ANALYSIS of ALTERNATIVES Public Version

Total Page:16

File Type:pdf, Size:1020Kb

ANALYSIS of ALTERNATIVES Public Version ANALYSIS OF ALTERNATIVES Public Version Legal name of applicants: Dow Italia Srl Rohm and Haas France S.A.S. Submitted by: Dow Italia Srl Substance: 1,2-Dichloroethane (EC No. 203-458-1, CAS No. 107-06- 2) Use title: Industrial use as a sulphonation swelling agent of polystyrene-divinylbenzene copolymer beads in the production of strong acid cation exchange resins Use number: 1 Copyright ©2016 Dow Italia Srl. This document is the copyright of Dow Italia Srl and is not to be reproduced or copied without its prior authority or permission. Disclaimer This report has been prepared by Risk & Policy Analysts Ltd, with reasonable skill, care and diligence under a contract to the client and in accordance with the terms and provisions of the contract. Risk & Policy Analysts Ltd will accept no responsibility towards the client and third parties in respect of any matters outside the scope of the contract. This report has been prepared for the client and we accept no liability for any loss or damage arising out of the provision of the report to third parties. Any such party relies on the report at their own risk. Table of contents 1 Summary .............................................................................................................................. 1 1.1 Background to this analysis of alternatives .................................................................................... 1 1.2 Identification of potential alternatives for EDC and overall feasibility ........................................... 2 1.3 Technical feasibility of potential alternatives for EDC .................................................................... 3 1.4 Economic feasibility of potential alternatives for EDC ................................................................... 3 1.5 Risk reduction capabilities of the alternatives ................................................................................ 6 1.6 Availability of potential alternatives for EDC .................................................................................. 6 1.7 Actions needed to improve the suitability and availability of potential alternatives ..................... 7 2 Analysis of substance function .............................................................................................. 8 2.1 Introduction .................................................................................................................................... 8 2.2 Background information on Ion Exchange Resins........................................................................... 9 2.3 Production and classification of IERs ............................................................................................ 12 2.4 Overview of Dow’s IER activities ................................................................................................... 15 2.5 Conditions of EDC use ................................................................................................................... 20 2.6 Technical feasibility criteria for alternative substances................................................................ 25 2.7 Technical feasibility criteria for alternative technologies ............................................................. 30 3 Annual tonnage .................................................................................................................. 31 4 Identification of possible alternatives.................................................................................. 32 4.1 Introduction and list of possible alternatives ............................................................................... 32 4.2 Description of efforts made to identify possible alternatives ...................................................... 32 5 Suitability and availability of possible alternatives ............................................................... 55 5.1 Alternative 1: 1,2,4-Trifluorobenzene .......................................................................................... 55 5.2 Alternative 2: DCM ....................................................................................................................... 69 5.3 Alternative 3: Solventless sulphonation ....................................................................................... 79 6 Overall conclusions on suitability and availability of possible alternatives ............................ 89 6.1 Alternative substances and technologies considered .................................................................. 89 6.2 Conclusions on comparison of alternatives to EDC ...................................................................... 89 6.3 Overall conclusion and future research and development .......................................................... 92 7 Annex 1: Risk evaluation of alternative substances .............................................................. 94 7.1 Methodological approach ............................................................................................................. 94 7.2 Reference values (DNELs, PNECs) for EDC and alternative substances ........................................ 95 7.3 Exposure Assessment .................................................................................................................. 106 7.4 Results of the comparative exposure assessment and risk characterisation ............................. 107 8 Annex 2: Dow IER Products ............................................................................................... 111 9 Annex 3: Substances excluded from further analysis following screening step 2 ................. 119 10 Annex 4: Justifications for confidentiality claims ............................................................... 125 References ............................................................................................................................... 126 1 Summary 1.1 Background to this analysis of alternatives This Application for Authorisation (AfA) has been submitted jointly by two legal entities: Dow Italia Srl, and Rohm and Haas France S.A.S. The substance of concern is 1,2-dichloroethane (hereafter referred to as EDC), EC No. 203-458-1, CAS No. 107-06-2. Both applicants are applying for the same use of EDC (‘Industrial use as a sulphonation swelling agent of polystyrene-divinylbenzene copolymer beads in the production of strong acid cation exchange resins’), which is undertaken within similar closed (batch) processes at their respective production plants in Fombio, Italy and Chauny, France. The applicants’ activities are associated with a combined EDC use of '''''#B'''''. Strong acid cation exchange resins (SAC ERs) are a sub-category of ion exchange resin (IER) that find use across a very diverse range of downstream sectors, from water softening applications to waste decontamination in the nuclear industry. SAC ERs are characterised by their ability to exchange cations or split neutral salts and are useful across the entire pH range (Dow, 2000). EDC’s effectiveness and properties as a polystyrene-divinylbenzene (PS-DVB) sulphonation swelling agent allow the process to achieve high yields of acceptable quality SAC ERs (across 50 different product grades), with short cycle times for sulphonation. The solvent is also highly recoverable in the process. Such parameters are extremely important when considering the highly competitive global market the applicants compete in. The authorisation has been applied for so that EDC will continue to be used at the applicants’ plants until a suitable alternative becomes available. The argumentation in this AfA is based on two pillars: The lack of a technically and economically feasible (and sustainable) alternative for EDC, and The demonstration that the socio-economic benefits from the continued use of the substance significantly outweigh the risks to human health, as shown in the accompanying Socio-economic Analysis (SEA) document. Important note Although ‘Dow Italia Srl’ and ‘Rohm and Haas France S.A.S.’ can be considered as separate legal entities, their activities fall under the remit of ‘Dow Water & Process Solutions’, a business unit of The Dow Chemical Company. Both legal entities are ultimately owned 100% by The Dow Chemical Company. Consequently, in the context of this Analysis of Alternatives (AoA), the applicants’ activities must be considered ‘as one’ i.e. from the overall corporate strategy and business perspective of The Dow Chemical Company. However, where deemed particularly relevant, distinction is made between e.g. specific production processes. This overall business perspective is also very important to consider when the feasibility of alternatives is taken into account, as the applicants are duty-bound to justify any proposed capital projects to The Dow Chemical Company. These will be required to pass all financial, technical, business, and sustainability justification ‘gates’, and, as The Dow Chemical Company operates globally, be compared to other high-level options including the exit of operations and shutdown of the affected production within the EU. These issues are discussed further in the corresponding SEA document, but the requirement for the applicants to justify their actions in the context of a competitive global market remains a critical factor for consideration within this AoA Use number: 1 Legal name of the applicants: Dow Italia Srl and Rohm and Haas France S.A.S. 1 1.2 Identification of potential alternatives for EDC and overall feasibility Dow followed a detailed, stepwise
Recommended publications
  • Ethers, Ether-Alcohols, Ether-Phenols, Ether
    29-IV Sub-Chapter IV ETHERS, ALCOHOL PEROXIDES, ETHER PEROXIDES, KETONE PEROXIDES, EPOXIDES WITH A THREE-MEMBERED RING, ACETALS AND HEMIACETALS, AND THEIR HALOGENATED, SULPHONATED, NITRATED OR NITROSATED DERIVATIVES 29.09 - Ethers, ether-alcohols, ether-phenols, ether-alcohol-phenols, alcohol peroxides, ether peroxides, ketone peroxides (whether or not chemically defined), and their halogenated, sulphonated, nitrated or nitrosated derivatives. - Acyclic ethers and their halogenated, sulphonated, nitrated or nitrosated derivatives : 2909.11 - - Diethyl ether 2909.19 - - Other 2909.20 - Cyclanic, cyclenic or cycloterpenic ethers and their halogenated, sulphonated, nitrated or nitrosated derivatives 2909.30 - Aromatic ethers and their halogenated, sulphonated, nitrated or nitrosated derivatives - Ether-alcohols and their halogenated, sulphonated, nitrated or nitrosated derivatives : 2909.41 - - 2,2’-Oxydiethanol (diethylene glycol, digol) 2909.43 - - Monobutyl ethers of ethylene glycol or of diethylene glycol 2909.44 - - Other monoalkylethers of ethylene glycol or of diethylene glycol 2909.49 - - Other 2909.50 - Ether-phenols, ether-alcohol-phenols and their halogenated, sulphonated, nitrated or nitrosated derivatives 2909.60 - Alcohol peroxides, ether peroxides, ketone peroxides and their halogenated, sulphonated, nitrated or nitrosated derivatives (A) ETHERS Ethers may be considered as alcohols or phenols in which the hydrogen atom of the hydroxyl group is replaced by a hydrocarbon radical (alkyl or aryl). They have the general formula : (R-O-R1), where R and R1 may be the same or different. These ethers are very stable, neutral substances. If the radicals belong to the acyclic series, the ether is also acyclic; cyclic radicals give cyclic ethers. The first ether in the acyclic series is gaseous, but others are volatile liquids with a characteristic odour of ether; the higher members are liquids or sometimes solids.
    [Show full text]
  • Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals.--2Nd Ed
    Second Edition Physical-Chemical Properties and Environmental Fate for Organic Chemicals Volume I Introduction and Hydrocarbons Volume II Halogenated Hydrocarbons Volume III HANDBOOK OF HANDBOOK Oxygen Containing Compounds Volume IV Nitrogen and Sulfur Containing Compounds and Pesticides © 2006 by Taylor & Francis Group, LLC Second Edition Physical-Chemical Properties and Environmental Fate for Organic Chemicals Volume I Introduction and Hydrocarbons Volume II Halogenated Hydrocarbons Volume III Oxygen Containing Compounds HANDBOOK OF HANDBOOK Volume IV Nitrogen and Sulfur Containing Compounds and Pesticides Donald Mackay Wan Ying Shiu Kuo-Ching Ma Sum Chi Lee Boca Raton London New York A CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T&F Informa plc. © 2006 by Taylor & Francis Group, LLC Published in 2006 by CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10987654321 International Standard Book Number-10: 1-56670-687-4 (Hardcover) International Standard Book Number-13: 978-1-56670-687-2 (Hardcover) Library of Congress Card Number 2005051402 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.
    [Show full text]
  • Estimation of Hydrolysis Rate Constants of Carboxylic Acid Ester and Phosphate Ester Compounds in Aqueous Systems from Molecular Structure by SPARC
    Estimation of Hydrolysis Rate Constants of Carboxylic Acid Ester and Phosphate Ester Compounds in Aqueous Systems from Molecular Structure by SPARC R E S E A R C H A N D D E V E L O P M E N T EPA/600/R-06/105 September 2006 Estimation of Hydrolysis Rate Constants of Carboxylic Acid Ester and Phosphate Ester Compounds in Aqueous Systems from Molecular Structure by SPARC By S. H. Hilal Ecosystems Research Division National Exposure Research Laboratory Athens, Georgia U.S. Environmental Protection Agency Office of Research and Development Washington, DC 20460 NOTICE The information in this document has been funded by the United States Environmental Protection Agency. It has been subjected to the Agency's peer and administrative review, and has been approved for publication. Mention of trade names of commercial products does not constitute endorsement or recommendation for use. ii ABSTRACT SPARC (SPARC Performs Automated Reasoning in Chemistry) chemical reactivity models were extended to calculate hydrolysis rate constants for carboxylic acid ester and phosphate ester compounds in aqueous non- aqueous and systems strictly from molecular structure. The energy differences between the initial state and the transition state for a molecule of interest are factored into internal and external mechanistic perturbation components. The internal perturbations quantify the interactions of the appended perturber (P) with the reaction center (C). These internal perturbations are factored into SPARC’s mechanistic components of electrostatic and resonance effects. External perturbations quantify the solute-solvent interactions (solvation energy) and are factored into H-bonding, field stabilization and steric effects. These models have been tested using 1471 reliable measured base, acid and general base-catalyzed carboxylic acid ester hydrolysis rate constants in water and in mixed solvent systems at different temperatures.
    [Show full text]
  • Expanding the Modular Ester Fermentative Pathways for Combinatorial Biosynthesis of Esters from Volatile Organic Acids
    ARTICLE Expanding the Modular Ester Fermentative Pathways for Combinatorial Biosynthesis of Esters From Volatile Organic Acids Donovan S. Layton,1,2 Cong T. Trinh1,2,3 1 Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 2 BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, Tennessee 3 Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee; telephone: þ865-974-8121; fax: 865-974-7076; e-mail: [email protected] Biotechnol. Bioeng. 2016;113: 1764–1776. ABSTRACT: Volatile organic acids are byproducts of fermentative ß 2016 Wiley Periodicals, Inc. metabolism, for example, anaerobic digestion of lignocellulosic KEYWORDS: modular chassis cell; carboxylate; ester; acyl acetate; biomass or organic wastes, and are often times undesired inhibiting acyl acylate; ester fermentative pathway cell growth and reducing directed formation of the desired products. Here, we devised a general framework for upgrading these volatile organic acids to high-value esters that can be used as flavors, fragrances, solvents, and biofuels. This framework employs the acid-to-ester modules, consisting of an AAT (alcohol Introduction acyltransferase) plus ACT (acyl CoA transferase) submodule and an alcohol submodule, for co-fermentation of sugars and organic Harnessing renewable or waste feedstocks (e.g., switchgrass, corn acids to acyl CoAs and alcohols to form a combinatorial library of stover, agricultural residue, or municipal solid waste)
    [Show full text]
  • Japanese Flavoring Agents As Food Additives
    Japanese Flavoring Agents as Food Additives In Japan, synthetic flavoring agents are allowed to be used only when they are designated by the Minister of Health, Labour and Welfare as food additives under the Japanese Food Sanitation Act. Currently, we have identified 170 chemical substances which are commonly used as flavorings as shown in Table 1. Table 2 lists 18 groups which are also from the official list of “designated additives” and contain 3004 additional flavor materials. Each of the 18 groups in Table 2 contains substances that are similar in chemical structure. For links to a complete listing of the Japanese additives used in food: (a) Designated additives, (b) Existing food additives, (c) Natural flavoring agents and (d) Ordinary foods used as food additives - go to http://www.mhlw.go.jp/english/topics/foodsafety/foodadditives/index.html Check for Flavoring updates at http://www.jffma-jp.org/english/information.html Provided with Updated Revisions (as of April 2015) By Leffingwell & Associates Table 1. Designated additives used as flavoring substances Compound Synonym or Old name CAS Acesulfame Potassium 55589-62-3 Acetaldehyde (New as of 2006.05.16) ethanal 75-07-0 Acetophenone acetophenone 98-86-2 Acetic acid, Glacial 64-19-7 Adipic Acid 124-04-9 714229-20-6 Advantame (New as of 2015.02.20) 245650-17-3 DL-Alanine 302-72-7 Allyl cyclohexylpropionate allyl cyclohexanepropionate 2705-87-5 Allyl hexanoate allyl hexanoate 123-68-2 Allyl isothiocyanate allyl isothiocyanate 57503 (3-Amino-3-carboxypropyl)dimethylsulfonium chloride
    [Show full text]
  • GREEN BOOK 4 Alkyl Benzoates CIR EXPERT PANEL MEETING
    GREEN BOOK 4 Alkyl Benzoates CIR EXPERT PANEL MEETING AUGUST 30-31, 2010 July 30, 2010 MEMORANDUM To: CIR Expert Panel and Liaisons From: Lillian C. Becker, M.S. Scientific Analyst and Writer Subject: Draft Report for C12-15 Alkyl Benzoate and related Alkyl Benzoates The Cosmetic Ingredient Review (CIR) announced the Scientific Literature Review (SLR) for alkyl benzoates in June, 2010. C12-15 alkyl benzoate is the lead ingredient of this safety assessment. Related alkyl benzoate ingredients are included. CIR has been informed that a comprehensive dossier on the C12-15 alkyl benzoates being prepared for the European REACH program will be completed and provided to CIR in late September or early October. The Panel should review the Draft Report and decide: 1) if it is reasonable to include the other listed ingredients with C12-15 alkyl benzoate in this report and 2) whether any additional data are needed in order to reach a safety conclusion for C12-15 alkyl benzoates and the related ingredients. If no additional data are required, then the Panel may issue a Tentative Report. Alternatively, the Panel may choose to table the report to await the receipt of the dossier mentioned above. CIR Panel Book Page 1 CIR Panel Book Page 2 History of Alkyl Benzoates June, 2010 – SLR issued. August, 2010 - CIR Panel Book Page 3 Search Strategy for Benzoates EXPORATORY SEARCH: PUBMED: “alkyl benzoate” – 7 hits, 1 useful; CAS No. – 0 hits. Internet (Dogpile) – “alkyl benzoate” ‐ 1 MSDS FULL SEARCH: PUBMED: “lauryl alcohol” – 53 hits, 6 ordered. Learned that Valerie was doing this ingredient.
    [Show full text]
  • Comprehensive Characterization of Toxicity of Fermentative Metabolites on Microbial Growth Brandon Wilbanks1 and Cong T
    Wilbanks and Trinh Biotechnol Biofuels (2017) 10:262 DOI 10.1186/s13068-017-0952-4 Biotechnology for Biofuels RESEARCH Open Access Comprehensive characterization of toxicity of fermentative metabolites on microbial growth Brandon Wilbanks1 and Cong T. Trinh1,2* Abstract Background: Volatile carboxylic acids, alcohols, and esters are natural fermentative products, typically derived from anaerobic digestion. These metabolites have important functional roles to regulate cellular metabolisms and broad use as food supplements, favors and fragrances, solvents, and fuels. Comprehensive characterization of toxic efects of these metabolites on microbial growth under similar conditions is very limited. Results: We characterized a comprehensive list of thirty-two short-chain carboxylic acids, alcohols, and esters on microbial growth of Escherichia coli MG1655 under anaerobic conditions. We analyzed toxic efects of these metabo- lites on E. coli health, quantifed by growth rate and cell mass, as a function of metabolite types, concentrations, and physiochemical properties including carbon number, chemical functional group, chain branching feature, energy density, total surface area, and hydrophobicity. Strain characterization revealed that these metabolites exert distinct toxic efects on E. coli health. We found that higher concentrations and/or carbon numbers of metabolites cause more severe growth inhibition. For the same carbon numbers and metabolite concentrations, we discovered that branched chain metabolites are less toxic than the linear chain ones. Remarkably, shorter alkyl esters (e.g., ethyl butyrate) appear less toxic than longer alkyl esters (e.g., butyl acetate). Regardless of metabolites, hydrophobicity of a metabolite, gov- erned by its physiochemical properties, strongly correlates with the metabolite’s toxic efect on E. coli health.
    [Show full text]
  • Esterification for Butyl Butyrate Formation Using Candida
    Arabian Journal of Chemistry (2013) xxx, xxx–xxx King Saud University Arabian Journal of Chemistry www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Esterification for butyl butyrate formation using Candida cylindracea lipase produced from palm oil mill effluent supplemented medium Aliyu Salihu a,b,*, Md. Zahangir Alam a, M. Ismail AbdulKarim a, Hamzah M. Salleh a a Bioenvironmental Engineering Research Unit (BERU), Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia (IIUM), 50728 Kuala Lumpur, Gombak, Malaysia b Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria Received 1 September 2011; accepted 16 August 2013 KEYWORDS Abstract The ability of Candida cylindracea lipase produced using palm oil mill effluent (POME) Lipase; as a basal medium to catalyze the esterification reaction for butyl butyrate formation was investi- Butyl butyrate; gated. Butyric acid and n-butanol were used as substrates at different molar ratios. Different con- Esterification; version yields were observed according to the affinity of the produced lipase toward the substrates. Palm oil mill effluent The n-butanol to butyric acid molar ratio of 8 and lipase concentration of 75 U/mg gave the highest butyl butyrate formation of 63.33% based on the statistical optimization using face centered central composite design (FCCCD) after 12 h reaction. The esterification potential of the POME based lipase when compared with the commercial lipase from the same strain using the optimum levels was found to show a similar pattern. It can be concluded therefore that the produced lipase pos- sesses appropriate characteristics to be used as a biocatalyst in the esterification reactions for butyl butyrate formation.
    [Show full text]
  • Comparative Study of Volatile Compounds in the Fruit of Two Banana Cultivars at Different Ripening Stages
    molecules Article Comparative Study of Volatile Compounds in the Fruit of Two Banana Cultivars at Different Ripening Stages Xiaoyang Zhu † , Qiumian Li †, Jun Li, Jun Luo, Weixin Chen and Xueping Li * State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; [email protected] (X.Z.); [email protected] (Q.L.); [email protected] (J.L.); [email protected] (J.L.); [email protected] (W.C.) * Correspondence: [email protected]; Tel.: +86-20-3829-4892; Fax: +86-20-8528-8280 † These authors contributed equally to this work. Received: 5 September 2018; Accepted: 23 September 2018; Published: 25 September 2018 Abstract: Aromatic compounds are important for fruit quality and can vary among fruit cultivars. Volatile compounds formed during the ripening of two banana cultivars, Brazilian and Fenjiao, were determined using headspace solid-phase micro-extraction (SPME) and gas chromatography coupled with mass spectrometry (GC-MS). These two cultivars exhibited different physiological characteristics during storage. Fenjiao fruit exhibited faster yellowing and softening, a higher respiration rate and greater ethylene production. Also, the soluble sugar content in Fenjiao fruit was much higher than in Brazilian fruit. In total, 62 and 59 volatile compounds were detected in Fenjiao and Brazilian fruits, respectively. The predominant volatile components isoamyl acetate, butanoic acid, 3-methyl-3-methylbutyl ester, hexanal, trans-2-hexenal and 1-hexanol varied during ripening stages. Moreover, esters were more abundant in Fenjiao, and propanoic acid 2-methylbutyl ester, and octanoic acid were only detected in Fenjiao.
    [Show full text]
  • Dependent Modeling Approach Derived from Semi-Empirical Quantum Mechanical Calculations
    3D-QSAR/QSPR Based Surface- Dependent Modeling Approach Derived From Semi-Empirical Quantum Mechanical Calculations 3D-QSAR/QSPR-basierter, oberflächenabhängiger Modellierungsansatz, abgeleitet von semi-empirischen quantenmechanischen Rechnungen Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Marcel Youmbi Foka aus Kamerun Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät/ vom Fachbereich Chemie und Pharmazie der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 05.12.2018 Vorsitzender des Promotionsorgans: Prof. Dr. Georg Kreimer Gutachter/in: Prof. Dr. Tim Clark Prof. Dr. Birgit Strodel Dedication In memory of my late Mother Lucienne Metiegam, who the Lord has taken unto himself on May 3, 2009. My mother, light of my life, God rest her soul, had a special respect for my studies. She had always encouraged me to move forward. I sincerely regret the fact that today she cannot witness the culmination of this work. Maman, que la Terre de nos Ancêtres te soit légère! This is a special reward for Mr. Joseph Tchokoanssi Ngouanbe, who always supported me financially and morally. That he find here the expression of my deep gratitude. i ii Acknowledgements I would like to pay tribute to all those who have made any contribution, whether scientific or not, to help carry out this work. All my thanks go especially to Prof. Dr. Tim Clark, who gave me the opportunity and means to work in his research team. I am grateful to have had him not only supervise my work but also for his patience and for giving me the opportunity to explore this fascinating topic.
    [Show full text]
  • Development of Chemoinformatic Tools to Enumerate Functional Groups in Molecules for Organic Aerosol Characterization G
    Manuscript prepared for Atmos. Chem. Phys. with version 2015/04/24 7.83 Copernicus papers of the LATEX class copernicus.cls. Date: 1 March 2016 Technical Note: Development of chemoinformatic tools to enumerate functional groups in molecules for organic aerosol characterization G. Ruggeri1 and S. Takahama1 1ENAC/IIE Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland Correspondence to: Satoshi Takahama (satoshi.takahama@epfl.ch) Abstract. Functional groups (FGs) can be used as a reduced representation of organic aerosol composition in both ambient and environmental controlled chamber studies, as they retain a cer- tain chemical specificity. Furthermore, FG composition has been informative for source apportion- ment, and various models based on a group contribution framework have been developed to calcu- 5 late physicochemical properties of organic compounds. In this work, we provide a set of validated chemoinformatic patterns that correspond to: 1) a complete set of functional groups that can entirely describe the molecules comprised in the α-pinene and 1,3,5-trimethylbenzene MCMv3.2 oxidation schemes, 2) FGs that are measurable by Fourier transform infrared spectroscopy (FTIR), 3) groups incorporated in the SIMPOL.1 vapor pressure estimation model, and 4) bonds necessary for the cal- 10 culation of carbon oxidation state. We also provide example applications for this set of patterns. We compare available aerosol composition reported by chemical speciation measurements and FTIR for different emission sources, and calculate the FG contribution to the O:C ratio of simulated gas phase composition generated from α-pinene photooxidation (using MCMv3.2 oxidation scheme). 1 Introduction 15 Atmospheric aerosols are complex mixtures of inorganic salts, mineral dust, sea salt, black carbon, metals, organic compounds, and water (Seinfeld and Pandis, 2006).
    [Show full text]
  • United States Patent (19) (11) 4,065,435 Sakaguchi Et Al
    United States Patent (19) (11) 4,065,435 Sakaguchi et al. 45) Dec. 27, 1977 (54) WATER-SOLUBLE POLYMERS AND (57) ABSTRACT PROCESS FOR PRODUCING THE SAME Water-soluble oxidation-reduction polymers containing 75) Inventors: Shinji Sakaguchi; Shinichi Imai; Junn therein recurring units of the formula (I): Yamaguchi; Nobuo Tsuji, all of Minami-ashigara, Japan i. (I) 73) Assignee: Fuji Photo Film Co., Ltd., -CH-C- Minami-ashigara, Japan =o -o OH (21) Appl. No.: 694,424 O N-R M (22 Filed: June 9, 1976 R Related U.S. Application Data OH 62 Division of Ser. No. 535,657, Dec. 23, 1974, abandoned. or recurring units of formula (II): 30 Foreign Application Priority Data R2 (II) Dec. 21, 1973 Japan .................................... 48-311 H 51) Int. C.’........................... Co8F8/00; C08F 8/28; OH C08F 8/30 f=o -o 52 U.S.C. ................................. 260/47 UP; 526/15; O Nan R 526/46; 526/49 M 58) Field of Search .................................... 260/47 UP R 56) References Cited OH U.S. PATENT DOCUMENTS 2,710,801 6/1955 Minsk et al. .................... 260/47 UP wherein X represents a hydrogen atom, a halogen atom, 3,032,522 5/1962 Summers ............................. 260/29.6 an alkyl group, an allyl group or an aryl group; R1 3,267,073 8/1966 Kun .............. ... 260/47 UP represents a hydrogen atom or an alkyl group; R2 repre 3,488,329 1/1970 Johnson ............................ 260/112.5 sents a hydrogen atom, an alkyl group or an aryl group; 3,877,946 4/1975 Tsuji et al. ........................... 96/87 R R3 represents a divalent group; and M represents a cat 3,879,205 4/1975 Fitzgerald .............................
    [Show full text]