSPR, Cousins & Mackay 2000)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.0289 (selected, Staples et al. 1997) 0.0428 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Water Partition Coefficient, log KOW: 3.23 (shake flask, Leyder & Boulanger 1983) 3.23 (recommended value, Sangster 1993) 3.23 (recommended, Hansch et al. 1995) 3.23; 3.37, 3.63 (recommended; calculated-QSAR, Staples 1997) 3.61 (calculated-UNIFAC, Thomsen et al. 1999) 3.11 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Air Partition Coefficient, log KOA: 7.87 (calculated-QSPR, Cousins & Mackay 2000)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3091

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: atmospheric photooxidation t½ = 0.04–0.4 d (Staples et al. 1997). Hydrolysis:

Biodegradation: degradation t½ = 2.0 d by microorganisms (Pseudomonas acidovorans 256–1) from soil or waste water at 30°C (Kurane et al. 1977). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment:

Air: atmospheric photooxidation t½ = 0.04–0.4 d (Staples et al. 1997). Surface water: Groundwater: Sediment:

Soil: degradation t½ = 2.0 d by microorganisms (Pseudomonas acidovorans 256–1) from soil or waste water at 30°C (Kurane et al. 1977). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3092 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.3.4 Di-n-propyl phthalate (DnPP)

O

O O

O Common Name: Di-n-propyl phthalate Synonym: DPP, DNPP, dipropyl phthalate Chemical Name: phthalic acid dipropyl ester; 1,2-benzenedicarboxylic acid dipropyl ester CAS Registry No: 131-16-8

Molecular Formula: C14H18O4, C6H4[COOCH2CH2CH3]2 Molecular Weight: 250.291 Melting Point (°C): –31.0 (Lide 2003) Boiling Point (°C): 304.5 (Lide 2003) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): 232.2 (20°C, calculated-density, Stephenson & Malanowski 1987) 302.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 88.70 (Small et al. 1948) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0 Water Solubility (g/m3 or mg/L at 25°C): 108 (shake flask-UV, Leyder & Boulanger 1983) 108; 38, 47 (recommended; calculated-structure activity program, QSAR, Staples et al. 1997) 77 (calculated-QSPR, Cousins & Mackay 2000)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 0.0175 (effusion method, extrapolated-Antoine eq., Small et al. 1948) log (P/mmHg) = 11.66 – 4634/(T/K); temp range 32–75°C or pressure range 5 × 10–2 to 10–4 mmHg (Antoine eq., effusion method, Small et al. 1948). Additional data at other temperatures designated * are compiled at the end of this section log (P/kPa) = 8.625 – 3824/(T/K); temp range 403–578 K (Antoine eq., Stephenson & Malanowski 1987) 0.0119, 0.138 (calculated-QSAR, Staples et al. 1997) 0.0175 (calculated-QSPR, Cousins & Mackay 2000)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.0309 (recommended, Staples et al. 1997) 0.0569 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Water Partition Coefficient, log KOW: 3.27 (shake flask, Leyder & Boulanger 1983) 4.05 (HPLC-RT correlation, Hayward et al. 1990) 4.20 (HPLC-RT correlation, Jenke et al. 1990) 3,27, 4.05 (lit. values, Hansch et al. 1995) 3.27; 3.57, 3.63 (recommended; calculated-structure activity program, QSAR, Staples et al. 1997) 3.636 (Thomsen & Carlsen 1998) 3.40 (calculated-QSPR, Cousins & Mackay 2000)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3093

Octanol/Air Partition Coefficient, log KOA: 8.04 (calculated-QSPR, Cousins & Mackay 2000)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: atmospheric photooxidation t½ = 0.9–9.0 d (calculated, Staples et al. 1997). Hydrolysis:

Biodegradation: degradation t½ = 6.5 d by microorganisms (Pseudomonas acidovorans 256–1) from soil or waste water at 30°C (Kurane et al. 1977); rate constant k = (10.71 ± 0.73) × 10–2 min–1 was estimated from the retention time in reverse phase chromatography (Urushigawa & Yonezawa 1979). –1 Aerobic biodegradation in aquatic environments, first order k = 1.3 d with t½ = 0.53 d in river water (Peterson & Staples 2003) Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: atmospheric photooxidation t½ = 0.9–9.0 d (calculated, Staples et al. 1997). Surface water: t½ = 0.53 d in river water (Peterson & Staples 2003) Groundwater: Sediment:

Soil: degradation t½ = 6.5 d by microorganisms (Pseudomonas acidovorans 256–1) from soil or waste water at 30°C (Kurane et al. 1977). Biota:

Di-n -propyl phthalate: vapor pressure vs. 1/T 5.0 Small et al. 1948 (32 to 75 °C, see text for equation) Small et al. 1948 (extrapolated) 4.0

3.0

2.0 )aP/

S 1.0 P(gol

0.0

-1.0

-2.0 b.p. = 304.5 °C -3.0 0.0014 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 15.1.3.4.1 Logarithm of vapor pressure versus reciprocal temperature for di-n-propyl phthalate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3094 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.3.5 Di-isopropyl phthalate (DIPP)

O

O O

O

Common Name: Di-isopropyl phthalate Synonym: DIPP Chemical Name: phthalic acid dipropyl ester, bis(1-methylethyl)ester, 1,2-benzenedicarboxylic acid didiopropy ester CAS Registry No: 605-45-8

Molecular Formula: C14H18O4, 1,2-C6H4(CO2C3H7)2 Molecular Weight: 250.291 Melting Point (°C): liquid Boiling Point (°C): 304–305 (Weast 1982–83) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): 302.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 322 (shake flask-UV, Leyder & Boulanger 1983) 136 (calculated-UNIFAC, Thomsen et al. 1999)

Vapor Pressure (Pa at 25°C):

Henry’s Law Constant (Pa·m3/mol):

Octanol/Water Partition Coefficient, log KOW: 2.83 (shake flask-UV, Leyder & Boulanger 1983 2.83 (recommended, Sangster 1993) 2.83 (recommended, Hansch et al. 1995) 3.59 (calculated-UNIFAC, Thomsen et al. 1999)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Biodegradation: degradation t½ = 1.5 d by microorganisms (Pseudomonas acidovorans 256–1) from soil or waste water at 30°C (Kurane et al. 1977).

Half-Lives in the Environment:

Soil: degradation t½ = 1.5 d by microorganisms (Pseudomonas acidovorans 256–1) from soil or waste water at 30°C (Kurane et al. 1977).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3095

15.1.3.6 Di-n-butyl phthalate (DBP)

O

O O

O Common Name: Dibutyl phthalate Synonym: n-butyl phthalate, di-n-butyl phthalate, DBP, dibutyl o-phthalate, o-benzenedicarboxylic acid dibutyl ester, benzene-o-dicarboxylic acid dibutyl ester Chemical Name: phthalic acid dibutyl ester, di-n-butyl phthalate CAS Registry No: 84-74-2

Molecular Formula:C16H22O4, o-C6H4(COOC4H9)2 Molecular Weight: 278.344 Melting Point (°C): –35.0 (Fishbein & Albro 1972; Verschueren 1977, 1983; Dean 1985; Howard 1989; Lide 2003) Boiling Point (°C): 340.0 (Stull 1947; Fishbein & Albro 1972; Weast 1982–83; Verschueren 1983; Dean 1985; Lide 2003) Density (g/cm3 at 20°C): 1.0465 (21°C, Fishbein & Albro 1972) 1.047 (Weast 1982–83) Molar Volume (cm3/mol): 267.1 (calculated-density, Stephenson & Malanowski 1987) 347.2 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 93.3 (Small et al. 1948) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K) F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated): 11.08 (Deno & Berkheimer 1960) 4500 (Patty 1967) 4500 (Fishbein & Albro 1972) 10.0 (30°C, from Monsanto Chemical Co. data sheets, Peakall 1975) 13.0 (Wolfe et al. 1979; Wolfe et al. 1980a) 10.8, 11.1, 10.5 (20°C: quoted average, elution chromatography, UV, Schwarz & Miller 1980) 11.4, 11.5, 11.2 (30°C: quoted average, elution chromatography, UV, Schwarz & Miller 1980) 13 ± 1.6, 4.45 (shake flask-GC, quoted, Wolfe et al. 1980b; quoted, Staples et al. 1997) 3.25 (solubility in 35 liter instant ocean, Giam et al. 1980) 10.1 (20°C, shake flask-UV, Leyder & Boulanger 1983) 400, 4500 (Verschueren 1983) 28.0 (26°C, Verschueren 1983) 11.2 ± 0.3 (shake flask-HPLC/UV, Howard et al. 1985) 100 (Dean 1985) 11.2 (Howard et al. 1985) 9.40 (best estimate by turbidity inflection, DeFoe et al. 1990) 8.70, 9.40 (centrifugation-HPLC/UV, turbidity inflection-HPLC/UV, DeFoe et al. 1990) 11.2 (recommended, Staples et al. 1997) 9.90 (calculated-QSPR, Cousin & Mackay 2000) 13.3, 14.6, 5.50 (10, 25, 35°C, shake flask-surface tension measurement, Thomsen et al. 2001). Additional data at other temperatures designated * are compiled at the end of this section

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3096 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated *, are compiled at the end of this section): 13.33* (89°C, ebulliometry, measured range 89–176°C, Gardner & Brewer 1937) 0.00233 (20°C, extrapolated, tensimeter, measured range 52–97°C, Hickman et al. 1937) log (P/µmHg) = 14.215 – 4680/(T/K); temp range 52–97°C (Hickman et al. 1937) 0.0171* (20°C, extrapolated, effusion, measured range 40–95°C, Verhoek & Marshall 1939) log (P/µmHg) = 15.589 – 5122/(T/K); temp range 40–95°C (Verhoek & Marshall 1939) 0.00253* (ebulliometry, extrapolated from graph, measured range 50–172°C, Burrows 1946) 0.0217* (extrapolated-regression of tabulated data, temp range 148.2–340°C, Stull 1947) 0.00345, 0.0043 (effusion method, extrapolated-Antoine eq., Small et al. 1948) log (P/mmHg) = 11.75 – 4871/(T/K); temp range ~ 32–75°C or pressure range 5 × 10–2 to 10–4 mmHg (Antoine eq., effusion method, Small et al. 1948) log (P/mmHg) = 11.86 – 4875/(T/K); temp range ~ 40–95°C or pressure range 5 × 10–2 to 10–4 mmHg (redistilled technical grade, Antoine eq., effusion method, Small et al. 1948) 0.00276 (extrapolated-combined vapor pressure eq., Small et al. 1948) log (P/mmHg) = 7.065 – 1666/(T/K) – 547700/(T/K)2; temp range ~ 35–352°C (combined vapor pressure eq. derived from effusion measurement results and other published data, Small et al. 1948) 0.0033 (20°C, extrapolated, tensimeter, measured range 55–102°C, Perry & Weber 1949) log (P/µmHg) = 13.58 – 4450/(T/K); temp range 55–102°C (pendulum-tensimeter method, Perry & Weber 1949) 0.00364* (effusion method, measured range 19.9–44°C, Birks & Bradley 1949) 7.6 × 10–5 (dew-point method and tensimeter method, temp range of 72–185°C, extrapolated-Antoine eq., Werner 1952) log (P/µmHg) = 11.008 – 2872/(176.5 + t/°C); temp range 72–185°C (Antoine eq., dew-point method and tensimeter method, Werner 1952) 32* (125.7°C, vapor-liquid equilibrium data, measured range 125.7–202.5°C, Hammer & Lydersen 1957) log (P/kPa) = 6.439 – 1011/(T/K) – 720000/(T/K)2; temp range 125.7–202.5°C, Hammer & Lydersen 1957) 1.53* (86.5°C, transpiration method, measured range 86.5–144°C, Franck 1969) log (P/mmHg) = [–0.2185 × 17747.0/(T/K)] + 9.217428; temp range: 148.2–340°C, (Antoine eq., Weast 1972–73) 3.87 × 10–4 (6.55°C, submicron droplet evaporation, measured range 6.55–12.55°C, Ray et al. 1979) log (P/mmHg) = 12.217 – 4993/(T/K); temp range 6.55–12.55°C (submicron droplet evaporation, Ray et al. 1979) 0.00206* (20°C, transpiration-GC “collection” measurement, Hales et al. 1981) ln (P/Pa) = 27.5178 – 8739.43/(T/K) – 330691/(T/K)2; temp range 293–373 K (empirical vapor pressure eq., from transpiration-GC measurement, Hales et al. 1981) 0.0023* (20°C, vapor pressure balance, temp range 10–50°C, OECD 1981) 0.00277 (20°C, evaporation rate-gravimetric method, Gückel et al. 1982) 0.00133 (gas saturation, Jaber et al.1982) 0.40, 0.0653, 1.0 (structure-based estimation methods, Tucker et al. 1983) 1.55 × 10–4 (extrapolated-Antoine eq., Boublik et al. 1984) log (P/kPa) = 576561 – 1744.128/(188.880 + t/°C), temp range 125.8–202.5°C (Antoine eq. derived from exptl. data of Hammer & Lydersen 1957, Boublik et al. 1984) 0.00230 (OECD 1981 Guidelines, Dobbs et al. 1984) 0.0011 (saturated column-HPLC/UV, Howard et al. 1985) 0.00355 (extrapolated, Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 6.8788 – 2538.4/(–92.25 + T/K); temp range 314–469 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 7.97157 – 3385.9/(–37.18 + T/K); temp range 468–605 K (Antoine eq.-II, Stephenson & Malanowski 1987) 0.0244 (calculated-solvatochromic parameters, Banerjee et al. 1990) 0.0056 (GC-RT correlation, Hinckley et al. 1990) log (P/mmHg) = 6.63980 – 1744.20/(113.69 + t/°C), temp range 126–202°C (Antoine eq., 1992) log (P/mmHg) = 152.675 – 1.0754 × 104/(T/K) – 51.17·log(T/K) + 1.6933 × 10–2·(T/K) + 2.4948 × 10–14·(T/K)2; temp range 238–781 K (vapor pressure eq., Yaws et al. 1994)

0.0027 (liquid PL, GC-RT correlation, Donovan 1996)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3097

0.0036 (recommended, Staples et al. 1997) 0.0473 (calculated-QSPR, Cousins & Mackay 2000)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.1320 (calculated-P/C, Wolfe et al. 1980a) 0.0466 (Lyman et al. 1982; quoted, Howard 1989) 0.0284 (calculated-P/C, Mabey et al. 1982) 0.1835 (Atlas et al. 1983) 0.456, 0.446 (calculated-P/C, calculated-group contribution, Tucker et al. 1983) 0.0297 (quoted from WERL Treatability Data, Ryan et al. 1988) 0.0895 (selected, Staples et al. 1997) 0.133 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Water Partition Coefficient, log KOW: 5.20 (calculated as per Leo et al. 1971, Callahan et al. 1979) 5.15 (RP-HPLC-RT correlation, Veith et al. 1979) 4.13 (HPLC-RT correlation;, McDuffie 1981) 4.11, range 3.23–4.45 (shake flask-concn ratio, OECD 1981) 4.08 (shake flask average, OECD/EEC lab. comparison tests, Harnish et al. 1983) 4.39, 4.56 (HPLC-extrapolated, Harnish et al. 1983) 4.57 (20°C, shake flask-UV, Leyder & Boulanger 1983) 4.79, 3.74 (shake flask-HPLC/UV, HPLC-RT, Howard et al. 1985) 4.11 (OECD value, Howard et al. 1985) 4.72 (shake flask, Hansch & Leo 1985; 1987) 4.57 (HPLC-k′ correlation, Eadsforth 1986) 4.30 (HPLC-RT correlation, Haky & Leja 1986) 4.72 (measured value, DeFoe et al. 1990) 4.72 (recommended, Sangster 1993) 4.72 (recommended, Hansch et al. 1993) 4.01 (shake flask-dialysis tubing-HPLC/UV, both phases, Andersson & Schrăder 1999)

Octanol/Air Partition Coefficient, log KOA: 8.54 (calculated-QSPR, Cousins & Mackay 2000)

Bioconcentration Factor, log BCF: 3.15 (fish, Mayer & Sanders 1973) 3.82, 3.70, 3.83, 3.28, 3.70, 3.43 (midge larvae, waterflea, scud, mayfly, grass shrimp, damselfly, Sanders et al. 1973) 3.83 (fish, Sanders et al. 1973) 1.32 (calculated, Kenaga 1980)

3.90 (bacteria, calculated-KOW, Wolfe et al. 1980a) 1.32–1.62, 0.46–1.49, 1.07 (oyster, shrimp, fish, Wofford et al. 1981) 1.50, 1.22, 1.07 (American oyster, brown shrimp, sheephead minnow, Wofford et al. 1981)

4.67 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 4.36 (Selenastrum capricornutum, Casserly et al. 1983) 1.32 (oyster, quoted from Wofford et al. 1981, Zaroogian et al. 1985) 3.68, 3.68 (oyster, estimated values, Zaroogian et al. 1985) 1.08 (fish, highest BCF, Matthiessen et al. 1992)

Sorption Partition Coefficient, log KOC: 2.20 (soil, estimated-S, Kenaga 1980) 3.81 (soil, estimated-S, Wolfe et al. 1980a) 2.17 (marine sediment/seawater with 1% organic carbon, Bouwer et al. 1981) 1.60, 1.30, 0.602 (between montmorillonite, kaolinite, calcium montmorillonite and seawater at concn. of 3–4 ppm, Sullivan et al. 1981)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3098 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

0.301, 0.602, 1.556 (between montmorillonite, kaolinite, calcium montmorillonite and seawater at concn. of 20 ppb, Sullivan et al. 1981)

5.23 (sediment-water, calculated-KOW, Mabey et al. 1982). 4.17 (sediment/soil, Sullivan et al. 1982; selected, Staples et al. 1997)

4.54 (sediment, calculated-KOW, Pavlou & Weston 1983,84) 3.14 (Broome County soil in New York, shake flask-GC, Russell & McDuffie 1986)

4.37 (calculated-KOW, Kollig 1993) 3.14 (quoted or calculated-QSAR MCI 1χ, Sabljic et al. 1995)

3.09, 5.20 (suspended solids, calculated-Kd assuming a 0.10 organic carbon fraction, Staples et al. 1997) 3.14; 3.76, 2.46, 2.86, 3.09, 3.12, 3.11 (quoted lit.; values obtained from HPLC-k′ correlation on different stationary phases, Szabo et al. 1999)

Environmental Fate Rate Constant, k, and Half-Lives, t½:

Volatilization: t½ = 28 d from a stirred seawater solution 1.0 m deep (Atlas et al. 1982; quoted, Howard 1989) evaporation rate k = 3.42 × 10–10 mol cm–2 h–1 at 20°C (Gückel et al. 1982);

t½ ~ 47 d in a river of 1.0 m deep with 1 m/s current and a 3 m/s wind using Henry’s law constant while the rate of volatilization being controlled by the diffusion through air (Lyman et al. 1982; quoted, Howard 1989). Photolysis: direct photolysis (near surface) rate constant k ~ 2 × 10–4 h–1 in natural water (Wolfe et al. 1980a) –1 aqueous photolysis rate k = 0.23 h and t½ = 3 h (Jin et al. 1999, quoted, Peterson & Staples 2003) –1 Indirect photolysis k = 0.29 d with t½ = 2.4 d in air (Peterson & Staples 2003). Oxidation: k = 18 M s–1, the free radical oxidation rate constant (EXAMS model, Wolfe et al. 1980a)

photooxidation t½ = 2.4–12.2 yr in water, based on estimated rate data for the reaction with alkyloxyl radical in aqueous solution (Wolfe et al. 1980a; quoted, Howard et al. 1991) k << 360 M–1 h–1 for singlet oxygen and k = 1.4 M–1 h–1 for peroxy radical (Mabey et al. 1982)

photooxidation t½ = 18.4 h with reaction with OH radical (Howard 1989) photooxidation t½ = 7.4–74 h in air, based on estimated rate data for the vapor phase reaction with hydroxyl radical in air (Howard et al. 1991)

Atmospheric photooxidation t½ = 0.6–6.0 d from Atkinson 1988 atmospheric-oxidation program (estimated, Staples et al. 1997). –12 3 –1 –1 kOH = 9.277 × 10 cm molecule s and t½ = 0.89 d based on a global, seasonal and diurnal average OH radical concn of 1 × 106 molecule cm–3 in air (Peterson & Staples 2003) Hydrolysis: k(second-order alkaline) = 2.2 × 10–2 M–1 s–1 for pH 10–12 at 30°C, with calculated half-life of 10 yr at pH 7 (calculated as per Radding et al. 1977, Callahan et al. 1979) k(acid catalyzed) = 0.04 M–1 h–1, k(second order alkaline) = 38 M–1 h–1 in an aquatic environment (Wolfe et al. 1980a) –2 –1 –1 k(second-order alkaline) = (1.0 ± 0.05) × 10 M s at pH 7 and 30°C, with first-order hydrolysis t½ =10yr (Wolfe et al. 1980b; quoted, Kollig 1993);

t½ = 76 d at pH 9 and t½ = 10 yr at neutral pH (estimated, Howard 1989) t½ = 10 yr, based on the overall hydrolysis rate constant (Howard et al. 1991) aqueous abiotic t½ = 22 yr (selected, Staples et al. 1997) t½ = 3700 d at pH 7, t½ = 76 d at pH 12 in natural waters (Capel & Larson 1995) Biodegradation:

t½ = 3 d by microorganisms isolated from soil or waste water at 30°C (Kurane et al. 1977) DBP was rapidly degraded, 3% left after 5 d, but under anaerobic conditions required 30 d for the degradation freshwater hydrosoil, under aerobic conditions (Johnson et al. 1979, quoted, Russell et al 1985) a 90% loss in 3 d from river water (Brinkman et al. 1979, quoted, Russell et al. 1985) k = (13.26 ± 0.73) × 102 min–1 (reversed phase-GC-RT correlation, Urushigawa & Yonezawa 1979; quoted, O’Grady et al. 1985) k = 2.9 × 10–8 mL organism–1 h–1 (Wolfe et al. 1980a); k > 0.5 d–1, significant degradation with rapid adaptation within 7 d in an aerobic environment (Tabak et al. 1981; quoted, Mills et al. 1982); k = 7.4 × 10–7 mL cell–1 d–1 (river die-away test, Scow 1982);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3099

32–85% degraded after 2–3 wk in municipal digested sludge (Horowitz et al. 1982) decomposed within 80 d under both aerobic and anaerobic conditions when approximately 90% added to soils (Inman et al. 1984) k = (0.1–7.6) × 10–4 h–1 to (4.9–36.5) × 10–4 h–1 for water and water/sediment systems (under sterile condi- tions); and k = (29.3–409) × 10–4 h–1 to (38.2–456) × 10–4 h–1 for water and water/sediment systems (under

active conditions) samples from six estuarine and freshwater sites, actual t½ = 1.0–4.8 d for active sediment treatment, t½ = 1.7–13.0 d for active water treatment and t½ = 8–23 d for sterile sediment (Walker et al. 1984) –1 k = 0.050 d and a t½ = 15.4 d in a shake flask biodegradation experiment (Sugatt et al. 1984) > 90% of DBP was degraded within 40 d in digested sludge (Shelton et al. 1984) > 90% biodegraded in less than 24 h in activated sludge systems (O’Grady et al. 1985) 81% loss in Broome County soils after 24 h and 70% loss in leachate sprayed soil after 24 h in soil-water biodegradation studies (Russell et al. 1985); –3 –1 k = 10.6 × 10 h and t½ = 65 h, anaerobic digestion of sludge (Ziogou et al. 1989); t½ < 5 d, aerobic conditions, t½ = 20 d under anaerobic conditions in a garden soil (Shanker et al. 1985) t½ = 24–552 h, aqueous aerobic based on unacclimated aerobic river die-away test and soil grab sample data (Howard et al. 1991);

t½ = 48–552 h, aqueous anaerobic, based on unacclimated anaerobic grab sample data for soil and sediment (Johnson & Lulves 1975; Verschueren 1983; Howard et al. 1991)

t½(aerobic) = 1 d, t½(anaerobic) = 2 d in natural waters (Capel & Larson 1995) –1 k = 0.0216 h with t½ = 32.1 h for microbial degradation by anaerobic sludge (Wang et al. 2000) –1 aerobic biodegradation in aquatic environments, first order k = 0.8 d with t½ = 0.87 d in river water, k = 0.51 –1 –1 d with t½ = 1.56 d in estuarine and river water, k = 0.29 d with t½ = 2.40 d in sediment microcosm, –1 –1 k = 0.22 d with t½ = 3.15 d in MITI inoculum, k = 0.14 d with t½ = 4.95 d in river water, low sediment, –1 and k = 0.98 d with t½ = 0.71 d river water only (Peterson & Staples 2003) –1 biodegradation in aerobic soil, pseudo-first-order k = 1.61 d with t½ = 0.43 d in agitated aqueous suspension, –1 –1 k = 0.39 d with t½ = 1.8 d at 30°C garden soil; k = 0.103 d with t½ = 6.7 d in soil with 2% OC; –1 –1 k = 0.044 d with t½ = 11.2 d in soil with 3.3% OC and k = 0.62 d with t½ = 15.8 d in soil with 1.6% –1 OC. For anaerobic degradation, first order rate k = 0.26–0.581 d with t½ = 1.19–2.7 d in undiluted –1 digester sludge, k = 0.025–0.073 d with t½ = 27.7–9.5 d in 10% diluted sludge, batch incubation; –1 –1 k = 0.076 d with t½ = 9 1 d in 10% freshwater sediment and k = 0.051 d with t½ = 13 6 d in 10% salt marsh sediment (Peterson & Staples 2003) Biotransformation: k = (1.9–4.4) × 10–8 mL cell–1 h–1 for bacterial transformation in water (Steen et al. 1979; quoted, Mabey et al. 1982; Steen 1991); k = 2.9 × 10–8 mL cell–1 h–1 for bacterial transformation in water (Wolfe et al. 1980a).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or half-Lives: t½ = 3 d in Daphnia magna (Mayer & Sanders 1973). –1 k2 = 0.237 d (10°C, 0.1 kg staghorn sculpin, lipid content 5%, Gobas et al. 2003) –1 k2 = 0.0114 d (10°C, 3 kg dogfish, lipid content 15%, Gobas et al. 2003)

Half-Lives in the Environment:

Air: t½ ~ 18 h for the vapor phase reaction with hydroxyl radicals in air (Howard 1989); t½ = 7.4–74 h, based on estimated rate data for the vapor phase reaction with hydroxyl radical in air (Howard et al. 1991); atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 6 Photodegradation t½ = 0.89 d based on a global, seasonal and diurnal average OH radical concn of 1 × 10 –3 molecule cm in air and indirect photolysis t½ = 2.4 d (Peterson & Staples 2003) Surface water: biodegradation t½ = 15.4 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984) t½ = 2–12 d in water alone (Howard 1989); t½ = 24–336 h, based on unacclimated aerobic river die-away test and fresh water/sediment grab sample data (Howard et al. 1991)

Biodegradation t½(aerobic) = 1 d, t½(anaerobic) = 2 d; hydrolysis t½ = 3700 d at pH 7 and t½ = 76 d at pH 12 in natural waters (Capel & Larson 1995)

biodegradation t½ = 0.87–5.78 d in aerobic aquatic environments (Peterson & Staples 2003)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3100 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Ground water: t½ = 48–552 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Sediment: 97% degradation in 5 d in an aerobic pond water-sediment mixture; t½ = 7–30 d under anaerobic conditions, t½ = 1–5 d in sediment-water systems of estuarine and freshwater sites (Howard 1989). Soil: degradation t½ = 3 d by microorganisms isolated from soil or waste water at 30°C (Kurane et al. 1977) degradation t½ = 11 to 53 d as affected by soil type, pH, temperature, aeration status and sterilization (Inman et al. 1984);

biodegradation t½(aerobic) < 5 d and t½(anaerobic) ~ 20 d in a garden soil (Shanker et al. 1985); t½ = 10–50 d via volatilization subject to plant uptake from soil (Ryan et al. 1988); overall t½ = 48–552 h, based on unacclimated aerobic soil grab sample data (Howard et al. 1991) Aerobic biodegradation in soil, t½ ranging from 0.43 to 19.8 d in aqueous suspension, garden soil and soils with different organic carbon contents (Peterson & Staples 2003)

Biota: elimination t½ = 3 d for waterfleas Daphnia magna (Mayer & Sanders 1973).

Di-n -butyl phthalate: solubility vs. 1/T -13.5

-14.0

x nl x -14.5

-15.0 Thomsen et al. 2001 (see text for data) Schwarz & Miller 1980 Leyder & Boulanger 1983 Howard et al. 1985 DeFoe et al. 1990 -15.5 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 1/(T/K) FIGURE 15.1.3.6.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for di-n-butyl phthalate.

TABLE 15.1.3.6.1 Reported vapor pressures of di-n-butyl phthalate at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4) log P = A – B/(T/K) – C/(T/K)2 (5) ln P = A – B/(T/K) – C/(T/K)2 (5a) 1.

Gardner & Brewer 1937 Verhoek & Marshall 1939 Burrows 1946 Stull 1947

ebulliometry static and dynamic methods ebulliometry summary of literature data

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 89.0 13.33 40 0.0223 50 0.0667 148.2 133.3 98.8 53.33 55 0.137 82 1.333 182.1 666.6 106.1 79.99 55 0.109 120 26.66 198.2 1333

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3101

TABLE 15.1.3.6.1 (Continued)

Gardner & Brewer 1937 Verhoek & Marshall 1939 Burrows 1946 Stull 1947

ebulliometry static and dynamic methods ebulliometry summary of literature data

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 111.3 106.7 59.7 0.237 147 133.3 216.2 2666 122.5 120.0 64.7 0.393 172 533.3 235.8 5333 132.0 133.3 65.0 0.409 25 0.00253* 247.8 7999 134.5 120.0 69.7 0.612 *extrapolated 263.7 13332 137.2 133.32 70.0 0.601 287.0 26664 138.0 133.32 74.6 0.981 313.5 53329 141.0 146.7 75.0 1.076 340.0 101325 141.2 146.7 75.0 0.904 144.8 160.0 85.0 2.880 mp/°C – 145.4 146.7 85.0 2.520 147.5 173.3 85.0 2.520 148.0 160.0 95.0 6.040 149.5 173.3 150.0 186.7 151.0 173.3 eq. 1 P/microns 153.5 200.0 A 15.589 162.9 280.0 B 5122 164.4 293.3 ∆ 167.2 373.3 HV = 98.07 kJ/mol 168.0 373.3 168.6 386.6 171.8 426.6 176.3 546.6

bp/°C 340.7 2.

Small et al. 1948 Birks & Bradley 1949 Hammer & Lydersen 1957 Franck 1969

effusion effusion vapor-liquid equilibrium transpiration method

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa

exptl data presented in graph 19.9 0.001907 125.7 32.0 86.5 1.53 23.0 0.002733 131.55 49.06 86.5 1.63 eq. 2 P/mmHg 25.0 0.003640 139.21 73.86 86.5 1.76 A 11.75 30.0 0.006666 147.02 120 105.5 9.42 B 4871 35 0.01180 156.70 205 105.6 9.88 measured pressure range: 40 0.02106 158.89 228 105.5 10.5 0.05 to 0.001 mmHg 43 0.02933 162.12 277 125.5 37.8 ∆ HV = 93.30 kJ/mol 43.5 0.02959 172.76 480 125.5 36.9 44 0.03346 180.18 671 125.5 34.9 for redistilled tech. grade 180.36 667 144.5 136.0 eq. 2 P/mmHg eq. 2 P/mmHg 186.87 921 144.5 109.0 A 11.86 A 195.88 1353 144.5 103.0 B 4875 B 202.05 1739 ∆ HV = 93.30 kJ/mol C (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3102 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 15.1.3.6.1 (Continued)

Small et al. 1947 Birks & Bradley 1949 Hammer & Lydersen 1957 Franck 1969

effusion effusion vapor-liquid equilibrium transpiration method

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa eq. 5 P/kPa OECD 1981 A 6.439 vapor pressure balance Werner 1952 B 1011 t/°C P/Pa dew-point/tensimeter method C 720000 10 6.5 × 10–4 t/°C P/Pa 20 2.3 × 10–3 In Boublik et al. 1984 30 7.8 × 10–3 exptl data presented in graph A 5.76561 40 2.4 × 10–2 B 1744.128 50 7.0 × 10–2 eq. 2 P/mmHg C 113.731 A 11.008 bp/°C 188.880 B 2872 C 176.5 temp range: 70–170°C 3.

Hales et al. 1981

transpiration-GC analysis

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa collection continued continued overall best fit equation: 39.89 0.02398 80.02 1.162 19.90 2.064 × 10–3 eq. 5a P/Pa 39.92 0.02333 79.95 1.089 20.0 2.065 × 10–3 A 21.5178 39.92 0.02273 99.93 5.335 30.1 7.252 × 10–3 B 8739.43 39.92 0.02321 100.2 5.648 30.15 7.428 × 10–3 C 330691 60.18 0.1917 99.94 5.833 40.7 0.02461 60.03 0.1734 for small saturator 60.01 0.1826 60.06 0.1858 19.85 0.002224 79.96 1.130 60.06 0.1779 19.90 0.002160 79.92 1.112 60.16 0.1842 30.11 0.007276 100.09 5.798 79.98 1.104 30.13 0.007481 79.96 1.099 60.27 0.1996

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3103

Di-n -butyl phthalate: vapor pressure vs. 1/T 6.0 Gardner & Brewer 1937 experimental data 5.0 Stull 1947 Small et al. 1948 (~32-75 °C) Small et al. 1948 (extrapolated) 4.0 Gückel et al. 1982 Howard et al. 1985 3.0 )aP/ 2.0 S P(gol 1.0

0.0

-1.0

-2.0 b.p. = 340 °C -3.0 0.0014 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 15.1.3.6.2 Logarithm of vapor pressure versus reciprocal temperature for di-n-butyl phthalate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3104 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.3.7 Di-isobutyl phthalate (DIBP)

O

O O

O Common Name: Di-isobutyl phthalate Synonym: DIBP Chemical Name: phthalic acid diisobutyl ester, bis(2-methylpropyl)ester, 1,2-benzenedicarboxylic acid CAS Registry No: 84-69-5

Molecular Formula: C16H22O4 Molecular Weight: 278.344 Melting Point (°C): –58 (Staples et al. 1997) Boiling Point (°C): 296.5 (Lide 2003) Density (g/cm3 at 20°C): 1.040 (Fishbein & Albro 1972) 1.049 (15°C, Weast 1982–83) Molar Volume (cm3/mol): 347.2 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0 Water Solubility (g/m3 or mg/L at 25°C): 100 (Fishbein & Albro 1972) 6.20 (shake flask-nephelometry, Hollifield 1979) 20.3 (Leyder & Boulanger 1983) 20.0; 5.1, 9.6 (recommended; calculated-QSAR, Staples et al. 1997) 21.6 (calculated-UNIFAC, Thomsen et al. 1999) 9.90 (calculated-QSPR, Cousins & Mackay 2000)

Vapor Pressure (Pa at 25°C): 2.4 × 10–4, 0.0773 (calculated-QSAR, Staples et al. 1997) 0.00473 (calculated-QSPR, Cousins & Mackay 2000)

Henry’s Law Constant (Pa m3/mol at 25°C): 0.0185 (recommended, Staples et al. 1997) 0.133 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Water Partition Coefficient, log KOW: 4.11 (shake flask, Leyder & Boulanger 1983) 4.43 (calculated-QSAR, Matthiessen et al. 1992) 4.11 (quoted and recommended, Sangster 1993) 4.11 (recommended, Hansch et al. 1995) 4.11; 4.31, 4.46 (recommended; calculated-QSAR, Staples et al. 1997) 4.46 (calculated-UNIFAC, Thomsen et al. 1999) 4.27 (calculated-QSPR, Cousins & Mackay 2000)

Bioconcentration Factor, log BCF: 3.10 (calculated-QSAR, fish, Matthiessen et al. 1992)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3105

Sorption Partition Coefficient, log KOC: 3.14 (calculated-QSAR MCI 1χ, Sabljic et al. 1995) 3.01 (suspended solids, Staples et al. 1997)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: atmospheric photooxidation t½ = 0.6–6.0 d (calculated, Staples et al. 1997) –12 3 –1 –1 kOH = 9.280 × 10 cm molecule s and t½ = 0.89 d based on a global, seasonal and diurnal average OH radical concn of 1 × 106 molecule cm–3 in air (Peterson & Staples 2003). Hydrolysis: k(second-order alkaline) = (1.4 – 0.2) × 10–3 M–1 s–1 at 30°C in water (Wolfe et al. 1980b)

Biodegradation: degradation t½ = 3.0 d by microorganisms (Pseudomonas acidovorans 256–1) from soil or waste water at 30°C (Kurane et al. 1977). –1 Aerobic biodegradation in aquatic environments, first order k = 0.8 d with t½ = 0.87 d in river water (Peterson & Staples 2003) Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: –1 k2 = 0.134 d (10°C, 0.1 kg staghorn sculpin, lipid content 5%, Gobas et al. 2003) –1 k2 = 0.0114 d (10°C, 3 kg dogfish, lipid content 15%, Gobas et al. 2003) Half-Lives in the Environment: Air: atmospheric photooxidation half-life of 0.6–6.0 d (calculated, Staples et al. 1997). 6 photodegradation t½ = 0.89 d based on a global, seasonal and diurnal average OH radical concn of 1 × 10 molecule cm–3 in air (Peterson & Staples 2003)

Surface water: biodegradation t½ = 0.87 d in river water (Peterson & Staples 2003) Groundwater: Sediment:

Soil: degradation t½ = 3.0 d by microorganisms (Pseudomonas acidovorans 256–1) from soil or waste water at 30°C (Kurane et al. 1977). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3106 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.3.8 Dipentyl phthalate (DPP)

O

O O

O Common Name: Dipentyl phthalate Synonym: DPeP, di-n-amyl phthalate Chemical Name: dipentyl phthalate, phthalic acid diphenyl ester, 1,2-benzenedicarboxylic acid diphenyl ester CAS Registry No: 131-18-0

Molecular Formula: C18H26O4 Molecular Weight: 306.397 Melting Point (°C): < –54.5 (Stephenson & Malanowski 1987) Boiling Point (°C): 342 (Stephenson & Malanowski 1987) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): 299.8 (16°C, Stephenson & Malanowski 1987) 391.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 99.16 (Small et al. 1948) ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 0.082 (shake flask-nephelometry, Hollifield 1979) 0.1–0.8 (shake flask-GC, Leyder & Boulanger 1983) 0.522, 1.69 (quoted, calculated-UNIFAC, Thomsen et al. 1999) 1.30 calculated-QSPR, Cousins & Mackay 2000)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 5.68 × 10–4 (effusion method, extrapolated-Antoine eq., Small et al. 1948) log (P/mmHg) = 12.04 – 5191/(T/K); temp range 55–102°C or pressure range 5 × 10–2 to 10–4 mmHg (Antoine eq., effusion, data presented in graph, Small et al. 1948) (See figure at the end of this section.) 0.0014 (20°C, extrapolated, tensimeter, measured range 63–111°C, Perry & Weber 1949) log (P/µmHg) = 13.57 – 4560/(T/K); temp range 63–111°C (pendulum-tensimeter method, Perry & Weber 1949) 5.68 × 10–4 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 11.165 – 5191/(T/K); temp range 303–500 K (Antoine eq., liquid, Stephenson & Malanowski 1987) 0.00128 (calculated-QSPR, Cousins & Mackay 2000)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.302 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Water Partition Coefficient, log KOW: 4.85 (shake flask, Leyder & Boulanger 1983; quoted, Sangster 1993, Hansch et al. 1995) 5.33 (calculated-UNIFAC, Thomsen et al. 1999) 5.12, 5.62 (calculated-QSPR, quoted lit., Cousins & Mackay 2000)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3107

Octanol/Air Partition Coefficient, log KOA: 9.03 (calculated-QSPR, Cousins & Mackay 2000)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Oxidation: Hydrolysis:

Biodegradation: degradation t½ = 9.0 d by microorganisms (Pseudomonas acidovorans 256–1) from soil or waste water at 30°C (Kurane et al. 1977); rate constant k = (9.12 ± 1.51) × 10–2 min–1 was estimated from the retention time in reverse phase chromatography (Urushigawa & Yonezawa 1979). –1 aerobic biodegradation in aquatic environments, first order k = 1.3 d with t½ = 5.3 d in river water (Peterson & Staples 2003) Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air:

Surface water: biodegradation t½ = 5.3 d in aerobic aquatic environments (Peterson & Staples 2003) Groundwater: Sediment:

Soil: degradation t½ = 9.0 d by microorganisms (Pseudomonas acidovorans 256–1) from soil or waste water at 30°C (Kurane et al. 1977). Biota:

Dipentyl phthalate: vapor pressure vs. 1/T 4.0 Small et al. 1948 (55 to 102 °C, see text for equation) 3.0

2.0

1.0 )aP/

S 0.0 P(gol

-1.0

-2.0

-3.0 b.p. = 342 °C -4.0 0.0014 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 15.1.3.8.1 Logarithm of vapor pressure versus reciprocal temperature for dipentyl phthalate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3108 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.3.9 Di-n-hexyl phthalate (DHP)

O

O O

O Common Name: Di-n-hexyl phthalate Synonym: DHP, DnH(6)P Chemical Name: Di-n-hexyl phthalate, dihexyl ester, 1,2-benzenedicarboxylic acid CAS Registry No: 84-75-3, 68515-50-4

Molecular Formula: C20H30O4, C6H4[COOCH2(CH2)4CH3]2 Molecular Weight: 334.450 Melting Point (°C): –27.4 (Staples et al. 1997) Boiling Point (°C): Density (g/cm3 at 20°C): 0.990 (Fishbein & Abro 1972) Molar Volume (cm3/mol): 227.8 (20°C, calculated-density) 436.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 102.9 (Small et al. 1948) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated): insoluble (Fishbein & Abro 1972) 0.24 (shake flask-HPLC/UV, Howard et al. 1985) 0.05; 0.19, 0.049 (recommended; calculated-QSAR, Staples et al. 1997) 0.046 (shake flask-GC, Ellington 1999) 0.47 (calculated-UNIFAC method, Thomsen et al. 1999) 0.159 (calculated-QSPR, Cousins & Mackay 2000) 0.94, 0.52, 0.38 (10, 25, 35°C, shake flask-surface tension measurement, Thomsen et al. 2001) (See figure at the end of this section.) 0.070 (20°C, shake flask-GC/MS, Letinski et al. 2002)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): log (P/mmHg) = 11.98 – 5381/(T/K); temp range 72–112°C or pressure range 5 × 10–2 to 10–4 mmHg (Antoine eq., effusion method, data presented in graph, Small et al. 1948) (See figure at the end of this section.) 667 (at 210°C, Fishbein & Abro 1972) 1.03 × 10–3 (Antoine eq., interpolated-Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = –1.01167 – 1483.636/(T/K); temp range 288–303 K (Antoine eq.-I, Stephenson & Malanowski 1987)

log (PL/kPa) = 11.105 – 5382/(T/K); temp range 343–387 K (Antoine eq.-II, liquid, Stephenson & Malanowski 1987)

log (PL/kPa) = –9.785 – 4805/(T/K); temp range 453–533 K (Antoine eq.-III for liquid, Stephenson & Malanowski 1987) 1.90 × 10–3 (gas saturation-GC, Howard et al. 1985) 0.267 (quoted, Giam et al. 1994) 0.67; 2.53 × 10–6, 1.6 × 10–3 (recommended; calculated-QSAR, Staples et al. 1997) 0.000345 (calculated-QSPR, Cousins & Mackay 2000)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3109

Henry’s Law Constant (Pa·m3/mol at 25°C): 4.46 (recommended, Staples et al. 1997) 0.726 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Water Partition Coefficient, log KOW: 5.65–5.91 (HPLC-RT correlation, Howard et al. 1985) 5.80 (quoted value of Howard et al. 1985, Sangster 1993) 5.80 (Hansch et al. 1995) 6.30; 6.57, 6.67 (recommended; calculated-QSAR, Staples et al. 1997) 6.20 (calculated-UNFAC, Thomsen et al. 1999) 6.00 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Air Partition Coefficient, log KOA: 9.53 (calculated-QSPR, Cousins & Mackay 2000)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 4.72 (soil/sediment, Staples et al. 1997)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: atmospheric photooxidation t½ = 0.4–4.0 d (calculated, Staples et al. 1997). –12 3 –1 –1 kOH = 14.929 × 10 cm molecule s and t½ = 0.55 d based on a global, seasonal and diurnal average OH radical concn of 1 × 106 molecule cm–3 in air (Peterson & Staples 2003) Hydrolysis: Biodegradation: rate constant k = (6.86 ± 0.23) × 10–2 min–1 was estimated from the retention time in reverse phase chromatography (Urushigawa & Yonezawa 1979); –1 primary biodegradation rate constant k = 0.241 d and t½ = 2.93 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: atmospheric photooxidation t½ = 0.4–4.0 d (calculated, Staples et al. 1997). 6 Photodegradation t½ = 0.55 d based on a global, seasonal and diurnal average OH radical concn of 1 × 10 molecule cm–3 in air (Peterson & Staples 2003) –1 Surface water: primary biodegradation rate constant k = 0.241 d and t½ = 2.93 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3110 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Dihexyl phthalate: solubility vs. 1/T -16.5

-17.0

-17.5

-18.0

-18.5 ln x

-19.0

-19.5 Thomsen et al. 2001 (see text for data) Howard et al. 1985 -20.0 Ellington 1999 Letinski et al. 2002 -20.5 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 1/(T/K)

FIGURE 15.1.3.9.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for dihexyl phtha- late.

Dihexyl phthalate: vapor pressure vs. 1/T 3.0 Small et al. 1948 (72 to 112 °C, see text for equation) Howard 1985 2.0

1.0

0.0 )aP/

S -1.0 P(gol

-2.0

-3.0

-4.0

-5.0 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 1/(T/K) FIGURE 15.1.3.9.2 Logarithm of vapor pressure versus reciprocal temperature for dihexyl phthalate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3111

15.1.3.10 Butyl-2-ethylhexyl phthalate (BOP)

O

O O

O Common Name: Butyl-2-ethylhexyl phthalate Synonym: BEHP, BOP Chemical Name: Butyl-2-ethylhexyl phthalate CAS Registry No: 85-69-8

Molecular Formula: C20H30O4, (C4H9OOC)C6H4(COOCH2CH(C2H5)(CH2)3CH3) Molecular Weight: 333.450 Melting Point (°C): –37 (Staples et al. 1997) Boiling Point (°C): Density (g/cm3 at 20°C): Molar Volume (cm3/mol): 446.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): < 1.0 (shake flask-HPLC/UV spec., Howard et al. 1985) 0.11; 0.02 (recommended; calculated-QSAR, Staples et al. 1997) 0.075 (calculated-UNIFAC, Thomsen et al. 1999) 0.385 (calculated-QSPR, Cousins & Mackay 2000)

Vapor Pressure (Pa at 25°C): 1.47 × 10–5; 3.2 × 10–3, 0.016 (recommended; calculated-QSAR, Staples et al. 1997) 5.37 × 10–4 (calculated-QSPR, Cousins & Mackay 2000)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.0405 (recommended, Staples et al. 1997) 0.466 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Water Partition Coefficient, log KOW: 5.93 (av. from OECD, Howard et al. 1985) 3.70–7.88 (calculated-HPLC-RT, Howard et al. 1985) 6.28; 6.5 (recommended, calculated-QSAR, Staples et al. 1997) 6.20 (calculated-UNIFAC, Thomsen & Carlsen 1998) 5.64 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Air Partition Coefficient, log KOA: 9.37 (calculated-QSPR, Cousins & Mackay 2000)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 6.30 (suspended solids, Staples et al. 1997)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3112 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: –4 –1 Photolysis: direct photolysis rate kP = 2 × 10 h (EXAMS model, Wolfe et al. 1980a) Oxidation: atmospheric photooxidation t½ = 0.4–4.0 d (calculated, Staples et al. 1997). Hydrolysis: –4 –1 –1 k(second-order alkaline) = (1.1 ± 0.1) × 10 M s for pH 10–12 at 30°C, with t½(calc) = 2000 yr at pH 7 (calculated as per Radding et al. 1977, Callahan et al. 1979) k(acid catalyzed) = 0.04 M–1 h–1, k(second order alkaline) = 0.4 M–1 h–1 in an aquatic environment (Wolfe et al. 1980a) –4 –1 –1 k(second-order alkaline) = (1.1 ± 0.1) × 10 M s at 30°C in water with t½ = 100–2000 yr (Wolfe et al. 1980b) –1 Biodegradation: primary biodegradation rate constant k = 0.153 d and t½ = 4.55 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984) Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: atmospheric photooxidation t½ = 0.4–4.0 d (calculated, Staples et al. 1997). Surface water: hydrolysis t½ = 100–2000 yr (Wolfe et al. 1980b; Callahan et al. 1979); –1 primary biodegradation rate constant k = 0.153 d and t½ = 4.55 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984). Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3113

15.1.3.11 Di-n-octyl phthalate (DOP)

O

O O

O Common Name: Di-n-octyl phthalate Synonym: di-n-octyl phthalate, DOP, o-benzenedicarboxylic acid dioctyl ester, n-dioctyl phthalate, octyl phthalate, dioctyl-o-benzenedicarboxylate Chemical Name: di-n-octyl phthalate CAS Registry No: 117-84-0

Common Molecular Formula: C24H38O4, C6H4(COOC8H17)2 Molecular Weight: 390.557 Melting Point (°C): –25.0 (Patty 1963; Fishbein & Albro 1972; Callahan et al. 1979; Mabey et al. 1982; Lide 2003) Boiling Point (°C): 220.0 (Patty 1963; Fishbein & Albro 1972; Callahan et al. 1979; Mabey et al. 1982) Density (g/cm3 at 20°C): 0.978 (Fishbein & Albro 1972; Ellington 1999) Molar Volume (cm3/mol): 399.3 (20°C, calculated-density) 524.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0 Water Solubility (g/m3 or mg/L at 25°C or as indicated): 50.0 (20°C, Fishbein & Albro 1972) 3.0 (shake flask-GC, Wolfe et al. 1979) 3.0 (shake flask-GC, Wolfe et al. 1980a,b) 0.285 (24°C, tech. grade, Verschueren 1983) 0.022 (generator column-HPLC/UV, DeFoe et al. 1990) 0.020, 0.040 (synthesized phthalates by turbidity inflection-HPLC/UV, DeFoe et al. 1990) 1.96 (calculated-molar volume, Wang et al. 1992) 0.0005 (recommended, Staples et al. 1997) 0.00051; 0.00049 (shake flask: slow stirring; no-stirring, GC/FID, Ellington 1999) 0.0092 (calculated-UNIFAC method, Thomsen et al. 1999) 0.0249 (calculated-QSPR, Cousins & Mackay 2000) 0.00040 (20°C, shake flask-GC/MS, Letinski et al. 2002) 0.00040, 0.00042 (QSAR estimates-SPARC model, WSKOWWIN model, Letinski et al. 2002)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 4.21 × 10–6 (20°C, tensimeter, extrapolated, measured range 113–162°C, Perry & Weber 1949) log (P/µmHg) = 14.68 –5620/(T/K); temp range 113–162°C (tensimeter, Perry & Weber 1949) 0.0187 (estimated by analogy to Henry’s law constant, Mabey et al. 1982) 2.92 × 10–5 (extrapolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 9.897 – 5197.4/(T/K), temp range: 423–523 K, (Antoine eq., Stephenson & Malanowski 1987) 1.33 × 10–5 (recommended, Staples et al. 1997) 2.52 × 10–5 (calculated-QSPR, Cousins & Mackay 2000)

Henry’s Law Constant (Pa m3/mol at 25°C): 0.557 (calculated-P/C, Wolfe et al. 1980a) 1.722 (calculated-P/C, Mabey et al. 1982) 0.0297 (quoted from WERL Treatability Data, Ryan et al. 1988)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3114 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

10.435 (selected, Staples et al. 1997) 0.0249 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Water Partition Coefficient, log KOW: 9.2 (calculated as per Leo et al. 1971, Callahan et al. 1979) 9.2 (calculated, Wolfe et al. 1979) 8.06 (HPLC-RT correlation; McDuffie 1981) 8.92 (calculated-CLOGP for synthesized phthalate, DeFoe et al. 1990) 5.22 (shake flask, log P database, Hansch & Leo 1987) 8.06 (recommended, Staples et al. 1997) 6.99 (calculated-UNIFAC method, Thomsen et al. 1999) 7.73 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Air Partition Coefficient, log KOA: 10.53 (calculated-QSPR, Cousins & Mackay 2000)

Bioconcentration Factor, log BCF: 2.82, 3.97, 0.064, 3.72, 2.64 (in lab. model ecosystem after 3 d: alga, daphnia, mosquito fish, mosquito larvae, snails, Sanborn et al. 1975) 4.45, 3.41, 3.97, 3.97, 4.13 (in lab. model ecosystem after 33 d: alga, daphnia, mosquito fish, mosquito larvae, snails, Sanborn et al. 1975)

3.46 (bacteria, calculated-KOW, Wolfe et al. 1980a) 8.59 (microorganisms-water, calculated-KOW, Mabey et al. 1982)

Sorption Partition Coefficient, log KOC: 4.28 (calculated, Wolfe et al. 1980a)

9.56 (sediment-water, calculated-KOW, Mabey et al. 1982) 7.91 (sediment, calculated-KOW, Pavlou & Weston 1983, 1984) 7.60 (calculated-KOW, Kollig 1993) 6.30 (suspended solids, calculated-Kd assuming a 0.1 org. carbon fraction, Staples et al. 1997)

Environmental Fate Rate Constant, k, and Half-Lives, t½: Volatilization: –4 –1 Photolysis: direct photolysis rate kP = 2 × 10 h (EXAMS model, Wolfe et al. 1980a) Oxidation: k = 18 M s–1, free radical oxidation rate constant in an aquatic environment (Wolfe et al. 1980a) k << 360 M–1 h–1 for singlet oxygen and k = 1.4 M–1 h–1 for peroxy radical (Mabey et al. 1982)

photooxidation t½ = 4.5–44.8 h in air, based on estimated rate constant for the vapor phase reaction with hydroxyl radical in air (Howard et al. 1991)

photooxidation t½ = 0.3–3.0 d from Atkinson 1988 atmospheric-oxidation program (Staples et al. 1997) –12 3 –1 –1 kOH = 20.581 × 10 cm molecule s and t½ = 0.40 d based on a global, seasonal and diurnal average OH radical concn of 1 × 106 molecule cm–3 in air (Peterson & Staples 2003) Hydrolysis:

phthalates are susceptible to alkaline hydrolysis, with theoretical t½ = 4 months to 100 yr at pH 8 and 30°C (Wolfe et al. 1980a) k(acid catalyzed) = 0.04 M–1 h–1, k(second order alkaline) = 59 M–1 h–1 in an aquatic environment (Wolfe et al. 1980a) k(base) = 7.4 M–1 h–1 at pH 7 and 25°C (Ellington et al. 1987)

t½ = 107 yr at pH 7, t½ = 1 yr at pH 9 and 25°C (Howard et al. 1991; selected, Staples et al. 1997). –1 Biodegradation: the pseudo first-order degradation rate constant k = 0.14 d corresponding to t½ = 5 d in a model ecosystem (Sanborn et al. 1975);

degradation t½ = 8 d by microorganisms isolated from soil or waste water at 30°C (Kurane et al. 1977) rate constant k ~ (1.57 ± 0.17) × 102 min–1 from retention times of reverse phase chromatography (estimated, Urushigawa & Yonezawa 1979); microbial degradation rate constant k = 2 × 10–4 h–1 in an aquatic environment (Wolfe et al. 1980a)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3115

significant degradation with gradual adaptation from 7 to 21 d in an aerobic environment with a rate k<0.5d–1 (Tabak et al. 1981; quoted, Mills et al. 1982); biodegradation rate constant k = 7.4 × 10–9 mL·cell–1·d–1 at 30°C in water (Scow 1982);

aqueous aerobic t½ = 168–672 h, based on unacclimated and acclimated aqueous screening test data; aqueous anaerobic t½ = 4320–8760 h, based on acclimated anaerobic screening test data (Howard et al. 1991); –1 rate constant k = 0.0014 h with t½ = 513.4 h for microbial degradation by anaerobic sludge (Wang et al. 2000) –1 aerobic biodegradation in aquatic environments, first order k = 0.7 d with t½ = 1.0 d in river water (Peterson & Staples 2003) –1 anaerobic biodegradation, first order rate k = 0.006–0.0336 d with t½ = 115–20.6 d in undiluted digester sludge of different DOP concn, batch incubation (Peterson & Staples 2003) Biotransformation: k = 3.1 × 10–10 mL·cell–1·h–1 for bacterial transformation in water (Wolfe et al. 1980a); microbial transformation k = (3.7 ± 0.6) × 10–13 L·organism–1·h–1 in natural aquatic systems (Steen et al. 1979; quoted, Steen 1991).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives: –5 –1 k2 = 3.69 × 10 d (10°C, 0.1 kg staghorn sculpin, lipid content 5%, Gobas et al. 2003) –6 –1 k2 = 3.16 × 10 d (10°C, 3 kg dogfish, lipid content 15%, Gobas et al. 2003)

Half-Lives in the Environment:

Air: t½ = 4.5–44.8 h, based on estimated rate constant for the vapor phase reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991). 6 photodegradation t½ = 0.40 d based on a global, seasonal and diurnal average OH radical concn of 1 × 10 molecule cm–3 in air (Peterson & Staples 2003)

Surface water: degradation t½ = 5 d in an aquatic model ecosystem (Sanborn et al. 1975); overall degradation t½ = 168–672 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991)

biodegradation t½.= 1.0 d in aerobic aquatic environments (Peterson & Staples 2003) Ground water: t½ = 336–8760 h, based on estimated aqueous aerobic and anaerobic biodegradation half-lives (Howard et al. 1991). Sediment:

Soil: degradation t½ = 8 d by microorganisms isolated from soil or waste water at 30°C (Kurane et al. 1977) t½ = 10–50 d via volatilization subject to plant uptake from the soil (Ryan et al. 1988); degradation t½ = 168–672 h, based on estimated aqueous aerobic biodegradation half-life (Howard et al. 1991). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3116 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.3.12 Di-isooctyl phthalate (DIOP)

O

O O

O

Common Name: Di-isooctyl phthalate Synonym: DIOP Chemical Name: CAS Registry No: 27554-26-3

Molecular Formula: C24H38O4 Molecular Weight: 390.557 Melting Point (°C): –4 (Fishbein & Albro 1972) –46 (Staples et al. 1997) Boiling Point (°C): 270 (Lide 2003) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): 524.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 0.09 (shake flask-GC, Howard et al. 1985) 0.001; 0.00024, 0.00081 (recommended; calculated-QSAR, Staples et al. 1997) 2.49 × 10–3 (calculated-QSPR, Cousins & Mackay 2000)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 1.55 × 10–4 (dew-point and tensimeter methods, extrapolated from Clausius-Clapeyron eq., Werner 1952) log (P/micron) = – 4829/(T/K) + 13.262; temp range 70–210°C, (exptl. data fitted to the Clausius-Clapeyron eq., Werner 1952) 7.4 × 10–4 (gas saturation method, Howard et al. 1985) log (P/mmHg) = 24.8803 – 5.5821 × 103/(T/K) – 1.2116·log (T/K) – 1.547 × 10–2·(T/K) + 6.5101 × 10–6·(T/K)2; temp range 260–851 K (vapor pressure eq., Yaw et al. 1994) 1.55 × 10–4, 7.4 × 10–4, 4.53 × 10–5 (quoted, Staples et al. 1997) 7.5 × 10–4; 1.33 × 10–4, 2.67 × 10–8, 1.87 × 10–4 (recommended; calculated-QSAR, Staples 1997) 2.52 × 10–5 (calculated-QSPR, Cousins & Mackay 2000)

Henry’s Law Constant (Pa·m3/mol at 25°C): 3.95 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Water Partition Coefficient, log KOW: 8.0; 8.39 (recommended; calculated-QSAR, Staples et al. 1997) 7.73 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Air Partition Coefficient, log KOA: 10.53 (calculated-QSPR, Cousins & Mackay 2000)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3117

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: atmospheric photooxidation t½ ~ 0.3–3.0 d (Estimated, Staples et al. 1997). Hydrolysis: aqueous hydrolysis t½ ~ 157 yr (estimated, Staples et al. 1997). –1 Biodegradation: primary biodegradation rate constant k = 0.082 d and t½ = 8.82 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: atmospheric photooxidation t½ ~ 0.3–3.0 d (estimated, Staples et al. 1997). –1 Surface water: primary biodegradation rate constant k = 0.082 d and t½ = 8.82 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984); aqueous hydrolysis t½ ~ 157 yr (estimated, Staples et al. 1997). Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3118 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.3.13 bis-(2-Ethylhexyl) phthalate (DEHP)

O

O O

O Common Name: Di-(2-ethylhexyl) phthalate Synonym: DEHP, bis(2-ethylhexyl) phthalate, di-(2-ethylhexyl)orthophthalate, bis(2-ethylhexyl) phthalic acid ester, di-sec-octyl phthalate, 2-ethylhexyl phthalate, 1,2-benzenedicarboxylic acid bis(2-ethylhexyl) ester Chemical Name: bis(2-ethylhexyl) phthalate, di-sec-octyl phthalate, 2-ethylhexyl phthalate CAS Registry No: 117-81-7

Molecular Formula: C24H38O4, o-C6H4(COOCH2CH(C2H5)C4H9)2 Molecular Weight: 390.557 Melting Point (°C): –55.0 (Verschueren 1983; Lide 2003) Boiling Point (°C): 384.0 (Dean 1985; Riddick et al. 1986; Lide 2003) Density (g/cm3 at 20°C): 0.9850 (Fishbein & Albro 1972) 0.9843 (Riddick et al. 1986) Molar Volume (cm3/mol): 396.1 (20°C, calculated-density, Stephenson & Malanowski 1987) 524.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Vaporization, HV (kJ/mol): 107.1, 105.9 (Small et al. 1948) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 100 (20°C, Fishbein & Albro 1972) 50.0 (from Monsanto Chemical Co. data sheets, Peakall 1975) 0.60 (Branson 1978; Kenaga & Goring 1980) 0.285 (shake flask-nephelometry on technical grade DEHP, Hollifield 1979) 100 (quoted from Metcalf & Lu 1973, Hollifield 1979; Garten & Trabalka 1983) 2.49 (Neely 1979; quoted, Neely & Blau 1985; Lyman 1985; Elzerman & Coates 1987) 0.40 (shake flask-GC, Wolfe et al. 1979, 1980a, b) 1.16 (solubility in 35 L instant ocean solution, Giam et al. 1980) 0.047 (from OECD 1979/80, Klöpffer et al. 1982) 0.041 (20°C, shake flask-UV, Leyder & Boulanger 1983) 0.34 ± 0.04 (shake flask-HPLC/UV, Howard et al. 1985) < 100 (quoted, Riddick et al. 1986) 0.27; 0.36 (centrifugation method, turbidity inflection method, DeFoe et al. 1990) 9.8 × 10–6 to 0.633 (lit. values, Sabljic et al. 1990) 0.003 (recommended, Staples et al. 1997) 0.0249 (calculated-QSPR, Cousins & Mackay 2000) 0.017 (22°C, shake flask-surface tension measurement, Thomsen et al. 2001) 0.0019 (20°C, shake flask-GC/MSD, Letinski et al. 2002) 0.00285, 0.00024 (QSAR estimates-SPARC model, WSKOWWIN model, Letinski et al. 2002)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3119

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 1.45 × 10–5 (20°C, extrapolated, tensimeter, measured range 95–145°C, Hickman et al. 1937) log (P/µmHg) = 15.116 – 5590/(T/K); temp range 95–145°C (Hickman et al. 1937) 1.93 × 10–5 (effusion method, extrapolated-Antoine eq., Small et al. 1948) log (P/mmHg) = 12.12 – 5590/(T/K) (Antoine eq., quoted from Barclay & Butler 1938; Small et al. 1948) log (P/mmHg) = 12.47 – 5757/(T/K); pressure range 5 × 10–2 to 10–4 mmHg (effusion, data presented in graph and Antoine eq., Small et al. 1948) 1.51 × 10–5 (20°C, extrapolated, tensimeter, measured range 99–148°C, Perry & Weber 1949) log (P/µmHg) = 14.62 – 5440/(T/K); temp range 99–148°C (pendulum tensimeter method, Perry & Weber 1949) 8.26 × 10–6* (measured by dew-point and tensimeter methods, temp range 120–225°C, extrapolated from Antoine eq., Werner 1952) log (P/micron) = 12.639 – 3811/(201.2 + t/°C); temp range 120–225°C (Antoine eq., Dew-Point and Tensimeter methods, data presented in graph, Werner 1952) 2.70 × 10–5 (20°C, calculated-Antoine eq., Weast 1972–73) 1.73 × 10–5 (submicron droplet evaporation, Chang & Davis 1976) 5.81 × 10–5 (36°C, submicron droplet evaporation, Davis & Ray 1977) 5.84 × 10–6 (17°C, submicron droplet evaporation, measured range 17–31°C, Ray et al. 1979) log (P/mmHg) = 12.729 – 5822/(T/K); temp range 17–31°C (submicron droplet evaporation, Ray et al. 1979) 6.0 × 10–6*, 1.30 × 10–5 (20°C, effusion-vapor pressure balance, gas saturation method, OECD 1981) log (P/mmHg) = 10.086 – 5010.357/(T/K); temp range 10–50°C (Antoine eq., gas saturation, OECD 1981) log (P/mmHg) = 13.243 – 6035.017/(T/K); temp range 80–120°C (Antoine eq., effusion, OCED 1981) 5.50 × 10–6 (20°C, estimated-evaporation rate, Dobbs & Cull 1982) 7.01 × 10–8 (20°C, gas saturation, measured range 120–140°C, Potin-Gauthier et al. 1982) log (P/mmHg) = 18.408 – 8112.265/(T/K); temp range 120–140°C (Potin-Gauthier et al. 1982) 0.00293, 1.87 × 10–6, 7.47 × 10–4 (estimation-structure based methods, Tucker et al. 1983) 8.6 ± 6.6) × 10–4 (gas saturation-HPLC/UV, Howard et al. 1985) 70, 700 (literature values, Riddick et al. 1986) 5.08 × 10–5 (extrapolation-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 11.8564 – 6416.2/(36.74 + T/K); temp range 373–660 K (Antoine eq., Stephenson & Malanowski 1987) (1.20–2.40) × 10–5 (quoted from OECD interlaboratory studies, Hinckley et al. 1990) 1.90 × 10–5 (GC-RT correlation, Hinckley et al. 1990) 1.2 × 10–4* (40°C, OECD Vapour Pressure Curve Guideline 104, temp range 40–80°C, OECD 1993) log (P/mmHg) = –0.7422 – 7.2012 × 103/(T/K) + 9.9887·log(T/K) – 2.2697 × 10–2·(T/K) + 8.2181 × 10–6·(T/K)2; temp range 350–886 K (vapor pressure eq., Yaw et al. 1994) 1.50 × 10–4* (40°C, Knudsen effusion with different orifice diameters and variable cell height, measured range 40–80°C, Goodman 1997) log (P/Pa) = 14.90 – 5911/(T/K); temp range 40–80°C (Knudsen effusion, Goodman 1997)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.0446 (calculated-P/C, Wolfe et al. 1980a) 1.1140 (calculated, Lyman et al. 1982) 0.0304 (20–25°C, calculated-P/C, Mabey et al. 1982) 0.0263, 3.14 (calculated-P/C, calculated-group contribution, Tucker et al. 1983) 0.0042 (estimated-P/C, Lyman 1985) 0.101 (estimated as per Hine & Mookerjee 1975, Lyman 1985) 0.0041 (calculated-P/C, Mackay 1985, Neely & Blau 1985) 0.0297 (quoted from WERL Treatability Data, Ryan et al. 1988) 1.4940 (calculated-P/C, Meylan & Howard 1991) 1.1970 (estimated-bond contribution, Meylan & Howard 1991) 1.7324 (selected, Staples et al. 1997) 3.95 (calculated-QSPR, Cousins & Mackay 2000)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3120 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Octanol/Water Partition Coefficient, log KOW: 3.58 (Lu & Metcalf 1975) 4.20 (Mayer 1976) 5.30 (Hirzy et al. 1978) 8.73 (calculated, Wolfe et al. 1979) 5.11, 4.66–5.45 (shake flask method: mean, range, OECD 1981) 7.86 (HPLC-extrapolated from alkylbenzenes, Harnish et al. 1983) 5.03 (shake flask average, OECD/EEC lab. comparison tests, Harnish et al. 1983) 9.64 (quoted lit. calculated value, Leyder & Boulanger 1983) 7.94 (HPLC-RT correlation, Howard et al. 1985) 7.80, 8.90 (HPLC-RT correlation, TLC-RT, Klein et al. 1988) 7.453 ± 0.061 (slow-stirring-GC, De Bruijn et al. 1989) 5.22 (shake flask method, Brooke et al. 1990) 7.86, 9.68 (HPLC method, calculated, Brooke et al. 1990) 7.137 ± 0.153 (stir-flask method by BRE, Brooke et al. 1990) 7.453 ± 0.061 (stir-flask method by RITOX, Brooke et al. 1990) 7.88 (recommended, Sangster 1993)

Octanol/Air Partition Coefficient, log KOA: 10.53 (calculated-QSPR, Cousins & Mackay 2000)

Bioconcentration Factor, log BCF: 2.11 (fish, Metcalf et al. 1973) 5.03 (mosquito larvae, Metcalf et al. 1973) 4.13, 3.49, 3.72, 3.36, 2.36 (scud, midge larvae, waterflea, mayfly, sowbug, Sanders et al. 1973) 3.56, 2.54, 2.62, 2.76, 2.66 (scud, midge, waterflea, mayfly, fathead minnow, 14-d exposure, Mayer & Sanders 1973) 3.14 (fathead minnow, 28-d exposure, Mayer & Sanders 1973) 2.76 (fathead minnow, 56-d exposure, Mayer 1976) 2.93 (fathead minnow, Veith et al. 1979) 2.90, 2.15 (fathead minnow, Branson 1978) 2.06 (bluegill sunfish, Barrows et al. 1980) –1.92 (adipose tissue of female Albino rats, Geyer et al. 1980)

3.95 (bacteria, calculated-KOW, Wolfe et al. 1980a) 0.84–1.05, 1.01–1.22, 1.03–1.13 (oyster, shrimp, fish, Wofford et al. 1981) 1.04 (oyster, Wofford et al. 1981; quoted, Zaroogian et al. 1985)

2.93, 2.88 (fish: quoted, calculated-KOW, Mackay 1982) 2.32 (Daphnia maga, Brown & Thompson 1982a) 3.37, 3.42, 3.40 (mussel Mytilus edulis, Brown & Thompson 1982b)

8.36 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 2.49, 2.11 (fish: flowing water, microcosm conditions, Graten & Trabalka 1983)

3.73, 3.57 (alga Chlorella, calculated-KOW, Geyer et al. 1984) 2.80 (sheephead minnows, predicted-pharmacokinetic model, Karara & Hayton 1984) 2.66, 3.73, 3.48 (golden orfe, algae, activated sludge, Freitag et al. 1982) 1.60, 3.73, 3.48 (golden ide, algae, activated sludge, Freitag et al. 1985) 2.96, 2.87 (oyster, estimated values, Zaroogian et al. 1985) 2.96, 2.87 (sheephead minnows, estimated values, Zaroogian et al. 1985) 2.76 (quoted, Isnard & Lambert 1989) 0.204–1.71 (rainbow trout, BCF to decline as body wt. increased, Tarr et al. 1990) 2.94 (fish, highest fish BCF, Matthiessen et al. 1992)

Sorption Partition Coefficient, log KOC: 4.0–5.0 (soil, calculated values, Kenaga 1980; Wolfe et al. 1980a)

4.756 (sediment-water, calculated-KOW and S, Wolfe et al.1980a) 9.301 (sediment-water, calculated-KOW, Mabey et al. 1982)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3121

4.31, 5.27, 4.90, 4.98 (estimated-KOW, Karickhoff 1985) 4.24, 5.06 (estimated-S, Karickhoff 1985) 5.10 (best estimate, expected at low sediment concn. of < 10–4/mL, Karickhoff 1985) 5.00 (soil/sediment, Neely & Blau 1985) 4.94 (Broome County soil in New York, shake flask-GC, Russell & McDuffie 1986;) 5.22 (soil, calculated- MCI χ and fragment contribution, Meylan et al. 1992) 2.60 (activated carbon, calculated-MCI χ, Blum et al. 1994)

7.13 (calculated-KOW, Kollig 1993) 4.34, 6.00 (suspended solids, calculated-Kd assuming a 0.1 org. carbon fraction, Staples et al. 1997)

Environmental Fate Rate Constants, k, and Half-Lives, t½:

Volatilization: calculated evaporation rate k = 0.00052 cm/h corresponding to t½ = 132600 h for a pond of 1 m deep (Branson 1978). Photolysis: rate constant for direct photolysis k = 2 × 10–4 h–1 in natural water (Wolfe et al. 1980a);

t½ ~ 143 d in water is estimated to be 143 d (Wolfe et al. 1980a; quoted, Howard 1989); atmospheric t½ = 3500–4800 h and aqueous t½ = 3500–4800 h, based on measured rate of aqueous photolysis for DMP (Howard 1991). –1 Aqueous photolysis k = 0.9 h and t½ = 0.75 h (Jin et al. 1999, quoted, Peterson & Staples 2003) Oxidation: the free radical oxidation rate constant k = 18 M·s–1 (Wolfe et al. 1980b);

photooxidation t½ = 44–584 d in water, based on estimated rate constant for the reaction with hydroxyl radicals in water (Wolfe et al. 1980; quoted, Howard et al. 1991); rate constant k << 360 M–1·h–1 for singlet oxygen and k = 7.2 M–1·h–1 for peroxy radical (Mabey et al. 1982);

photooxidation t½ = 2.9–29 h in air, based on estimated rate constant for the reaction with hydroxyl radicals in air (Atkinson 1987; quoted, Howard et al. 1991);

predicted atmospheric photooxidation t½ = 0.2–2.0 d from Atkinson 1988 atmospheric-oxidation program (Staples et al. 1997). –12 3 –1 –1 kOH = 21.955 × 10 cm molecule s and t½ = 0.38 d based on a global, seasonal and diurnal average OH radical concn of 1 × 106 molecule cm–3 in air (Peterson & Staples 2003) Hydrolysis: second order alkaline hydrolysis rate constant k = 1.1 × 10–4 M–1·s–1 for pH 10–12 at 30°C in water (Wolfe et al. 1979, 1980b; quoted, Callahan et al. 1979);

t½ = 100 to 2000 yr for hydrolytic degradation alone in the eutrophic lake ecosystem at steady-state increase (Wolfe et al. 1080a);

t½(calc) = 2000 yr at pH 7 in water (calculated per Radding et al. 1977; quoted, Callahan et al. 1979; Howard 1989; Howard et al. 1991); k(exptl.) = 9.5 × 10–7 d–1 at pH 7 and 25°C while estimated rate constant k = 1.46 × 10–6 d–1 at pH 7 and 30°C (Neely 1985);

first-order hydrolysis t½ = 2000 yr at pH 7, based on measured base catalyzed hydrolysis rate constant (Howard et al. 1991; selected, Staples et al. 1997). Biodegradation: approximately calculated rate constant k = 0.091 d–1 in pond water plus sediment incubated under aerobic conditions based on time for 50% degradation (Johnson & Lulves 1975; quoted, Klečka 1985); estimated biodegradation t½ ~ 4–5 wk by naturally occurring, mixed microbial populations in river water (Saeger & Tucker 1976);

degradation t½ = 1.3 d by microorganisms isolated from soil or waste water at 30°C (Kurane et al. 1977); rate constant k = 0.023 d–1 in river water incubated under aerobic conditions (Klečka 1985); rate constant k(mineralization rate divided by initial substrate concn.) = 0.028 ± 0.013 d–1 in lake water incubated under aerobic conditions (Subba-Rao et al. 1982; quoted, Klečka 1985); t½ = 2.0–3.0 wk, based on river die-away test data (Hattori et al. 1975; Saeger & Tucker 1976; Wolfe et al. 1980; estimated, Howard 1989);

t½ = 0.8 d in activated sludge (Saeger & Tucker 1976; estimated, Howard 1989); microbial degradation rate constant k = 4.2 × 10–12 mL·organism–1·s–1 (Wolfe et al. 1980a); significant degradation with gradual adaptation from 7 to 21 d in an aerobic environment with a rate k<0.5d–1 (Tabak et al. 1981; quoted, Mills et al. 1982);

aqueous aerobic t½ = 120–550 h, based on grab sample die-away test data (Schouten et al. 1979 and Johnson & Lulves 1975; estimated, Howard et al. 1991); aqueous anaerobic t½ = 980–9336 h, based on anaerobic

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3122 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

die-away test data (Howard et al. 1991) and anaerobic aqueous screening studies (Horowitz et al. 1982 and Shelton et al. 1984; estimated, Howard et al. 1991); –1 mean rate constant k = 0.136 d corresponding to t½ = 5.25 d in shake flask biodegradation experiment (Sugatt et al. 1984); more than 90% of initial 3.3 mg/L will be degraded in activated sludge systems in 2–5 d (O’Grady et al. 1985); greater than 50% loss in microbial degradation in less than 20 d under aerobic conditions, very low under anaerobic conditions in garden soil (Shanker et al. 1985); readily metabolized in uninoculated Erie slit loam with the absence of nonaqueous-phase liquids (NAPLs) for about 20 d (Efroymson & Alexander 1994) –1 –1 biphasic microbial mineralization kinetics: k = 0.0044 d with t½ = 158 d at 5°C, k = 0.0081 d with t½ =86 –1 d at 10°C, and k = 0.0134 d with t½ = 52 d at 20°C in agriculture soil for phase I; and t½ = 224 d at –1 5°C, t½ = 187 d at 10°C and t½ = 73 d at 20°C in agriculture soil for phase II. Rate k = 0.0023 d with –1 –1 t½ = 301 d at 5°C, k = 0.0055 d with t½ = 125 d at 10°C, and k = 0.0127 d with t½ = 55 d at 20°C in ≥ sludge-amended soil for phase I and t½ 365 d at 5°C, t½ = 337 d at 10°C and t½ = 150 d at 20°C in sludge-amended soil for phase II kinetics in laboratory microcosms. At 20°C, aerobic mineralization rate –1 –1 k = 0.0182 d with t½ = 37 d for phase I, t½ = 51 d for phase II in well-mixed sludge, k = 0.0058 d ≥ –1 with t½ = 120 d for phase I, t½ 365 d for phase II in aggregate sludge, aerobic k = 0.0127 d with t½ –1 = 55 d for phase I, t½ = 150 d for phase II and anaerobic k = 0.0023 d with t½ = 301 d for phase I, ≥ t½ 365 d for phase II in sludge-amended soil (Madsen et al. 1999). –1 aerobic biodegradation in aquatic environments, first order k = 0.023 d with t½ = 30 d in unstirred river –1 –1 water, k = 0.2 d with t½ = 3.5 d in shaken river water, k = 1.73 d with t½ = 0.4 d field data, estuarine sediment (Peterson & Staples 2003) –1 –1 aerobic soil degradation, pseudo-first-order k = 0.035 d with t½ = 2.0 d in loam; k = 0.010 d with t½ = 69.3 –1 –1 d in sand; k = 0.033 d with t½ = 21 d in outdoor lysimeter, loam; k = 0.013 d with t½ = 53.3 d in –1 –1 outdoor lysimeter, sand; k = 0.12 d with t½ = 5.6 d in garden soil; k = 0.040 d with t½ = 17.3 d in –1 –1 soil with 2% OC-organic carbon; k = 0.019 d with t½ = 36.5 d in soil with 3.3% OC; k = 0.015 d with –1 t½ = 46.2 d in soil with 1.6% OC and k = 0.012 d with t½ = 58 d in sludge amended loam. For anaerobic –1 degradation, first order rate k > 0.3 d with t½ < 2.3 d in undiluted digester sludge, batch incubation; k –1 –1 = 0.013 d with t½ = 53.3 d in flood soil;, k = 0.69 d with t½ = 1.0 d field data, sediment (Peterson & Staples 2003) Biotransformation: k = 4.2 × 10–12 mL·cell–1·h–1 for bacterial transformation in water (Wolfe et al. 1980a; quoted, Mabey et al. 1982); microbial transformation k = (4.2 ± 0.7) × 10–15 L·organism–1·h–1 in natural aquatic systems (Steen et al. 1979; quoted, Steen 1991).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives: t½ = 7 d for elimination of DEHP from fathead minnows (Mayer & Sanders 1973); fish elimination t½ = 6.2 to 18.3 d with a mean value of 12.2 d after 56 d exposure period (fathead minnows, Mayer 1976); –1 –1 k1 = 76 mL g ·h (fish, Branson 1978); depuration t½ = 72 h (tissues of bluegill sunfish, Barrows et al. 1980). –5 –1 k2 = 3.69 × 10 d (10°C, 0.1 kg staghorn sculpin, lipid content 5%, Gobas et al. 2003) –6 –1 k2 = 3.16 × 10 d (10°C, 3 kg dogfish, lipid content 15%, Gobas et al. 2003)

Half-Lives in the Environment:

Air: t½ = half-life of 2.9–29 h, based on estimated rate constant for the reaction with hydroxyl radicals in air (Howard et al. 1991); atmospheric transformation lifetime was estimated to be < 1 d (Kelly et al. 1994). 6 Photodegradation t½ = 0.38 d based on a global, seasonal and diurnal average OH radical concn of 1 × 10 molecule cm–3 in air (Peterson & Staples 2003)

Surface water: biodegradation t½ ~ 4 to 5 wk in river water by naturally occurring, mixed microbial populations (Saeger & Tucker 1976);

t½ = 5 d in a model ecosystem (Verschueren 1983); t½ = 5.25 d in an acclimated shake flask CO2 evolution biodegradation experiment (Sugatt et al. 1984) t½ = 120-550 h, based on unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3123

Biodegradation t½. = 0.3–30 d in estuarine river water with sediment and river water (Peterson & Staples 2003)

Ground water: t½ = 240–9336 h, based on unacclimated aqueous aerobic and anaerobic biodegradation half-life (Howard et al. 1991). Sediment:

Soil: degradation t½ = 1.3 d by microorganisms isolated from soil or waste water at 30°C (Kurane et al. 1977) biodegradation t½ < 20 d under anaerobic conditions in a garden soil (Shanker et al. 1985); t½ = 10–50 d via volatilization subject to plant uptake from the soil (Ryan et al. 1988); degradation t½ = 39 d for initial phase, t½ = 51 d for the late phase in sludge-amended quartz; t½ = 58 d for initial phase and t½ = 147 d for sludge-amended soil, t½ = 58 d for initial phases and t½ = 84 d in sludge slurry; t½ = 9 d for initial phases, t½ = 35 d for late phase in sludge-amended soil + strain SDE-2 (Roslev et al. 1998)

overall t½ = 120–550 h, based on unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991). degradation by microorganism in biometer systems, t½ = 66 d in silty sand standard metabolism experiments, t½ = 102 d corrected standard conditions, t½ = 170 d in simulated outdoor conditions; t½ = 20 d in silty loam standard conditions, t½ = 30 d corrected standard conditions, t½ = 31 d in simulated outdoor condi- tions at constant soil moisture and 20°C; degradation by microorganism in outdoor experiments in small

lysimeter systems: t½ = 54 d outdoor fallow and t½ = 200 d outdoor barley in silty sand, and t½ = 21 d outdoor fallow, t½ = 14 d outdoor barley in silty loam (Rüdel et al. 1993) microbial mineralization t½ = 158, 86 and 52 d at 5, 10, and 20°C, respectively, in soil; t½ = 301, 125 and 55 d at 5, 10 and 20°C in sludge-amended soil in phase I degradation kinetics; t½ = 224, 187 and 73 d at 5, 10, and 20°C, respectively, in soil; t½ = 365, 337 and 150 d at 5, 10 and 20°C in sludge-amended soil in phase II degradation kinetics. At 20°C, t½ varies between 77–89 d and 100–127 d for phase I and II, respectively, in sludge-amended soil with different initial DEHP concns. Aerobic t½ = 37 d and 51 d for phase I and II in well mixed sludge, t½ = 120 d and > 365 d for phase I and II in aggregate sludge, t½ = 55 d and 150 d for phase I and II in sludge-amended soil; anaerobic t½ = 301 d and > 365 d for phase I and II in sludge-amended soil (laboratory microcosms, Madsen et al. 1999)

biodegradation in aerobic soil: t½ = 2.0 – 69.3 d in various sand, loam, soils with different organic carbon content and sludge amended loam in laboratory and outdoor experiments (Peterson & Staples 2003)

Biota: elimination and degradation t½ < 4 d after 7 d for water fleas Daphnia magna and t½ = 7 d for fathead minnows (Mayer & Sanders 1973);

fish elimination t½ = 12.2 d (fathead minnows Pimephales promelas, Mayer 1976); depuration t½ = 3 d (in tissues of bluegill sunfish continuously for 42-d exposure, Barrows et al. 1980) depuration t½ = 38 d from sheephead minnow (Karara & Hayton 1984).

TABLE 15.1.3.13.1 Reported vapor pressures of bis(2-ethylhexyl) phthalate (DEHP) at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

OECD 1981 OECD 1993 Goodman 1997

effusion/gas saturation v.p. curve guideline 104 Knudsen effusion Knudsen effusion

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa effusion-vapor pres. balance orifice diameter 0.381 mm orifice diameter 0.0229 mm 10 1.1 × 10–6 40 1.2 × 10–4 50 1.2 × 10–4 using variable cell height 20 6.0 × 10–6 50 4.8 × 10–4 50 3.1 × 10–4 50 2.1 × 10–4 30 2.8 × 10–5 55 9.3 × 10–4 55 9.8 × 10–4 60 9.7 × 10–4 40 1.2 × 10–4 60 1.8 × 10–3 55 6.5 × 10–4 65 4.1 × 10–3 (Continued)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3124 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 15.1.3.13.1 (Continued)

OECD 1981 OECD 1993 Goodman 1997

effusion/gas saturation v.p. curve guideline 104 Knudsen effusion Knudsen effusion

t/°C P/Pa t/°C P/Pa t/°C P/Pa t/°C P/Pa 50 4.9 × 10–4 65 3.3 × 10–3 60 2.0 × 10–3 70 6.8 × 10–3 70 5.9 × 10–3 60 1.3 × 10–3 75 9.2 × 10–3 eq. 1 P/Pa 75 0.011 65 3.8 × 10–3 80 1.0 × 10–2 A 13.243 80 0.019 65 2.3 × 10–3 40 1.2 × 10–4 B 6035.017 70 6.3 × 10–3 50 4.9 × 10–4 70 4.2 × 10–3 60 1.5 × 10–3 gas saturation 75 9.2 × 10–3 70 4.6 × 10–3 10 1.1 × 10–6 Small et al. 1948 80 0.012 80 1.6 × 10–2 20 6.0 × 10–6 effusion method 30 2.8 × 10–5 t/°C P/Pa eq. 1 P/Pa 40 1.2 × 10–4 A 14.90 50 4.9 × 10–4 data presented in graph and B 5911 eq. 1 P/mmHg eq. 1 P/Pa A 12.47 A 10.086 B 5757 B 5010.357 for pressure range: 0.05 to 10–4 mmHg

bis (2-Ethylhexyl) phthalte (DEHP): vapor pressure vs. 1/T 0.0

-1.0

-2.0

-3.0 )aP/

S -4.0 P(gol

-5.0 OECD 1981 -6.0 OECD 1993 Goodman 1997 Potin-Gauthier et al. 1982 -7.0 Howard et al. 1985 experimental data -8.0 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 0.0036 0.0038 0.004 1/(T/K) FIGURE 15.1.3.13.1 Logarithm of vapor pressure versus reciprocal temperature for bis(2-ethylhexyl) phthalate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3125

15.1.3.14 Di(hexyl,octyl,decyl) phthalate Common Name: Di(hexyl,octyl,decyl) phthalate Synonym: 610P Chemical Name: CAS Registry No: 25724-58-7, 68515-51-5

Molecular Formula: C25H40O4 Molecular Weight: 404.583 Melting Point (°C): –4 (Staples et al. 1997) Boiling Point (°C): Density (g/cm3 at 20°C): Molar Volume (cm3/mol): 547.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 0.9 ± 0.5 (shake flask, Howard et al. 1985) 0.05; 0.0004 (recommended; calculated-QSAR, Staples et al. 1997) 8.76 × 10–4 (calculated-QSPR, Cousins & Mackay 2000)

Vapor Pressure (Pa at 25°C): 6.5 × 10–4 (gas saturation, Howard et al. 1985) 6.5 × 10–4; 4.53 × 10–5, 6.5 × 10–2 (recommended; calculated-QSAR, Staples et al. 1997) 1.31 × 10–5 (calculated-QSPR, Cousins & Mackay 2000)

Henry’s Law Constant (Pa·m3/mol at 25°C): 6.05 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Water Partition Coefficient, log KOW: 5.9–8.61 (HPLC-RT correlation, Howard et al. 1985; quoted, Staples et al. 1997) 7.25; 8.54 (recommended; calculated-QSAR, Staples et al. 1997) 8.17 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Air Partition Coefficient, log KOA: 10.78 (calculated-QSPR, Cousins & Mackay 2000)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: atmospheric photooxidation t½ ~ 0.2–4.0 d (estimated, Staples et al. 1997). Hydrolysis: –1 Biodegradation: primary biodegradation with a rate constant k = 0.131 d and t½ = 5.30 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3126 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Half-Lives in the Environment:

Air: atmospheric photooxidation t½ ~ 0.2–4.0 d (estimated, Staples et al. 1997). –1 Surface water: primary biodegradation with a rate constant k = 0.131 d and t½ = 5.30 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984). Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3127

15.1.3.15 Diisononyl phthalate (DINP)

O

O O

O

Common Name: Diisononyl phthalate Synonym: DINP Chemical Name: CAS Registry No: 28553-12-0, 68515-48-0

Molecular Formula: C26H42O4 Molecular Weight: 418.609 Melting Point (°C): –48 (Staples et al. 1997) Boiling Point (°C): 413 (Fishbein & Albro 1972) Density (g/cm3 at 20°C): 0.995 (Fishbein & Albro 1972) Molar Volume (cm3/mol): 569.2 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 0.20 ± 0.1 (shake flask-GC, Howard et al. 1985) 0.20, 0.0006 (quoted, Staples et al. 1997) < 0.001; 7.8 × 10–5, 2.3 × 10–5 (recommended; calculated-QSAR, Staples et al. 1997) 3.08 × 10–4 (calculated-QSPR, Cousins & Mackay 2000) 6.1 × 10–4 (20°C, shake flask/slow stirring-GC/MS, Letinski et al. 2002)

Vapor Pressure (Pa at 25°C): 7.2 × 10–5 (gas saturation method, Howard et al. 1985) 6.67 × 10–5; 1.33 × 10–8, 3.07 × 10–5 (recommended; calculated-QSAR, Staples et al. 1997) 6.81 × 10–6 (calculated-QSPR, Cousins & Mackay 2000)

Henry’s Law Constant (Pa·m3/mol at 25°C): 9.26 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Water Partition Coefficient, log KOW: > 8.0; 9.0, 9.4 (recommended; calculated-QSAR, Staples et al. 1997) 8.60 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Air Partition Coefficient, log KOA: 11.03 (calculated-QSPR, Cousins & Mackay 2000)

Bioconcentration Factor, log BCF: 3.27 (Arca zebra, Solbakken et al. 1985)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3128 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: atmospheric photooxidation t½ ~ 0.2–2.0 d (estimated, Staples et al. 1997). –12 3 –1 –1 kOH = 23.408 × 10 cm molecule s and t½ = 0.35 d based on a global, seasonal and diurnal average OH radical concn of 1 × 106 molecule cm–3 in air (Peterson & Staples 2003) Hydrolysis: –1 Biodegradation: primary biodegradation with a rate constant k = 0.131 d and t½ = 5.31 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: –1 k1 = 848 mL·g·d (Arca zebra, 26.5°C, Solbakken et al. 1985; quoted, Staples et al. 1997) –1 k2 = 0.46 d (Arca zebra, 26.5°C, Solbakken et al. 1985; quoted, Staples et al. 1997) –1 k2 = 0.02 d (Diplora strigosa, 26.5°C, Solbakken et al. 1985; quoted, Staples et al. 1997)

Half-Lives in the Environment:

Air: atmospheric photooxidation t½ ~ 0.2–2.0 d (estimated, Staples et al. 1997). 6 Photodegradation t½ = 0.35 h based on a global, seasonal and diurnal average OH radical concn of 1 × 10 molecule cm–3 in air (Peterson & Staples 2003) –1 Surface water: primary biodegradation with a rate constant k = 0.131 d and t½ = 5.31 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984). Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3129

15.1.3.16 Di-isodecyl phthalate (DIDP)

O

O O

O

Common Name: Di-isodecyl phthalate Synonym: DIDP Chemical Name: di-diisodecyl phthalate CAS Registry No: 26761-40-0, 68515-49-1

Molecular Formula: C28H46O4 Molecular Weight: 446.663 Melting Point (°C): –48 (Stephenson & Malanowski 1987) –46 (Staples et al. 1997) –50 (Lide 2003)

Boiling Point (°C): 450 (Stephenson & Malanowski 1987) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): 464.8 (Stephenson & Malanowski 1987) 613.6 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): < 50 (quoted from Monsanto Chemical Co. data sheets, Peakall 1975) 1.19 ± 0.19 (shake flask-GC, Howard et al. 1985) 0.28 (shake flask-nephelometry, Hollifield 1979) 0.19, 0.28, < 0.00013 (quoted, Staples et al. 1997) < 0.001; 2.2 × 10–6, 7.4 × 10–6 (recommended, calculated-QSAR, Staples et al. 1997) 3.81 × 10–5 (calculated-QSPR, Cousins & Mackay 2000) 1.7 × 10–4 (20°C, shake flask/slow stirring-GC/MS, Letinski et al. 2002)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations):

log (PL/kPa) = 14.0158 – 10984/(242.24 + T/K), temp range: 371–496 K, (Antoine eq., Stephenson & Malanowski 1987) log(P/mmHg)=81.7895–7.4225×103/(T/K) – 26.916·log (T/K) + 1.1502 × 10–2·(T/K) – 4.353 × 10–14·(T/K)2; temp range 233–723 K (vapor pressure eq., Yaw et al. 1994) 6.67 × 10–5, 7.47 × 10–5 (quoted, Staples et al. 1997) 6.67 × 10–5; 6.67 × 10–6, 4.93 × 10–6, 1.33 × 10–8 (recommended, calculated-QSAR, Staples et al. 1997) 1.84 × 10–6 (calculated-QSPR, Cousins & Mackay 2000)

Henry’s Law Constant (Pa·m3/mol at 25°C): 21.6 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Water Partition Coefficient, log KOW: 7.70 (estimated, Williams et al. 1995) > 8.0; 10.0, 1.0.3 (recommended; calculated-QSAR, Staples et al. 1997) 9.46 (calculated-QSPR, Cousins & Mackay 2000)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3130 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Octanol/Air Partition Coefficient, log KOA: 11.52 (calculated-QSPR, Cousins & Mackay 2000)

Bioconcentration Factor, log BCF: 1.95–2.1, 2.06 (Daphnia magna, 20°C, range, mean, Brown & Thompson 1982a) 3.48, 3.60; 3.54 (Mytilus edilus, 15°C, exposure concn: 4.4, 4.17 µg/L; mean value, Brown & Thompson 1982b)

Sorption Partition Coefficient, log KOC: 5.04, 5.78, 5.16 (soil/sediment, exptl. data, Williams et al. 1995)

5.46, 7.60 (soil/sediment: mean value, calculated-KOW, Williams et al. 1995)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: atmospheric photooxidation t½ ~ 0.2–2.0 d (estimated, Staples et al. 1997). –12 3 –1 –1 kOH = 26.217 × 10 cm molecule s and t½ = 0.32 d based on a global, seasonal and diurnal average OH radical concn of 1 × 106 molecule cm–3 in air (Peterson & Staples 2003) Hydrolysis:

Biodegradation: degradation t½ = 4.0 d by microorganisms (Pseudomonas acidovorans 256–1) from soil or waste water at 30°C (Kurane et al. 1977); –1 primary biodegradation with a rate constant k = 0.088 d and t½ = 9.6 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: –1 µ k1 = 795, 539 mL·g·d (Mytilus edilus, for exposure concn: 4.4, 41.7 g/L, 15°C, Brown & Thompson 1982b; quoted, Staples et al. 1997). –1 µ k2 = 0.20, 0.18 d (Mytilus edilus, for exposure concn: 4.4, 41.7 g/L, 15°C, Brown & Thompson 1982b; quoted, Staples et al. 1997).

Half-Lives in the Environment:

Air: atmospheric photooxidation t½ ~ 0.2–2.0 d (estimated, Staples et al. 1997). 6 photodegradation t½ = 0.32 d based on a global, seasonal and diurnal average OH radical concn of 1 × 10 molecule cm–3 in air (Peterson & Staples 2003) –1 Surface water: primary biodegradation with a rate constant k = 0.088 d and t½ = 9.6 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984). Groundwater: Sediment:

Soil: degradation t½ = 4.0 d by microorganisms (Pseudomonas acidovorans 256–1) from soil or waste water at 30°C (Kurane et al. 1977). µ –1 Biota: depuration t½ = 3.5 and 3.8 d DIDP concn at 5 and 50 gL for Mytilus edilus at 15°C (Brwon & Thompson 1982b).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3131

15.1.3.17 Diundecyl phthalate (DUP)

O

O O

O Common Name Diundecyl phthalate Synonym: DUP Chemical Name: diundecyl phthalate CAS Registry No: 3648-20-2

Molecular Formula: C30H50O4 Molecular Weight: 474.716 Melting Point (°C): –9 (Staples et al. 1997) 35.5 (Lide 2003) Boiling Point (°C): Density (g/cm3 at 20°C): 0.96 (Staples et al. 1997) Molar Volume (cm3/mol): 658.0 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.789 (mp at 35.5°C)

Water Solubility (g/m3 or mg/L at 25°C): 1.11 ± 0.28 (shake flask, Howard et al. 1985) < 0.001; 1.6 × 10–7, 4.2 × 10–7 (recommended; calculated-QSAR, Staples et al. 1997) 2.14 × 10–8 (calculated-UNIFAC, Thomsen et al. 1999) 4.41 × 10–6 (calculated-QSPR, Cousins & Mackay 2000)

Vapor Pressure (Pa at 25°C): 6.67 × 10–5, 7.07 × 10–5 (quoted, Staples et al. 1997) 6.67 × 10–5; 1.33 × 10–8, 1.6 × 10–7 (recommended; calculated-QSAR, Staples et al. 1997) 4.97 × 10–7 (calculated-QSPR, Cousins & Mackay 2000)

Henry’s Law Constant (Pa·m3/mol at 25°C): 50.5 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Water Partition Coefficient, log KOW: > 8.0; 11.2, 11.5 (recommended; calculated-QSAR, Staples et al. 1997) 10.54 (calculated-UNIFAC, Thomsen et al. 1999) 10.33 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Air Partition Coefficient, log KOA: 12.02 (calculated-QSPR, Cousins & Mackay 2000)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC:

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3132 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Oxidation: atmospheric photooxidation t½ ~ 0.2–2.0 d (estimated, Staples et al. 1997). –12 3 –1 –1 kOH = 31.847 × 10 cm molecule s and t½ = 0.26 d based on a global, seasonal and diurnal average OH radical concn of 1 × 106 molecule cm–3 in air (Peterson & Staples 2003) Hydrolysis: –1 Biodegradation: primary biodegradation rate constant k = 0.115 d and t½ = 6.17 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984). –1 aerobic biodegradation in aquatic environments, first order k = 0.03 d with t½ = 23 d in unstirred river water (Peterson & Staples 2003) Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: atmospheric photooxidation t½ ~ 0.2–2.0 d (estimated, Staples et al. 1997) 6 Photodegradation t½ = 0.26 d based on a global, seasonal and diurnal average OH radical concn of 1 × 10 molecule cm–3 in air (Peterson & Staples 2003) –1 Surface water: primary biodegradation rate constant k = 0.115 d and t½ = 6.17 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984). biodegradation t½ - 23 d in aerobic aquatic environments (Peterson & Staples 2003) Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3133

15.1.3.18 Ditridecyl phthalate (DTDP)

O

O O

O

Common Name: Ditridecyl phthalate Synonym: DTDP Chemical Name: CAS Registry No: 119-06-2. 68515-47-9

Molecular Formula: C34H58O4 Molecular Weight: 530.823 Melting Point (°C): –37 (Staples et al. 1997) Boiling Point (°C): Density (g/cm3 at 20°C): 0.953 (Staples et al. 1997) Molar Volume (cm3/mol): 746.8 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 0.34 (shake flask-nephelometry, Hollifield 1979) < 0.30 (shake flask, Howard et al. 1985; quoted, Adams et al. 1995) 0.34, < 0.30 (quoted, Staples et al. 1997) < 0.001; 1.5 × 10–9, 4.2 × 10–9 (recommended, calculated-QSAR, Staples et al. 1997) 4.07 × 10–10 (calculated-UNIFAC, Thomsen et al. 1999) 7.0 × 10–8 (calculated-QSPR, Cousins & Mackay 2000)

Vapor Pressure (Pa at 25°C): < 6.67 × 10–5 (quoted, Staples et al. 1997) < 6.67 × 10–5; 1.33 × 10–9, 3.33 × 10–9 (recommended; calculated-QSAR, Staples et al. 1997) 3.63 × 10–8 (calculated-QSPR, Cousins & Mackay 2000)

Henry’s Law Constant (Pa·m3/mol at 25°C): 275 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Water Partition Coefficient, log KOW: 8.40 (estimated, Williams et al. 1995) > 8.0; 13.1, 13.4 (recommended; calculated-QSAR, Staples et al. 1997) 12.28 (calculated-UNIFAC, Thomsen et al. 1999) 12.06 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Air Partition Coefficient, log KOA: 13.01 (calculated-QSPR, Cousins & Mackay 2000)

Bioconcentration Factor, log BCF:

Sorption Partition Coefficient, log KOC: 6.08 (soil/sediment, Williams et al. 1995; quoted, Staples et al. 1997)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3134 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

5.87, 6.45, 6.28; 6.08 (soil/sediment: exptl. data; mean value, Williams et al. 1995)

6.26, 8.30 (soil/sediment: exptl. mean, calculated-KOW, Williams et al. 1995)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

Oxidation: atmospheric photooxidation t½ ~ 0.2–2.0 d (estimated, Staples et al. 1997). Hydrolysis:

Biodegradation: degradation t½ = 10.5 d by microorganisms (Pseudomonas acidovorans 256–1) from soil or waste water at 30°C (Kurane et al. 1977); –1 primary biodegradation rate constant k = 0.029 d and t½ = 27.6 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment:

Air: atmospheric photooxidation t½ ~ 0.2–2.0 d (estimated, Staples et al. 1997). –1 Surface water: primary biodegradation rate constant k = 0.029 d and t½ = 27.6 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984). Groundwater: Sediment:

Soil: degradation t½ = 10.5 d by microorganisms (Pseudomonas acidovorans 256–1) from soil or waste water at 30°C (Kurane et al. 1977). Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3135

15.1.3.19 Butyl benzyl phthalate (BBP)

O

O O

O

Common Name: Butyl benzyl phthalate Synonym: BBP, benzyl butyl phthalate Chemical Name: butyl benzyl phthalate, benzyl butyl phthalate CAS Registry No: 85-68-7

Molecular Formula: C19H20O4, C6H5COOCH2C6H4COOC4H9 Molecular Weight: 312.360 Melting Point (°C): –35.0 (Callahan et al. 1979; Mabey et al. 1982; Howard 1989) Boiling Point (°C): 370.0 (Verschueren 1983; Howard 1989; Lide 2003) Density (g/cm3 at 20°C): 1.111 (Staples et al. 1997)

Molar Volume (cm3/mol): 369.2 (calculated-Le Bas method at normal boiling point) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 2.90 (Hirzy et al. 1978) 0.71 (shake flask-nephelometry, practical grade, Hollifield 1979) 2.9 ± 1.2 (shake flask-GC, Gledhill et al. 1980) 40.2 (shake flask-LSC, Veith et al. 1980) 2.82 (20°C, shake flask-UV, Leyder & Boulanger 1983) 2.90 ± 1.2 (Verschueren 1983) 2.69 ± 0.15 (shake flask-HPLC/UV, Howard et al. 1985)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 0.00115 (20°C, Gledhill et al. 1980) 0.00799 (calculated using Truton’s rule, Mabey et al. 1982) 0.00115 (Petrasek et al. 1983) 0.00115 (20°C, Verschueren 1983)

log (PL/kPa) = 9.1472 – 4647.5/(T/K), temp range: 416–516 K, (Antoine eq., Stephenson & Malanowski 1987) 0.0011, 0.00133 (quoted, calculated-solvatochromic parameters and UNIFAC, Banerjee et al. 1990) 0.00067 (recommended, Staples et al. 1997) 0.0249 (calculated-QSPR, Cousins & Mackay 2000)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.132 (calculated-P/C, Wolfe et al. 1980a) 0.132 (calculated, Lyman et al. 1982) 0.841 (calculated-P/C, Mabey et al. 1982) 0.104 (quoted from WERL Treatability Data, Ryan et al. 1988) 0.077 (selected, Staples et al. 1997) 0.205 (calculated-QSPR, Cousins & Mackay 2000)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3136 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Octanol/Water Partition Coefficient, log KOW: 4.80 (Hirzy et al. 1978) 5.80 (calculated as per Leo et al. 1971) 4.77 (shake flask-GC analysis of both phases, Gledhill et al. 1980) 4.05 (shake flask-LSC, Veith et al. 1980; Veith & Kosian 1982) 4.75 (RPHPLC-RT correlation, Veith et al. 1980) 3.97 (HPLC-k′ correlation, McDuffie 1981) 4.11, 3.23–4.45 (shake flask method: mean, range, OECD 1981) 4.91 (20°C, shake flask-UV, Leyder & Boulanger 1983) 4.78 (Verschueren 1983) 3.57 (HPLC-RT correlation, Howard et al. 1985) 4.91 (calculated, Hansch & Leo 1985) 4.87 (calculated-CLOGP, Müller & Klein 1992) 4.59 (recommended, Staples et al. 1997) 4.70 (calculated-QSPR, Cousins & Mackay 2000)

Octanol/Air Partition Coefficient, log KOA: 8.78 (calculated-QSPR, Cousins & Mackay 2000)

Bioconcentration Factor, log BCF:

2.74–3.34 (calculated-KOW, Veith et al. 1979, 1980) 2.82 (bluegill sunfish, Barrows et al. 1980;)

2.71 (calculated-KOW, Gledhill et al. 1980) 2.82 (bluegill sunfish, quoted, Gledhill et al. 1980) 2.19–2.95 (fathead minnows, quoted, Gledhill et al. 1980) 2.89 (bluegill sunfish, Veith et al. 1980; Veith & Kosian 1982)

3.90 (calculated-KOW, Wolfe et al. 1980a) 4.67 (microorganisms-water, calculated-KOW, Mabey et al. 1982) 3.57 (sediment, calculated-KOW, Pavlou & Weston 1983, 1984) 2.89 (quoted, Isnard & Lambert 1988; quoted, Banerjee & Baughman 1991)

2.72 (calculated-KOW and Soctanol, Banerjee & Baughman 1991)

Sorption Partition Coefficient, log KOC: 1.83–2.54 (soil, batch equilibration-GC, Gledhill et al. 1980;) 3.95 (soil/sediment, Gledhill et al. 1980)

3.81 (calculated-KOW, Wolfe et al. 1980a) 5.23 (sediment-water, calculated-KOW, Mabey et al. 1982) 4.23 (Broome County soil in New York, Russell & McDuffie) 4.23, 3.97 (soil, quoted, calculated-MCI and fragment contribution, Meylan et al. 1992) 2.60 (activated carbon, calculated-MCI, Blum et al. 1994) 3.21 (quoted or calculated-QSAR MCI 1χ, Sabljic et al. 1995)

5.00 (suspended solids, calculated-Kd assuming a 0.1 org. carbon fraction, Staples et al. 1997) 3.21, 3.88; 3.11, 3.07, 3.21, 3.32, 3.15 (soil: quoted lit., calculated-KOW; HPLC-screening method using LC-columns of different stationary phases, Szabo et al. 1999)

Environmental Fate Rate Constants, k, and Half-Lives, t½: Volatilization: Photolysis: direct photolysis (near surface) rate constant k = 2 × 10–4 h–1 in natural water (Wolfe et al 1980a);

photodegradation t½ > 100 d (Gledhill et al. 1980; quoted, Verschueren 1983; Howard 1989). Oxidation: the free radical oxidation rate constant k = 18 M·s–1 for reaction with peroxy radical (Wolfe et al. 1980a); rate constant k << 360 M–1·h–1 for singlet oxygen and k = 280 M–1·h–1 for peroxy radical (Mabey et al. 1982);

photooxidation t½ = 6–60 h, based on estimated rate data for the reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3137

predicted atmospheric photooxidation t½ = 0.5–5.0 d from Atkinson 1988 atmospheric-oxidation program (Staples et al. 1997). –12 3 –1 –1 kOH = 11.049 × 10 cm molecule s and t½ = 0.75 d based on a global, seasonal and diurnal average OH radical concn of 1 × 106 molecule cm–3 in air (Peterson & Staples 2003) –1 –1 Hydrolysis: the alkaline hydrolysis rate constant k ~ 38 M ·h ; hydrolytic t½ = 80 to 4000 d at pH 8 and 30°C (Wolfe et al. 1980a; quoted, Gledhill et al. 1980);

chemical degradation (hydrolysis) t½ > 100 d (Gledhill et al. 1980; quoted, Verschueren 1983; Howard 1989; selected, Staples et al. 1997).

Biodegradation: degradation t½ ~ 2 d in river water and t½ = 2 h in activated sludge (Saeger & Tucker 1976) degradation t½ = 3 d by microorganisms isolated from soil or waste water at 30°C (Kurane et al. 1977) microbial degradation rate constant k = 2.9 × 10–8 mL·organism–1·s–1 (Wolfe et al. 1981a); 0–24% mineralization in > 8 wk in municipal digested sludge (Horowitz et al. 1982); primary degradation accounted for > 95% loss in 7 d with an initial concentration of 1.0 mg/L in a lake

water microcosm with t½ = < 4 d and 100% primary degradation was observed after 9 d while t½ =2.0d (Gledhill et al. 1980; quoted, Verschueren 1983; Howard 1989); significant degradation with rapid adaptation within 7 d in an aerobic environment with k > 0.5 d–1 (Tabak et al. 1981; quoted, Mills et al. 1982); –1 degradation rate constant k = 0.043 d corresponding to t½ = 19.4 d in a shake flask biodegradation experiment (Sugatt et al. 1984); greater than 90% degraded within 40 d in digested sludge (Shelton et al. 1984); 99% degraded in activated sludge systems in 48 h (O’Grady et al. 1985); –3 –1 anaerobic digestion of sludge with first-order rate constant k = 6.5 × 10 h and t½ = 107 h (Ziogou et al. 1989);

aqueous aerobic t½ = 24–168 h, based on unacclimated river die-away test and aqueous anaerobic t½ = 672–4320 h, based on unacclimated anaerobic screening test data (Howard et al. 1991) –1 Aerobic biodegradation in aquatic environments, first order k = 0.46 d with t½ = 1.5 d in unstirred river –1 –1 water, k = 0.50 d with t½ = 1.4 d in microcosm, lake, k = 0.35 d with t½ = 2.0 d in river water, –1 –1 k = 0.14 d with t½ = 5.0 d in microcosm, un-impacted, k > 0.023 d with t½ < 3.0 d in microcosm, –1 Illinois river, and k = 2.2 d with t½ = 0.32 d in shake river water (Peterson & Staples 2003) –1 –1 Anaerobic biodegradation k = 0.056 d with t½ = 12.4 d in undiluted sludge, batch incubation, k = 0.19 d –1 –1 with t½ = 3.7 d in undiluted sludge, k = 0.096 d with t½ = 7.2 d in 10% dilute sludge; k = 0.076 d –1 with t½ = 9.1 d in 10% freshwater sediment and k = 0.051 d with t½ = 13.6 d in 10% salt marsh sediment (Peterson & Staples 2003) Biotransformation: estimated rate constant k = 3 × 10–9 mL·cell–1·h–1 for bacterial transformation in water (Mabey et al. 1982); microbial transformation k = (3.1 ± 0.8) × 10–11 L·organism–1·h–1 in natural aquatic systems (Steen et al. 1979; quoted, Steen 1991).

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants or Half-Lives: depuration t½ < 24 and > 48 h from tissues of bluegill sunfish (Barrows et al. 1980). –1 k2 = 0.0464 d (10°C, 0.1 kg staghorn sculpin, lipid content 5%, Gobas et al. 2003) –1 k2 = 0.00397 d (10°C, 3 kg dogfish, lipid content 15%, Gobas et al. 2003)

Half-Lives in the Environment:

Air: t½ = 1.5 d in the atmosphere (GEMS 1984; quoted, Howard 1989); t½ = 6–60 h, based on estimated rate data for the reaction with hydroxyl radical in air (Atkinson 1987; quoted, Howard et al. 1991). 6 photodegradation t½ = 0.75 d based on a global, seasonal and diurnal average OH radical concn of 1 × 10 molecule cm–3 in air (Peterson & Staples 2003)

Surface water: biodegradation t½ ~ 2 h by naturally occurring, mixed microbial populations in river water (Saeger & Tucker 1976);

hydrolytic t½ = 80 to 4000 d at pH 8 and 30°C (Wolfe et al. 1980a; quoted, Gledhill et al. 1980); t½ = 2 d for river water, t½ < 4 d for lake water-sediment microcosm, and t½ < 100 d for chemical degradation (hydrolysis) (Gledhill et al. 1980);

biodegradation t½ = 19.4 d in an acclimated shake flask CO2 evolution test (Sugatt et al. 1984);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3138 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

overall t½ = 24–168 h, based on unacclimated river die-away test (Howard et al. 1991) biodegradation t½.= 0.32–3 d in aerobic aquatic environments (Peterson & Staples 2003) Ground water: t½ = 48–4320 h, based on estimated unacclimated aqueous aerobic and anaerobic biodegradation half-lives (Howard et al. 1991).

Sediment: anaerobic biodegradation t½ = 9.1 h in 10% freshwater sediment, and t½ = 13.6 d in 10% salt marsh sediment (Peterson & Staples 2003)

Soil: degradation t½ = 3 d by microorganisms isolated from soil or waste water at 30°C (Kurane et al. 1977) t½ = 10–50 d via volatilization subject to plant uptake from the soil (Ryan et al. 1988); t½ = 24–168 h, based on estimated unacclimated aqueous aerobic biodegradation half-life (Howard et al. 1991).

Biota: depuration t½ < 24 and > 48 h (tissues of bluegill sunfish in 21-d exposure, Barrows et al. 1980) t½ < 2 d from bluegill sunfish (Gledhill et al. 1980; quoted, Verschueren 1983).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3139

15.1.4 PHOSPHATE ESTERS 15.1.4.1 Triaryl phosphates

15.1.4.1.1 t-Butylphenyl diphenyl phosphate (tBPDP, BPDP)

O O P O O Common Name: t-Butylphenyl diphenyl phosphate Synonym: TBPDP, BPDP Chemical Name: CAS Registry No: 56803-37-3 o-tert-butylphenyl diphenyl phosphate (o-TBPDP) 83242-23-2 m-tert-butylphenyl diphenyl phosphate (m-TBPDP) 83242-22-2 p-tert-butylphenyl diphenyl phosphate (p-TBPDP) 981-40-8

Molecular Formula: C22H23O4P, (CH 3)C6H4(C6H5)2O4P Molecular Weight: 382.389 Melting Point (°C): –21 (Muir 1984) Boiling Point (°C): 195/0.20 mmHg, 200/0.2 mmHg, 200/0.20 mmHg (o-, m-, p-TBPDP, Wightman & Malaiyanki 1983) 261/6 mmHg (Muir 1984) 420 (Boethling & Cooper 1985) Density (g/cm3): Molar Volume (cm3/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 3.2 (shake flask-GC, Saeger et al. 1979)

Vapor Pressure (Pa at 25°C): 180 (200°C, Muir 1984) 1.87 × 10–4 (quoted measured value, Boethling & Cooper 1985) 6.13 × 10–5 (estimated from boiling point, Boethling & Cooper 1985)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.086 (estimated-P/C, Muir 1984, Muir et al. 1985) 0.0223, 0.0073 (calculated-P/C, Boethling & Cooper 1985) 2.18 (gas stripping, Muir et al. 1985)

Octanol/Water Partition Coefficient, log KOW: 5.12 (shake flask-concn ratio, Saeger et al. 1979;) 3.23, 4.76, 6.44; 5.97 (RP-HPLC-k′ correlation; mean value, Renberg et al. 1980)

Bioconcentration Factor, log BCF: 2.89 (calculated, Saeger et al. 1979) 3.36, 3.04, 3.13 (rainbow trout: “initial rate” method, static test, Biofac, Muir et al. 1983b) 2.89 (rainbow trout, calculated with hexane extractable radioactivity, Muir et al. 1983b) 3.52, 2.89, 2.70 (fathead minnow: “initial rate” method, static test, Biofac, Muir et al. 1983b) 2.76 (fathead minnow, calculated with hexane extract, Muir et al. 1983b)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3140 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

3.94, 2.89 (rainbow trout, fathead minnow, static expt., quoted, Boethling & Cooper 1985)

3.64 (calculated-KOW, Boethling & Cooper 1985)

Sorption Partition Coefficient, log KOC:

4.16 (calculated-KOW, Muir 1984) 3.36 (soil, estimated from solubility, Boethling & Cooper 1985)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: t½ = 128 d from 1 m deep water system was estimated to be 128 d (calculated, Muir 1984) moderate rate of volatilization from water, t½ = 152 d at 0.5-m depth (Muir et al. 1985). Photolysis: Oxidation:

Hydrolysis: t½ = 1.92 h in pH 13.0 acetone/water 1:1 solution (Muir et al. 1983b). Biodegradation: complete primary degradation in 10–21 d for river die-away studies when exposed to the natural

microbial population of the water; t½ < 28 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: –1 –1 µ k1 = 22.8 h , 29.3 h (rainbow trout, exposure concn 5, 50 g/L, Muir et al. 1983b). –1 –1 µ k1 = 17.7 h , 18.0 h (fathead minnow, exposure concn 5, 50 g/L, Muir et al. 1983b). –1 –1 µ k2 = 0.0137 h , 0.0113 h (rainbow trout, exposure concn 5, 50 g/L for 0–144 h interval, Muir et al. 1983b). –1 –1 µ k2 = 0.0106 h , 0.0111 h (rainbow trout, exposure concn 5, 50 g/L for 0–432 h interval, Muir et al. 1983b) –1 –1 µ k2 = 0.0088 h , 0.0074 h (fathead minnow, exposure concn 5, 50 g/L for 0–144 h interval, Muir et al. 1983b). –1 –1 µ k2 = 0.0078 h , 0.0070 h (fathead minnow, exposure concn 5, 50 g/L for 0–432 h interval, Muir et al. 1983b)

Half-Lives in the Environment: Air: Surface water: complete primary degradation in 10–21 d for river die-away studies when exposed to the natural

microbial population of the water; t½ < 28 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979);

hydrolysis t½ = 1.92 h in pH 13.0 acetone/water 1:1 solution (Muir et al. 1983b); t½ = 128 d, volatilization from 1 m deep water system (Muir 1984); pseudo-first-order t½ = 0.44 d in pond water; moderate rate of volatilization from water column with t½ = 152 d at 0.5-m depth (Muir et al. 1985). Groundwater:

Sediment: pseudo-first-order t½ = 39 d in pond bottom sediment during a 49-d period (Muir et al. 1985). Soil:

Biota: depuration t½ = 42 h in chironomid larvae (Muir et al. 1985).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3141

15.1.4.1.2 Cresyl diphenyl phosphate (CDP)

O O CH P 3 O O Common Name: Cresyl diphenyl phosphate Synonym: CDP Chemical Name: CAS Registry No: 78-31-9 o-CDP 5254-12-6 m-CDP 69500-28-3 p-CDP 78-31-9

Molecular Formula: C19H17O4P Molecular Weight: 340.309 Melting Point (°C): –40 (p-CDP, Lide 2003) Boiling Point (°C): 180/0.60 mmHg, 190/0.60 mmHg, 200/0.70 mmHg (o-, m-, p-CDP, Wightman & Malaiyandi 1983) 368, 390 (at 1 atm, Boethling & Cooper 1985) 235–255/4 mmHg, 255/5 mmHg (Boethling & Cooper 1985) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 2.60 (shake flask-GC, Saeger et al. 1979)

Vapor Pressure (Pa at 25°C): 5.47 × 10–3, 1.21 × 10–3, 3.87 × 10–4, 2.80 × 10–4 (estimated from reported boiling points, Boethling & Cooper 1985) 6.27 × 10–4 (quoted measured value, Boethling & Cooper 1985)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.470 (calculated-P/C, Muir 1984) 0.798, 0.162, 0.0820, 0.0507, 0.0355 (calculated-P/C, Boethling & Cooper 1985)

Octanol/Water Partition Coefficient, log KOW: 4.505 (shake flask-concn ratio, Saeger et al. 1979) 3.23, 3.63, 4.06; 3.77 (RP-HPLC-k′ correlation; mean value, Renberg 1980) 4.40 (Bengtsson et al. 1986)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF: 2.56 (calculated, Saeger et al. 1979)

2.99 (calculated-KOW, Boethling & Cooper 1985) 2.002.34 (bleak, 280-d exposure, Bengtsson et al. 1986)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3142 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Sorption Partition Coefficient, log KOC:

3.83 (calculated-KOW, Muir 1984) 3.41 (soil, estimated from solubility, Boethling & Cooper 1985)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: t½ ~ 22 d for 1 m deep water system (estimated, Muir 1984). Photolysis: Oxidation: Hydrolysis: Biodegradation: complete primary degradation in less than 7 d for river die-away studies when exposed to the

natural microbial population of water; t½ < 7 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: Surface water: complete primary degradation in less than 7 d for river die-away studies when exposed to the

natural microbial population of water; t½ < 7 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979);

volatilization t½ = 22 d for 1 m deep water system (estimated, Muir 1984). Groundwater: Sediment: Soil:

Biota: elimination t½ = 4 d or less (beak, 28-d exposure, Bengtsson 1986).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3143

15.1.4.1.3 Isopropylphenyl diphenyl phosphate (IPPDP)

O O P O O Common Name: Isopropylphenyl diphenyl phosphate Synonym: IPPDP, IPDP Chemical Name: CAS Registry No: 28108-99-8 o-IPPDP 64532-94-1 m-IPPDP 69515-46-4 p-IPPDP 55864-04-5

Molecular Formula: C21H21O4P, (CH 3)2CHC6H4O4P Molecular Weight: 368.362 Melting Point (°C): –26 (Muir 1984) Boiling Point (°C): 175/0.05 mmHg, 180/0.02 mmHg, 185/0.05 mmHg (Wightman & Malaiyandi 1983) 220–230/1 mmHg (Muir 1984, Boethling & Cooper 1985) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 2.20 (room temp, shake flask-GC, Saeger et al. 1979)

Vapor Pressure (Pa at 25°C): 1.47 × 10–4 (estimated from boiling point, Boethling & Cooper 1985) 3.73 × 10–5 (quoted measured value, Boethling & Cooper 1985)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.243, 0.0628 (calculated-P/C, Boethling & Cooper 1985)

Octanol/Water Partition Coefficient, log KOW: 5.305 (shake flask-concn ratio, Saeger et al. 1979; quoted, Muir 1984) 3.23, 4.30, 5.40, 6.57; 5.99 (RP-HPLC-k′ correlation; mean, Renberg et al. 1980) 5.70 (quoted measured value, Boethling & Cooper 1985)

Octanol/Air Partition Coefficient, log KOA: Bioconcentration Factor, log BCF: 2.99 (calculated, Saeger et al. 1979) 3.88 (estimated from solubility, Boethling & Cooper 1985)

Sorption Partition Coefficient, log KOC:

4.26 (calculated-KOW, Muir 1984) 3.45 (soil, estimated from solubility, Boethling & Cooper 1985)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3144 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Oxidation: Hydrolysis: Biodegradation: complete primary degradation in 21 d for river die-away studies when exposed to the natural

microbial population of water; t½ = 28–48 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: Half-Lives in the Environment: Air: Surface water: complete primary degradation in 21 d for river die-away studies when exposed to the natural

microbial population of the water; t½ = 28–48 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979). Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3145

15.1.4.1.4 4-Cumylphenyl diphenyl phosphate (CPDPP)

O O P O O Common Name: 4-Cumylphenyl diphenyl phosphate Synonym: CPDPP Chemical Name: CAS Registry No: 84602-56-2

Molecular Formula: C27H25O4P, C 6H5C(CH3)2(C6H5)2O4P Molecular Weight: 444.458 Melting Point (°C): Boiling Point (°C): 230–235/0.15 mmHg (Wightman & Malaiyandi 1983) 494 (Boethling & Cooper 1985) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 0.063 ± 0.025 (Mayer et al. 1981) 0.060 (Boethling & Cooper 1985)

Vapor Pressure (Pa at 25°C): 1.726 × 10–9 (estimated from boiling point, Boethling & Cooper 1985)

Henry’s Law Constant (Pa·m3/mol at 25°C): 8.62 × 10–4 (calculated-P/C, Boethling & Cooper 1985)

Octanol/Water Partition Coefficient, log KOW: 6.08 (Mayer at al. 1981) 6.10 (quoted, Boethling & Cooper 1985)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

3.40 (calculated-KOW, Mayer et al. 1981) 3.45, 3.10–3.66 (mean value, range, rainbow trout 90-d exposure, Mayer et al. 1981)

4.40 (calculated-KOW, Boethling & Cooper 1985)

Sorption Partition Coefficient, log KOC:

4.53 (soil, calculated-S and KOW, Mayer et al. 1981) 4.30 (soil, estimated from solubility, Boethling & Cooper 1985)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Oxidation:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3146 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Hydrolysis: hydrolyzed in alkaline solutions, t½ = 5 d at pH 9 and 25°C, but t½ > 28 d at pH 5 and 7 (Mayer et al. 1981).

Biodegradation: t½ > 21 d in river die-away procedure; the half-lives of the disappearance by sediment adsorption and degradation of CPDFF for microcosm core conditions: active, aerated or nitrogen-purge, light or dark

t½ < 3 d, sterile, aerated, light t½ = 7 d and sterile, nitrogen-purge, light t½ > 28 d (Mayer et al. 1981). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air:

Surface water: hydrolyzed in alkaline solutions, t½ = 5 d at pH 9 and 25°C, but t½ > 28 d at pH 5 and 7; biodegradation t½ > 21 d in river die-away procedure (Mayer et al. 1981). Groundwater: Sediment: rapidly disappeared from the active core-water columns, 90% in < 3 d in the microcosm-lake simulation study, the half-lives of the disappearance of CPDFF by sediment adsorption and degradation are, for

microcosm core conditions: active, aerated or nitrogen-purge, light or dark t½ < 3 d; sterile, aerated, light t½ = 7 d and sterile, nitrogen-purge, light t½ > 28 d (Mayer et al. 1981). Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3147

15.1.4.1.5 Nonylphenyl diphenyl phosphate (NPDPP)

O O (CH ) CH P 2 8 3 O O Common Name: Nonylphenyl diphenyl phosphate Synonym: NPDPP, Pydral 50E Chemical Name: CAS Registry No: 38638-05-0 m-NPDPP 84602-55-1 p-NPDPP 64532-97-4

Molecular Formula: C27H33O4P, C 9H19(C6H5)3O4P Molecular Weight: 452.522 Melting Point (°C): Boiling Point (°C): 220–225/0.07 mmHg (m-NPDPP, Wightman & Malaiyandi 1983) 215–220/0.07 mmHg (p-NPDPP, Wightman & Malaiyandi 1983) 471 (Boethling & Cooper 1985) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 0.77 ± 0.25 (Mayer et al. 1981) 0.80 (Boethling & Cooper 1985)

Vapor Pressure (Pa at 2 5°C): 6.13 × 10–5 (estimated from boiling point, Boethling & Cooper 1985)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.00142 (calculated-P/C, Boethling & Cooper 1985)

Octanol/Water Partition Coefficient, log KOW: 5.93 (Mayer et al. 1981; quoted, Muir 1984) 5.90 (quoted, Boethling & Cooper 1985)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF: 3.32 (estimated, Mayer et al. 1981) 2.84, 2.49–2.96 (mean value and range, rainbow trout 90-d exposure, Mayer et al. 1981)

4.26 (calculated-KOW, Boethling & Cooper 1985)

Sorption Partition Coefficient, log KOC:

4.36 (soil, calculated-solubility and KOW, Mayer et al. 1981) 4.61 (calculated-KOW, Muir 1984) 3.69 (soil, estimated from solubility, Boethling & Cooper 1985)

Environmental Fate Rate Constants, k, Half-Lives, t½ Volatilization: Photolysis:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3148 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Oxidation:

Hydrolysis: t½ = 6 d at pH 9 and 25°C, but t½ > 28 d at pH 5 and 7 (Mayer et al. 1981). Biodegradation: primary biodegradation t½ > 21 d in river die-away procedure; half-life for disappearance by sediment adsorption and degradation in microcosms-lake simulation study, for core conditions: active,

aerated or nitrogen-purge, light or dark t½ < 3 d; sterile, aerated, light t½ = 7 d and sterile, nitrogen-purge, light t½ > 28 d (Mayer et al. 1981). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air:

Surface water: hydrolyzed in alkaline solutions, t½ = 6 d at pH 9 and 25°C, but t½ > 28 d at pH 5 and 7 (Mayer et al. 1981). Groundwater: Sediment: rapidly disappeared from the active core-water column, 90% in < 3 d. Time to 50% disappearance by sediment adsorption and degradation in microcosms-lake simulation study, for microcosm core conditions:

active, aerated or nitrogen-purge, light or dark – t½ < 3 d; sterile, aerated, light – t½ = 7 d and sterile, nitrogen- purge, light –t½ > 28 d (Mayer et al. 1981). Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3149

15.1.4.1.6 Triphenyl phosphate (TPP)

O O P O O Common Name: Triphenyl phosphate Synonym: TPP Chemical Name: triphenyl phosphate CAS Registry No: 115-86-6

Molecular Formula: C18H15O4P Molecular Weight: 326.283 Melting Point (°C): 50.5 (Lide 2003) Boiling Point (°C): 245/11 mmHg (Verschueren 1983; Budavari 1989; Lide 2003) 377 (Stephenson & Malanowski 1987) Density (g/cm3): Molar Volume (cm3/mol): 270.7 (50°C, Stephenson & Malanowski 1987) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.27, 0.292

Water Solubility (g/m3 or mg/L at 25°C): 1.90 (shake flask-GC, Saeger et al. 1979) 1.9 ± 0.2 (Mayer et al. 1981) 0.73 (shale flask-nephelometry, Hollifield 1979)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): < 13.3 (30°C, Verschueren 1983) 2.0 × 10–4, 1.6 × 10–4, 1.07 × 10–4 (estimated from reported boiling points, Boethling & Cooper 1985) log (P/kPa) = 8.195 – 4253/(T/K); temp range 275–410°C (Antoine eq., Stephenson & Malanowski 1987) log (P/mmHg) = 28.0972 – 5.6684 × 103/(T/K) – 5.9768·log (T/K)–3.1567 × 10–9·(T/K) + 1.0751 × 10–12·(T/K)2; temp range 323–687 K (vapor pressure eq., Yaws et al. 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.168 (calculated-P/C, Muir 1984) 0.0265, 0.0284, 0.018 (calculated-P/C, Boethling & Cooper 1985)

Octanol/Water Partition Coefficient, log KOW: 4.63 (shake flask-concn ratio, Saeger et al. 1979) 4.62 (Mayer et al. 1981) 4.78 (shake flask-concn ratio, Sasaki et al. 1981) 3.15 (RP-HPTLC-k′ correlation, Renberg et al. 1980) 3.63–3.61 (literature average, Muir 1984) 4.60, 4.70 (Boethling & Cooper 1985) 3.90 (Bengtsson et al. 1986)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF or log KB:

2.45, 2.62 (quoted-rainbow trout data, calculated-KOW, Saeger et al. 1979) 2.22 (fathead minnow, mixed isomers, Veith et al. 1979)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3150 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

3.41 (rainbow trout, rate constant ratio k1/k2, Muir et al. 1980) 3.29, 2.63, 2.58 (rainbow trout, calculated-KOW, Muir et al. 1980) 3.02, 2.92, 2.00 (rainbow trout, calculated-S, Muir et al. 1980)

2.62 (rainbow trout, estimated from KOW, Mayer et al. 1981) 2.43, 2.12–2.56 (mean value, range, rainbow trout in 90-d exposure, Mayer et al. 1981) 2.40–2.79 (killifish, whole fish basis, 72-h exposure, static system, Sasaki et al. 1981) 2.04–2.18 (goldfish, static system, Sasaki et al. 1981; quoted, Boethling & Cooper 1985) 2.20–2.79 (killifish, flow through system, Sasaki et al. 1982; quoted, Boethling & Cooper 1985) 2.28–2.29 (killifish, 32–35 d exposure, flow through system, Sasaki et al. 1983) 3.14, 2.76, 2.96 (rainbow trout: “initial rate” method, static test, Biofac, Muir et al. 1983b) 2.51 (rainbow trout, calculated with hexane extractable radioactivity, Muir et al. 1983b) 3.24, 2.75, 2.34 (fathead minnow: “initial rate” method, static test, Biofac, Muir et al. 1983b) 2.62 (fathead minnow, calculated with hexane extract, Muir et al. 1983b) 2.76, 2.51 (rainbow trout in static test expt., quoted from Muir et al. 1983b, Boethling & Cooper 1985) 2.75, 2.62 (fathead minnow in static test expt., quoted from Muir et al. 1983b, Boethling & Cooper 1985)

3.26 (estimated-KOW, Boethling & Cooper 1985) 2.60 (bleak, 28-d exposure, Bengtsson et al. 1986)

Sorption Partition Coefficient, log KOC:

3.74 (soil, calculated-S, KOW, Mayer et al. 1981) 3.89 (calculated-KOW, Muir 1984) 3.49 (calculated-solubility, Boethling & Cooper 1985)

Environmental Fate Rate Constant, k, and Half-Lives, t½:

Volatilization: t½ = 60 d (Muir 1984). Photolysis: Oxidation: Hydrolysis: k = 0.0253 and 0.0227 L mol–1 s–1 for the colorimetric and acid-base method, respectively, in dioxan-water 3 (3:1 v/v) at 35°C; the mean second order rate constants: 10 k2 at 0°C, 10.1°C, 24.7°C, and 35°C were 0.235, 0.477, 1.06, and 2.32 L mol–1 s–1, respectively, in 60% dioxan-water (Barnard et al. 1961);

t½ = 1.3 yr under neutral conditions from kinetic data in the environment (estimated, Saeger et al. 1979) –8 –1 k = 6.0 × 10 s , with t½ = 130 d, the pseudo-first-order rate constant in dioxan-water (3:1 v/v) at 100°C; –1 –1 while the second-order rate constant k = 0.0106 L mol s with t½ = 23 d at pH 9.5 and t½ = 474 d at pH 8.2 under alkaline conditions at 24.7°C (quoted, Howard & Deo 1979); –1 –1 k(second order alkaline) = 0.027 M s , with an estimated t½ ~ 1000 yr (Wolfe 1980) t½ = 19 d at pH 7 but t½ = 3 d at pH 9 at 25°C, the most important process for abiotic transformation of aryl phosphates in the environment, much more rapid at alkaline than at neutral pH (Mayer et al. 1981, quoted, Boethling & Cooper 1985)

t½ = 7.5 d at pH 8.2, t½ = 1.3 d at pH 9.5, t½ = 20–25 d at pH 7 and 21°C (Howard & Deo 1979; quoted, Boethling & Cooper 1985)

t½ = 0.49 h at pH 13.0 in acetone/water 1:1 solution (Muir et al. 1983b) Biodegradation: complete primary degradation in less than 7 d in the river die-away studies exposed to the

natural microbial population of the river water; t½ < 7 d for primary biodegradation rate for from semicon- tinuous activated sludge studies (Saeger et al. 1979); readily biodegraded, in the semicontinuous activated sludge test, degradation of TPP exceeding 95% was

observed over a 24-h cycle, and river die-away tests showed t½ = 2–4 d; time to 50% from the active core water-column disappearance for TPP in microcosms simulating lake conditions was 3–10 d (Mayer et al. 1981). Biotransformation:

Bioconcentration and Uptake and Elimination Rate Constants (k1 and k2): –1 k1 = 46.36 h (rainbow trout, Muir et al. 1980). –1 k2 = 0.0197 h (rainbow trout, 0–9 d, fast clearance, Muir et al. 1980). –1 k2 = 0.00245 h (rainbow trout, 9–31 d, slow clearance, Muir et al. 1980)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3151

–1 k1 = 0.4–0.6 h (Chironomus tentans larvae in pond sediment-water system, 96-h exposure, calculated by using first-order kinetic and concn factors, Muir et al. 1983) –1 k1 = 2.1–4.2 h (Chironomus tentans larvae in river sediment-water system, 96-h exposure, calculated by using first-order kinetic and concn factors, Muir et al. 1983) –1 k1 = 3.3–10.4 h (Chironomus tentans larvae in sediment (sand)-water system, 96-h exposure, calculated by using first-order kinetic and concn factors, Muir et al. 1983) –1 k1 = 3.3–16.9 h (Chironomus tentans larvae in sediment (sand)-water system, 96-h exposure, calculated by using initial uptake data of 0–12 h, Muir et al. 1983) –1 k2 = 0.023 h (Chironomus tentans larvae in pond sediment-water system, calculated by concn decay curve, Muir et al. 1983) –1 k2 = 0.039 h (Chironomus tentans larvae in river water system, calculated by concentration decay curve, Muir et al. 1983) –1 k2 = 0.011 h (Chironomus tentans larvae in river sediment-water system, calculated by concentration decay curve, Muir et al. 1983) –1 k2 = 0.016 h (Chironomus tentans larvae in sediment (sand)-water system, calculated by concentration decay curve, Muir et al. 1983). –1 –1 µ k1 = 22.7 h , 20.7 h (rainbow trout, exposure concn 5, 50 g/L, Muir et al. 1983b). –1 –1 µ k1 = 16.5 h , 14.5 h (fathead minnow, exposure concn 5, 50 g/L, Muir et al. 1983b). –1 –1 µ k2 = 0.0116 h , 0.0144 h (rainbow trout, exposure concn 5, 50 g/L for 0–432 h interval, Muir et al. 1983b) –1 –1 µ k2 = 0.0121 h , 0.0140 h (fathead minnow, exposure concn 5, 50 g/L for 0–144 h interval, Muir et al. 1983b). –1 –1 µ k2 = 0.0076 h , 0.0107 h (fathead minnow, exposure concn 5, 50 g/L for 0–432 h interval, Muir et al. 1983b)

Half-Lives in the Environment: Air: Surface water: complete primary degradation in less than 7 d for river die-away studies when exposed to the

natural microbial population of the water; t½ < 7 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979);

t½ = 5 h in the water containing killifish and over 100 h for goldfish (Sasaki et al. 1981); hydrolysis t½ = 19 d at pH 7 but t½ = 3 d at pH 9; t½ = 2–4 d in river die-away test at 25°C, (Mayer et al. 1981, quoted, Boethling & Cooper 1985);

t½ = 7.5 d at pH 8.2 and t½ = 1.3 d at pH 9.5, t½ = 20–25 d at pH 7 at 21°C (Howard & Deo 1979; quoted, Boethling & Cooper 1985); 3 estimated hydrolysis t½ ~ 10 yr (Wolfe 1980); volatilization t½(calc) = 60 d for 1 m deep water(Muir 1984). Ground water:

Sediment: water-column disappearance t½ ~ 3 d of TPP by both adsorption and degradation from microcosms- lake simulation study, for the microcosm core conditions: active, aerated, light or dark – t½ = 3 d; active, nitrogen-purge, light – t½ = 3 d; sterile, aerated, light – t½ = 7 d and sterile, nitrogen-purge, light – t½ = 10 d (Mayer et al. 1981). Soil:

Biota: elimination t½ = 30.4 h in pond sediment-water, t½ = 17.6 h in river water, t½ = 62.7 h in river sediment- water, t½ = 44.4 in sand-water systems (Chironomus tentans larvae, Muir et al. 1983a); elimination t½ = 4 d or less (bleak, 28-d exposure, Bengtsson et al. 1986).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3152 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.1.4.1.7 Tricresyl phosphate (TCP)

H3C O H C O CH 3 P 3 O O Common Name: Tricresyl phosphate Synonym: TCP, tritolyl phosphate, tris(methylphenyl) phosphate Chemical Name: phosphoric acid tris(methylphenyl) ester o-TCP:- tris(2-methylphenyl) phosphate; phosphoric acid tri(2-tolyl) ester m-TCP:- tris(3-methylphenyl) phosphate; phosphoric acid tri(3-tolyl) ester p-TCP:- tris(4-methylphenyl) phosphate; phosphoric acid tri(4-tolyl) ester CAS Registry No: o-TCP [78-30-8]; m-TCP[563-04-2]; p-TCP [78-32-0] mixed isomers - tris(methylphenyl) phosphate [1330-78-5]

Molecular Formula: C21H21O4P, (CH 3C6H4)3O4P Molecular Weight: 368.362 Melting Point (°C): –25/–30 (o-TCP, Verschueren 1983) –33 (mixed isomers, Riddick et al. 1986) 11, 25-26, 77–8 (o-TCP, m-TCP, p-TCP, Muir 1984) 11, 25, 77.5 (o-TCP, m-TCP, p-TCP, Stephenson & Malanowski 1987) 11, 25.5, 77.5 (o-TCP, m-TCP, p-TCP, Lide 2003) Boiling Point (°C): 201/1 mmHg(commercial quality, Burrow 1946) 420 (o-TCP, Verschueren 1983) 410 (o-TCP, Muir 1984: Lide 2003) 313, 206, 216/0.5 mmHg (mixed isomers, o-, m-TCP, Riddick et al. 1986) 241–255/4 mmHg, 265/5 mmHg(Boethling & Cooper 1985) Density (g/cm3 at 20°C): 1.159, 1.1718 (25°C, mixture of isomers, o-TCP, Riddick et al. 1986) 1.16 (o-TCP, Verschueren 1983; Riddick et al. 1987; Budavari 1989) Molar Volume (cm3/mol): 308.1 (20°C, calculated-density, Stephenson & Malanowski 1987) ∆ Enthalpy of Vaporization, HV (kJ/mol): 116.3, 102.9, 113 (m-TCP, Small et al. 1948) 113.4 (p-TCP, Small et al. 1948) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 0.40 (shake flask-GC, Saeger et al. 1979) 0.074 (p-TCP practical grade, shake flask-nephelometry; Hollifield 1979) 0.36 (mixed isomers, Muir 1984) < 0.10 (Riddick et al. 1986)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.00516–0.00612* (m-TCP, Celluloid Corporation samples at 80°C, static and dynamic methods, measured range 80–136°C, Verhoek & Marshall 1939) log (P/µmHg) = 15.886 – 6088/(T/K); temp range 80–136°C (m-TCP, Celluloid Corporation samples, static and dynamic methods, Verhoek & Marshall 1939)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3153

0.0132* (m-TCP, Eastman Kodak Co. samples at 85.2°C, static and dynamic methods, measured range 85.2–126°C, Verhoek & Marshall 1939) log (P/µmHg) = 13.982 – 5373/(T/K); temp range 85.2–126°C (m-TCP, Eastman Kodak Co. samples, static and dynamic methods, Verhoek & Marshall 1939) 0.0113* (p-TCP, 92°C, static and dynamic methods, measured range 92–145°C, Verhoek & Marshall 1939) log (P/µmHg) = 15.223 – 5926/(T/K); temp range 92–145°C (p-TCP, static and dynamic methods, Verhoek & Marshall 1939) 4.13 × 10–4 (extrapolated from exptl. data, measured range 140–156°C, commercial quality, ebulliometry, Burrows 1946) log (P/mmHg) = 12.69 – 5925/(T/K); temp range: ~ 100–150°C (Antoine eq. from exptl., effusion, technical grade, Small et al. 1948) log (P/mmHg) = 12.89 – 6088/(T/K) (m-TCP, Antoine eq. from literature, Small et al. 1948) log (P/mmHg) = 10.98 – 5373/(T/K) (m-TCP, Antoine eq. from literature, Small et al. 1948) log (P/mmHg) = 12.22 – 5895/(T/K); temp range: 100–150°C (m-TCP, Antoine eq., effusion method, data presented in graph and Antoine eq., Small et al. 1948) log (P/mmHg) = 12.22 – 5926/(T/K) (p-TCP, effusion, Antoine eq., Small et al. 1948) log (P/µmHg) = 14.12 – 5480/(T/K); temp range 115–168°C (p-TCP, pendulum-tensimeter method, Perry & Weber 1949) log (P/mmHg) = [–0.2185 × 20835.9/(T/K)] + 10.654252; temp range 154.6–313°C (tritolyl phosphate, Antoine eq., Weast 1972–73) log (P/kPa) = 11.81 – 5925/(T/K) (mixed isomers, Antoine eq., Riddick et al. 1986) log (P/kPa) = 8.56 – 4535/(T/K) (o-TCP, Antoine eq., Riddick et al. 1986) log (P/kPa) = 10.67 – 5787/(T/K) (m-TCP, Antoine eq., Riddick et al. 1986) log (P/kPa) = 13.24 – 5480/(T/K) (p-TCP, Antoine eq., Riddick et al. 1986) 2.26 × 10–4 (o-TCP, Antoine eq., interpolated, Stephenson & Malanowski 1987)

log (PL/kPa) = 8.565 – 4535/(T/K); temp range 293–700 K (o-TCP, Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 11.8856 – 6104.5/[(T/K) – 10.81]; temp range 398–530 K (m-TCP, Antoine eq. for liquid state, Stephenson & Malanowski 1987)

log (PL/kPa) = 10.245 – 5480/(T/K); temp range 388–530 K (p-TCP, Antoine eq. for liquid state, Stephenson & Malanowski 1987) 3.07 × 10–4, 1.25 × 10–4 (estimated from reported boiling points, Boething & Cooper 1985) 1.87 × 10–4 (quoted measured value, Boethling & Cooper 1985) –6 6.10 × 10 (liquid PL, GC-RT correlation, Hinckley et al. 1990) log (P/mmHg) = 21.1624 – 5.2756 × 103/(T/K) – 3.3565·log(T/K) + 8.666 × 10–6·(T/K) – 2.9202 × 10–9·(T/K)2; temp range 428–566 K (o-TCP, vapor pressure eq., Yaws et al. 1994)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.0218 (calculated-P/C, Muir 1984, Muir et al. 1985) 0.283, 0.172, 0.111 (calculated-P/C, Boethling & Cooper 1985) 8.38 (m-TCP, gas stripping, Muir et al. 1985)

Octanol/Water Partition Coefficient, log KOW: 3.42 (HPLC-RT correlation, Veith 1979) 5.11 (shake flask-concn ratio, Saeger et al. 1979) 4.30, 4.65; 4.50 (RP-HPTLC-k′ correlation, Renberg et al. 1980) 5.107–5.12 (Muir 1984) 5.10–5.30 (Bengtsson et al. 1986)

Bioconcentration Factor, log BCF: 5.505, 4.45, 3.57, 3.57, 3.46 (p-TCP, ecological magnification factors for alga, snail, mosquito, fish and Daphnia, Metcalf 1976) 2.88 (calculated for rainbow trout, Saeger et al. 1979) 2.22 (fathead minnow, 32-d exposure, Veith et al. 1979) 3.44, 3.15, 3.17 (p-TCP for rainbow trout: “initial rate” method, static test, Biofac, Muir et al. 1983b)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3154 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

2.89 (p-TCP for rainbow trout, calculated with hexane extract, Muir et al. 1983b) 3.34, 2.97, 2.77 (p-TCP for fathead minnow: “initial rate” method, static test, Biofac, Muir et al. 1983b) 2.85 (p-TCP, fathead minnow, calculated with hexane extractable radioactivity, Muir et al. 1983b) 3.07, 2.89, 3.04 (m-TCP for rainbow trout: “initial rate” method, static test, Biofac, Muir et al. 1983b) 2.49 (m-TCP for rainbow trout, calculated with hexane extractable radioactivity, Muir et al. 1983b) 3.22, 2.77, 2.59 (m-TCP for fathead minnow: “initial rate” method, static test, Biofac, Muir et al. 1983b) 2.66 (m-TCP, fathead minnow, calculated with hexane extract, Muir et al. 1983b)

3.15, 2.89; 3.64 (rainbow trout: p-, m-TCP, static expt.; estimated-KOW, Boethling & Cooper 1985) 2.60 (bleak, 28-d exposure, Bengtsson et al. 1986)

Sorption Partition Coefficient, log KOC:

4.44 (calculated-KOW, Muir 1984) 3.86 (estimated from solubility, Boethling & Cooper 1985)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: t½ = 496 d (estimated, Muir 1984). Photolysis: Oxidation:

Hydrolysis: t½ = 73 d and 52 d at 22°C for aryl phosphates (75% TCP and 18% TXP) in demineralized and river water (Wagemann et al. 1974; quoted, Boethling & Cooper 1985);

degradation t½ = 3–4 d for o-, m-TCP and 5 d for p-TCP in Lake Ontario water (Howard & Dao 1979) second order alkaline hydrolysis rate constant k = 0.025 M–1 s–1 (estimated, p-TCP, Wolfe 1980)

t½ = 1.31 h, 1.66 h for m-TCP and p-TCP, respectively, at pH 13.0 in acetone/water 1:1 solution (Muir et al. 1983b). Biodegradation: complete primary degradation in less than 7 d for river die-away studies when exposed to the

natural microbial population of the water; t½ < 7 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979); Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: For p-TCP: –1 –1 µ k1 = 25.8 h 21.8 h (rainbow trout, exposure concn 5, 50 g/L, Muir et al. 1983b). –1 –1 µ k1 = 15.9 h , 7.80 h (fathead minnow, exposure concn 5, 50 g/L, Muir et al. 1983b). –1 –1 µ k2 = 0.0104 h , 0.00963 h (rainbow trout, exposure concn 5, 50 g/L for 0–144 h interval, Muir et al. 1983b). –1 –1 µ k2 = 0.0106 h , 0.0133 h (rainbow trout, exposure concn 5, 50 g/L for 0–432 h interval, Muir et al. 1983b). –1 –1 µ k2 = 0.0096 h , 0.0077 h (fathead minnow, exposure concn 5, 50 g/L for 0–144 h interval, Muir et al. 1983b). –1 –1 µ k2 = 0.0070 h , 0.0095 h (fathead minnow, exposure concn 5, 50 g/L for 0–432 h interval, Muir et al. 1983b). For m-TCP: –1 –1 µ k1 = 28.8 h , 24.0 h (rainbow trout, exposure concn 5, 50 g/L, Muir et al. 1983b). –1 –1 µ k1 = 18.2 h , 12.2 h (fathead minnow, exposure concn 5, 50 g/L, Muir et al. 1983b). –1 –1 µ k2 = 0.0242 h , 0.0229 h (rainbow trout, exposure concn 5, 50 g/L for 0–144 h interval, Muir et al. 1983b). –1 –1 µ k2 = 0.0115 h , 0.0149 h (rainbow trout, exposure concn 5, 50 g/L for 0–432 h interval, Muir et al. 1983b). –1 –1 µ k2 = 0.0147 h , 0.0117 h (fathead minnow, exposure concn 5, 50 g/L for 0–144 h interval, Muir et al. 1983b). –1 –1 µ k2 = 0.0085 h , 0.0101 h (fathead minnow, exposure concn 5, 50 g/L for 0–432 h interval, Muir et al. 1983b).

Half-Lives in the Environment: Air: Surface water: complete primary degradation in less than 7 d for river die-away studies when exposed to the

natural microbial population of the water; t½ < 7 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979);

degradation t½ = 3–4 d for o-, m-TCP and t½ = 5 d for p-TCP in Lake Ontario water (Howard & Dao 1979); t½ = 1.66 h and 1.31 h in pH 13.0 acetone/water 1:1 solution (Muir et al. 1983b); volatilization t½(calc) = 296 d in 1 m deep water system (Muir 1984);

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3155

pseudo-first-order t½ = 0.57 d in pond water; moderate volatilization from water column with t½ = 84 d at 0.5-m depth (Muir et al. 1985). Groundwater:

Sediment: t½ = 39 d in bottom sediment of a small pond (Muir et al. 1985). Soil:

Biota: depuration t½ = 135 h in chironomid larvae (Muir et al. 1985); elimination t½ = 4 d or less (bleak, 28-d exposure, Bengtsson et al. 1986).

TABLE 15.1.4.1.7.1 Reported vapor pressures of tricresyl phosphate at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

tri-m-cresyl phosphate tri-p-cresyl phosphate

Verhoek & Marshall 1939 Verhoek & Marshall 1939

static and dynamic methods static and dynamic methods

t/°C P/Pa t/°C P/Pa t/°C P/Pa Celluloid Corp. samples Eastman Kodak samples 80 0.00612 85.2 0.0132 92.0 0.0113 80 0.00604 95.4 0.0333 100.0 0.0267 80 0.00516 105.6 0.0749 110.0 0.0653 90 0.0177 115.8 0.1773 119.0 0.180 100.2 0.0461 126.0 0.448 119.0 0.189 109.9 0.1233 123.5 0.281 110.5 0.1276 eq. 1 P/µmHg 124.0 0.283 114.0 0.212 A 13.982 125.0 0.249 114.0 0.208 B 5373 129.0 0.441 114.0 0.213 129.0 0.448 ∆ 119.0 0.323 HV = 102.84 kJ/mol 134.0 0.668 120.0 0.315 134.5 0.696 120.7 0.316 135.0 0.600 124.0 0.492 145.0 1.560 124.0 0.504 125.9 0.509 eq. 1 P/µmHg 128.8 0.739 A 15.223 129.0 0.785 B 5926 130.0 0.777 ∆ 131.0 0.809 HV = 113.43 kJ/mol 136.2 1.352 eq. 1 P/µmHg A 15.886 B 6088 ∆ HV = 116.54 kJ/mol

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3156 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Tris(m -cresyl) phosphate: vapor pressure vs. 1/T 3.0 Verhoek & Marshall 1939 Small et al. 1948 (~100-150 °C, see text for equation) 2.0

1.0

0.0 )aP/

S -1.0 P(gol

-2.0

-3.0

-4.0 m.p. = 25.5 °C

-5.0 0.0014 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 15.1.4.1.7.1a Logarithm of vapor pressure versus reciprocal temperature for tris(m-cresyl) phosphate.

Tris(p -cresyl) phosphate: vapor pressure vs. 1/T 3.0

2.0

1.0

0.0 )aP/

S -1.0 P (go l -2.0

-3.0

-4.0 m.p. = 77.5 °C Verhoek & Marshall 1939 -5.0 0.0014 0.0018 0.0022 0.0026 0.003 0.0034 0.0038 1/(T/K) FIGURE 15.1.4.1.7.1b Logarithm of vapor pressure versus reciprocal temperature for tris(p-cresyl) phosphate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3157

15.1.4.1.8 Trixylenyl phosphate (TXP)

(H3C)2 O (H3C)2 O (CH ) P 3 2 O O Common Name: Trixylenyl phosphate Synonym: TXP Chemical Name: CAS Registry No: 25155-23-1

Molecular Formula: C24H27O4P, [(CH3)2C6H3]3O4P Molecular Weight: 410.442 Melting Point (°C): –20 (mixed isomers, Muir 1984) Boiling Point (°C): 261 (at 6 mmHg, Muir 1984) 225–295/6 mmHg, 248–265/4 mmHg, 270/3 mmHg (Boethling & Cooper 1985) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 0.89 (shake flask-GC, Saeger et al. 1979) 0.89 (mixed isomers, Muir 1984)

Vapor Pressure (Pa at 25°C): 7.20 × 10–4, 1.47 × 10–4, 3.067 × 10–5 (estimated from reported boiling points, Boething & Cooper 1985) 6.93 × 10–6 (30°C, Boething & Cooper 1985)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.334, 0.0689, 0.0142, 0.00314 (calculated-P/C, Boethling & Cooper 1985)

Octanol/Water Partition Coefficient, log KOW: 5.63 (shake flask-concn ratio, Saeger et al. 1979) 5.26 (RP-HPTLC-k′ correlation, Renberg et al. 1980) 5.63 (Muir 1984) 5.70 (Boethling & Cooper 1985) 6.40–6.60 (Bengtsson et al. 1986)

Bioconcentration Factor, log BCF: 3.15 (calculated for rainbow trout, Saeger et al. 1979)

4.04 (estimated from KOW, Boethling & Cooper 1985) 3.11, 3.24, 3.28 (bleak, 28-d exposure, Bengtsson et al. 1986)

Sorption Partition Coefficient, log KOC:

4.44 (calculated-KOW, Muir 1984) 3.67 (estimated from solubility, Boethling & Cooper 1985)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3158 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Oxidation: Hydrolysis: Biodegradation: 65% primary biodegradation in 14 weeks test duration for river die-away studies when exposed

to the natural microbial population of the water; t½ = 28–48 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: Surface water: 65% primary biodegradation in 14 weeks test duration for river die-away studies when exposed

to the natural microbial population of the water; t½ = 28–48 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979). Groundwater: Sediment: Soil:

Biota: eliminated t½ = 4 d or less (bleak, 28-d exposure, Bengtsson et al. 1986).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3159

15.1.4.2 Triaryl/alkyl phosphates

15.1.4.2.1 Dibutyl phenyl phosphate (DBPP)

O O P O O Common Name: Dibutyl phenyl phosphate Synonym: DBPP Chemical Name: CAS Registry No: 2528-26-1

Molecular Formula: C14H23O4P, (C 4H9)2C6H5O4P Molecular Weight: 286.303 Melting Point (°C): Boiling Point (°C): 200/20 mmHg (Muir 1984) 155/2 mmHg, 155/1 mmHg (quoted, Boethling & Cooper 1985) Density (g/cm3): Molar Volume (cm3/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): 96 (shake flask-GC, Saeger et al. 1979)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 66.7 (200°C, Muir 1984) 0.084, 0.0307 (estimated from boiling points, Boethling & Cooper 1985) 746* (170°C, GC-RT correlation, measured range 170–200°C, Skene & Krzymien 1995)

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.253, 0.089 (estimated-P/C, Boethling & Cooper 1985)

Octanol/Water Partition Coefficient, log KOW: 4.27 (shake flask-concn ratio, Saeger et al. 1979) 3.23 (RP-HPTLC-k′ correlation, Renberg et al. 1980)

Bioconcentration Factor, log BCF: 2.43 (calculated, Saeger et al. 1979)

3.04 (calculated-KOW, Boethling & Cooper 1985)

Sorption Partition Coefficient, log KOC:

3.70 (calculated-KOW, Muir 1984) 2.56 (soil, estimated from solubility, Boethling & Cooper 1985)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: t½ = 0.4 d (calculated, Muir 1984) Photolysis: Oxidation: Hydrolysis:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3160 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Biodegradation: complete primary degradation in less than 7 d for river die-away studies when exposed to the

natural microbial population of the water; t½ < 7 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979); Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: Surface water: complete primary degradation in less than 7 d for river die-away studies when exposed to the

natural microbial population of the water; t½ < 7 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979);

volatilization t½ ~ 0.4 d from 1 m deep water (Muir 1984). Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3161

15.1.4.2.2 2-Ethylhexyl diphenyl phosphate (EHDP)

O O P O O

Common Name: 2-Ethylhexyl diphenyl phosphate Synonym: EHDP Chemical Name: CAS Registry No: 1241-94-7

Molecular Formula: C20H27O4P, C 8H17(C6H5)2O4P Molecular Weight: 362.399 Melting Point (°C): –80 (Muir 1984) Boiling Point (°C): 181/0.6 mmHg (Wightman & Malaiyandi 1983) 239/1 mmHg (Muir 1984) 150/0.2 mmHg, 375/760 mmHg, 230/5 mmHg (Boethling & Cooper 1985) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 1.9 (shake flask-GC, Saeger et al. 1979)

Vapor Pressure (Pa at 25°C): 4.0 × 10–3, 3.47 × 10–3, 1.87 × 10–3 (estimated from reported boiling points, Boethling & Cooper 1985)

Henry’s Law Constant (Pa·m3/mol at 25°C): 1.60 (calculated-P/C, Muir 1982, 1984) 0.77, 0.648, 0.345 (calculated-P/C, Boethling & Cooper 1985)

Octanol/Water Partition Coefficient, log KOW: 5.73 (shake flask-concn ratio, Saeger et al. 1979) 5.00 (RP-HPLC-k′ correlation, Renberg et al. 1980)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF: 3.20 (calculated, Saeger et al. 1979) µ 3.17, 3.06; 3.12 (rainbow trout: calculated from rate constant ratio k1/k2 for exposure concn 5 and 50 g/L; mean, Muir & Grift 1981)

3.52 (calculated-KOW, Muir & Grift 1981) 4.11 (calculated-KOW, Boethling & Cooper 1985)

Sorption Partition Coefficient, log KOC:

4.49 (calculated-KOW, Muir 1984) 3.49 (estimated from solubility, Boethling & Cooper 1985)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3162 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: half-life for 1 m deep water was estimated to be 7 d (Muir 1984). Photolysis: Oxidation: Hydrolysis: Biodegradation: complete primary degradation in 10–21 d for river die-away studies when exposed to the natural

microbial population of the water; t½ < 28 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979);

rapid biodegradation t½ = 2 d in river water (quoted, Muir & Grift 1981). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: –1 –1 µ k1 = 48.5 h , 33.0 h (rainbow trout, exposure concn 5, 50 g/L, Muir & Grift 1981) –1 –1 µ k2 = 0.0298 h , 0.0294 h (rainbow trout, exposure concn 5, 50 g/L, Muir & Grift 1981)

Half-Lives in the Environment: Air: Surface water: complete primary degradation in 10–21 d for river die-away studies when exposed to the natural

microbial population of the water; t½ < 28 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979;

rapid biodegradation t½ = 2 d in river water (quoted, Muir & Grift 1981); volatilization t½ ~ 7 d for 1 m deep water (estimated, Muir 1984). Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3163

15.1.4.2.3 Isodecyl diphenyl phosphate (IDDP)

O O P O O

Common Name: Isodecyl diphenyl phosphate Synonym: IDDP Chemical Name: CAS Registry No: 29761-21-5

Molecular Formula: C22H31O4P, C 10H21(C6H5)2O4P Molecular Weight: 390.452 Melting Point (°C): < –50 (Muir 1984) Boiling Point (°C): 245/10 mmHg (Boethling & Cooper 1985) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 0.75 (room temp, shake flask-GC, Saeger et al. 1979) 0.80 (Boethling & Cooper 1985)

Vapor Pressure (Pa at 25°C): < 13.33, 66.7 (100, 150°C, Muir 1984) 2.133 × 10–3 (estimated from boiling point, Boethling & Cooper 1985)

Henry’s Law Constant (Pa·m3/mol at 25°C): 12.97 (calculated-P/C, Muir 1984) 1.013 (calculated-P/C, Boethling & Cooper 1985)

Octanol/Water Partition Coefficient, log KOW: 5.44 (shake flask-concn ratio, Saeger et al. 1979) 3.31, 5.72; 5.42 (RP-HPTLC-k′ correlation; mean, Renberg et al. 1980) 5.70 (quoted measured value, Boethling & Cooper 1985)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF: 3.04 (calculated, Saeger et al. 1979) 3.88 (estimated from solubility, Boethling & Cooper 1985)

Sorption Partition Coefficient, log KOC:

4.33 (calculated-KOW, Muir 1984) 3.69 (soil, estimated from solubility, Boethling & Cooper 1985)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3164 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: t½ = 1.3 d for 1 m deep water system (Muir 1984). Photolysis: Oxidation: Hydrolysis: Biodegradation: complete primary degradation in 10–21 d for river die-away studies when exposed to the natural

microbial population of the water; t½ < 28 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979); Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: Surface water: complete primary degradation in 10–21 d for river die-away studies when exposed to the natural

microbial population of the water; t½ < 28 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979);

volatilization t½ ~ 1.3 d for 1 m deep water system (Muir 1984). Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3165

15.1.4.3 Trialkyl phosphate

15.1.4.3.1 Tributyl phosphate (TBP)

O O P O O Common Name: Tributyl phosphate Synonym: TBP, butyl phosphate Chemical Name: tri-n-butyl phosphate CAS Registry No: 126-73-8

Molecular Formula: C12H27O4P; (C4H9)3O4P Molecular Weight: 266.314 Melting Point (°C): < –80 (Dean 1985, Stephenson & Malanowski 1987) Boiling Point (°C): 289 (Lide 2003) Density (g/cm3): 0.972 (25°C, Dean 1992) 0.976 (Riddick et al. 1986; Budavari 1989) Molar Volume (cm3/mol): 273.8 (Stephenson & Malanowski 1987) ∆ Enthalpy of Vaporization, HV (kJ/mol): 14.67 (Dean 1992) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C or as indicated. Additional data at other temperatures designated * are compiled at the end of this section): 422* (shake flask-electrometric titration, measured range 3.4–50°C, Higgins et al. 1959) 280 (shake flask-GC, Saeger et al. 1979) 390 (Riddick et al. 1986)

Vapor Pressure (Pa at 25°C or as indicated and reported temperature dependence equations. Additional data at other temperatures designated * are compiled at the end of this section): 0.89 (extrapolated, Evans et al. 1930) 0.10, 2.0 (114, 160.2°C, Riddick et al. 1986) log (P/kPa) = 7.7110 – 3206.5/(t/°C + 273) (Antoine eq., Riddick et al. 1986) log (P/kPa) = 7.7110 – 3206.5/(T/K) (Antoine eq., liquid phase, temp range 500–562 K, Stephenson & Malanowski 1987) 0.0202 (estimated from average air-borne concn, Skene & Krzymien 1995) 0.031, 0.015, 0.026, 0.030, 0.022 (extrapolated values from various reported Antoine equations, Skene & Krzymien 1995) 0.149* (gas saturation-GC, measured range 0–80°C; Skene & Krzymien 1995) log (P/Pa) = 8.85629 – 1690.26/(T/K – 123.431); temp range 0–80°C, (Antoine eq. derived from exptl. data, gas saturation-GC, Skene & Krzymien 1995) 0.015 (TBP in Skydrol 500B-4 hydraulic fluid, gas saturation-GC, Skene & Krzymien 1995) 927–1060* (170°C, GC-RT correlation, measured range 170–200°C. Skene & Krzymien 1995)

Henry’s Law Constant (Pa·m3/mol at 25°C): 2513 (estimated-P/C, Muir 1984)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3166 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Octanol/Water Partition Coefficient, log KOW: 4.004 (shake flask-concn ratio, Saeger et al. 1979) 3.99 (Sasaki et al. 1981) 4.004, 4.01 (quoted, Muir 1984)

Bioconcentration Factor, log BCF: 2.28 (calculated, Saeger et al. 1979) 1.49–1.54 (killifish, 90-h exposure, static water system, Sasaki et al. 1981) 0.78–1.04 (goldfish, 90-h exposure, static water system, Sasaki et al. 1981) 0.602–1.43 (killifish, static water system, Sasaki et al. 1982) 1.20–1.43 (killifish, 4–38 d exposure, continuous flow water system, Sasaki et al. 1982)

Sorption Partition Coefficient, log KOC:

3.56 (calculated-KOW, Muir 1984)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: t½ = 0.4 d for 1 m deep water system (calculated, Muir 1984). Photolysis: Oxidation: Hydrolysis: Biodegradation: complete primary degradation in less than 7 d for river die-away studies when exposed to the

natural microbial population of the water; t½ < 28 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979). Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: Surface water: complete primary degradation in less than 7 d for river die-away studies when exposed to the

natural microbial population of the water; t½ < 28 d for primary biodegradation rate from semicontinuous activated sludge studies (Saeger et al. 1979);

hydrolysis t½ ~ 1 yr for trialkyl phosphates (Wolfe 1980); t½ = 58 h in the water containing killifish and more than 100 h for goldfish (Sasaki et al. 1981) volatilization t½ ~ 0.4 d from 1 m deep water (estimated, Muir 1984). Groundwater: Sediment: Soil: Biota:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3167

TABLE 15.1.4.3.1.1 Reported aqueous solubilities and vapor pressures of tributyl phosphate at various temperatures and the coefficients for the vapor pressure equations log P = A – B/(T/K) (1) ln P = A – B/(T/K) (1a) log P = A – B/(C + t/°C) (2) ln P = A – B/(C + t/°C) (2a) log P = A – B/(C + T/K) (3) log P = A – B/(T/K) – C·log (T/K) (4)

Aqueous solubility Vapor pressure

Higgins et al. 1959 Skene & Krzymien 1995

shake flask-titration gas saturation-GC GC-RT correlation

t/°C S/g·m–3 t/°C P/Pa t/°C P/Pa t/°C P/Pa different reference standards 3.4 1075 0 0.004 170 1042 170 1060 4.0 1012 5 0.01 185 1646 185 1849 5.0 957 15 0.04 200 4442 200 4102 13.0 640 25 0.15 Linear extrapolation eq.* Linear extrapolation eq.* 25 422 35 0.39 eq. 1 P/Pa eq. 1 P/Pa 50 285 50 1.59 A 12.336 A 12.333 65 7.17 B 4124.2 B 4127.8 80 31.9 170 927 170 993 eq. 3 P/Pa 185 2179 185 1849 A 8.85629 200 3030 200 3559 B 1690.26 Linear extrapolation eq.* Linear extrapolation eq.* C –123.431 eq. 1 P/Pa eq. 1 P/Pa A 12.633 A 12.480 B 4306.7 B 4215.3 170 1109 185 2080 200 4408 Linear extrapolation eq.* eq. 1 P/Pa A 12.253 B 4080.7 *regression eq. for extrapolation to temp range of gas saturation measurements 0–50°C

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3168 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Tributyl phosphate: solubility vs. 1/T -9.0

-9.5

-10.0

-10.5 ln x

-11.0

-11.5 Higgins et al. 1959 Saeger et al. 1979 -12.0 0.003 0.0031 0.0032 0.0033 0.0034 0.0035 0.0036 0.0037 0.0038 1/(T/K) FIGURE 15.1.4.3.1.1 Logarithm of mole fraction solubility (ln x) versus reciprocal temperature for tributyl phosphate.

Tributyl phosphate: vapor pressure vs. 1/T 3.0 Skene & Krzymien 1995 2.0

1.0

0.0 )aP/

S -1.0 P(gol

-2.0

-3.0

-4.0 b.p. = 289 °C -5.0 0.0016 0.002 0.0024 0.0028 0.0032 0.0036 0.004 1/(T/K) FIGURE 15.1.4.3.1.2 Logarithm of vapor pressure versus reciprocal temperature for tributyl phosphate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3169

15.1.4.3.2 Tris(2-ethylhexyl) phosphate (TEHP)

O O P O O

Common Name: Tris(2-ethylhexyl) phosphate Synonym: TEHP Chemical Name: CAS Registry No: 78-42-2

Molecular Formula: C24H51O4P, (C 8H17)3O4P Molecular Weight: 434.633 Melting Point (°C): Boiling Point (°C): 215°C/4 mmHg (Aldrich Catalog 1989–99) Density (g/cm3 at 20°C): 0.924 (Aldrich catalog 1998–99) Molar Volume (cm3/mol): ∆ Enthalpy of Vaporization, HV (kJ/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 2 5°C (assuming Sfus = 56 J/mol K), F:

Water Solubility (g/m3 or mg/L at 25°C): < 1000 (room temp, shake flask-GC, Saeger et al. 1979) 600 (practical grade, shake flask-nephelometry, Hollifield 1979)

Vapor Pressure (Pa at 25°C): log (P/mmHg) = 12.85 – 5812/(T/K); exptl. data presented in graph and Antoine eq. (effusion, Small et al. 1948) (See figure at the end of this section.) –5 1.10 × 10 (liquid PL, GC-RT correlation, Hinckley et al. 1990)

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 4.23 (shake flask-concn ratio, Saeger et al. 1979)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF: 2.40 (calculated, Saeger et al. 1979)

Sorption Partition Coefficient, log KOC:

3.68 (soil, calculated-KOW, Muir 1984)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Oxidation: Hydrolysis: Biodegradation: complete primary degradation in less than 7 d for river die-away studies when exposed to the natural microbial population of the water (Saeger et al. 1979). Biotransformation:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3170 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants:

Half-Lives in the Environment: Air: Surface water: complete primary degradation in less than 7 d for river die-away studies when exposed to the natural microbial population of the water (Saeger et al. 1979). Groundwater: Sediment: Soil: Biota:

Tris(2-ethylhexyl) phosphate: vapor pressure vs. 1/T 3.0

2.0

1.0

0.0 )aP/

S -1.0 P(gol

-2.0

-3.0

-4.0 Small et al. 1948 (~85-120 °C, see text for equation) -5.0 0.0022 0.0024 0.0026 0.0028 0.003 0.0032 0.0034 1/(T/K) FIGURE 15.1.4.3.2.1 Logarithm of vapor pressure versus reciprocal temperature for tris(2-ethylhexyl) phosphate.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3171

15.1.4.4 Trihaloalkyl phosphates

15.1.4.4.1 Tris(2-chloroethyl) phosphate (TCEP)

Cl O O Cl P Cl O O Common Name: Tris(2-chloroethyl) phosphate Synonym: TCEP Chemical Name: CAS Registry No: 115-96-8

Molecular Formula: C6H12Cl3O4P, (C 2H4Cl)3O4P Molecular Weight: 285.490 Melting Point (°C): –55 Boiling Point (°C): 214/25 mmHg (Muir 1984) 330 (Stephenson & Malanowski 1987; Lide 2003) Density (g/cm3 at 20°C): 1.390 (Aldrich catalog 1989–99)

Molar Volume (cm3/mol): 205.4 (20°C, Stephenson & Malanowski 1987) ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0 Water Solubility (g/m3 or mg/L at 25°C): 7000 (Eldefrawi et al. 1977; quoted, Sasaki et al. 1981) 7000 (quoted, Muir 1984)

Vapor Pressure (Pa at 25°C and reported temperature dependence equations): 8.23 (interpolated-Antoine eq., Stephenson & Malanowski 1987)

log (PL/kPa) = 4.346 – 1917/(T/K) (Antoine eq., temp range: 293–546 K, Stephenson & Malanowski 1987) Henry’s Law Constant (Pa·m3/mol at 25°C): 0.00241 (calculated-P/C, Muir 1984)

Octanol/Water Partition Coefficient, log KOW: 1.43 (shake flask, Sasaki et al. 1981) 1.48 (quoted, Muir 1984)

Octanol/Air Partition Coefficient, log KOA: Bioconcentration Factor, log BCF: 2.40 (calculated, Saeger et al. 1979) 0.34 (killifish, 90-h exposure, static water system, Sasaki et al. 1981) – 0.155, –0.046 (goldfish, 90-h exposure, static water system, Sasaki et al. 1981) 0.36–1.10 (killifish, static water system, Sasaki et al. 1982) 0.041–1.10 (killifish, continuous flow water system, Sasaki et al. 1982)

Sorption Partition Coefficient, log KOC:

2.18 (calculated-KOW, Muir 1984)

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3172 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: t½ ~ 536 d from 1 m deep water system (estimated, Muir 1984). Photolysis: Oxidation: Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: biological t½ = 1.65 h and elimination t½ = 0.7 h for killifish (Sasaki et al. 1982). Half-Lives in the Environment: Air:

Surface water: first order reduction process in river water, an estimated t½ ~ 2.3 d in Rhine River (Zoeteman et al. 1980);

volatilization t½(calc) = 536 d from 1 m deep water system (Muir 1984). Groundwater: Sediment: Soil:

Biota: biological t½ = 1.65 h for accumulation, t½ = 0.7 h for elimination in killifish (Sasaki et al. 1982).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3173

15.1.4.4.2 Tris(1,3-dichloropropyl) phosphate (TDCPP)

Cl Cl Cl O Cl O P ClO O Cl Common Name: Tris(1,3-dichloropropyl) phosphate Synonym: TDCPP, TCPP, Fyrol FR-2, 1,3-dichloro-2-propanol phosphate (3:1), phosphoric acid tris(1,3-dichloro- 2-propyl)ester, tris[2-chloro-1-(chloromethyl)ethyl]phosphate Chemical Name: Use: flame retardant CAS Registry No: 40120-74-9

Molecular Formula: C9H15Cl6O4P, (C 3H5Cl2)3O4P Molecular Weight: 430.906 Melting Point (°C): 26.7 (Muir 1984) viscous liquid (Budavari 1989) Boiling Point (°C): 236–237/5 mmHg (Muir 1984) Density (g/cm3 at 20°C): 1.5022 (Budavari 1989) Molar Volume (cm3/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 0.966 Water Solubility (g/m3 or mg/L at 25°C): 19.2 (Metcalf 1976) 7.0 (practical grade, shake flask-nephelometry, Hollifield 1979) 100 (Eldefrawi et al. 1977; quoted, Sasaki et al. 1981, Muir 1984) ~ 100 (Budavari 1989)

Vapor Pressure (Pa at 25°C):

Henry’s Law Constant (Pa·m3/mol at 25°C):

Octanol/Water Partition Coefficient, log KOW: 3.76 (shake flask-concn ratio, Sasaki et al. 1981) 3.74 (quoted, Muir 1984)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF: 1.89–2.05 (killifish, 100-h exposure, static system, Sasaki et al. 1981) 0.48–0.70 (goldfish, 90-h exposure, static system, Sasaki et al. 1981) 1.67–2.03 (killifish, static system, Sasaki et al. 1982) 1.49–1.69 (killifish, 32-d exposure, continuous flow water system, Sasaki et al. 1982)

Sorption Partition Coefficient, log KOC:

3.41 (calculated-KOW, Muir 1984)

Environmental Fate Rate Constants, k, or Half-Lives, t½: Volatilization: Photolysis: Oxidation:

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3174 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Hydrolysis: Biodegradation: Biotransformation:

Bioconcentration, Uptake (k1) and Elimination (k2) Rate Constants: t½ = 31 h in the water containing killifish and t½ = 42 h for goldfish, so that absorption occurred at similar rates in both fishes (Sasaki et al. 1981).

Half-Lives in the Environment: Air:

Surface water: t½ = 31 h in the water containing killifish and t½ = 42 h for goldfish, so that absorption occurred at similar rates in both fishes (Sasaki et al. 1981). Groundwater: Sediment: Soil:

Biota: biological t½ = 1.65 h (killifish, Sasaki et al. 1982).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3175

15.1.4.4.3 Tris(2,3-dibromopropyl) phosphate (TDBPP)

Br Br O O P BrO O Br Br Br Common Name: Tris(2,3-dibromopropyl) phosphate Synonym: TDBPP, Tris-BP, 2,3-dibromo-1-propanol phosphate(3:1), phosphoric acid tris(2,3-dibromopropyl) ester, Apex 462-3, Flammex AP, Firemaster: V-T 23P, Fyrol HB 32 Chemical Name: Use: flame retardant CAS Registry No: 126-72-7

Molecular Formula: C9H15Br6O4P, (C 3H5Br2)3O4P Molecular Weight: 697.610 Melting Point (°C): 5.5 (Muir 1984) viscous liquid (Budavari 1989) Boiling Point (°C): 65/0.005 mmHg (Muir 1984) Density (g/cm3 at 20°C): Molar Volume (cm3/mol): ∆ Enthalpy of Fusion, Hfus (kJ/mol): ∆ Entropy of Fusion, Sfus (J/mol K): ∆ Fugacity Ratio at 25°C (assuming Sfus = 56 J/mol K), F: 1.0

Water Solubility (g/m3 or mg/L at 25°C): 8.0 (practical grade, shake flask-nephelometry, Hollifield 1979) 1.60 (Muir 1984)

Vapor Pressure (Pa at 25°C):

Henry’s Law Constant (Pa·m3/mol at 25°C): 0.0108 (calculated-P/C, Muir 1984)

Octanol/Water Partition Coefficient, log KOW: 4.98 (HPLC-RT correlation, Veith et al. 1979) 4.39 (Muir 1984)

Octanol/Air Partition Coefficient, log KOA:

Bioconcentration Factor, log BCF:

0.44 (calculated-KOW, Veith et al. 1979)

Sorption Partition Coefficient, log KOC:

3.76 (calculated-KOW, Muir 1984)

Environmental Fate Rate Constants, k, or Half-Lives, t½:

Volatilization: t½ (calc) = 1.9 d in 1 m deep water system (Muir 1984).

Half-Lives in the Environment:

Surface water: volatilization t½(calc) = 1.9 d in 1 m deep water system (Muir 1984).

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3176 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals M 62.6 99.6 86.4 84.8 125.6 243.6 221.4 155.2 177.4 199.6 177.2 130.8 145.6 177.2 153 244 133 133 /mol 3 cm 20°Cat Le Bas ρ Molar volume, V Molar volume, 61.64 90.29 80.35 97.30 110.8 92.40 101.2 79.30 97.83 108.6 132.54 155.2 106.06 121.8 148.51 177.4 108.42 123.8 115.04 133 125.07160.48 151.2 199.4 142.87 175 MW/ ratio, F Fugacity Fugacity at 25°C* °C 31.7 1 80.7 1 b.p. 173 103.5 1 117 °C m.p. 60.05274.07988.106 –99 –79.6 –92.974.07986.09 54.4 –98.2588.106 80.9 –93.2 1 –83.8 56.87 1 72.8 1 77.11 1 1 86.09 < –75 g/mol 102.132102.132 –91.9 –95.8100.117 106.1102.132116.158 98.2116.158 –93 1 130.185 –78130.185 1 –98.8144.212 –70.8142.196 101.54 –78.5172.265 126.1 –80.9 116.5150.174 149.2102.132 1 –80 142.5116.158 1 –51.3 171.5 1 –73.9 1 100.117 –98 1 100.117 199 213 1 114.142 –71.2 99.1 –47.55136.149 121.3 1 150.174 1 99.4 1 164.201 100.5 –12.4198.217 1 –34212.244 –51.6 1 1 199 71 21 212 211 1 314 323.5 1 1 0.354 1 Molecular Molecular weight, MW 5 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 H 2 O O O O O O O O O O O O O O O O O O O O O O O O O O CO CH C 8 2 6 8 8 20 6 8 8 8 12 10 12 2 10 10 10 12 12 14 14 16 14 10 10 12 10 10 2 ) 3 H H H H H H H H H H H H H H H H H H H H H H H H H H 4 4 5 4 4 5 5 8 5 5 5 6 6 7 7 8 8 9 5 6 6 9 10 10 13 14 formula Molecular 93-58-3 C 96-33-3 C 97-63-2 C 80-62-6 C 79-20-9 (CH 93-99-2 C 93-89-0 C CAS no. CAS 622-45-7 C 140-11-4 C 120-51-4 C 103-09-3 C 105-37-3 C 142-92-7 C 123-92-2 C 628-63-7 C 107-31-3 HCO 109-94-4 HCO 141-78-6 C 109-60-4 C 110-74-7 542-55-2 C 108-05-4 C C 140-88-5 C 110-19-0 C 592-84-7 C 123-86-4 C 591-87-7 C 105-54-4 C 2315-68-6 C of esters and phthalate esters ate Ethyl acetate Ethyl Benzyl acetate Ethyl formate Ethyl formate Propyl Butyl formate formate Isobutyl acetate Methyl Allyl acetate acetate Propyl Butyl acetate acetate Isobutyl Pentyl acet acetate Isopentyl acetate Hexyl acetate Cyclohexyl acetate 2-Ethylhexyl butyrate Ethyl acrylate Methyl acrylate Ethyl methacrylate Methyl Ethyl methacrylate esters: Aromatic benzoate Methyl benzoate Ethyl benzoate Propyl benzoate Phenyl Benzyl benzoate Ethyl propionate Ethyl TABLE 15.2.1 TABLE properties physical of Summary Compound Aliphatic esters: formate Methyl Vinyl acetate Vinyl 15.2 PLOTS AND QSPR TABLES SUMMARY © 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3177 302.8 347.2 547.0 613.6 658.0 746.8 302.8 524.8 369.2 391.6 436 265.85 347.2 396.79 524.8 420.71 569.2 399.34 524.8 163.11 206.4 219.68 288 198.87 254 337.83 436 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.789 1 0.962 0.562 370 1 296.5 1 5.5 194.184222.237246.259250.291 5.5 –40.5250.291 –77278.344 –31.0278.344 liquid 283.7 295306.397 –35334.45 290 304.5334.45 < –54.5 1 390.557 1 390.557 –27.4 340 1 390.557 –37 342404.583 25 418.609 –55 1 446.663 1 474.716 –4 –48 530.823 –50 312.360 384 35.5 –37 –35 1 370 1 P 697.61 PP 285.49 430.906 26.7 4 4 4 PPP 382.389P 340.309 P 368.362P –21 444.458 P 452.522 P –26 326.283P 368.362 P 410.442 P 286.303 50.5 P 362.399P 390.452 266.314 –80 434.633 < –50 < –80 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 O O O O O O O O O O O O O O O O O O O O O O 6 3 6 O O O O O O O O O O O O O 10 14 14 18 18 22 22 26 30 30 38 38 38 40 42 46 50 58 20 23 17 21 25 33 15 21 27 23 27 31 27 51 Cl Cl Br H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H H 12 15 15 10 12 14 14 14 16 16 18 20 20 24 24 24 25 26 28 30 34 19 22 19 21 27 27 18 21 24 14 20 22 12 24 H H H 6 9 9 C 43617 C 84-69-5 C 85-69-8 C 84-75-3 C 78-42-2 78-42-2 C 84-74-2 C 84-66-2 C 85-68-7 C 9727830 C 115-86-6 C 131-16-8 C 131-18-0 C 115-96-8 C 126-73-8 C 131-17-9 C 126-72-7 C 605-45-8 C 117-84-0 C 117-81-7 C 131-11-3 C 13418387 C 1330-78-5 C 3648-20-2 C 2528-26-1 C 1241-94-7 C 56803-37-3 C 25155-23-1 C 27554-26-3 C 84602-56-2 C 26761-40-0 C 40120-74-9 C 39289-94-6 C 26444-49-5 C 29761-21-5 C HP) ∆ te (DIOP) (DMP) (DAP) = 56 J/mol K. fus S ∆ -butyl phthalate (DBP) phthalate n -butyl n -octyl phthalate (DOP) -propyl phthalate (DnPP) n -propyl (2-Ethylhexyl) phthalate (DEHP) phthalate (2-Ethylhexyl) -Butylphenyl diphenyl phosphate diphenyl -Butylphenyl Di- Dipentyl phthalate (DPP) Dipentyl phthalate phthalate (BOP) Butyl 2-ethylhexyl Di- phthalate (DINP) Di-isononyl phthalate (DUP) Diundecyl phthalate (DTDP) Ditridecyl Butyl benzyl phthalate (BBP) Cresyl diphenyl phosphate (CDP) Cresyl diphenyl phosphate diphenyl 4-Cumylphenyl phosphate (IDDP) diphenyl Isodecyl (TBP) Tributylphosphate phosphate Tris(2-ethylhexyl) Diethyl phthalate (DEP) Diethyl Diallyl phthalate Di- phthalate (DIPP) Di-isopropyl phthalate (DIBP) Di-isobutyl Di-isooctyl phthala bis phthalate octyl, decyl) Di (hexyl, phthalate (DIDP) Di-isodecyl Phosphate esters: t phosphate (IPPDP)diphenyl Isopropylphenyl 28108-99-8 phosphate diphenyl Nonylphenyl (TPP) phosphate Triphenyl (TCP) phosphate Tricresyl (TXP) phosphate Trixylenyl phosphate (DBPP) phenyl Dibutyl phosphate diphenyl 2-Ethylhexyl phosphate Tris(2-chloroethyl) Dihexyl phthalate ( phthalate Dihexyl Phthalate esters: phthalate Dimethyl * Assuming Tris(2,3-dibromopropyl) phosphate Tris(2,3-dibromopropyl) Tris(1,3-dichloropropyl) phosphate Tris(1,3-dichloropropyl) © 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3178 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals 35.94 17.2 29.506 /mol) 3 20.82 32.22 37.18 79.32 H/(Pa·m

Henry's law constant law Henry's 54.57 54.57 52.73 13.74 16.39 17.6 193.2 calcd P/C (a) exptl (b) exptl OW 2.13 39.06 1.73 41.10 2.42 42.12 0.73 60.69 1.49 1.94 0.8 19.17 1.33 34.041 1.38 32.73 1.96 )log K )log 3 3830 –0.26 20.38 1593 0.23 20.32 3307 0.2313.06 0.65 8.708 232.7 0.73 47.40 188.0 1.21 26.42 73.8 /(mol/m 155.8 L )C 3 3307 205.651.65 205.6 51.65 1.24 1.82 22.09 21.88 30.98 Solubility /(mol/m S )C 3 98.4 0.5712 0.5712 3.72 92.79 Selected properties 53 2860 6300 54.24 54.24 1.6 /Pa S/(g/m L ties of esters and phthalate esters at 25°C at esters phthalate and esters of ties 53 600 600 2000 15.36 15.36 670 670 500 3.446 3.467 550 550 1700 13.06 13.06 189 189 sl. sol. sl. sol. /Pa P 5343 5400 10000 97.91 97.91 4500 4500 21000 5100 5100 15000 149.82 149.82 2300 2300 6500 55.96 55.96 4966 4966 19200 188.0 5100 5100 15600 155.8 1600 1600 6000 2860 6130 6130 3840 3840 Vapor pressure Vapor S 11030 11030 20500 232.7 14100 14100 20000 232.3 232.3 11600 11600 62370 707.9 707.9 78060 78060 230000 3830 12600 12600 80800 917.1 917.1 28800 28800 245000 32370 32600 118000 1593 11000 11000 49400 573.8 5 P Butyl formate formate Isobutyl Aliphatic esters: formate Methyl formate Ethyl formate Propyl TABLE 15.2.2 TABLE proper of selected physical-chemical Summary Compound Propyl acetate Propyl Butyl acetate acetate Isobutyl Vinyl acetate Vinyl Allyl acetate acetate Ethyl Methyl acetate Methyl acetate Pentyl Isopentyl acetate Hexyl acetate Hexyl 2-Ethylhexyl acetate 2-Ethylhexyl Ethyl butyrate Ethyl Benzyl acetate propionate Methyl Methyl butyrate Phenyl acetate propionate Ethyl Methyl hexanoate Methyl octanoate Methyl acrylate Methyl acrylate Ethyl methacrylate Methyl Methyl pentanoate Methyl methacrylate Ethyl © 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3179 3.389 3.18 2.47 0.0453 2.64 10.30 3.59 2.2 4.60 0.1335 8.067.5 10.39 1.731 –6 –6 0.0402 4.72 0.0465 20.60 2.12 0.0107 1.28 × 10 7.68 × 10 –6 –6 16 0.0754 0.0754 3.97 0.5704 0.00050.003 1.28 × 10 7.68 × 10 –5 –5 0.416 00115 2.69 0.0086 0.0086 1.33 × 10 1.33 × 10 –5 –5 24 24 350 2.331 2.331 100 100 52.58 52.28 2100 15.42 15.42 0.22 0.22 1080 4.859 4.859 0.043 0.043 0.22 0.22 4000 20.60 0.00115 0. 0.00187 0.00187 11.2 0.0402 1.33 × 10 1.33 × 10 (DMP) (2-Ethylhexyl)-phthalate Di- n -octyl phthalate (DOP) Propyl benzoate Propyl Phenyl benzoate Phenyl Benzyl benzoate esters: Phthalate phthalate Dimethyl Diethyl phthalate (DEP) phthalate Diethyl -butyl phthalate (DBP) Di- n -butyl bis Butyl benzyl phthalate Ethyl benzoate Ethyl Aromatic esters: Aromatic benzoate Methyl (a) Buttery1969et al. & King 1979 Kieckbusch (b) © 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3180 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

TABLE 15.2.3 Suggested half-life classes for esters and phthalate esters in various environmental compartments at 25°C

Compound Air class Water class Soil class Sediment class Aliphatic esters: Methyl formate334 5 Ethyl formate 3 3 4 5 Butyl formate 334 5 Methyl acetate 3 3 4 5 Vinyl acetate 3 3 4 5 Allyl acetate 3 3 4 5 Ethyl acetate 3 3 4 5 Propyl acetate 3 3 4 5 Butyl acetate 3 3 4 5 Pentyl acetate 3 3 4 5 Methyl methacrylate 2 3 4 5 Phthalate esters: Dimethyl phthalate (DMP) 4 5 6 7 Diethyl phthalate (DEP) 4 5 6 7 Di-n-butyl phthalate (DBP) 3 5 6 7 bis(2-Ethylhexyl)-phthalate (DEHP) 3 5 6 7 Butyl benzyl phthalate (BBP) 3 5 6 7

where,

Class Mean half-life (hours) Range (hours) 15< 10 2 17 (~ 1 day) 10–30 3 55 (~ 2 days) 30–100 4 170 (~ 1 week) 100–300 5 550 (~ 3 weeks) 300–1,000 6 1700 (~ 2 months) 1,000–3,000 7 5500 (~ 8 months) 3,000–10,000 8 17000 (~ 2 years) 10,000–30,000 9 ~ 5 years > 30,000

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3181

solubility vs. Le Bas molar volume 6 Aliphatic esters Aromatic esters 4 Phthalate esters

) 2 3 mc/lom(/

0 L C gol C

-2

-4

-6 60 100 140 180 220 260 300 340 380 420 460 500 540 3 Le Bas molar volume, VM/(cm /mol) FIGURE 15.2.1 Molar solubility (liquid or supercooled liquid) versus Le Bas molar volume for esters.

vapor pressure vs. Le Bas molar volume 6 Aliphatic esters Aromatic esters 4 Phthalate esters

2 aP/ L

P gol P 0

-2

-4

-6 60 100 140 180 220 260 300 340 380 420 460 500 540 3 Le Bas molar volume, VM/(cm /mol) FIGURE 15.2.2 Vapor pressure (liquid or supercooled liquid) versus Le Bas molar volume for esters.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3182 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

log K vs. Le Bas molar volume 9 OW Aliphatic esters 8 Aromatic esters Phthalate esters 7

6

5 WO

K gol K 4

3

2

1

0

-1 60 100 140 180 220 260 300 340 380 420 460 500 540 3 Le Bas molar volume, VM/(cm /mol) FIGURE 15.2.3 Octanol-water partition coefficient versus Le Bas molar volume for esters.

Henry's law constant vs. Le Bas molar volume 3 Aliphatic esters Aromatic esters 2 Phthalate esters

)lom 1 / 3 m .aP(/H gol .aP(/H 0

-1

-2

-3 60 100 140 180 220 260 300 340 380 420 460 500 540 3 Le Bas molar volume, VM/(cm /mol) FIGURE 15.2.4 Henry’s law constant versus Le Bas molar volume for esters.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3183

log K vs. solubility 9 OW Aliphatic esters 8 Aromatic esters Phthalate esters 7

6

5 WO

K gol K 4

3

2

1

0

-1 -6 -4 -2 0 2 4 6 3 log CL/(mol/cm ) FIGURE 15.2.5 Octanol-water partition coefficient versus molar solubility (liquid or supercooled liquid) for esters.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3184 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

15.3 REFERENCES Abraham, M.H. (1984) Thermodynamics of solution of homologous series of solutes in water. J. Chem. Soc., Farad. Trans. 1 80, 153–181. Abraham, M.H., Le J., Acree, Jr., W.E., Carr, P.W., Dallas, A.J. (2001) The solubility of gases and vapours in dry octan-1-ol at 298 K. Chemosphere 44, 855–863. Adams, W.J., Biddinger, G.R., Robillard, K.A., Gorsuch, J.G. (1995) A summary of the acute toxicity of 14 phthalate esters to representative aquatic organisms. Environ. Toxicol. Chem. 14, 1569–1574. Alderson, N.L., Bhethanabotla, V.R., Campbell, S.W. (2003) Total vapor pressure measurements for 2-ethoxyethanol with methyl acetate, ethyl acetate, propyl acetate, and ethyl propionate at 313.15 K and for 2-ethoxyethanol with methyl formate at 308.15 K. J. Chem. Eng. Data 48, 92–96. Aldrich Chemical Company 1998–1999 Catalog (1998). Handbook of Fine Chemicals. Milwaukee, Wisconsin. Altshuller, A.P., Everson, H.E. (1953) The solubility of ethyl acetate in water. J. Am. Chem. Soc. 75, 1727. Ambrose, D., Ellender, J.H., Gundry, H.A., Lee, D.A., Townsend, R. (1981) Thermodynamic properties of organic oxygen compounds. LI. The vapour pressures of some esters and fatty acids. J. Chem. Thermodyn. 13, 795–802. Amidon, G.L., Williams, N.A. (1982) A solubility for non-electrolytes in water. Int. J. Pharm. 11, 249–256. Amidon, G.L., Yalkowsky, S.H., Anik, S.T., Valvani, S.C. (1975) Solubility of nonelectrolytes in polar solvents. V. Estimation of the solubility of aliphatic monofunctional compounds in water using a molecular surface area approach. J. Phys. Chem. 79(21), 2239–2246. Andersson, J.T., Schrăder, W. (1999) A method for measuring 1-octanol-water partition coefficients. Anal. Chem. 71, 3610–3614. Andrews, L.J., Keefer, R.M. (1950) Cation complexes of compounds containing carbon-carbon double bonds. VI. The argentation of substituted benzenes. J. Am. Chem. Soc. 72, 3113–3116. Atkinson, R. (1985) Kinetics and mechanisms of the gas-phase reactions of hydroxyl radicals with organic compounds under atmo- spheric conditions. Chem. Rev. 85, 69–201. Atkinson, R. (1987) Structure-activity relationship for the estimation of rate constants for the gas-phase reactions of OH radicals with organic compounds. Int. J. Chem. Kinetics. 19, 799–828. Atkinson, R. (1989) Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. J. Phys. Chem. Ref. Data Monograph 1, 1–246.

Atkinson, R. (2000) Atmospheric chemistry of VOCs and Nox. Atmos. Environ. 34, 2063–2101. Atkinson, R., Darnall, K.R., Lloyd, A.C., Winer, A.M., Pitts, J.N., Jr. (1979) Kinetics and mechanisms for the reaction of hydroxyl radicals with organic chemicals in the gas-phase. Adv. Photochem. 11, 375–488. Atlas, E., Foster, R, Giam, C.S. (1982) Air-sea exchange of high-molecular weight organic pollutants: Laboratory studies. Environ. Sci. Technol. 16, 283–286. Atlas, E., Velasco, A., Sullivan, K., Giam, C.S. (1983) A radiotracer study of air-water exchange of synthetic organic compounds. Chemosphere 12, 1251–1258. Balson, E.W. (1958) The Measurement of Vapour Pressure by Torsion-Effusion Method: Surface Phenomena in Chemistry and Biology. Pergamon Press, Oxford, England. Banerjee, S. (1984) Solubility of organic mixtures in water. Environ. Sci. Technol. 18, 587–591. Banerjee, S. (1985) Calculation of water solubility of organic compounds with UNIFAC-derived parameters. Environ. Sci. Technol. 19, 369–370. Banerjee, S., Baughman, G.L. (1991) Bioconcentration factors and lipid solubility. Environ. Sci. Technol. 25, 536–539. Banerjee, S., Howard, P.H. (1988) Improved estimation of solubility and partitioning through correction of UNIFAC-derived activity coefficients. Environ. Sci. Technol. 22, 839–841. Banerjee, S., Howard, P.H., Lande, S.S. (1990) General structure-vapor pressure relationships for organics. Chemosphere 21(10–11), 1173–1180. Barclay, Butler (1938) Trans. Farad. Soc. 34, 1445. Barnard, P.W.C., Bunton, C.A., Llewellyn, D.R., Vernon, C.A., Welch, V.A. (1961) The reactions of organic phosphates. Part V. The hydrolysis of triphenyl and trimethyl phosphates. J. Chem. Soc. 2670–2676. Barrows, M.E., Petrocelli, S.R., Macek, K.J. (1980) Bioconcentration and elimination of selected water pollutants by bluegill sunfish (Lepomis macrochiras). In: Dynamics, Exposure, Hazard Assessment Toxic Chemicals. Hauqe, R., Editor, pp. 379–392. Ann Arbor Science Publishers Inc., Ann Arbor, Michigan. Bartelt, R.J. (1997) Calibration of a commercial solid-phase microextraction device for measuring headspace concentrations of organic volatiles. Anal. Chem. 69, 364–372. Bechalany, A., Röthlisberger, T., El Tayler, N., Testa, B. (1989) Comparison of various non-polar stationary phases used for assessing lipophilicity. J. Chromatog. 473, 115–124. Bengtsson, B.E., Tarkpea, M., Sletten, T., Carlbery, G.E., Kringstad, A., Renberg, L. (1986) Bioaccumulation and effects of some technical triaryl phosphate products in fish and Nitocra spinipes. Environ. Toxicol. Chem. 5, 853–861. Birks, J., Bradley, R.S. (1949) Proc. R. Soc. London Ser. A 198, 226. Blum, D.J.W., Suffet, I.H., Duguet, J.P. (1994) Quantitative structure-activity relationship using molecular connectivity for the activated carbon adsorption of organic chemicals in water. Water Res. 28, 687–699.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3185

Boethling, R.S., Cooper, J.C. (1985) Environmental fate and effects of triaryl and tri-alkyl/aryl phosphate esters. Residue Rev. 94, 49–99. Boethling, R.S., Gregg, B., Frederick, R., Gabel, N.W., Campbell, S.E., Sabljic, A. (1989) Expert systems survey on biodegradation of xenobiotic chemicals. Ecotoxicol. Environ. Saf. 18, 252–267. Booth, H.S., Everson, H.E. (1948) Hydrotropic solubilities. Solubilities in 40 per cent sodium xylenesulfonate. Ind. Eng. Chem. 40(8), 1491–1493. Boublik, T., Aim, K. (1979) Utzeht, Prague.-reference see Boublik et al. 1984. Boublik, T., Fried, V., Hala, E. (1984) The Vapor Pressures of Pure Substances. 2nd Edition, Elsevier, Amsterdam, The Netherlands. Bouwer, E.J., McCarty, P.L., Lance, J.C. (1981) Trace organic behavior in soil columns during rapid infiltration of secondary wastewater. Water Res. 15, 151–159. Branson, D.R. (1978) Predicting the fate of chemicals in the aquatic environment from laboratory data. In: Estimating the Hazard of Chemical Substances to Aquatic Life. ASTM STP 657, Cairns, Jr., J., Dickson, K.L., Maki, A.W., Eds., pp. 55–70, American Society for Testing and Materials, Philadelphia. Brinkman, U.A., Schouten,M.J., Peereboom, J.W.C. (1979) Liquid chromatographic analysis of phthalate esters in Deutch river waters. Int. J. Environ. Anal. Chem. 7, 13–23. Brooke, D., Nielsen, I., De Bruijn, J., Hermens, J. (1990) An interlaboratory evaluation of the stir-flask method for the determination

of octanol-water partition coefficients (LOG POW). Chemosphere 21, 119–133. Brown, D., Thompson, R.S. (1982a) Phthalates and the aquatic environment: Part I. The effect of di-2-ethylhexyl phthalate (DEHP) and di-isodecyl phthalate (DIDP) on the reproduction of Daphnia magna and observations on their bioconcentration. Chemo- sphere 4, 417–426. Brown, D., Thompson, R.S. (1982b) Phthalates and the aquatic environment: Part II. The bioconcentration and depuration of di- 2-ethylhexyl phthalate (DEHP) and diisodecyl phthalate (DIDP) in mussels (Mytilus edulis). Chemosphere 11(4), 427–435. Burrows, G. (1946) Determination of the boiling-points of liquids of low vapour pressure. J. Soc. Chem. Ind. (London) 65, 360–365. Butler, J.A.V., Ramchandani, C.N. (1935) The solubility of nonelectrolytes. Part II. The influence of the polar group on the free energy of hydration of aliphatic compounds. J. Chem. Soc. (London) 952–955. Buttery, R.G., Ling, J.C., Guadagni, D.G. (1969) Food volatiles. Volatility of aldehydes, ketones, and esters in dilute water solution. J. Agric. Food Chem. 17, 385–389. Bywater, S. (1952) Vapor pressures of methyl methacrylate and styrene. J. Polym. Sci. 9, 417. Callahan, M.A., Slimak, M.W., Gabel, N.W., May, I.P., Fowler, C.F., Freed, J.R., Jennings, P., Durfee, R.L., Whitemore, F.C., Maestri, B., Mabey, W.R., Holt, B.R., Gould, C. (1979) Water Related Environmental Fate of 129 Priority Pollutants. EPA No. 440-4-79-029a,b. Versar, Inc., Springfield, Virginia. Campbell, I.M., Parkinson, P.E. (1978) Rate constants for reactions of hydroxyl radicals with ester vapours at 292 K. Chem. Phys. Lett. 53, 385–387. Capel, P.D., Larson S.(1995) A chemodynamic approach for estimating losses of target organic chemicals from water during sample holding time. Chemosphere 30, 1097–1107. Capkova, A., Fried, V. (1963) Collection Czech. Chem. Comm. 28, 2235.—ref see Boublik et al. 1984. Casserly, D.M., Davis, E.M., Downs, T.D., Guthrie, R.K. (1983) Sorption of organics by Selenastrum capricornutum. Water Res. 17(11), 1591–1594. Catz, P., Friend, D.R. (1989) Alkyl esters as skin permeation enhancers for indomethacin. Int. J. Pharm. 55, 15–23. Chang, R., Davis, E.J. (1976) Knudsen aerosol evaporation. J. Colloid Interface Sci. 54, 352–363. CHEMFATE The Environmental Fate Database-A Computerized Database by Technical Database Services Incorporated, New York, New York. Cichna, M., Markl, P., Huber, J.F.K. (1995) Determination of true octanol-water partition coefficients by means of solvent generated liquid-liquid chromatography. J. Pharmaceu. Biomed. Anal. 11, 339–351. Collander, R. (1951) Partition of organic compounds between higher alcohols and water. Acta. Chem. Scand. 5, 774–780. Collette, T.W. (1990) Ester hydrolysis rate constant prediction from infrared interferograms, Environ. Sci. Technol. 24, 1671–1676. Conkle, J.P., Camp, B.J., Welch, B.E. (1975) Trace composition of human respiratory gas. Arch. Environ. Health 30, 290–295. Cousins, I., Mackay, D. (2000) Correlating the physical-chemical properties of phthalate esters using the ‘three solubility’ approach. Chemosphere 41, 1389–1399. D’Amboise, M., Hanai, T. (1982) Hydrophobicity and retention in reversed phase liquid chromatography. J. Liq. Chromatogr. 5(2), 229–244. Darnall, K.R., Lloyd, A.C., Winer, A.M., Pitts, Jr., J.N. (1976) Reactivity scale for atmospheric hydrocarbons based on reaction with hydroxyl radical. Environ. Sci. Technol. 10, 692–696. Davis, D.S. (1941) Line coordinate chart for vapor pressures of organic solvents. Ind. Eng. Chem. 33, 401. Davis, E.J., Ray, A.K. (1977) Determination of diffusion coefficients by submicron droplet evaporation. J. Chem. Phys. 67, 414–419. Davies, R.P., Dobbs, A.J. (1984) The prediction of bioconcentration in fish. Water Res. 18(10), 1253–1262. Dean, J.D., Editor (1985) Lange’s Handbook of Chemistry. 13th Edition, McGraw-Hill, Inc., New York. Dean, J.D., Editor (1992) Lange’s Handbook of Chemistry. 14th Edition, McGraw-Hill, Inc., New York. De Bruijn, J., Busser, F., Seinen, W., Hermens, J. (1989) Determination of octanol/water partition coefficients for hydrophobic organic chemicals with the “slow-stirring” method. Environ. Toxicol. Chem. 8, 499–512. DeFoe, D.L., Holcombe, G.W., Hammermeister, D.E. (1990) Solubility and toxicity of eight phthalate esters to four aquatic organisms. Environ. Toxicol. Chem. 9, 623–636.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3186 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

De Kock, A.C., Lord, D.A. (1987) A simple procedure for determining octanol-water partition coefficients using reversed phase high performance liquid chromatography (RPHPLC). Chemosphere 16(1), 133–142. Deno, N.C., Berkheimer, H.E. (1960) Part I. Phase equilibria molecular transport thermodynamics. J. Chem. Eng. Data 5(1), 1–5. Dilling, W.L., Bredweg, C.J., Tefertiller, N.B. (1976) Organic photochemistry. Simulated atmospheric photodecomposition rate of methylene chloride, 1,1,1-trichloroethane, trichloroethylene, tetrachloroethylene, and other compounds. Environ. Sci. Technol. 10, 351–356. Dilling, W.L., Gonsior, S.J., Boggs, G.U., Mendoza, C.G. (1988) Organic photochemistry. 20. A method for estimating gas-phase rate constants for reactions of hydroxyl radicals with organic compounds from their relative rates of reaction with hydrogen peroxide under photolysis in 1,1,2-trichlorotrifluoroethane solution. Environ. Sci. Technol. 22, 1447–1453. Dobbs, A.J., Cull, M.R. (1982) Volatilization of chemicals-relative loss rates and the estimation of vapour pressures. Environ. Pollut. 3, 289–298. Dobbs, A.J., Hart, G.F., Parsons, A.H. (1984) The determination of vapour pressure from relative volatilization rates. Chemosphere 13(5/6), 687–692. Donahue, D.J., Bartell, F.E. (1952) The boundary tension at water-organic liquid interfaces. J. Phys. Chem. 56, 480–484. Donovan, S.F., Pescatore, M.C. (2002) Method for measuring the logarithm of the octanol-water partition coefficient by using short octadecyl-poly(vinyl alcohol) high-performance liquid chromatographic columns. J. Chromatogr. A 952, 47–61. Dorfman, L.M., Adams, G.E. (1973) Reactivity of the Hydroxyl Radical in Aqueous Solution. NSRD-NDB-46. NTIS COM-73-50623. National Bureau of Standards, Washington DC. Dreisbach, R. (1952) Pressure-Volume-Temperature Relationships of Organic Compounds. Handbook Publishers Inc., Sandusky, Ohio. Dreisbach, R.R., Martin, R.A. (1949) Physical data on some organic compounds. Ind. Eng. Chem. 41, 2875–2878. Drossman, H., Johnson, H., Mill, T. (1988) Structure activity relationships for environmental processes 1: Hydrolysis of ester and carbamates. Chemosphere 17, 1509–1530. Eadsforth, C.V. (1986) Application of reverse-phase HPLC for the determination of partition coefficients. Pestic. Sci. 17, 311–325. Efroymson, R.A., Alexander, M. (1994) Biodegradation in soil of hydrophobic pollutants in nonaqueous-phase liquids (NAPLs). Environ. Toxicol. Chem. 13, 405–411. Eldefrawi, A.T., Mansour, N.A., Brattsten, L.B., Ahrens, V.D., Lisk, D.J. (1979) Bull. Environ. Contam. Toxicol. 17, 720. Ellington, J.J. (1989) Hydrolysis Rate Constants for Enhancing Property-Reactivity Relationships. EPA/600/3-89/063. NTIS PB89- 220479. US Environmental Protection Agency, Environmental Research Lab., Athens, Georgia. Ellington, J.J. (1999) Octanol/water partition coefficients and water solubilities of phthalate esters. J. Chem. Eng. Data 44, 1414–1418. Ellington, J.J., Stancek, F.E., Payne, W.D., Trusty, C.D. (1987) Measurement of Hydrolysis Rate Constants for Evaluation of Hazardous Waste Land Disposal. Vol. I. Data on 54 Chemicals. US EPA-600/3-86-043. Ellington, J.J., Stancil, F.E., Jr., Payne, W.D., Trusty, C.D. (1987) Measurements of Hydrolysis Rate Constants for Evaluation of Hazardous Waste Land Disposal: Data on 54 Chemicals. Volume II. EPA/600/53-87/019. U.S. Environmental Protection Agency, Athens, Georgia. Elzerman, A.W., Coates, J.T. (1987) Hydrophobic organic compounds on sediments: Equilibria and kinetics of sorption. In: Sources and Fates of Aquatic Pollutants. Hites, R.A., Eisenreich, S.J., Editors, pp. 264–318, Advances in Chemistry Series 216, American Chemical Society, Washington, DC. ENVIROFATE Environmental Fate Database. A Computerized Database sponsored by U.S. EPA’s The Office of Toxic Substances. EPA (1985) Environmental Fate Database. A Computerized Database sponsored by U.S. EPA’s The Office of Toxic Substances. Evans, D.P., Davies, W.C., Jones, W.J. (1930) J. Chem. Soc. 1310. Fishbein, L., Albro, P.W. (1972) Chromatographic and biological aspects of the phthalate esters. J. Chromatogr. 70, 365–412. Franck, A. (1969) Chem.-Ztg., Chem. Appar. 93, 668. Freidig, A.P., Verhaaar, H.J.M., Hermens, J.L.M. (1999) Quantitative structure-property relationships for the chemical reactivity of acrylates and methacrylates. Environ. Toxicol. Chem. 18, 1133–1139. Freitag, D., Ballhorn, L., Geyer, H., Körte, F. (1985) Environmental hazard profile of organic chemicals. An experimental method for the assessment of the behaviour of organic chemicals in the ecosphere by means of simple laboratory tests with 14C labelled chemicals. Chemosphere 14, 1589–1616. Freitag, D., Geyer, H., Kraus, A., Viswanathan, R., Kortzias, D., Attar, A., Klein, W., Körte, F. (1982) Ecotoxicological profile analysis. VII. Screening chemicals for their environmental behavior by comparative evaluation. Ecotoxicol. Environ. Safety 6, 60–81. Frostling, H. (1970) Vapor pressure determination of phthalic esters by analysis of a static aerosol with the aid of a flame ionization instrument. J. Aerosol. Sci. 1, 341–356. Fühner, H. (1924) Die wasserlöslichkeit in homologen reilen. Chem. Ber. 57, 510–515. Fujisawa, S., Masuhara, E. (1980) Binding of methyl methacrylate to bovine serum albumin. J. Den. Res. 59, 2056–2061. Fujisawa, S., Masuhara, E. (1981) Determination of partition coefficients of acrylates, methacrylates, and vinyl monomers using high performance liquid chromatography (HPLC). J. Biomed. Mater. Res. 15, 787–793. Gardner, G.S., Brewer, J.E. (1937) Vapor pressure of commercial high-boiling organic solvents. Ind. Eng. Chem. 29, 179–181. Garten, Jr., C.T., Trabalka, J.R. (1983) Evaluation of models for predicting terrestrial food chain behavior of xenobiotics. Environ. Sci. Technol. 17, 590–595. GEMS (1984) Graphical Exposure Modeling System. FAP, Fate Atmospheric Pollution. Data Base, Office of Toxic Substances, U.S. Environmental Protection Agency.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3187

GEMS (1986) Graphical Exposure Modeling System. FAP, Fate Atmospheric Pollution. Data Base, Office of Toxic Substances, U.S. Environmental Protection Agency. Geyer, H., Kraus, A.G., Klein, W., Richter, E., Körte, F. (1980) Relationship between water solubility and bioaccumulation potential of organic chemicals in rats. Chemosphere 9, 277–291. Geyer, H., Politzki, G., Freitag, D. (1984) Prediction of ecotoxicological behavior of chemicals: Relationship between n-octanol/water partition coefficient and bioaccumulation of organic chemicals by alga chlorella. Chemosphere 113(2), 269–284. Giam, C.S., Atlas, E., Chan, H.S., Neff, G.S. (1980) Phthalate esters, PCB and DDT residues in the Gulf of Mexico atmosphere. Atmos. Environ. 14, 65–69. Giam, C.S., Atlas, E., Powers, Jr., M.A., Leonard, J.E. (1994) Phthalic acid esters. In: The Handbook of Environmental Chemistry. Vol. 3, Part C., Hutzinger, O., Ed., pp. 67–142, Springer-Verlag, Berlin, Germany. Gledhill, W.E., Kaley, R.G., Adams, W.J., Hicks, O., Michael, P.R., Saeger, V.W., Leblanc, G.A. (1980) An environmental safety assessment of butyl benzyl phthalate. Environ. Sci. Technol. 14, 301–305. Gluck, S.J., Martin, E.J. (1990) Extended octanol-water partition coefficient determination by dual-mode centrifugal partition chroma- tography. J. Liq. Chromatogr. 13(18), 3559–3570. Gobas, F.A.P.C., Mackintosh, C.E., Webster, G., Ikonomou, M., Parkerton, T.F., Robillard, K. (2003) Bioaccumulation of phthalate esters in aquatic food-webs. In: Phthalate Esters. The Handbook of Environmental Chemistry. Vol. 3 Anthropogenic Compounds, Part Q. Staples, C.A. Ed., pp. 201–225, Springer-Verlag, Berlin, Heidelberg, New York. Goodman, M.A. (1997) Vapor pressure of agrochemicals by the Knudsen effusion method using a quartz crystal microbalance. J. Chem. Eng. Data 42, 1227–1231. Grayson, B.T., Fosbraey, L.A. (1982) Determination of the vapour pressure of pesticides. Pestic. Sci. 13, 269–278. Gückel, W., Kästel, R., Lewerenz, J., Synnatschke, G. (1982) A method for determining the volatility of active ingredients used in plant protection. Part III: The temperature relationship between vapour pressure and evaporation rate. Pestic. Sci. 13, 161–168. Güesten, H., Klasinc, L., Maric, D. (1984) Prediction of the abiotic degradability of organic compounds in the troposphere. J. Atmos. Chem. 2, 83–93. Haag, W.R., Yao, D.C.C. (1992) Rate constants for reaction of hydroxyl radicals with several drinking water contaminants. Environ. Sci. Technol. 26(5), 1005–1013. Haky, J.E., Leja, B. (1986) Evaluation of octanol-water partition coefficients using capillary gas chromatography with cold on-column injection. Anal. Lett. 19(1–2), 123–134. Haky, J.E., Young, A.M. (1984) Evaluation of simple HPLC correlation method for the estimation of the octanol-water partition coefficients of organic compounds. J. Chromatogr. 7, 675–689. Hales, J.L., Cogman, R.C., Frith, W.J. (1981) A transpiration-g.l.c. apparatus for measurement of low vapour concentration. J. Chem. Thermodyn. 13, 591–601. Hammer, E., Lydersen, A.L. (1957) The vapour pressure of di-n-butylphthalate, di-n-butylsebacate, lauric acid and myristic acid. Chem. Eng. Sci. 7, 66–72. Hansch, C., Anderson, S.M. (1967) The effect of intramolecular hydrophobic bonding on partition coefficients. J. Org. Chem. 32, 2583. Hansch, C., Leo, A. (1979) Substituents Constants for Correlation Analysis in Chemistry and Biology. Wiley, New York. Hansch, C., Leo, A. (1982) Medchem Project. Pomona College, Claremont, California. Hansch, C., Leo, A. (1985) Medchem Project Issue No. 26. Pomona College, Claremont, California. Hansch. C., Leo, A.J., Hoekman, D. (1995) Exploring QSAR, Hydrophobic, Electronic, and Steric Constants. ACS Professional Reference Book, American Chemical Society, Washington, DC. Hansch, C., Quinlan, J.E., Lawrence, G.L. (1968) The linear free-energy relationship between partition coefficients and aqueous solubilities of organic liquids. J. Org. Chem. 33, 347–350.

Harnish, M., Möckel, H.J., Schulze, G. (1983) Relationship between LOG POW shake-flask values and capacity factors derived from reversed-phase HPLC for n-alkylbenzenes and some OECD reference substances. J. Chromatogr. 282, 315–332. Hattori, Y., Kuge, Y., Nakagawa, S. (1975) Microbial decomposition of phthalate esters in environmental water. Pollut. Control Center Osaka Perfect, Mizu Shori Gijutsu. 16, 951–954. Hayward, D.S., Kenley, R.A., Jenke, D.R. (1990) Interactions between polymer containers and parenteral solutions: the correlation of equilibrium constants for polymer-water partitioning with octanol-water partition coefficients. Int. J. Pharm. 59, 245–253. Hermens, J., Leeuwangh, P. (1982) Joint toxicity of mixtures of 8 and 24 chemicals to the guppy (poecilia reticulata). Ecotoxicol. Environ. Saf. 6, 302–310. Heukelekian, H., Rand, M.C. (1955) Biochemical oxygen demand of pure organic compounds. J. Water Pollut. Control Assoc. 29, 1040–1053. Hickman, K.C.D., Hecker, J.C., Embree, N.D. (1937) Direct determination of low vapor pressures. Ind. Eng. Chem. (Anal) 9, 264–267. Higgins, C.E., Baldwin, W.H., Soldano, B.A. (1959) Effects of electrolytes and temperature on the solubility of tributyl phosphate in water. J. Am. Chem. Soc. 63, 113–118. Hine, J., Mookerjee, P.K. (1975) The intrinsic hydrophilic character of organic compounds. Correlations in terms of structural contri- butions. J. Org. Chem. 40, 292–298. Hinckley, D.A., Bidleman, T.F., Foreman, W.T. (1990) Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatographic retention data. J. Chem. Eng. Data 35, 232–237. Hirzy, J.W., Adams, W.J., Gledhill, W.E., Mieure, J.P. (1978) Phthalate Esters: The Environmental Issues. Unpublished seminar document, Monsanto Industrial Chemicals Company.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3188 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Hoff, J.T., Mackay, D., Gillham, R., Shiu, W.Y. (1993) Partitioning of organic chemicals at the air-water interface in environmental systems. Environ. Sci. Technol. 27(10), 2174–2180. Hollifield, H.C. (1979) Rapid nephelometric estimate of water solubility of highly insoluble organic chemicals of environmental interest. Bull. Environ. Contam. Toxicol. 23, 579–586. Hon, H.C., Singh, R.P., Kudchadker, A.P. (1976) Vapor pressure-boiling point measurement of five organic substances by twin ebulliometry. J. Chem. Eng. Data 21, 430–431. Horowitz, A., Shelton, D.R., Cornell, C.P., Tiedje, J.M. (1982) Anaerobic degradation of aromatic compounds in sediment and digested sludge. Dev. Ind. Microbiol. 23, 435–444. Howard, P.H., Editor (1989) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. I-Large Production and Priority Pollutants. Lewis Publishers, Chelsea, Michigan. Howard, P.H., Editor (1990) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. II-Solvents. Lewis Publishers, Chelsea, Michigan. Howard, P.H., Editor (1993) Handbook of Fate and Exposure Data for Organic Chemicals. Vol. IV. Solvents 2. Lewis Publishers, Chelsea, Michigan. Howard, P.H., Banerjee, S., Robillard, K.H. (1985) Measurement of water solubilities, octanol/water partition coefficients and vapor pressures of commercial phthalate esters. Environ. Toxicol. Chem. 4, 653–661. Howard, P.H., Boethling, R.S., Jarvis, W.F., Meylan, W.M., Michalenko, E.M. (1991) Handbook of Environmental Degradation Rates. Lewis Publishers, Chelsea, Michigan. Howard, P.H., Deo, P.G. (1979) Degradation of aryl phosphates in aquatic environments. Bull. Environ. Contam. Toxicol. 22, 337–344. Hoy, K.L. (1970) New values of the solubility parameters from vapor pressure data. J. Paint Technol. 42(541), 76–118. Inman, J.C., Strachan, S.D., Sommers, L.E., Nelson, D.W. (1984) The decomposition of phthalate esters in soil. J. Environ. Sci. Health B19, 245–257. ISHOW Information System for Hazardous Organics in Water. A Computerized Database developed by U.S. EPA’s Environmental Research Lab. and The University of Minnesota, sponsored by U.S. EPA’s Office of Toxic Substances. Isnard, P., Lambert, S. (1988) Estimating bioconcentration factors from octanol-water partition coefficient and aqueous solubility. Chemosphere 17(1), 21–34. Isnard, P., Lambert, S. (1989) Aqueous solubility/n-octanol water partition coefficients correlations. Chemosphere 18, 1837–1853. Iwasa, J., Fujita, T., Hansch, C. (1965) Substituent constants for aliphatic functions obtained from partition coefficients. J. Med. Chem. 8, 150–153. Jaber, H.M., Smith, J.H., Cwirla, A.N. (1982) Evaluation of gas saturation method to measure vapor pressures EPA contract No. 68-01-5117, SRI International, Menlo Park, California. Jenke, D.R., Hayward, D.S., Kenley, R.A. (1990) Liquid chromatographic measurement of solute/solvent partition coefficients: application to solute/container interactions. J. Chromatogr. Sci. 28, 609–612. Jin, Z., Huang, G., Chai, Y., Zhong, Y., Wang, D., Li, H. (1999) Huanjing Huazue 16, 109. Johnson, B.T., Heitkamp, M.A., Jones, J.R. (1984) Environmental and chemical factors influencing the biodegradation of phthalate acid esters in freshwater sediments. Environ. Pollut B8, 101–108. Johnson, B.T., Lulves, W. (1975) Biodegradation of di-n-butyl phthalate and di-2-ethylhexyl phthalate in freshwater hydrosoil. J. Fish Res. Board Can. 32, 333–339. Johnson, B.T., Stalling, D.L., Hogan, J.W., Schoettger, R.A. (1979) Dynamics of phthalic acid esters in aquatic organisms. In: Fate of Pollutants in the Air and Water Environments. Part II. Suffet, I.H., Editor, Wiley-Interscience Division of John-Wiley and Sons, New York, New York. Jones, D.C. (1929) The systems n-butyl alcohol-water and n-butyl alcohol-acetone-water. J. Chem Soc. (London), 799–816. Joshi, S.B., Dodge, M.C., Bufalini, J.J. (1982) Reactivities of selected organic compounds and contamination effects. Atmos. Environ. 16, 1301–1310. Kamlet, M.J., Doherty, R.M., Abraham, M.H., Carr, P.W., Doherty, R.F., Taft, R.W. (1987) Linear solvation energy relationships. 41. Important differences between aqueous solubility relationships for aliphatic and aromatic solutes. J. Phys. Chem. 91, 1996–2004. Kamlet, M.J., Doherty, R.M., Taft, R.W., Abraham, M.H., Veith, G.D., Abraham, D.J. (1987) Solubility properties in polymers and biological media: 8. An analysis of the factors that influence toxicities of organic nonelectrolytes to the golden orfe fish (Leuciscus idus melanotus). Environ. Sci. Technol. 21(2), 149–155. Karara, A.H., Hayton, W.L. (1984) Pharmacokinetic model for the uptake and disposition of di-2-ethylhexyl phthalate in sheephead minnows (Cyprinodon variegatus). Aquatic Toxicol. 5, 181–195. Karickhoff, S.W. (1985) Chapter 3, Pollutant sorption in environmental systems. In: Environmental Exposure From Chemicals. Volume I. Neely, W.B., Blau, G.E., Editors, CRC Press, Inc., Boca Raton, Florida. pp. 49–64. Kelly, T.J., Mukund, R., Spicer, C.W., Pollack, A.J. (1994) Concentrations and transformations of hazardous air pollutants. Environ. Sci. Technol. 28, 378A–367A. Kenaga, E.E. (1980) Predicted bioconcentration factors and soil sorption coefficients of pesticides and other chemicals. Ecotoxicol. Environ. Saf. 4, 26–38. Kenaga, E.E., Goring, C.A.I. (1980) Relationship between water solubility, soil sorption, octanol-water partitioning, and concentration of chemicals in biota. In: Aquatic Toxicology ASTM 707, Eaton, J.G., Parrish, P.R., Hendricks, A.C., Editors, pp. 78–115, Am. Soc. For Testing and Materials, Philadelphia, Pennsylvania.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3189

Kieckbusch, T.G., King, C.J. (1979) An improved method of determining vapor-liquid equilibria for dilute organics in aqueous solution. J. Chromatogr. Sci. 17, 273–276. Kim, Y.H. (1985) Evaluation of a gas chromatographic method for estimating vapor pressures with organic pollutants. Ph.D. Thesis, University of California, Davis, California. Klamt, A. (1996) Estimation of gas-phase hydroxyl radical rate constants of oxygenated compounds based on molecular orbital calculations. Chemosphere 32, 716–726. Kliment, V., Fried, V., Pick, J. (1964) Coll. Czeh. Chem. Comm. 29, 2008.—ref. see Boublik et al. 1984. Klečka, G.M. (1985) Chapter 6, Biodegradation. In: Environmental Exposure From Chemicals. Volume I. Neely, W.B., Blau, G.E., Editors, CRC Press, Inc., Boca Raton, Florida. pp. 110–155. Klein, W., Kördel, W., Weiβ, M., Poremski, H.J. (1988) Updating of the OECD test guideline 107 “partition coefficient n-octanol/water:” OECD laboratory intercomparison test on HPLC method. Chemosphere 17, 361–386. Klöpffer, W., Kaufmann, G., Rippen, G., Poremski, H-J. (1982) A laboratory method for testing the volatility from aqueous solution: First results and comparison with theory. Ecotoxicol. Environ. Saf. 6, 545–559. Kolb, B., Welter, C., Bichler, C. (1992) Determination of partition coefficients by automatic equilibrium headspace gas chromatography by vapor phase calibration. Chromatographia 34, 235–240. Kollig, H.P., Ed. (1993) Environmental Fate Constants for Organic Chemicals Under Consideration for EPA’s Hazardous Waste Identification Project. EPA Report EPA/600/R-93/132, Environmental Research Lab., Athens, Georgia. Kurane, R., Suzuki, T., Takahara, Y. (1977) Isolation of microorganisms growing on phthalate esters and degradation of phthalate ester by Pseudomonas acidovorans 256–1. Agric. Biol. Chem. 41, 2119–2123. Laurence, W.H., Bas, G.E., Purcell, W.P., Autian, J. (1972) Use of mathematical models in the study of structure-toxicity relationships of dental compounds: I. Esters of acrylic and methylacrylic acids. J. Dent. Res. 51, 526–535. Leahy, D.E. (1986) Intrinsic molecular volume as a measure of the cavity term in linear solvation energy relationships: Octanol-water partition coefficients and aqueous solubilities. J. Pharm. Sci. 75, 629–636. Lee, B.I., Erbar, J.H., Edmister, W.C. (1972) Thermodynamic properties at low temperatures. Chem. Eng. Prog. 68(9), 83. Leo, A., Hansch, C., Church, C. (1969) Comparison of parameters currently used for the study of structure-activity relationships. J. Med. Chem. 12, 766–771. Leo, A., Hansch, C., Elkins, D. (1971) Partition coefficients and their uses. Chem. Rev. 71, 525–612. Letinski, D., Connelly, Jr.,M.J., Peterson, D.R., Parketon, T.F. (2002) Slow-stir water solubility measurements of selected alcohols and diesters. Chemosphere 43, 257–265. Lewis, D.L., Holm, H.W. (1981) Rates of transformation of methyl parathion and diethyl phthalate by aufwuchs microorganisms. Appl. Environ. Microbiol. 42, 698–703. Lewis, D.L., Holm, H.W., Kollig, H.P. (1984) Transport and fate of diethyl phthalate in aquatic ecosystems. Environ. Toxicol. Chem. 3, 223–231. Lide, D.R., Editor (2003) Handbook of Chemistry and Physics. 84th Edition, CRC Press, LLC. Boca Raton, Florida. Leyder, F., Boulanger, P. (1983) Ultraviolet absorption, aqueous solubility, and octanol-water partition for several phthalates. Bull. Environ. Contam. Toxicol. 30, 152–157. Lo, J.M., Tseng, C.L., Yang, J.Y. (1986) Radiometric method for determining solubility of organic solvents in water. Anal. Chem. 58, 1596–1597. Lu, P.-Y., Metcalf, R.L. (1975) Environmental fate and biodegradability of benzene derivatives as studied in a model aquatic ecosystem. Environ. Health Perspect. 10, 269–284. Lyman, W.J. (1985) Estimation of physical properties. In: Environmental Exposure From Chemicals. Volume I. Neely, W.B., Blau, G.E., Editors, Chapter 2, pp. 13–48, CRC Press, Inc., Boca Raton, Florida. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors (1982) Handbook on Chemical Property Estimation Methods. Environmental Behavior of Organic Compounds. McGraw-Hill, New York. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Editors (1990) Handbook on Chemical Property Estimation Methods. Environmental Behavior of Organic Compounds. American Chemical Society, Washington DC. pp. 4–9, 5–4, 5–10, 7–4, 7–5, 15–15 to 15–32. Mabey, W.R., Mill, T. (1978) Critical review of hydrolysis of organic compounds in water under environmental conditions. J. Phys. Chem. Ref. Data 7, 383–415. Mabey, W.R., Smith, J.H., Podoll, R.T., Johnson, H.L., Mill, T., Chou, T.W., Gate, J., Waight-Partridge, I., Jaber, H., Vanderberg, D. (1982) Aqueous Fate Process for Organic Priority Pollutants. U.S. EPA Report, No. 440/4-81-14. Mackay, D. (1985) Chapter 5, Air/water exchange coefficients. In: Environmental Exposure From Chemicals. Volume I. Neely, W.B., Blau, G.E., Editors, CRC Press, Inc., Boca Raton, Florida. pp. 91–108. Madsen, P.L., Thyme, J.B., Henriksen, K., Møldrup, Roslev, P. (1999) Kinetics of di-(2-ethylhexyl)phthalate mineralization in sludge- amended soil. Environ. Sci. Technol. 33. 2601–2608. Massaldi, H.A., King, C.J. (1973) Simple technique to determine solubilities of sparingly soluble organics: Solubility and activity coefficients of d-limonene, n-butylbenzene, and n-hexyl acetate in water and sucrose solutions. J. Chem. Eng. Data 18, 393–397. Matthiessen, P., Thain, J.E., Law, R.J., Fileman, T.W. (1992) Attempts to assess the environmental hazard posed by complex mixtures of organic chemicals in UK estuaries. Mar. Pollut. Bull. 26, 90–95. Mayer, F.L. (1976) Residue dynamics of di(2-ethylhexyl) phthalate in fathead minnows (Pimephales promelas). J. Fish Res. Board Can. 33, 2610–2613.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3190 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Mayer, F.L., Adams, W.J., Finley, M.T., Michael P.R., Mehrle, P.M., Saeger V.W. (1981) Phosphate ester hydraulic fluids: An aquatic environmental assessment of Pydraul 50E and 115E. In: Aquatic Toxicology and Hazard Assessment: Four Conference, ASTM STP 737, Branson, D.R., Dickson, K.L., Eds., pp. 103–123, Am. Soc. for Testing and Materials, Philadelphia, PA. Mayer, F.L., Sanders, H.O. (1973) Toxicology of phthalic acid esters in aquatic organisms. Environ. Health Prospect. 3, 153–157. McBain, J.W., Richards, P.H. (1946) Solubilization of insoluble organic liquids by detergents. Ind. Eng. Chem. 38(6), 642–644. McDuffie, B. (1981) Estimation of octanol/water partition coefficients for organic pollutants using reverse-phase HPLC. Chemosphere 10, 73–83. McGowan, J.C. (1954) The physical toxicity of chemicals. IV. Solubilities, partition coefficients and physical toxicities. J. Appl. Chem. 4, 41–47. Mertl, I., Polak, J. (1964) Vscht-Utzcht Prague. Ref. see Boublik et al. 1984. Mertl, I., Polak, J. (1965) Collection Czech. Chem. Comm. 30, 3526.—reference see Boublik et al. 1984. Metcalf, R.L. (1976) Evaluation of the utility of the model ecosystem for determining the ecological fate of substances subject to FDA regulatory authority. Final Report, Food and Drug Administration contract FDA 74–127. Metcalf, R.L., Booth, G.M., Schuth, C.K., Hansen, D.J., Lu, P.Y. (1973) Uptake and fate of di-2-ethylhexyl phthalate in aquatic organisms and in a model ecosystem. Environ. Health Perspect. 4, 27–34. Metcalf, R.L., Lu, P.Y. (1973) Environmental Distribution and Metabolic Fate of Key Industrial Pollutants and Pesticides in a Model Ecosystem. Research Report No. 69, Water Resources Center, University of Illinois. Meylan, W., Howard, P.H. (1991) Bond contribution method for estimating Henry’s law constants. Environ. Toxicol. Chem. 10, 1283–1293. Meylan, W., Howard, P.H., Boethling, R.S. (1992) Molecular topology/fragment contribution method for predicting soil sorption coefficient. Environ. Sci. Technol. 26(8), 1560–1567. Mills, W.B., Dean, J.D., Porcella, D.B., Gherini, S.A., Hudson, R.J.M., Frick, W.E., Rupp, G.L., Bowie, G.L. (1982) Water Quality Assessment: A Screening Procedure for Toxic and Conventional Pollutants. Part I. U.S. EPA Report, No. EPA-600/6-82-004a. Muir, D.C.G. (1984) Phosphate esters. In: The Handbook of Environmental Chemistry. Vol. 3, Part C., Hutzinger, O., Ed., pp. 41–66, Springer, Verlag, Berlin. Muir, D.C.G., Grift, N.P., Blouw, A.P., Lockhart, W.L. (1980) Environmental dynamics of phosphate esters. I. Uptake and bioaccu- mulation of triphenyl phosphate by rainbow trout. Chemosphere 9, 525–532. Muir, D.C.G., Grift, N.P. (1981) Environmental dynamics of phosphate esters. II. Uptake and bioaccumulation of 2-ethylhexyl diphenyl phosphate and diphenyl phosphate by fish. Chemosphere 10, 847–856. Muir, D.C.G., Lint, D., Grift, N.P. (1985) Fate of three phosphate ester flame retardants in small ponds. Environ. Toxicol. Chem. 4, 663–675. Muir, D.C.G., Townsend, B.E., Lockhart, W.L. (1983a) Bioavailability of six organic chemicals to Chironomus tentans larvae in sediment and water. Environ. Toxicol. Chem. 2, 269–281. Muir, D.C.G., Yarechewski, A.L., Grift, N.P. (1983b) Environmental dynamics of phosphate esters. III. Comparison of the biocon- centration of four triaryl phosphates by fish. Chemosphere 12, 155–166. Müller, M., Klein, W. (1992) Comparative evaluation of methods predicting water solubility for organic compounds. Chemosphere 25(6), 769–782. Neely, W.B. (1979) A preliminary assessment of the environmental exposure to be expected from the addition of a chemical to a simulated ecosystem. J. Environ. Stud. 13, 101. Neely, W.B. (1985) Chapter 7, Hydrolysis. In: Environmental Exposure From Chemicals. Volume I. Neely, W.B., Blau, G.E., Editors. pp. 157–174, CRC Press, Inc., Boca Raton, Florida. Neely, W.B., Blau, G.E. (1985) Introduction to environmental exposure from chemicals. In: Environmental Exposure From Chemicals. Volume I. Neely, W.B., Blau, G.E., Editors, Chapter 1, pp. 1–11, CRC Press, Inc., Boca Raton, Florida. Nelson, O.A. (1928) Vapor pressures of fumigants. II. Methyl, ethyl, n-propyl, isopropyl, n-butyl, secondary butyl, and isobutyl formates. Ind. Eng. Chem. 20, 1382–1384. Nelson, P.E., Hoff, J.E. (1968) Food volatiles: gas chromatographic determination of partition coefficient in water-lipid systems. J. Food Sci. 33, 479–482. Nielson, N.M., Bundgaard, H. (1988) Glycolamide esters as biolabile prodrugs of carboxylic acid agents: synthesis, bioconversion and physicochemical properties. J. Pharm. Sci. 77(4), 285–298. Nirmalakhandan, N.N., Speece, R.E. (1988) Prediction of solubility of organic chemicals based on molecular structure. Environ. Sci. Technol. 22(3), 328–338. Nirmalakhandan, N.N., Speece, R.E. (1988) QSAR model for predicting Henry’s constant. Environ. Sci. Technol. 22(11), 1349–1357. OECD (1979) OECD, Environment Committee, Chemicals Group, OECD Chemicals Testing Programme, Expert Group, Physical Chemistry, Final Report Vol.I, Part 1 and 2, Summary of the OECD Laboratory Intercomparison, Testing Programme Part I - On the physico-chemical properties. p.33, Umweltbundesamt, Bundesrepublik Deutschland, Berlin, Dec.1979. OECD (1981) OECD Guidelines for Testing of Chemicals. Section 1: Physical-Chemical Properties. Organization for Economic Co-operation and Development. OECD, Paris. OECD (1993) Guidelines for Testing of Chemicals, Organization for Economic Cooperation and Development Publication: Vapour Pressure Curve Guideline 104, ISBN 92-64-14018-2. O’Grady, D.P., Howard, P.H., Werner, A.F. (1985) Activated sludge biodegradation of 12 commercial phthalate esters. Appl. Environ. Microbiol. 49(2), 443–445.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3191

Osipoff, R.J., Hutzler, N.J., Crittenden, J.C. (1981) Interaction of specific organic chemicals percolating through a soil. Proceedings of the 35th Industrial Waste Conference, 35, 17–23. May 13–15, 1980, Purdue University. Pahren, H.R., Bloodgood, D.E. (1961) Biological oxidation of several vinyl compounds. Water Pollut. Control Fed. 33, 233–238. Patty, F.A., Editor (1963) Aromatic and Cyclic Dicarboxylic Acid Esters. Industrial Hygiene and Technology. Volume II, Interscience Publishers. Patty, F.A., Editor (1967) Industrial Hygiene and Toxicology. Vol. 2. Interscience, New York. Pavlou, S.P., Weston, D.P. (1983) Initial evaluation of alternatives for development of sediment related criteria for toxic contaminants in marine waters (Puget Sound). Phase I: Development of conceptual framework. Prepared by JRB Associates for the US. Environmental Protection Agency under EPA Contract No. 68-01-6388. Pavlou, S.P., Weston, D.P. (1984) Initial evaluation of alternatives for development of sediment related criteria for toxic contaminants in marine waters (Puget Sound). Phase II: Development and testing of the sediment/water equilibrium-partitioning approach. Prepared by JRB Associates for the U.S. Environmental Protection Agency under EPA Contract No. 68-01-6388. Peakall, D.B. (1975) Phthalate esters: Occurrence and biological effects. Residue Rev. 54, 1–41. Perrin, D.D. (1972) Dissociation Constants of Organic Bases in Aqueous Solutions. IUPAC Chemical Data Series; Supplement. Butterworth, London. Perry, E.S., Weber, W.H. (1949) Vapor pressures of phlegmatic liquids. II. High molecular weight esters and silicone oils. J. Am. Chem. Soc. 71, 3726–3730. Peterson, D.R., Staples, C.A. (2003) Degradation of phthalate esters in the environment. In: The Handbook of Environmental Chemistry. Part 3.Q Phthalate Esters. Staples, C.A. Ed., pp. 85–124, Springer-Verlag Berlin Heidelberg New York. Petrasek, A.C., Kugeman, I.J., Austern, B.M., Pressley, T.A., Winslow, L.A., Wise, R.H. (1983) Fate of toxic organic compounds in wastewater treatment plants. J. Water Pollut. Control Fed. 55, 286–296.

Poole, S.K., Durham, D., Kibbey, C. (2000) Rapid method for estimation the octanol-water partition coefficient (log POW) by micro- emulsion electrokinetic chromatography. J. Chromatog. B, 745, 117–126. Potin-Gautier, M., Grenier, P., Bonastre, J. (1982) Nouvelle application analytique de la méthode de détermination des pressions de vapeur par saturation d’un gaz interte. Anal. Lett. 15, 1431–1448. Price, K.S., Waggy, G.T., Conway, R.A. (1974) Brine shrimp bioassay and seawater BOD of petrochemicals. J. Water Pollut. Control Fed. 46, 63–77. Quayle, O.R. (1953) The parachors of organic compounds. Chem. Rev. 53, 439–589. Radding, S.B., Liu, D.H., Johnson, H.L., Mill, T. (1977) Review of the Environmental Fate of Selected Chemicals. EPA Report No. 560/5-77-003. U.S. Environmental Protection Agency, Office of Toxic Substances, Washington, D.C. Ray, A.K., Davis, E.J., Ravindran, P. (1979) Determination of ultra-low vapor pressures by submicron droplet evaporation. J. Chem. Phys. 71, 582–587. Rekker, R.F. (1977) The Hydrophobic Fragmental Constants. Its Derivation and Application, a Means of Characterizing Membrane Systems. Elsevier Scientific Publishing Company, Oxford, England. Renberg, L.O., Sundström, S.G., Rosén-Olofsson, A-C. (1985) The determination of partition coefficients of organic compounds in technical products and waste waters for the estimation of their bioaccumulation potential using reversed phase thin layer chromatography. Toxicol. Environ. Chem. 10, 333–349. Renberg, L., Sundstrom, G., Sundh-Nygard, K. (1980) Partition coefficients of organic chemicals derived from reversed phase thin layer chromatography, evaluation of methods and application on phosphate esters, polychlorinated paraffins and some PCB- substitutes. Chemosphere 9, 683–691. Riddick, J., Bunger, W.B., Sakano, T.K. (1986) Organic Solvents: Physical Properties and Method of Purification. 4th Edition, John Wiley & Sons, New York. Roslev, P., Madsen, P.L., Thyme, J.B., Henriksen, K. (1998) Degradation of phthalate and di-(2-ethylhexyl0phthalate by indigenous and inoculated microorganisms in sludge-amended soil. Appl. Environ. Microbiol. 64, 4711–4719. Roy, R.S. (1972) Spectrophotometric estimation of ester hydrolysis. Anal. Chem. 44, 2096–2098. Rüdel, H., Schmidt, S., Kördel, W., Klein, W. (1993) Degradation of pesticides in soil: comparison of laboratory experiments in a biometer system and outdoor lysimeter experiments. Sci. Total Environ. 132, 181–200. Russell, C.J., Dixon, S.L., Jurs, P.C. (1992) Computer-assisted study of the relationship between molecular structure and Henry’s law constant. Anal. Chem. 64, 1350–1355. Russell, D.J., McDuffie, B. (1986) Chemodynamic properties of phthalate esters: Partitioning and soil migration. Chemosphere 15, 1003–1021. Russell, D.J., McDuffie, B., Fineberg, S. (1985) The effect of biodegradation on the determination of some chemodynamic properties of phthalate esters. J. Environ. Sci. Health A20, 927–941. Ryan, J.A., Bell, R.M., Davidson, J.M., O’Connor, G.A. (1988) Plant uptake of non-ionic organic chemicals from soils. Chemosphere 17(12), 2299–2323. Sabljic, A. (1987) Nonempirical modeling of environmental distribution and toxicity of major organic pollutants. In: QSAR in Environ- mental Toxicology- II. Kaiser, K.L.E., Editor, D. Reidel Publishing Co., Dordrecht, The Netherlands. pp. 309–332.

Sabljic, A., Güsten, H., Verhaar, H., Hermens, J. (1995) QSAR modelling of soil sorption, improvements and systematics of log KOC vs. log KOW correlations. Chemosphere 31, 4489–4514.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3192 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

Saeger, V.W., Hicks, O., Kaley, R.G., Michael, P.R., Mieure, J.P., Tucker, E.S. (1979) Environmental fate of selected phosphate esters. Environ. Sci. Technol. 13, 840–844. Saeger, V.W., Tucker, E.S. (1976) Biodegradation of phthalic acid esters in river water and activated sludge. Appl. Environ. Microbiol. 31, 29–34. Saito, S., Tanoue, A., Matsuo, M. (1992) Applicability of the i/o-characters to a quantitative description of bioconcentration of organic chemicals in fish. Chemosphere 24(1), 81–87. Salmi, E.J., Leimu, R. (1947) The effect of structure on the rate of alkaline hydrolysis of aliphatic esters. Suomen Kemistiehti 20B, 43. Sanborn, J.R. et al. (1975) Plasticizers in the environment: the fate of di-N-octylphthalate (DOP) in two model ecosystems and uptake and metabolism of DOP by aquatic organisms. Arch. Environ. Contam. Toxicol. 3(2), 244–255. Sanders, H.O., Mayer, F.L., Walsh, D.F. (1973) Toxicity, residue dynamics, and reproduction effects of phthalate esters in aquatic invertebrates. Environ. Res. 6, 84–90. Sangster, J. (1989) Octanol-water partition coefficients of simple organic compounds. J. Phys. Chem. Ref. Data 18(3), 1111–1229. Sangster, J. (1993) LOGKOW Databank, Sangster Research Labs., Montreal, Canada. Sasski, K., Takeda, M., Uchiyama, M. (1981) Toxicity, absorption and elimination of phosphoric acid triesters by killifish and gold fish. Bull. Environ. Contam. Toxicol. 27, 775–782. Sasski, K., Takeda, M., Uchiyama, M. (1982) Bioconcentration and excretion of phosphoric acid triesters by killifish (Oryzeas latipes). Bull. Environ. Contam. Toxicol. 28, 752–759. Sasaki, S. (1978) The scientific aspects of the chemical substance control law in Japan. In: Aquatic Pollutants: Transformation and Biological Effects. Hutzinger, O., et al. Eds, Pergamon Press, Oxford, England. pp. 283–298. Schouten, M.J., Peereboom, J.W.C., Brinkman, U.A.T. (1979) Liquid chromatographic analysis of phthalate esters in Dutch river water. Int’l. J. Anal. Chem. 7, 13–23. Schwarz, F.P., Miller, J. (1980) Determination of the aqueous solubilities of organic liquids at 10.0, 20.0, 30.0°C by elution chroma- tography. Anal. Chem. 52, 2162–2164. Scow, K.M. (1982) Chapter 9, Rate biodegradation. In: Handbook of Chemical Property Estimation Methods, Environmental Behavior of Organic Compounds. Lyman, W.J., Reehl, W.F., Rosenblatt, D.H., Eds. McGraw-Hill Book Co., New York. Seidell, A. (1941) Solubilities of Organic Compounds. Vol. 2, Van Nostrand, New York. Shanker, R., Ramakrishna, C., Seth, P.K. (1985) Degradation of some phthalic acid esters in soil. Environ. Pollut. Ser. A. 39, 1–7. Sharma, R.C., Sharma, M.M. (1970) Kinetics of alkaline hydrolysis of esters. II. Unsaturated esters and oxalic esters. Bull. Chem. Soc. Japan 43, 642–645. Sheehan, R.J., Langer, S.H. (1969) Vapor pressures of fluorine- and silicon-containing derivatives of some hydroxylic compounds. J. Chem. Eng. Data 14, 248–250. Shelton, D.R., Boyd, S.A., Tiedje, J.M. (1984) Anaerobic biodegradation of phthalic acid esters in sludge. Environ. Sci. Technol. 18, 93–97. Shimada, T., Nagasaki, Y., Yoshida, T. (1983) The acute toxicity and the accumulation of phenol and diethyl phthalate in Mugil cephalus. Kenkyu Hokuku- Kanagawa- Ken Kogai Senta 5, 45–48. Skene, W.G., Krzymien, M.E. (1995) Vapor pressure of tri-n-butyl phosphate. J. Chem. Eng, Data 40, 394–397. Slave, T., Mihail, A., Burmaz, N. (1974) Degradation of some organic impurities in residual waters. Rev. Chim. 25, 666–670. Small, P.A., Small, K.W., Coeley, P. (1948) The vapour pressures of some high boiling esters. Trans. Faraday Soc. 44, 810–816. Solbakken, J.E., Knapp, A.H., Orr, P.L. (1985) Uptake and elimination of lindane a phthalate ester in tropical corals and mussels. Marine Environ. Res. 16, 103–113. Staples, C.A., Peterson, D.R., Pakerton, T.F., Adams, W.J. (1997) The environmental fate of phthalate esters. A literature review. Chemosphere 35(4), 667–749. Staudinger, J., Roberts, P.V. (1996) A critical review of Henry’s law constant for environmental applications. Crit. Rev. Environ. Sci. Technol. 26, 205–297. Staudinger, J., Roberts, P.V. (2001) A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions. Chemosphere 44, 561–576. Steen, W.C. (1991) Microbial Transformation Rate Constants of Structurally Diverse Man Made Chemicals. NTIS PB91-181958. U.S. Environmental Protection Agency, Environmental Research Laboratory, Athens, Georgia. Steen, W.C., Paris, D.F., Baughman, G.L. (1979) 177th National Meeting of American Chemical Society, Honolulu, Hawaii. Steen, W.C., Paris, D.F., Baughman, G.L. (1979) Effects of sediment sorption on microbial degradation of toxic substances. pp. 168–173. In: Proceedings of the Symposium on Processes Involving Contaminants and Sediments. Baker, R., Editor, American Chemical Society, Washington, DC. Stephen, H., Stephen, T. (1963) Solubilities of Inorganic and Organic Compounds in Binary Systems. Pergamon Press, New York. Stephenson, R., Stuart, J. (1986) Mutual binary solubilities: Water-alcohols and water-esters. J. Chem. Eng. Data 31, 56–70. Stephenson, R.M., Malanowski, S. (1987) Handbook of the Thermodynamics of Organic Compounds. Elsevier Science Publishing Co., Inc., New York. Stull, D.R. (1947) Vapor pressure of pure substances: Organic compounds. Ind. Eng. Chem. 39(4), 517–560. Subba-Rao, R.V., Rubbin, H.E., Alexander, M. (1982) Kinetics and extent of mineralization of organic chemicals in trace levels in freshwater and sewage. Appl. Environ. Microbiol. 43, 1139–1150.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC Esters 3193

Sugatt, R.H., O’Grady, D.P., Banerjee, S., Howard, P.H., Gledhill, W.E. (1984) Shake flask biodegradation of 14 commercial phthalate esters. Appl. Environ. Microbiol. 47, 601–606. Sullivan, K.F., Atlas, E.L., Giam, C.S. (1981) Loss of phthalic acid esters and polychlorinated biphenyls from seawater samples during storage. Anal. Chem. 53, 1718–1719. Sullivan, K.F., Atlas, E.L., Giam, C.S. (1982) Adsorption of phthalic acid esters from sea water. Environ. Sci. Technol. 16, 428–432. Swamy, P.A., Van Winkle, M. (1965) Vapor-liquid equilibria at 760 mm. of mercury for the system vinyl actate-2,4-dimethyl pentane. J. Chem. Eng. Data 514–515. Szabo, G., Guczi, J., Ködel, W., Zsolnay, A., Major, V., Keresztes, P. (1999) Comparison of different HPLC stationary phases for determination

of soil-water distribution coefficient, KOC, values of organic chemicals in RP-HPLC system. Chemosphere 39, 431–442. Tabak, H.H., Quave, S.A., Mashni, C.I., Barth, E.F. (1981) Biodegradability studies with organic priority pollutant compounds. J. Water Pollut. Control Fed. 53, 1503–1518. Taft, R.W., Abraham, M.H., Doherty, R.M., Kamlet, M.J. (1985) The molecular properties governing solubilities of organic nonelec- trolytes in water. Nature 313, 384–386. Taft, R.W., Abraham, M.H., Famini, G.R., Doherty, R.M., Abboud, J.-L.M., Kamlet, M.J. (1985) Solubility properties in polymers and biological media: 5. An analysis of the physicochemical properties which influence octanol-water partition coefficients of aliphatic and aromatic solutes. J. Pharm. Sci. 74(8), 807–814. Tanii, H., Hashimoto, K. (1982) Structure-toxicity relationship of acrylates and methacrylates. Toxicol. Lett. 11, 125–129. Tarr, B.D., Barron, M.G., Hayton, W.L. (1990) Effect of body size on the uptake and bioconcentration of di-2-ethylhexyl phthalate in rainbow trout. Environ. Toxicol. Chem. 9, 989–995. Tewari, Y.B., Miller, M.M., Wasik, S.P., Martire, D.E. (1982) Aqueous solubility and octanol/water partition coefficient of organic compounds at 25°C. J. Chem. Eng. Data 27, 451–454. Thomsen, M., Carlsen, L. (1998) Phthalate i Miljøet. Opløselighed. Sorption og Transport. Technical Report 249. National Environ- mental Research Institute, Roskilde, Denmark. Thomsen, M., Carlsen, L., Hvidt, S. (2001) Solubilities and surface activities of phthalates investigated by surface tension measure- ments. Environ. Toxicol. Chem. 20, 127–132. Thomsen, M., Rasmussen, A.G., Carlsen, L. (1999) SAR/QSAR approaches to solubility, partitioning and sorption of phthalates. Chemosphere 38, 2613–2624. Tsonopoulos, C., Prausnitz, J.M. (1971) Activity coefficients of aromatic solutes in dilute aqueous solutions. Ind. Eng. Chem. Fundam. 10, 593–600. Tsuzuki, M. (2001) Vapor pressures of carboxylic acid esters including pyrethroids: measurement and estimation from molecular structure. Chemosphere 45, 729–736. Tucker, W.A., Lyman, W.J., Preston, A.L. (1983) Estimation of the dry deposition velocity and scavenging ratio for organic chemicals. In: Precipitation Scavenging, Dry Deposition, and Resuspension. Pruppacher et al., Ed., pp. 1242–1256, Elsevier Science Publishing Co., Inc., New York. Tute, M.S. (1971) Principle and practice of Hansch analysis: A guide structure-activity correlation for the medical chemist. Adv. Drug Res. 6, 1–77. Urushigawa, Y., Yonezawa, Y. (1979) Chemico-biological interactions in biological purification systems. VI. Relation between biodegradation rate constants of di-n-alkyl phthalate esters and their retention times in reverse phase partition chromatography. Chemosphere 8, 317–320. Usanovich, M., Dembicij, A. (1959) Zh. Obshch. Khim.29, 1771. - ref. see Boublik et al. 1984. USEPA (1975) Preliminary Assessment of Suspected Carcinogens in Drinking Water. Interim Report to Congress, June 1975. U.S. Environmental Protection Agency, Washington DC. USEPA (1979) Water Related Environmental Fate of 129 Priority Pollutants. Volumes 1 and 2. US. EPA-560-/7-85-002a. USEPA (1985) Health and Environmental Effects Profile for Methyl methacrylate. NTIS-PB-178785. US. EPA-600/x-85-364. Vaishnav, D.D., Babeu, L. (1987) Comparison of occurrence and rates of chemical biodegradation in natural waters. Bull. Environ. Contam. Toxicol. 39, 237–244. Veith, G.D., Austin, N.M., Morris, R.T. (1979) A rapid method for estimating LOG P for organic chemicals. Water Res. 13, 43–47. Veith, G.D., Defoe, D.L., Bergstedt, B.V. (1979) Measuring and estimating the bioconcentration factor of chemicals in fish. J. Fish Res. Board Can. 36, 1040–1048. Veith, G.D., Kosian, P. (1983) Chapter 15, Estimating bioconcentration potential from octanol/water partition coefficients. In: Physical Behavior of PCBs in the Great Lakes. Mackay, D., Paterson, S., Eisenreich, S.J., Simmons, M.S., Editors, Ann Arbor Science Publishers, Ann Arbor, Michigan. pp. 269–282. Veith, G.D., Macek, K.J., Petrocelli, S.R., Carroll, J. (1980) An evaluation of using partition coefficients and water solubility to estimate bioconcentration factors for organic chemicals in fish. In: Aquatic Toxicology. pp. 116–129. ASTM STP 707, Eaton, J.G., Parrish, P.R., Hendricks, A.C., Eds., pp.116–129. Am. Soc. for Testing and Materials, Philadelphia, Pennsylvania. Verhoek, F.H., Marshall, A.L. (1939) Vapor pressures and accommodation coefficients of four non-volatile compounds. The vapor pressure of tri-m-cresyl phosphate over polyvinyl chloride plastics. J. Am. Chem. Soc. 61, 2737–2742. Verschueren, K. (1977) Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold, New York. Verschueren, K. (1983) Handbook of Environmental Data on Organic Chemicals. 2nd Edition, Van Nostrand Reinhold, New York.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC 3194 Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals

von Oepen, B.V., Kördel, W., Klein, W. (1991) Sorption of nonpolar and polar compounds to soils: Processes, measurements and experience with the applicability of the modified OECD-Guideline 106. Chemosphere 22(3/4), 285–304. Wageman, R. (1975) Some environmental and toxicological aspects of a tri-aryl phosphate synthetic oil. Verh. Internat. Verein. Limnol. 19, 2178. Wakita, K., Yoshimoto, M., Miyamoto, S. (1986) A method of calculation of the aqueous solubility of organic compounds by using new fragment solubility constants. Chem. Pharm. Bull. 34, 4663–4681. Walker, W.W., Cripe, C.R., Pritchard, P.H., Bourquin, A.W. (1984) Dibutylphthalate degradation in estuaries and freshwater sites. Chemosphere 12, 1283–1294. Wallington, T.J., Dagaut, P., Liu, R., Kurylo, M.J. (1988a) The gas phase reactions of hydroxyl radicals with a series of esters over the temperature range 240–440 K. Int. J. Chem. Kinet. 20, 177–186. Wallington, T.J., Dagaut, P., Kurylo, M.J. (1988b) Correlation between gas-phase and solution-phase reactivities of hydroxyl radicals toward saturated organic compounds. J. Phys. Chem. 92, 5024–5028. Wang, J., Chen, L, Shi, H., Qian, Y. (2000) Microbial degradation of phthalic acid esters under anaerobic digestion of sludge. Chemosphere 41, 1245–1248. Wang, L., Zhao, Y., Gao, H. (1992) Predicting aqueous solubility and octanol/water partition coefficients of organic chemicals from molar volume. Environ. Chem. (Chinese) 11, 55–70. Wasik, S.P., Tewari, Y.B., Miller, M.M. (1982) Measurements of octanol/water partition coefficient by chromatographic method. J. Res. Natl. Bur. Std. 87, 311–315. Wasik, S.P., Tewari, Y.B., Miller, M.M., Martire, D.E. (1981) Octanol/Water Partition Coefficients and Aqueous Solubilities of Organic Compounds. NBSIR No. 81–2406. U.S. Dept. of Commerce, Washington D.C. Weast, R.C. (1972–73) CRC Handbook of Chemistry and Physics. 53th ed., CRC Press, Inc., Cleveland, Ohio. Weast, R.C. (1982–83) CRC Handbook of Chemistry and Physics. 63rd ed, CRC Press, Boca Raton, Florida. Werner, A.C. (1952) Vapor pressures of phthalate esters. Ind. Eng. Chem. 44, 2736–2740. Wightman, R.H., Malaiyandi, M. (1983) Physical properties of some synthetic trialkyl/aryl phosphates commonly found in environmental samples. Environ. Sci. Technol. 17, 256–261. Williams, M.D., Adams, W.J., Parkerton, T.F., Biddinger, G.R., Robillard, K.A. (1995) Sediment sorption coefficient measurements for four phthalate esters: experimental results and model theory. Environ. Toxicol. Chem. 14, 1477–1486. Winer, A.M., Lloyd, A.C., Darnall, K.R., Atkinson, R., Pitts, Jr., J.N. (1977) Rate constants for the reactions of hydroxyl radicals with n-propyl acetate, sec-butyl acetate, tetrahydrofuran and peroxyacetyl nitrate. Chem. Phys. Lett. 51(2), 221–226. Wofford, H.W., Wilsey, C.D., Neff, G.S., Giam, C.S., Neff, J.M. (1981) Bioaccumulation and metabolism of phthalate esters by oysters, brown shrimp and sheepshead minnows. Ecotoxicol. Environ. Saf. 5, 202–210. Wolfe, N.L. (1980) Organophosphate and organophosphorothionate esters: Application of linear free energy relationships to estimate hydrolysis rate constants for use in environmental fate assessment. Chemosphere 9, 571–579. Wolfe, N.L., Burns, L.A., Steen, W.C. (1980a) Use of linear free-energy relationships on an evaluative model to assess the fate and transport of phthalate esters in aquatic environment. Chemosphere 9, 393–402. Wolfe, N.L., Steen, W.C., Burns, L.A. (1979) Unpublished report available from U.S. Environmental Protection Agency, Environ- mental Research Laboratory, Athens, Georgia. Wolfe, N.L., Steen, W.C., Burns, L.A. (1980b) Phthalate ester hydrolysis: Linear-energy relationships. Chemosphere 9, 403–408. Wolfe, N.L., Paris, D.F., Steen, W.C., Baughman, G.L. (1980c) Correlation of microbial degradation rates with chemical structure. Environ. Sci. Technol. 14, 1143–1144. Wightman, R.H., Malalyandi, M. (1983) Physical properties of some synthetic trialkyl/aryl phosphates commonly found in environ- mental samples. Environ. Sci. Technol. 17, 256–261. Yaguzhinskii, L.S., Smirnova, E.G., Ratnikova, L.A., Kolesova, G.M., Krasinskaya, I.P. (1973) Hydrophobic sites of mitochondrial electron transfer system. J. Bioenerg. 5(3), 163–174. Yalkowsky, S.H., Morozowich, W. (1980) Chapter 3, A physical chemical basis for the design of orally active prodrugs. Drug Design. Vol. IX. Academic Press, Inc., New York. Yalkowsky, S.H., Valvani, S.C., Kun, W.-Y., Dannenfelser, R.M., Editors (1987) Arizona Database of Aqueous Solubility for Organic Compounds. College of Pharmacy, University of Arizona, Tucson, Arizona. Yao, C.C.D., Haag, W.R. (1991) Rate constants for direct reactions of ozone with several drinking water contaminants. Water Res. 25, 761–773.

Yaws, C.L. (1994) Handbook of Vapor Pressure, Vol. 1 C1 to C4 Compounds, Vol. 2. C5 to C7 Compounds, Vol. 3, C8 to C28 Compounds. Gulf Publishing Co., Houston, Texas. Yaws, C.L., Yang, H.-C., Hopper, J.R., Hansen, K.C. (1990) Organic chemicals: water solubility data. Chem. Eng. July, 115–118. Zaroogian, G.E., Heltshe, J.F., Johnson, M. (1985) Estimation of bioconcentration in marine species using structure-activity models. Environ. Toxicol. Chem. 4, 3–12. Zetzsch, C. (1982) Report to Bundeminister für Forschung und Technologie, Projekttrager für unweltchemikalien. Ziogou, K., Kirk, P.W.W., Lester, J.N. (1989) Behaviour of phthalic acid esters during batch anaerobic digestion of sludge. Water Res. 23, 743–748. Zoeteman, B.C.J., Harmsen, K., Linders, J.B.H.J., Morra, C.F.H., Slooff, W. (1980) Persistent organic pollutants in river water and ground water of the Netherlands. Chemosphere 9, 231–249.

© 2006 by Taylor & Francis Group, LLC

© 2006 by Taylor & Francis Group, LLC