The Atzb Gene of Pseudomonas Sp. Strain ADP Encodes the Second Enzyme of a Novel Atrazine Degradation Pathway†

Total Page:16

File Type:pdf, Size:1020Kb

The Atzb Gene of Pseudomonas Sp. Strain ADP Encodes the Second Enzyme of a Novel Atrazine Degradation Pathway† APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Mar. 1997, p. 916–923 Vol. 63, No. 3 0099-2240/97/$04.0010 Copyright q 1997, American Society for Microbiology The atzB Gene of Pseudomonas sp. Strain ADP Encodes the Second Enzyme of a Novel Atrazine Degradation Pathway† 1,2 2,3,4 5 KYRIA L. BOUNDY-MILLS, MERVYN L. DE SOUZA, RAPHI T. MANDELBAUM, 2,3,4 1,3,4,6 LAWRENCE P. WACKETT, AND MICHAEL J. SADOWSKY * Department of Soil, Water, and Climate,1 Department of Biochemistry,2 Institute for Advanced Studies in Biological Process Technology,3 Department of Microbiology,6 and Center for Biodegradation Research and Informatics,4 University of Minnesota, St. Paul, Minnesota 55108, and Institute of Soil and Water, Volcani Research Center, Bet-Dagan, Israel 502505 Received 16 August 1996/Accepted 16 December 1996 We previously reported the isolation of a 21.5-kb genomic DNA fragment from Pseudomonas sp. strain ADP, which contains the atzA gene, encoding the first metabolic step for the degradation of the herbicide atrazine (M. de Souza, L. P. Wackett, K. L. Boundy-Mills, R. T. Mandelbaum, and M. J. Sadowsky, Appl. Environ. Microbiol. 61:3373–3378, 1995). In this study, we show that this fragment also contained the second gene of the atrazine metabolic pathway, atzB. AtzB catalyzed the transformation of hydroxyatrazine to N-isopropylam- melide. The product was identified by use of high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. Tn5 mutagenesis of pMD1 was used to determine that atzB was located 8 kb downstream of atzA. Hydroxyatrazine degradation activity was localized to a 4.0-kb ClaI fragment, which was subcloned into the vector pACYC184 to produce plasmid pATZB-2. The DNA sequence of this region was determined and found to contain two large overlapping divergent open reading frames, ORF1 and ORF2. ORF1 was identified as the coding region of atzB by demonstrating that (i) only ORF1 was transcribed in Pseudomonas sp. strain ADP, (ii) a Tn5 insertion in ORF2 did not disrupt function, and (iii) codon usage was consistent with ORF1 being translated. AtzB had 25% amino acid identity with TrzA, a protein that catalyzes a hydrolytic deamination of the s-triazine substrate melamine. The atzA and atzB genes catalyze the first two steps of the metabolic pathway in a bacterium that rapidly metabolizes atrazine to carbon dioxide, ammonia, and chloride. For the past 30 years, atrazine [2-chloro-4-(ethylamino)-6- microorganisms do not further metabolize the dealkylated me- (isopropylamino)-s-triazine)] has been one of the most widely tabolites (4, 6, 21, 34, 37, 39, 45). Because the metabolites may used herbicides for selective weed control in crops such as possess some phytotoxic properties and may have unknown corn, sorghum, sugarcane, and pineapple (7). Its widespread effects on animals and other organisms (25, 26, 50), further use has resulted in the contamination of soil (27, 44, 51) and of degradation is desirable. However, the dealkylated metabolites surface water (42, 52), groundwater (7), and rainwater (40) at can be dehalogenated by a Rhodococcus strain (11, 46) and by levels which frequently exceed the maximum contaminant level two Pseudomonas sp. strains (5). Additional degradation of set by the U.S. Environmental Protection Agency. atrazine metabolites, including deamination and ring cleavage, In soil, atrazine is primarily degraded biologically (30, 53). has been observed in several bacterial species (10, 11, 15, As candidates for use in bioremediation, a variety of pure 17–19, 24, 33, 38, 41, 46, 54). There are, however, relatively few microbial strains that degrade atrazine have been isolated and reports of pure bacterial cultures that are documented to me- characterized. These include strains of Rhodococcus (4, 6, 39, tabolize atrazine quantitatively to carbon dioxide, ammonia, 45), Pseudomonas (5, 31–33, 54), Nocardia (17–19), Acineto- and chloride (41, 54). bacter calcoaceticus (36), a new bacterial species related most In contrast, Pseudomonas sp. strain ADP (31) catalyzes closely to Agrobacterium radiobacter (41), and the fungi Phan- atrazine dechlorination to hydroxyatrazine [2-hydroxy-4-(eth- erochaete chrysosporium (21, 37) and Pleurotus pulmonarius ylamino)-6-(isopropylamino)-s-triazine] (32), directly forming (34). a nonphytotoxic metabolite (1, 26), and it also liberates the Several studies with microorganisms have indicated that triazine ring carbon atoms as carbon dioxide. To better under- atrazine is degraded primarily by N-dealkylation, forming deethy- stand this degradative pathway, we have undertaken an inves- latrazine[2-chloro-4-amino-6-(isopropylamino)-s-triazine],dei- tigation of the genes involved in the metabolism of atrazine. sopropylatrazine [2-chloro-4-(ethylamino)-6-amino-s-triazine], We previously reported the isolation of a 21.5-kb DNA frag- 2-chloro-4,6-diamino-s-triazine, or a combination of these me- ment, cloned in plasmid pMD1 from Pseudomonas sp. strain tabolites (4–6, 17–19, 21, 34, 36, 37, 39, 45). However, many ADP, which allowed Escherichia coli to degrade atrazine (14). This fragment contains the atzA gene, which encodes atrazine chlorohydrolase, the enzyme responsible for dechlorination of * Corresponding author. Mailing address: Department of Soil, Wa- atrazine to form hydroxyatrazine (13). In this study, we show ter, and Climate, University of Minnesota, 439 Borlaug Hall, 1991 that plasmid pMD1 also contains the second gene in the deg- Upper Buford Circle, St. Paul, MN 55108. Phone: (612) 624-2706. radative pathway, atzB. This gene encodes an enzyme that † Manuscript number 961250003 in the University of Minnesota transforms hydroxyatrazine to N-isopropylammelide [2,4-dihy- Agricultural Experiment Station series. droxy-6-(isopropylamino)-s-triazine], making this pathway of 916 VOL. 63, 1997 atzB ENCODES HYDROXYATRAZINE DEGRADATION 917 atrazine degradation significantly different from that described analysis was made by chemical ionization with methane as the reagent gas and an in other microorganisms. electron energy of 70 eV. Preparation of crude cell extracts and analysis of triazine degradation activ- ity. E. coli DH5a cells transformed with the pACYC184 vector, pMD1, or MATERIALS AND METHODS pATZB-2 were grown in liquid LB medium amended with the appropriate Media and strains. The atrazine-degrading Pseudomonas sp. strain ADP was antibiotics. Pseudomonas sp. strain ADP was grown in minimal medium M63 a (43) with atrazine (30 mg/ml) as the sole nitrogen source. Overnight cultures described previously (31). E. coli DH5 (43) was used for all molecular manip- 3 8 ulations. Modified minimal salts buffer medium (31) and Luria-Bertani (LB) (43) were centrifuged at 12,000 g for 10 min at 4 C, and pellets were washed twice and M63 media (43) were prepared as described previously. Plasmid pMD1 with 25 mM MOPS (morpholinepropanesulfonic acid) buffer (pH 6.9) and re- contained a 21.5-kb genomic DNA fragment from Pseudomonas sp. strain ADP suspended in the same buffer on ice. Cold cell suspensions were broken by three which conferred atrazine-degrading activity to E. coli (14). consecutive freeze-thaw cycles followed by sonication with a Biosonik sonicator Chemicals. Authentic samples of atrazine, N-isopropylammelide, and hy- (Bronwill Scientific, Rochester, N.Y.). Sonication was carried out three times at 80% probe intensity with intermittent cooling on ice. The broken cell suspen- droxyatrazine were obtained from Crop Protection Division, Ciba-Geigy Corp., 3 8 Greensboro, N.C. sions were centrifuged at 17,000 g for 90 min at 4 C to obtain crude cell Plasmids and molecular manipulations. Subcloning and plasmid purification extracts. Authentic samples of atrazine, hydroxyatrazine, and N-isopropylam- were performed as described previously (43). A 4.0-kb ClaI fragment from melide were used to prepare 100-mg/ml stock solutions in 25 mM MOPS (pH plasmid pMD1 was subcloned into the ClaI site of pACYC184 (8), generating 6.9). The crude extracts were diluted in 25 mM MOPS (pH 6.9) to obtain a final protein concentration of 50 mg/ml and amended with either atrazine, hy- plasmid pATZB-2. To confirm hydroxyatrazine degradation activity in this plas- m mid, E. coli(pATZB-2) was plated on LB (43) agar medium containing hy- droxyatrazine, or N-isopropylammelide (100 g/ml). Reaction mixtures were droxyatrazine (500 mg/ml) and tetracycline (15 mg/ml) and incubated at 378C for incubated at room temperature. At selected times, samples were removed and reactions were terminated by heating at 958C. Samples were centrifuged at several days. Colonies had a zone of clearing surrounding the area of growth due 3 m to hydroxyatrazine degradation (31). 10,000 g for 5 min, filtered through 0.2- m-pore-size filters, and placed in crimp seal vials for subsequent HPLC analysis as described above. DNA sequencing. The DNA sequence of plasmid pATZB-2 was obtained by l l using custom synthesized primers (Gibco BRL, Gaithersburg, Md.). DNA se- Tn5 mutagenesis. Tn5 mutagenesis of plasmid pMD1 was done with ::Tn5 ( 467 b221 rex::Tn5c1857 Oam29 Pam80) as described previously (12, 14). Mu- quence was generated by fluorescent sequencing with the Applied Biosystems a (Foster City, Calif.) Prism DyeDeoxy Terminator Cycle Sequencing Kit. Se- tagenized plasmids were transformed into E. coli DH5 , and Tn5 insertions in quencing reactions were prepared with a TempCycler II thermal cycler (Coy pMD1 were mapped relative to flanking restriction sites. The precise locations of Laboratory Products, Inc., Ann Arbor, Mich.), purified through Centri-Sep spin six Tn5 insertions were determined by PCR with one primer constructed for sequencing and the other complementary to the 59 end of Tn5, comprised of columns (Princeton Separations, Inc., Adelphia, N.J.), and analyzed on a Ap- 9 9 plied Biosystems model 373 DNA sequencer. DNA sequence data were compiled nucleotides 68 to 49 (5 -ACATGGAAGTCAGATCCTGG-3 ) (2, 3). PCR frag- by use of the GeneWorks 2.45 software package (IntelliGenetics, Inc., Mountain ments were amplified with Taq DNA polymerase (Gibco BRL) (22), separated View, Calif.).
Recommended publications
  • Atrazine Chlorohydrolase from Pseudomonas Sp
    JOURNAL OF BACTERIOLOGY, Aug. 1996, p. 4894–4900 Vol. 178, No. 16 0021-9193/96/$04.0010 Copyright q 1996, American Society for Microbiology Atrazine Chlorohydrolase from Pseudomonas sp. Strain ADP: Gene Sequence, Enzyme Purification, and Protein Characterization† 1,2 2,3,4 1,2,4 MERVYN L. DE SOUZA, MICHAEL J. SADOWSKY, AND LAWRENCE P. WACKETT * Department of Biochemistry and Biological Processes Technology Institute,1 Department of Soil, Water, and Climate,3 Department of Microbiology,4 and Center for Biodegradation Research and Informatics,2 University of Minnesota, St. Paul, Minnesota 55108 Received 26 April 1996/Accepted 30 May 1996 Pseudomonas sp. strain ADP metabolizes atrazine to carbon dioxide and ammonia via the intermediate hydroxyatrazine. The genetic potential to produce hydroxyatrazine was previously attributed to a 1.9-kb AvaI DNA fragment from strain ADP (M. L. de Souza, L. P. Wackett, K. L. Boundy-Mills, R. T. Mandelbaum, and M. J. Sadowsky, Appl. Environ. Microbiol. 61:3373–3378, 1995). In this study, sequence analysis of the 1.9-kb AvaI fragment indicated that a single open reading frame, atzA, encoded an activity transforming atrazine to hydroxyatrazine. The open reading frame for the chlorohydrolase was determined by sequencing to be 1,419 nucleotides and encodes a 473-amino-acid protein with a predicted subunit molecular weight of 52,421. The deduced amino acid sequence matched the first 10 amino acids determined by protein microsequencing. The protein AtzA was purified to homogeneity by ammonium sulfate precipitation and anion-exchange chroma- tography. The subunit and holoenzyme molecular weights were 60,000 and 245,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography, respectively.
    [Show full text]
  • Biodegradation of Atrazine by Atrazine Chlorohydrolase: Characterization of Mutant Enzyme and Immobilization System for Water Purification
    Biodegradation of Atrazine by Atrazine Chlorohydrolase: Characterization of Mutant Enzyme and Immobilization System for Water Purification. A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY Amit Aggarwal IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE Lawrence P. Wackett & Ping Wang JANUARY 2012 © Amit Aggarwal 2011 Acknowledgement I want to thank my advisor, Dr. Larry Wackett, for the opportunity to work in his laboratory, his support and patience, and for allowing me to work independently and always being there to guide me. I would like to thank my mentor Dr. Jennifer Seffernick, for training me on different techniques in laboratory, and patiently helping me out throughout my association with the lab and teaching me good laboratory practices for research. Thank you so much for taking me under your wing. You are the best mentor I ever had. I would also like to thank Dr. Alptekin Aksan and Dr. Mike Sadowsky for guiding us throughout the immobilization of atrazine chlorohydrolase project. Dr. Alptekin Aksan guided us in development of a robust and efficient immobilization system and Dr. Mike Sadowsky provided us with valuable direction about making the immobilization system safe to be used in water purifications systems. I would like to thank my administrative adviser Dr. Ping Wang for always being supportive of my work and helping me out with planning my degree and ensuring that I meet all requirements in time. I am thankful to each of my committee members, Dr. Larry Wackett, Dr. Ping Wang and Dr. Jonathan Schilling for their time, for reading my thesis and for all the helpful suggestions.
    [Show full text]
  • Atrazine Mineralization Potential and Catabolic Gene Detection In
    ATRAZINE MINERALIZATION POTENTIAL AND CATABOLIC GENE DETECTION IN AGRICULTURAL AND WETLAND SITES DISSERTATION Presented in Partial Fulfillment of the Requirements of the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Kristen Lynn Anderson, B. S. * * * * * The Ohio State University 2003 Dissertation Committee: Approved by Dr. Olli H. Tuovinen, Advisor Dr. Michael J. Boehm _____________________________ Dr. Mark Morrison Advisor Dr. Samuel J. Traina Department of Microbiology ABSTRACT Atrazine (2-chloro-4-ethylamine-6-isopropylamino-1,3,5 triazine) is a commonly applied herbicide in corn fields. Although the fate of atrazine in agricultural systems has been well studied, the environmental fate of atrazine in wetland systems is less well characterized. The majority of research in this area has focused on aerobic mineralization of atrazine, although anaerobic conditions are commonly found in wetland sediments and bulk soils associated with agricultural fields. The hypothesis for this work was that atrazine would be actively mineralized in agricultural and wetland sites. It was further hypothesized that active mineralization in soils could be correlated with the presence of selected genes involved in atrazine metabolism. Soil, sediment, and water samples were obtained from three sites in Ohio. Atrazine mineralization was investigated under aerobic and anaerobic conditions in these samples using a biometer system in 14 which CO2 evolution was correlated with atrazine mineralization. All samples mineralized atrazine under aerobic conditions. Under anaerobic conditions, some external electron acceptor amendments inhibited mineralization, while others enhanced it. The effect on mineralization varied with the sample and season. Attempts were made to amplify some of the genes involved in atrazine mineralization.
    [Show full text]
  • Proteomic Analysis of the Response of Funnelifor Mismosseae/Medicago Sativa to Atrazine Stress Xin Sui1,2† ,Qiwu1,2†, Wei Chang1,2, Xiaoxu Fan1,2 and Fuqiang Song1,2*
    Sui et al. BMC Plant Biology (2018) 18:289 https://doi.org/10.1186/s12870-018-1492-1 RESEARCH ARTICLE Open Access Proteomic analysis of the response of Funnelifor mismosseae/Medicago sativa to atrazine stress Xin Sui1,2† ,QiWu1,2†, Wei Chang1,2, Xiaoxu Fan1,2 and Fuqiang Song1,2* Abstract Background: Arbuscular mycorrhizal (AM) fungi form symbiotic associations with host plants can protect host plants against diverse biotic and abiotic stresses, and promote biodegradation of various contaminants. However, the molecular mechanisms of how the arbuscular mycorrhizal fungi and host plant association on atrazine stress were still poorly understood. To better characterize how arbuscular mycorrhizal fungi and host plant interactions increase atrazine stress, we performed physiological and proteomic analysis of Funneliformis mosseae (mycorrhizal fungi) and Medicago sativa (alfalfa) association under atrazine stress. Results: The results showed that in the Arbuscular mycorrhizal, protective enzymes were up regulated and the malondialdehyde content increased relative to those of non-mycorrhizal M.sativa. We also examined the atrazine degradation rates within the nutrient solution, and a 44.43% reduction was observed with the mycorrhizal M.sativa, with 30.83% of the reduction attributed to F. mosseae. The accumulation content in root and stem of mycorrhizal M.sativa were obviously increased 11.89% and 16.33% than those of non- mycorrhizal M.sativa. The activity of PPO, POD, CAT and SOD in mycorrhizal M.sativa were obviously higher than non mycorrhizal M.sativa under atrazine stess. We identified differential root proteins using isobaric tags for relative and absolute quantization coupled with liquid chromatography–mass spectrometry, with 533 proteins identified (276 unregulated and 257 downregulated).
    [Show full text]
  • Studies on the Biodegradation of Atrazine
    Universidade de Lisboa Faculdade de Ciências Departamento de Biologia Vegetal STUDIES ON THE BIODEGRADATION OF ATRAZINE IN SOILS CONTAMINATED WITH A COMMERCIAL FORMULATION CONTAINING ATRAZINE AND S-METOLACHLOR: SCALE-UP OF A BIOREMEDIATION TOOL BASED ON PSEUDOMONAS SP. ADP AND EVALUATION OF ITS EFFICACY Ana Catarina da Silva Portinha e Costa Mestrado em Biologia Celular e Biotecnologia Setembro 2008 Universidade de Lisboa Faculdade de Ciências Departamento de Biologia Vegetal STUDIES ON THE BIODEGRADATION OF ATRAZINE IN SOILS CONTAMINATED WITH A COMMERCIAL FORMULATION CONTAINING ATRAZINE AND S-METOLACHLOR: SCALE-UP OF A BIOREMEDIATION TOOL BASED ON PSEUDOMONAS SP. ADP AND EVALUATION OF ITS EFFICACY Ana Catarina da Silva Portinha e Costa Mestrado em Biologia Celular e Biotecnologia Dissertação orientada por: Doutora Cristina Anjinho Viegas (Instituto Superior Técnico, Universidade Técnica de Lisboa) Doutora Maria Isabel Caçador (Faculdade de Ciências, Universidade de Lisboa) Setembro 2008 ABSTRACT Atrazine has been used worldwide since 1952 and is frequently detected above the levels established by regulatory authorities in consumption waters. Therefore, and because of its ecotoxicological properties, its use has been forbidden in most European countries, including Portugal. However, atrazine is still used in many countries worldwide. The main purpose of the present work was to examine the efficacy of the atrazine- degrading bacteria Pseudomonas sp. ADP ( P. ADP) as bioaugmentation agent in soils contaminated with high doses (~20x and ~50xRD; RD – Recommended dose) of the commercial formulation, Primextra S-Gold, that contains atrazine, and also S-metolachlor and benoxacor as main active ingredients. It was also tested the effect of combining bioaugmentation and biostimulation using soil amendment with trisodium citrate in open soil microcosms, with the purpose of scaling-up this bioremediation tool.
    [Show full text]
  • The Influence of Vegetation, Microbial Inoculation, and Aging of Pesticide
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2001 The influence of vegetation, microbial inoculation, and aging of pesticide residues on the degradation of atrazine and metolachlor in soils Shaohan Zhao Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, Environmental Sciences Commons, and the Soil Science Commons Recommended Citation Zhao, Shaohan, "The influence of vegetation, microbial inoculation, and aging of pesticide residues on the degradation of atrazine and metolachlor in soils " (2001). Retrospective Theses and Dissertations. 693. https://lib.dr.iastate.edu/rtd/693 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, sbme thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • New Aspects on Atrazine Biodegradation
    487 Vol.53, n. 2: pp. 487-496, March-April 2010 BRAZILIAN ARCHIVES OF ISSN 1516-8913 Printed in Brazil BIOLOGY AND TECHNOLOGY AN INTERNATIONAL JOURNAL New Aspects on Atrazine Biodegradation Luciane Sene 1*, Attilio Converti 2, Geslaine Aparecida Ribeiro Secchi 1 and Rita de Cássia Garcia Simão 1 1Centro de Ciências Médicas e Farmacêuticas; Universidade Estadual do Oeste do Paraná; Rua Universitária 2069; Cascavel - PR - Brasil. 2Facoltà di Ingegneria; Dipartimento di Ingegneria Chimica e di Processo; Università degli Studi di Genova; Via dell’Opera Pia 1; I-16145; Genoa - Italy ABSTRACT The world practice of using agrochemicals for long periods, in an indiscriminated and abusive way, has been a concern of the authorities involved in public health and sustainability of the natural resources, as a consequence of environmental contamination. Agrochemicals refer to a broad range of insecticides, fungicides and herbicides, and among them stands out atrazine, a herbicide intensively used in sugarcane, corn and sorghum cultures, among others. Researches have demonstrated that atrazine has toxic effects in algae, aquatic plants, aquatic insects, fishes and mammals. Due to the toxicity and persistence of atrazine in the environment, the search of microbial strains capable of degrading it is fundamental to the development of bioremediation processes, as corrective tools to solve the current problems of the irrational use of agrochemicals. This review relates the main microbial aspects and research on atrazine degradation by isolated microbial species and microbial consortia, as well as approaches on the development of techniques for microbial removal of atrazine in natural environments. Key words : atrazine, biodegradation, bacteria, fungi, microbial consortium INTRODUCTION thus, inhibiting the photosynthetic electron transport.
    [Show full text]
  • Expression of Anti-Atrazine Scfv and Atrazine Chlorohydrolase Trzn in Planta for Potential Phytoremediation of Atrazine Contamination
    Expression of Anti-Atrazine scFv and Atrazine Chlorohydrolase TrzN in planta for Potential Phytoremediation of Atrazine Contamination By Siripen Leelachao A Thesis Presented to The University of Guelph In partial fulfilment of requirements for the degree of Degree of Doctor of Philosophy In Environmental Biology and Toxicology Guelph, Ontario, Canada © Siripen Leelachao, April, 2015 ABSTRACT EXPRESSION OF ANTI-ATRAZINE SCFV AND ATRAZINE CHLOROHYDROLASE TRZN IN PLANTA FOR POTENTIAL PHYTOREMEDIATION OF ATRAZINE CONTAMINATION Siripen Leelachao Advisors: University of Guelph, 2014 Professor J. Christopher Hall Professor Keith R. Solomon Atrazine is extensively used in agricultural production to improve crop yield throughout North America. Due to contamination of surface water with atrazine, which is an environmental concern, tools for mitigating such contamination are needed. In this study, the potential use of genetically modified plants for remediation of atrazine contamination was investigated. Plants were genetically modified to express proteins of interest using Agrobacterium-mediated transformation. First, an anti-atrazine single chain variable fragment (scFv) was expressed in Lemna minor. In a hydroponic system, transgenic L. minor expressing the scFv showed higher tolerance to atrazine than wild- type plants. Absorption of 14C-atrazine in transgenic L. minor was greater than wild-type L. minor. Metabolites of atrazine were not found in transgenic L. minor. Second, L. minor was transformed to express atrazine chlorohydrolase (TrzN), but the protein could not be detected. Resistance to atrazine was found in the transgenic plants at low concentrations. Finally, the gene of atrazine chlorohydrolase TrzN was tested in Nicotiana Benthamiana by agroinfiltration. Transient Expression of atrazine ii chlorohydrolase TrzN and tolerance to atrazine in transgenic N.
    [Show full text]
  • The Ever-Expanding Limits of Enzyme Catalysis and Biodegradation: Polyaromatic, Polychlorinated, Polyfluorinated, and Polymeric Compounds
    Biochemical Journal (2020) 477 2875–2891 https://doi.org/10.1042/BCJ20190720 Review Article The ever-expanding limits of enzyme catalysis and biodegradation: polyaromatic, polychlorinated, polyfluorinated, and polymeric compounds Lawrence P. Wackett1,2,3 and Serina L. Robinson2,3 1 2 Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN 55108, U.S.A.; Biotechnology Institute, University of Downloaded from http://portlandpress.com/biochemj/article-pdf/477/15/2875/890352/bcj-2019-0720c.pdf by guest on 02 October 2021 Minnesota, Twin Cities, Minneapolis, MN 55108, U.S.A.; 3Program in Microbiology, Immunology and Cancer Biology, University of Minnesota, Twin Cities, Minneapolis, MN 55108, U.S.A. Correspondence: Lawrence P. Wackett ([email protected]) Biodegradation is simply the metabolism of anthropogenic, or otherwise unwanted, che- micals in our environment, typically by microorganisms. The metabolism of compounds commonly found in living things is limited to several thousand metabolites whereas ∼100 million chemical substances have been devised by chemical synthesis, and ∼100 000 are used commercially. Since most of those compounds are not natively found in living things, and some are toxic or carcinogenic, the question arises as to whether there is some organism somewhere with the enzymes that can biodegrade them. Repeatedly, anthropogenic chemicals have been denoted ‘non-biodegradable,’ only to find they are reactive with one or more enzyme(s). Enzyme reactivity has been organized into categor- ies of functional group transformations. The discovery of new functional group transfor- mations has continually expanded our knowledge of enzymes and biodegradation. This expansion of new-chemical biodegradation is driven by the evolution and spread of newly evolved enzymes.
    [Show full text]
  • Enhanced Atrazine Degradation: Evidence for Reduced Residual Weed Control and a Method for Identifying Adapted Soils and Predicting Herbicide Persistence L
    Weed Science 2009 57:427–434 Enhanced Atrazine Degradation: Evidence for Reduced Residual Weed Control and a Method for Identifying Adapted Soils and Predicting Herbicide Persistence L. Jason Krutz, Ian C. Burke, Krishna N. Reddy, Robert M. Zablotowicz, and Andrew J. Price* Soilborne bacteria with novel metabolic abilities have been linked with enhanced atrazine degradation and complaints of reduced residual weed control in soils with an s-triazine use history. However, no field study has verified that enhanced degradation reduces atrazine’s residual weed control. The objectives of this study were to (1) compare atrazine persistence and prickly sida density in s-triazine-adapted and nonadapted field sites at two planting dates; (2) utilize original and published data to construct a diagnostic test for identifying s-triazine-adapted soils; and (3) develop and validate an s- triazine persistence model based on data generated from the diagnostic test, i.e., mineralization of ring-labeled 14C-s- triazine. Atrazine half-life values in s-triazine-adapted soil were at least 1.4-fold lower than nonadapted soil and 5-fold lower than historic estimates (60 d). At both planting dates atrazine reduced prickly sida density in the nonadapted soils (P # 0.0091). Conversely, in the s-triazine-adapted soil, prickly sida density was not different between no atrazine PRE and atrazine PRE at the March 15 planting date (P 5 0.1397). A lack of significance in this contrast signifies that enhanced degradation can reduce atrazine’s residual control of sensitive weed species. Analyses of published data indicate that cumulative mineralization in excess of 50% of C0 after 30 d of incubation is diagnostic for enhanced s-triazine degradation.
    [Show full text]
  • HHS Public Access Author Manuscript
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptAngew Chem Author Manuscript Int Ed Engl Author Manuscript . Author manuscript; available in PMC 2016 March 09. Published in final edited form as: Angew Chem Int Ed Engl. 2015 March 9; 54(11): 3351–3367. doi:10.1002/anie.201409470. Expanding the Enzyme Universe: Accessing Non-Natural Reactions by Mechanism-Guided Directed Evolution Dr. Hans Renata, Dr. Z. Jane Wang, and Prof. Dr. Frances H. Arnold Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd. MC 210-41, Pasadena, CA 91125 (USA) Frances H. Arnold: [email protected] Abstract High selectivities and exquisite control over reaction outcomes entice chemists to use biocatalysts in organic synthesis. However, many useful reactions are not accessible because they are not in nature’s known repertoire. We will use this review to outline an evolutionary approach to engineering enzymes to catalyze reactions not found in nature. We begin with examples of how nature has discovered new catalytic functions and how such evolutionary progressions have been recapitulated in the laboratory starting from extant enzymes. We then examine non-native enzyme activities that have been discovered and exploited for chemical synthesis, emphasizing reactions that do not have natural counterparts. The new functions have mechanistic parallels to the native reaction mechanisms that often manifest as catalytic promiscuity and the ability to convert from one function to the other with minimal mutation. We present examples of how non-natural activities have been improved by directed evolution, mimicking the process used by nature to create new catalysts.
    [Show full text]
  • Nikolina Udiković-Kolić, Colin Scott & Fabrice Martin-Laurent
    Evolution of atrazine-degrading capabilities in the environment Nikolina Udiković-Kolić, Colin Scott & Fabrice Martin-Laurent Applied Microbiology and Biotechnology ISSN 0175-7598 Volume 96 Number 5 Appl Microbiol Biotechnol (2012) 96:1175-1189 DOI 10.1007/s00253-012-4495-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag Berlin Heidelberg. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your work, please use the accepted author’s version for posting to your own website or your institution’s repository. You may further deposit the accepted author’s version on a funder’s repository at a funder’s request, provided it is not made publicly available until 12 months after publication. 1 23 Author's personal copy Appl Microbiol Biotechnol (2012) 96:1175–1189 DOI 10.1007/s00253-012-4495-0 MINI-REVIEW Evolution of atrazine-degrading capabilities in the environment Nikolina Udiković-Kolić & Colin Scott & Fabrice Martin-Laurent Received: 17 August 2012 /Revised: 2 October 2012 /Accepted: 3 October 2012 /Published online: 18 October 2012 # Springer-Verlag Berlin Heidelberg 2012 Abstract Since their first introduction in the mid 1950s, man- Introduction made s-triazine herbicides such as atrazine have extensively been used in agriculture to control broadleaf weed growth in Increasing crop production in agriculture has been made different crops, and thus contributed to improving crop yield easier by the use of effective chemical weed control agents, and quality. Atrazine is the most widely used s-triazine herbi- such as the s-triazine herbicides.
    [Show full text]