Dependent Modeling Approach Derived from Semi-Empirical Quantum Mechanical Calculations

Total Page:16

File Type:pdf, Size:1020Kb

Dependent Modeling Approach Derived from Semi-Empirical Quantum Mechanical Calculations 3D-QSAR/QSPR Based Surface- Dependent Modeling Approach Derived From Semi-Empirical Quantum Mechanical Calculations 3D-QSAR/QSPR-basierter, oberflächenabhängiger Modellierungsansatz, abgeleitet von semi-empirischen quantenmechanischen Rechnungen Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Marcel Youmbi Foka aus Kamerun Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät/ vom Fachbereich Chemie und Pharmazie der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 05.12.2018 Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer Gutachter/in: Prof. Dr. Tim Clark Prof. Dr. Birgit Strodel Dedication In memory of my late Mother Lucienne Metiegam, who the Lord has taken unto himself on May 3, 2009. My mother, light of my life, God rest her soul, had a special respect for my studies. She had always encouraged me to move forward. I sincerely regret the fact that today she cannot witness the culmination of this work. Maman, que la Terre de nos Ancêtres te soit légère! This is a special reward for Mr. Joseph Tchokoanssi Ngouanbe, who always supported me financially and morally. That he find here the expression of my deep gratitude. i ii Acknowledgements I would like to pay tribute to all those who have made any contribution, whether scientific or not, to help carry out this work. All my thanks go especially to Prof. Dr. Tim Clark, who gave me the opportunity and means to work in his research team. I am grateful to have had him not only supervise my work but also for his patience and for giving me the opportunity to explore this fascinating topic. As it was not in my area of expertise, I really enjoyed acquiring skills in this research area. I address my sincere thanks to Dr. Nico Van Eikema Hommes, for his technical assistance. I thank Dr. Christian Cramer for introducing me to the Val-Mlr and MOE programs, for the help he has always given me, and for becoming a close friend. I thank Dr. Jr-Hung Lin for helping me to attain knowledge in VAMP, ParaSurf and Material’s Studio programs. Due to the fact that I come from a French-speaking country, my level of English is not high. For this purpose, the contribution of Dr. Victoria Jackiw from the Language Centre of the University of Erlangen-Nuremberg for correcting the English quality of my thesis was a very great contribution. I am very grateful to her for this help. I sincerely thank Mr. Justin Choapoueng Nkue and Mrs. Elise Tchokoanssi Ngouanbe for the brotherly love they have always given me. While praying for the repose of the souls of Mom Pauline Sikompe, Julienne Tagny, Jean Lonkep, Mom Lydie Teukam, and Alice Nana, allow me to extend my thanks to Mom Anne Kouatchie, Mom Elisabeth Kamgho, Bernadette Mafodjo, Martin Kugoua, Gildas Nkue, Willy Nkue, Anick, Carine, Larissa, Boris, and Cynthia Tchokoanssi, Gisele and Beatrice Youmbi, Paulette, Muriel, Lynn, Nancy, Cindy, and Erwin Choapoueng, Patricia Ngangoua, Family Ngongang, Family Wember, Family Bagnessi, Armelle Nanguep, Fabien Touko, Emmanuel Tchokoanssi, Therese Yommo, Susanne Kamdem, Odette and Paul Bati, Hugues Lengue, Armand Lonkep, Dieudonne Fogaing, Hubert Djapou, Luther Tagny, and Astride Nguetchuessi for the solidarity and for the family love they never withheld from me. Father Rigoberg Beck was kind enough to help me spiritually and emotionally during this time dedicated to my Ph.D, especially during the illness of my mother and after her death. I will not forget to thank Lißet Prechtel (R.I.P), Family Labbat-Metiogno, Dr. Eva and Radim Beranek, Family Guiffo, Brigitte Wohleben, Ferdinand Kuete, Angelika and Siegfried Balleis, Birgitt Aßmus, Alexandra Wunderlich, all the members of Christlich-Soziale Union (CSU), Odon Fokou, Dr. Pierrette Fofana, Guy Toko, Sylviane Tassing, Maila Dengel, Family Wete, Family Kuate, Family Yaneu, Family Sadjue, Family Tsumbu, Merlin Nkodja, Yanick Modjo, Gervais Gamgmeni, Emerent Prowo, Nathalie Tchamdjou, Sorelle Nsogning, everyone from Hering & Schneider GmbH, Carole Nya, Rosine Niaba, Chanceline Kamdem, Noelia Santos, Rose Kouatchet, Claude Heuyam, and Helene Kankeu for their sincere friendship, which has always united us, their sympathy and their solidarity. iii It comes from the heart to thank Simone Rennoch, Käthe and Josef Rennoch, and all the German community of Pommer for the love, affection and support they always gave me. It is a real pleasure for me to thank all the people of Computer-Chemie-Centrum in Erlangen (CCC) with whom I enjoyed working during these years of my thesis, particularly Prof. Dr. Paul von Rague Schleyer (R.I.P), Prof. Dr. Bernd Meyer, Prof. Dr. Dirk Zahn, Dr. Harald Lanig, Dr. Pawel Rodziewicz, Dr. Mateuz Wielopolski, Dr. Hakan Kayi, Dr. Ute Seidel, Dr. Jakub Goclon, Dr. Adria Gil Mestres, Dr. Ahmed Elkerdawy, Maximilian Kriebel, Dr. Pavlo Dral, Jürgen Wittman, Dr. Alexander Urban, Dr. Sebastian Schenker, Matthias Wildauer, Dr. Patrick Duchstein, Dr. Theodor Milek, Dr. Frank Beierlein, Tilo Sauertig, Oscar Roja, Heike Thomas, Dr. Christian Wick, Philipp Altmann, Bahanur Becit, Stefano Sansotta, Johannes Träg, Isabelle Schraufstetter, Nadine Scharrer, and not forgetting all the others. Finally, I would like to thank the German Academic Exchange Service (DAAD), which through its program "DAAD-STIBET Doktorandenabschlussförderung" granted me a scholarship at the end of my studies. iv Zusammenfassung In dieser Arbeit werden einige neue QSAR/QSPR Modelle für die Vorhersage physikalisch-chemischer und biologischer Aktivitäten von organischen Verbindungen beschrieben. Neue Modelle für die Berechnung der freien Solvatisierungsenergie in Wasser, Octanol und Chloroform wurden entwickelt, basierend auf Gasphase-Geometrien, die mittels AM1, AM1*, MNDO/d, und PM3-Optimierung durch VAMP berechnet wurden. Die neuen Modelle wurden durch eine Kombination der reinen Coulomb-Solvatisierungsenergie erhalten, abgeleitet aus einer SCRF-Berechnung, in Kombination mit einem Oberflächen- Integral als Funktion lokaler quantenmechanischer Eigenschaften auf der Oberfläche. Obwohl AM1* und MNDO/d keine lokale Polarisierbarkeit besitzen, wurde die Berechnung der Lösungsmitteleffekte für diese Hamiltonians durch eine Erweiterung der SCRF-routine auf s- und p-Orbitale, zu d-Orbitale ermöglicht. Die lokalen Eigenschaften wurden mit ParaSurf berechnet, basierend entweder auf der Isodichte-Oberfläche oder der sphärischen harmonischen Oberfläche. Die Modelle mit den statistisch besten Ergebnissen wurden mit der Isodichte-Oberfläche berechnet. Unter den Hamiltonians ergab AM1 die besten Vorhersagen mit (R2 = 0,92, MUE = 0,67, RMSD = 0,87), (R2 = 0,92, MUE = 0,57, RMSD = 0,73), (R2 = 0,91, MUE = 0,46, RMSD = 0,61), für die Solvatisierungsenergie in Wasser, Octanol und Chloroform. Für diese Solvatisierungsmodelle wurde herausgefunden, dass der Beitrag der jeweiligen lokalen Eigenschaft mehr als 30% für das molekulare elektrostatische Potential, (MEP, V), zwischen 15% und 25% für die lokale Ionisierungsenergie, (IEL), zwischen 15% und 20% für die lokale Elektronenaffinität, (EAL) und zwischen 10% und 18% für die lokale Polarisierbarkeit, (ĮL, POL) und die Härte, (ȘL, HARD) beträgt. Diese kleine Anzahl an verwendeten Variablen half dabei das Risiko der Erzeugung von übertrainierten Modellen erheblich zu verringern. Das Fehlen der lokalen Polarisierbarkeit für AM1* und MNDO/d äußerte sich signifikant, vor allem für die freie Solvatisierungsenergie in Wasser für neutrale und ionische Verbindungen mit einem RMSD-Unterschied von 6%, verglichen mit AM1 und PM3. Die Solvatisierungsmodelle in Wasser und Octanol, die mit neutralen Verbindungen entwickelt wurden, wurden zur Vorhersage des Octanol/Wasser-Verteilungskoeffizienten, logPow für kleine Moleküle angewandt. Für diese Verbindungen wiesen die Modelle eine sehr gute Vorhersagekraft auf, scheinen aber nur sehr eingeschränkt in der Lage zu sein, den logPow für große Moleküle zu berechnen. Der Chloroform/Wasser-Verteilungskoeffizient, logPcw für eine Reihe von kleinen Verbindungen wurde ebenfalls berechnet, um die Modelle zu validieren, wobei sehr gute statistische Ergebnisse erzielt wurden. Es wurde ein neuer mathematischer Ansatz, basierend auf klassifizierten Oberflächenabschnitten des molekularen elektrostatischen Potentials, (MEP), der lokale Ionisierungsenergie, (IEL), der lokale Elektronenaffinität, (EAL), der lokale Polarisierbarkeit, (ĮL), der Härte, (ȘL), der Elektronegativität, (ȤL, ENEG) und dem Feld senkrecht zur Oberfläche, (FN) und ihrer Kreuz-Produkte entwickelt. Dieser Ansatz unterscheidet sich grundsätzlich vom vorhergehenden polynomischen surface-integral model (SIM), dessen v Prinzip es ist, über eine molekulare Oberfläche MEP, IEL, EAL, ĮL und ȘL zu integrieren. Der neue Oberflächen-Integral-Modell-Ansatz wurde dann verwendet, um logPow Modelle für einen sehr großen Datensatz, die LOGKOW Datenbank, bestehend aus hauptsächlich neutralen, kleinen und großen Molekülen, zu erstellen. Ausgehend von den Gasphasengeometrien, die mittels AM1, AM1*, PM3, MNDO, MNDO/d und PM6 Optimierung durch VAMP erhalten wurden, wurden Modelle unter Verwendung der Isodichte-Oberfläche, beziehungsweise der vom Lösungsmittel ausgeschlossenen Oberfläche zur Berechnung der Deskriptoren, erzeugt. Es wurde herausgefunden, dass diese Modelle stark von der Flexibilität und Steifheit der Verbindungen beeinflusst werden und Verbindungen mit einer kleineren Anzahl an rotierbaren Bindungen besser vorhergesagt wurden.
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • Effect of Enzymes on Strawberry Volatiles During Storage, at Different Ripeness
    Effect of Enzymes on Strawberry Volatiles During Storage, at Different Ripeness Level, in Different Cultivars and During Eating Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Gulsah Ozcan Graduate Program in Food Science and Technology The Ohio State University 2010 Thesis Committee: Sheryl Ann Barringer, Adviser W. James Harper John Litchfield 1 Copyright by Gülşah Özcan 2010 ii ABSTRACT Strawberry samples with enzyme activity and without enzyme activity (stannous chloride added) were measured for real time formation of lipoxygenase (LOX) derived aroma compounds after 5 min pureeing using selected ion flow tube mass spectrometry (SIFT-MS). The concentration of (Z)-3-hexenal and (E)-2-hexenal increased immediately after blending and gradually decreased over time while hexanal concentration increased for at least 5 min in ground strawberries. The formation of hexanal was slower than the formation of (Z)-3-hexenal and (E)-2-hexenal in the headspace of pureed strawberries. The concentration of LOX aldehydes and esters significantly increased during refrigerated storage. Damaging strawberries increased the concentration of LOX aldehydes but did not significantly affect the concentration of esters. The concentrations of many of the esters were strongly correlated to their corresponded acids and/or aldehydes. The concentration of LOX generated aldehydes decreased during ripening, while fruity esters increased. Different varieties had different aroma profiles and esters were the greatest percentage of the volatiles. The aroma release of some of the LOX derived aldehydes in the mouthspace in whole strawberries compared to chopped strawberries showed that these volatiles are formed in the mouth during chewing.
    [Show full text]
  • Ethers, Ether-Alcohols, Ether-Phenols, Ether
    29-IV Sub-Chapter IV ETHERS, ALCOHOL PEROXIDES, ETHER PEROXIDES, KETONE PEROXIDES, EPOXIDES WITH A THREE-MEMBERED RING, ACETALS AND HEMIACETALS, AND THEIR HALOGENATED, SULPHONATED, NITRATED OR NITROSATED DERIVATIVES 29.09 - Ethers, ether-alcohols, ether-phenols, ether-alcohol-phenols, alcohol peroxides, ether peroxides, ketone peroxides (whether or not chemically defined), and their halogenated, sulphonated, nitrated or nitrosated derivatives. - Acyclic ethers and their halogenated, sulphonated, nitrated or nitrosated derivatives : 2909.11 - - Diethyl ether 2909.19 - - Other 2909.20 - Cyclanic, cyclenic or cycloterpenic ethers and their halogenated, sulphonated, nitrated or nitrosated derivatives 2909.30 - Aromatic ethers and their halogenated, sulphonated, nitrated or nitrosated derivatives - Ether-alcohols and their halogenated, sulphonated, nitrated or nitrosated derivatives : 2909.41 - - 2,2’-Oxydiethanol (diethylene glycol, digol) 2909.43 - - Monobutyl ethers of ethylene glycol or of diethylene glycol 2909.44 - - Other monoalkylethers of ethylene glycol or of diethylene glycol 2909.49 - - Other 2909.50 - Ether-phenols, ether-alcohol-phenols and their halogenated, sulphonated, nitrated or nitrosated derivatives 2909.60 - Alcohol peroxides, ether peroxides, ketone peroxides and their halogenated, sulphonated, nitrated or nitrosated derivatives (A) ETHERS Ethers may be considered as alcohols or phenols in which the hydrogen atom of the hydroxyl group is replaced by a hydrocarbon radical (alkyl or aryl). They have the general formula : (R-O-R1), where R and R1 may be the same or different. These ethers are very stable, neutral substances. If the radicals belong to the acyclic series, the ether is also acyclic; cyclic radicals give cyclic ethers. The first ether in the acyclic series is gaseous, but others are volatile liquids with a characteristic odour of ether; the higher members are liquids or sometimes solids.
    [Show full text]
  • Bioelectronic Nose Based on Single-Stranded DNA And
    nanomaterials Article Bioelectronic Nose Based on Single-Stranded DNA and Single-Walled Carbon Nanotube to Identify a Major Plant Volatile Organic Compound (p-Ethylphenol) Released by Phytophthora Cactorum Infected Strawberries Hui Wang 1,2,* , Yue Wang 1, Xiaopeng Hou 2 and Benhai Xiong 1,* 1 State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; [email protected] 2 Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing 100091, China; [email protected] * Correspondence: [email protected] or [email protected] (H.W.); [email protected] (B.X.); Tel.: +86-010-62811680 (B.X.) Received: 5 February 2020; Accepted: 3 March 2020; Published: 7 March 2020 Abstract: The metabolic activity in plants or fruits is associated with volatile organic compounds (VOCs), which can help identify the different diseases. P-ethylphenol has been demonstrated as one of the most important VOCs released by the Phytophthora cactorum (P. cactorum) infected strawberries. In this study, a bioelectronic nose based on a gas biosensor array and signal processing model was developed for the noninvasive diagnostics of the P.cactorum infected strawberries, which could overcome the limitations of the traditional spectral analysis methods. The gas biosensor array was fabricated using the single-wall carbon nanotubes (SWNTs) immobilized on the surface of field-effect transistor, and then non-covalently functionalized with different single-strand DNAs (ssDNA) through π–π interaction. The characteristics of ssDNA-SWNTs were investigated using scanning electron microscope, atomic force microscopy, Raman, UV spectroscopy, and electrical measurements, indicating that ssDNA-SWNTs revealed excellent stability and repeatability.
    [Show full text]
  • ECO-Ssls for Pahs
    Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs) Interim Final OSWER Directive 9285.7-78 U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 June 2007 This page intentionally left blank TABLE OF CONTENTS 1.0 INTRODUCTION .......................................................1 2.0 SUMMARY OF ECO-SSLs FOR PAHs......................................1 3.0 ECO-SSL FOR TERRESTRIAL PLANTS....................................4 5.0 ECO-SSL FOR AVIAN WILDLIFE.........................................8 6.0 ECO-SSL FOR MAMMALIAN WILDLIFE..................................8 6.1 Mammalian TRV ...................................................8 6.2 Estimation of Dose and Calculation of the Eco-SSL ........................9 7.0 REFERENCES .........................................................16 7.1 General PAH References ............................................16 7.2 References Used for Derivation of Plant and Soil Invertebrate Eco-SSLs ......17 7.3 References Rejected for Use in Derivation of Plant and Soil Invertebrate Eco-SSLs ...............................................................18 7.4 References Used in Derivation of Wildlife TRVs .........................25 7.5 References Rejected for Use in Derivation of Wildlife TRV ................28 i LIST OF TABLES Table 2.1 PAH Eco-SSLs (mg/kg dry weight in soil) ..............................4 Table 3.1 Plant Toxicity Data - PAHs ..........................................5 Table 4.1
    [Show full text]
  • Original Paper Comparison of Volatile Compounds in 'Fuji' Apples in The
    _ Food Science and Technology Research, 23 (1), 79 89, 2017 Copyright © 2017, Japanese Society for Food Science and Technology doi: 10.3136/fstr.23.79 http://www.jsfst.or.jp Original paper Comparison of Volatile Compounds in ‘Fuji’ Apples in the Different Regions in China 1 2* 3 2 2 2 Ling QIN , Qin-Ping WEI , Wen-Huai KANG , Qiang ZHANG , Jian SUN and Song-Zhong LIU 1Department of Life Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004 P. R. China 2Institute of Forestry & Pomology, Beijing Academy of Agriculture & Forestry Sciences,Beijing 100093 P.R. China 3College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018 P.R. China Received May 25, 2015 ; Accepted September 28, 2016 The characteristics of the volatiles from 43 ‘Fuji’ apples representing 14 different apple production regions in China were investigated using headspace-solid phase micro-extraction (HS-SPME) combined with gas chromatography–mass spectrometry (GC-MS). The results obtained from this experiment showed that sixty- four volatile compounds were identified in ‘Fuji’ apples collected from 43 counties in China. The major volatile compounds were identified as 2-methyl butyl acetate and hexyl acetate. The composition of volatiles and their contents in ‘Fuji’ apples varied in different regions. All of the ‘Fuji’ apple samples could be classified into the following groups using a principal component analysis of the volatiles: (1) apples with high concentrations of hexyl acetate and (Z)-3-hexenyl acetate,
    [Show full text]
  • Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals.--2Nd Ed
    Second Edition Physical-Chemical Properties and Environmental Fate for Organic Chemicals Volume I Introduction and Hydrocarbons Volume II Halogenated Hydrocarbons Volume III HANDBOOK OF HANDBOOK Oxygen Containing Compounds Volume IV Nitrogen and Sulfur Containing Compounds and Pesticides © 2006 by Taylor & Francis Group, LLC Second Edition Physical-Chemical Properties and Environmental Fate for Organic Chemicals Volume I Introduction and Hydrocarbons Volume II Halogenated Hydrocarbons Volume III Oxygen Containing Compounds HANDBOOK OF HANDBOOK Volume IV Nitrogen and Sulfur Containing Compounds and Pesticides Donald Mackay Wan Ying Shiu Kuo-Ching Ma Sum Chi Lee Boca Raton London New York A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc. © 2006 by Taylor & Francis Group, LLC Published in 2006 by CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10987654321 International Standard Book Number-10: 1-56670-687-4 (Hardcover) International Standard Book Number-13: 978-1-56670-687-2 (Hardcover) Library of Congress Card Number 2005051402 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.
    [Show full text]
  • Expanding the Modular Ester Fermentative Pathways for Combinatorial Biosynthesis of Esters from Volatile Organic Acids
    ARTICLE Expanding the Modular Ester Fermentative Pathways for Combinatorial Biosynthesis of Esters From Volatile Organic Acids Donovan S. Layton,1,2 Cong T. Trinh1,2,3 1 Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 2 BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee 3 Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee; telephone: þ865-974-8121; fax: 865-974-7076; e-mail: [email protected] Biotechnol. Bioeng. 2016;113: 1764–1776. ABSTRACT: Volatile organic acids are byproducts of fermentative ß 2016 Wiley Periodicals, Inc. metabolism, for example, anaerobic digestion of lignocellulosic KEYWORDS: modular chassis cell; carboxylate; ester; acyl acetate; biomass or organic wastes, and are often times undesired inhibiting acyl acylate; ester fermentative pathway cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol Introduction acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic Harnessing renewable or waste feedstocks (e.g., switchgrass, corn acids to acyl CoAs and alcohols to form a combinatorial library of stover, agricultural residue, or municipal solid waste)
    [Show full text]
  • Gas Conversion Factor for 300 Series
    300GasTable Rec # Gas Symbol GCF Density (g/L) Density (g/L) 25° C / 1 atm 0° C / 1 atm 1 Acetic Acid C2H4F2 0.4155 2.7 2.947 2 Acetic Anhydride C4H6O3 0.258 4.173 4.555 3 Acetone C3H6O 0.3556 2.374 2.591 4 Acetonitryl C2H3N 0.5178 1.678 1.832 5 Acetylene C2H2 0.6255 1.064 1.162 6 Air Air 1.0015 1.185 1.293 7 Allene C3H4 0.4514 1.638 1.787 8 Ammonia NH3 0.7807 0.696 0.76 9 Argon Ar 1.4047 1.633 1.782 10 Arsine AsH3 0.7592 3.186 3.478 11 Benzene C6H6 0.3057 3.193 3.485 12 Boron Trichloride BCl3 0.4421 4.789 5.228 13 Boron Triflouride BF3 0.5431 2.772 3.025 14 Bromine Br2 0.8007 6.532 7.13 15 Bromochlorodifluoromethane CBrClF2 0.3684 6.759 7.378 16 Bromodifluoromethane CHBrF2 0.4644 5.351 5.841 17 Bromotrifluormethane CBrF3 0.3943 6.087 6.644 18 Butane C4H10 0.2622 2.376 2.593 19 Butanol C4H10O 0.2406 3.03 3.307 20 Butene C4H8 0.3056 2.293 2.503 21 Carbon Dioxide CO2 0.7526 1.799 1.964 22 Carbon Disulfide CS2 0.616 3.112 3.397 23 Carbon Monoxide CO 1.0012 1.145 1.25 24 Carbon Tetrachloride CCl4 0.3333 6.287 6.863 25 Carbonyl Sulfide COS 0.668 2.456 2.68 26 Chlorine Cl2 0.8451 2.898 3.163 27 Chlorine Trifluoride ClF3 0.4496 3.779 4.125 28 Chlorobenzene C6H5Cl 0.2614 4.601 5.022 29 Chlorodifluoroethane C2H3ClF2 0.3216 4.108 4.484 30 Chloroform CHCl3 0.4192 4.879 5.326 31 Chloropentafluoroethane C2ClF5 0.2437 6.314 6.892 32 Chloropropane C3H7Cl 0.308 3.21 3.504 33 Cisbutene C4H8 0.3004 2.293 2.503 34 Cyanogen C2N2 0.4924 2.127 2.322 35 Cyanogen Chloride ClCN 0.6486 2.513 2.743 36 Cyclobutane C4H8 0.3562 2.293 2.503 37 Cyclopropane C3H6 0.4562
    [Show full text]
  • Japanese Flavoring Agents As Food Additives
    Japanese Flavoring Agents as Food Additives In Japan, synthetic flavoring agents are allowed to be used only when they are designated by the Minister of Health, Labour and Welfare as food additives under the Japanese Food Sanitation Act. Currently, we have identified 170 chemical substances which are commonly used as flavorings as shown in Table 1. Table 2 lists 18 groups which are also from the official list of “designated additives” and contain 3004 additional flavor materials. Each of the 18 groups in Table 2 contains substances that are similar in chemical structure. For links to a complete listing of the Japanese additives used in food: (a) Designated additives, (b) Existing food additives, (c) Natural flavoring agents and (d) Ordinary foods used as food additives - go to http://www.mhlw.go.jp/english/topics/foodsafety/foodadditives/index.html Check for Flavoring updates at http://www.jffma-jp.org/english/information.html Provided with Updated Revisions (as of April 2015) By Leffingwell & Associates Table 1. Designated additives used as flavoring substances Compound Synonym or Old name CAS Acesulfame Potassium 55589-62-3 Acetaldehyde (New as of 2006.05.16) ethanal 75-07-0 Acetophenone acetophenone 98-86-2 Acetic acid, Glacial 64-19-7 Adipic Acid 124-04-9 714229-20-6 Advantame (New as of 2015.02.20) 245650-17-3 DL-Alanine 302-72-7 Allyl cyclohexylpropionate allyl cyclohexanepropionate 2705-87-5 Allyl hexanoate allyl hexanoate 123-68-2 Allyl isothiocyanate allyl isothiocyanate 57503 (3-Amino-3-carboxypropyl)dimethylsulfonium chloride
    [Show full text]
  • And Perfluoroalkyl Substances (PFAS): Sources, Pathways and Environmental Data
    Poly- and perfluoroalkyl substances (PFAS): sources, pathways and environmental data Chief Scientist’s Group report August 2021 We are the Environment Agency. We protect and improve the environment. We help people and wildlife adapt to climate change and reduce its impacts, including flooding, drought, sea level rise and coastal erosion. We improve the quality of our water, land and air by tackling pollution. We work with businesses to help them comply with environmental regulations. A healthy and diverse environment enhances people's lives and contributes to economic growth. We can’t do this alone. We work as part of the Defra group (Department for Environment, Food & Rural Affairs), with the rest of government, local councils, businesses, civil society groups and local communities to create a better place for people and wildlife. Published by: Author: Emma Pemberton Environment Agency Horizon House, Deanery Road, Environment Agency’s Project Manager: Bristol BS1 5AH Mark Sinton www.gov.uk/environment-agency Citation: Environment Agency (2021) Poly- and © Environment Agency 2021 perfluoroalkyl substances (PFAS): sources, pathways and environmental All rights reserved. This document may data. Environment Agency, Bri be reproduced with prior permission of the Environment Agency. Further copies of this report are available from our publications catalogue: www.gov.uk/government/publications or our National Customer Contact Centre: 03708 506 506 Email: research@environment- agency.gov.uk 2 of 110 Research at the Environment Agency Scientific research and analysis underpins everything the Environment Agency does. It helps us to understand and manage the environment effectively. Our own experts work with leading scientific organisations, universities and other parts of the Defra group to bring the best knowledge to bear on the environmental problems that we face now and in the future.
    [Show full text]
  • Reuse of Oak Chips for Modification of the Volatile Fraction of Alcoholic Beverages
    LWT - Food Science and Technology 135 (2021) 110046 Contents lists available at ScienceDirect LWT journal homepage: www.elsevier.com/locate/lwt Reuse of oak chips for modification of the volatile fraction of alcoholic beverages Eduardo Coelho *, Jos´e A. Teixeira , Teresa Tavares , Lucília Domingues , Jos´e M. Oliveira CEB – Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal ARTICLE INFO ABSTRACT Keywords: New or used barrels can be applied in ageing of alcoholic beverages. Compounds adsorbed in wood migrate Wood ageing between beverages along with wood extractives. As barrel ageing is costly and time-consuming, processes using Barrel alternatives wood fragments have been gaining interest. These generate wood residues for which the reuse is still not well Volatile compounds established. This work aims at the reuse of oak fragments for the additive ageing of alcoholic beverages. Oak Sensory properties chips, previously immersed in fortifiedwine, were applied to beer, wine and grape marc spirit. Wood compounds and adsorbed wine volatiles were extracted, with more impact and satisfactory yields on beer composition. Also, wood adsorbed beverages compounds in a subtractive ageing phenomena. Beer formulations using different binomial wood concentration/temperature combinations were generated and presented to trained tasters. Higher temperatures and wood concentrations led to prominence of wood descriptors and lower perception of fruity and floral aromas, reflecting the changes in chemical composition. 1. Introduction several other (Mosedale & Puech, 2003). During its lifecycle, cooperage wood can be used, reused, regenerated and eventually discarded. For Wood ageing is commonly used as a strategy to modify and enhance barrels, there is a well-established reuse flow depending on the aged the composition of alcoholic beverages.
    [Show full text]