ECONOMIC DEVELOPMENT of BRIDGE CONSTRUCTION ^F
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Montreal Bridges
The METALLURGICAL HISTORYof MONTREAL BRIDGES AN ONLINE SERIES by H.J. McQueen, Concordia University PART 2 THE VICTORIA TRUSS BRIDGE (1898) — STEEL, HOT RIVETED The METALLURGICAL HISTORYof MONTREAL BRIDGES THE VICTORIA TRUSS BRIDGE (1898) — STEEL, HOT RIVETED Abstract In 1898, the Victoria Truss Bridge1 that crossed the St. ness greater than those of the original bridge. Developments in Lawrence River at Montreal was designed as a double-tracked bridge design from extensive railroad experience indicated steel truss. This new bridge replaced the original single-track that for construction to be completed in 1898, a Pratt truss box-girder and was constructed on the same piers as the origi- design would be more effective; this design would enable dou- nal bridge, which had been built half a century earlier. In the ble-tracking and the addition of roadways (Fig. 1; Szeliski, time between construction of the first and the second bridges, 1987; Victoria Jubilee Bridge, 1898). large-scale steel production had replaced wrought iron produc- Before examining the design of the Victoria Truss Bridge tion because of the cost and strength advantages of steel. This on the original piers (Fig. 2; McQueen, 1992; Szeliski, 1987; transition in Canada and its impact on bridge construction are discussed. The essential role that rivets played in bridge con- struction at this time is also described, with a focus on limited rolling capability and lack of dependable welding. Then, the addition of roadways on the outer sides of the bridge trusses are explored — these provided the first badly needed crossing for carriages and automobiles. Finally, the addition of a spur and lift spans across the Seaway are described. -
Field Testing and Structural Analysis of Burr Arch Covered Bridges in Pennsylvania
Field Testing and Structural Analysis of Burr Arch Covered Bridges in Pennsylvania Douglas Rammer1, James Wacker2, Travis Hosteng3, Justin Dahlberg4 and Yaohua Deng5 ABSTRACT: The Federal Highway Administration sponsored a comprehensive research program on Historic Covered Timber Bridges in the USA. This national program's main purpose is to develop improved methods to preserve, rehabilitate, and restore timber bridge trusses that were developed during the early 1800s and, in many cases, are still in service today. One of the many ongoing research studies is aimed at establishing a procedure for safely and reliably load- rating historic covered bridges though physical testing and improved structural modelling. This paper focuses on recent field work and analysis of four Burr Arch through-truss-type covered bridges located in Lancaster County, Pennsylvania. An overview of field evaluation methods, loading testing, and structural modelling procedures are included along with a comparison of field measurements and structural model prediction of bridge behaviour. KEYWORDS: loading rating, structural analysis, covered bridges, historical landmark, burr arch 1 INTRODUCTION 123 established for historic covered bridges. Given the historic nature and unusual geometric features of these The Federal Highway Administration (FHWA), in structures, a procedure needs to be established detailing partnership with the USDA Forest Products Laboratory how to safely and reliably determine load ratings for and the National Park Service (NPS), sponsored a historic covered timber bridges through physical testing. comprehensive national research program on Historic Covered Timber Bridges in the USA. The main purpose Similarly, the complex behavior and unique details of is to develop improved methods to preserve, rehabilitate, covered bridges make structural modeling a daunting task and restore timber bridge trusses that were first developed for the typical bridge engineer. -
Over Jones Falls. This Bridge Was Originally No
The same eastbound movement from Rockland crosses Bridge 1.19 (miles west of Hollins) over Jones Falls. This bridge was originally no. 1 on the Green Spring Branch in the Northern Central numbering scheme. PHOTO BY MARTIN K VAN HORN, MARCH 1961 /COLLECTION OF ROBERT L. WILLIAMS. On October 21, 1959, the Interstate Commerce maximum extent. William Gill, later involved in the Commission gave notice in its Finance Docket No. streetcar museum at Lake Roland, worked on the 20678 that the Green Spring track west of Rockland scrapping of the upper branch and said his boss kept would be abandoned on December 18, 1959. This did saying; "Where's all the steel?" Another Baltimore not really affect any operations on the Green Spring railfan, Mark Topper, worked for Phillips on the Branch. Infrequently, a locomotive and a boxcar would removal of the bridge over Park Heights Avenue as a continue to make the trip from Hollins to the Rockland teenager for a summer job. By the autumn of 1960, Team Track and return. the track through the valley was just a sad but fond No train was dispatched to pull the rail from the memory. Green Spring Valley. The steel was sold in place to the The operation between Hollins and Rockland con- scrapper, the Phillips Construction Company of tinued for another 11/2 years and then just faded away. Timonium, and their crews worked from trucks on ad- So far as is known, no formal abandonment procedure jacent roads. Apparently, Phillips based their bid for was carried out, and no permission to abandon was the job on old charts that showed the trackage at its ' obtained. -
Timber Bridges Design, Construction, Inspection, and Maintenance
Timber Bridges Design, Construction, Inspection, and Maintenance Michael A. Ritter, Structural Engineer United States Department of Agriculture Forest Service Ritter, Michael A. 1990. Timber Bridges: Design, Construction, Inspection, and Maintenance. Washington, DC: 944 p. ii ACKNOWLEDGMENTS The author acknowledges the following individuals, Agencies, and Associations for the substantial contributions they made to this publication: For contributions to Chapter 1, Fong Ou, Ph.D., Civil Engineer, USDA Forest Service, Engineering Staff, Washington Office. For contributions to Chapter 3, Jerry Winandy, Research Forest Products Technologist, USDA Forest Service, Forest Products Laboratory. For contributions to Chapter 8, Terry Wipf, P.E., Ph.D., Associate Professor of Structural Engineering, Iowa State University, Ames, Iowa. For administrative overview and support, Clyde Weller, Civil Engineer, USDA Forest Service, Engineering Staff, Washington Office. For consultation and assistance during preparation and review, USDA Forest Service Bridge Engineers, Steve Bunnell, Frank Muchmore, Sakee Poulakidas, Ron Schmidt, Merv Eriksson, and David Summy; Russ Moody and Alan Freas (retired) of the USDA Forest Service, Forest Products Laboratory; Dave Pollock of the National Forest Products Association; and Lorraine Krahn and James Wacker, former students at the University of Wisconsin at Madison. In addition, special thanks to Mary Jane Baggett and Jim Anderson for editorial consultation, JoAnn Benisch for graphics preparation and layout, and Stephen Schmieding and James Vargo for photographic support. iii iv CONTENTS CHAPTER 1 TIMBER AS A BRIDGE MATERIAL 1.1 Introduction .............................................................................. l- 1 1.2 Historical Development of Timber Bridges ............................. l-2 Prehistory Through the Middle Ages ....................................... l-3 Middle Ages Through the 18th Century ................................... l-5 19th Century ............................................................................ -
Technical Approach. Results
October 27, 2017 Kevin R. Kline, PE, District Executive PennDOT Engineering District 2-0 1924 Daisy Street - P.O. Box 342 Clearfield County, PA 16830 Dear Mr. Kline: Reference. PennDOT Engineering District 2-0, Statement of Work, subj: Concept Design for Vehicle Bridge over Spring Creek along Puddintown Road in College Township, Centre County, PA, dated September 1, 2017. Statement of Problem. The Spring Creek bridge, an integral part of College Township, was destroyed by a flood and has significantly altered the daily routines for all community members. Objective. To create a new design for the now-destroyed Spring Creek bridge. Design Criteria Using the bridge designer software, undergo two phases of design for both a Howe bridge and a Warren bridge: one to test economic efficiency and the other for structural efficiency. After achieving optimal specifications, construct both bridges out of popsicle sticks and test them to failure. Technical Approach. Phase 1: Economic Efficiency. For both the Howe and Warren bridges, design solutions that fit the constraints of $150,000 to $300,000 while stably holding the bridge’s own weight and a dead load. Phase 2: Structural Efficiency. Minimize the compressive and tension forces acting on the Howe and Warren designs while keeping them stable and in the cost constraints. Results. Phase 1: Economic Efficiency. After much trial and error, we came to a design that was able to support its dead weight, and the weight required. Although this met all design constraints, the economics of the trusses were far too great. We then took to research to try to understand the types of materials and how they would react under tension or compression. -
Chapter 3—Historic Context for Common Historic Bridge Types
Chapter 3—Historic Context for Common Historic Bridge Types 3.0 HISTORIC CONTEXT FOR COMMON HISTORIC BRIDGE TYPES This Chapter presents the historic contexts for the most common bridge types extant in the United States today. A “common historic bridge type,” as defined for the purposes of this study, will possess all of the characteristics below. 1) It is Common: a bridge type that is prevalent, i.e., the type is widely represented in extant examples throughout the regions of the United States. (As the discussions of the individual bridge types in this chapter indicate, some types are much less common than others.) 2) It is Historic: a type of bridge that meets National Register of Historic Places (NRHP) criteria for evaluation of significance, as outlined in the National Register Bulletin, How to Apply the National Register Criteria for Evaluation. This includes types that are more than fifty years of age as of 2005. The date of 1955 was selected as the cut-off date for this study because it covers the period up to the passage of the Federal Aid Highway Act of 1956, which established the Interstate System and which permanently changed highway planning and design. (Since there are few NRHP-eligible or listed examples of types that have developed since 1955, they are not considered both historic and “common.”) 3) It is a Bridge Type: the primary determinate of “type” is the “form,” or manner in which the structure functions. A bridge type is not defined strictly according to materials; method of connection; type of span; or whether the majority of the bridge structure exists above or below the grade of travel surface. -
Chambers Covered Railroad Bridge Salvage and Rehabilitation
Chambers Covered Railroad Bridge Salvage and Rehabilitation Gregory W. Ausland, PE Greg has more than 27 years of Senior Project Manager civil/structural design and project management experience, OBEC Consulting Engrs and since 1989 has had the Eugene, Oregon, USA distinctive experience of being [email protected] the designer and/or project manager on rehabilitation and repair projects for 32 of Oregon's 50 covered bridges. Tony LaMorticella,PE, SE Inspired by the graceful bridges Sr. Project Engineer on the Oregon Coast, Tony became an engineer after OBEC Consulting Engrs building custom furniture for 15 Eugene, Oregon, USA years. He's been engaged in [email protected] structural design for 20 years, and has been lead design engineer on 18 covered bridge rehabilitation projects. Summary The Chambers Covered Bridge was built in 1925 and is the last remaining covered railroad bridge in Oregon, possibly the only one west of the Mississippi. Therefore, its rehabilitation was critical to historic preservation efforts of the country's remaining covered rail bridges. Before rehabilitation, the 27.4 m (90-foot) long timber structure was in danger of collapse after decades of neglect. In 2010 a windstorm threatened to destroy the bridge. This unique, single-span, four-leaf Howe truss structure was dismantled and rebuilt using almost all the original iron and hardware, and 25 percent of the original timber. The bridge was reconstructed on dry ground and launched onto the existing concrete piers. The rehabilitated Chambers Covered Bridge now serves as a landmark pedestrian and bicycle crossing that provides safe access across the Coast Fork of the Willamette River. -
Timber As a Bridge Material
TIMBER AS A BRIDGE MATERIAL 1.1 INTRODUCTION The age of wood spans human history. The stone, iron, and bronze ages were dramatic interims in human progress, but wood-a renewable re- source-has always been at hand. As a building material, wood is abun dant, versatile, and easily obtainable. Without it, civilization as we know it would have been impossible. One-third of the area of the United States is forest land. If scientifically managed and protected from natural disasters caused by fire, insects, and disease, forests will last forever. As older trees are harvested, they are replaced by young trees to replenish the wood supply for future generations. The cycle of regeneration, or sustained yield, can equal or surpass the volume being harvested. Wood was probably the first material used by humans to construct a bridge. Although in the 20th century concrete and steel replaced wood as the major materials for bridge construction, wood is still widely used for short- and medium-span bridges. Of the bridges in the United States with spans longer than 20 feet, approximately 12 percent of them, or 71,200 bridges, are made of timber. In the USDA Forest Service alone, approxi mately 7,500 timber bridges are in use, and more are built each year. The railroads have more than 1,500 miles of timber bridges and trestles in service. In addition, timber bridges recently have attracted the attention of international organizations and foreign countries, including the United Nations, Canada, England, Japan, and Australia. Timber’s strength, light weight, and energy-absorbing properties furnish features desirable for bridge construction. -
A History of Theory of Structures in the Nineteenth Century
A history of theory of structures in the nineteenth century A history of theory of structures in the nineteenth century T. M. CHARLTON EMERITUS PROFESSOR OF ENGINEERING, UNIVERSITY OF ABERDEEN CAMBRIDGE UNIVERSITY PRESS CAMBRIDGE LONDON NEW YORK NEW ROCHELLE MELBOURNE SYDNEY PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcon 13,28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa http://www.cambridge.org © Cambridge University Press 1982 This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 1982 First paperback edition 2002 A catalogue record for this book is available from the British Library Library of Congress catalogue card number: 81-15515 ISBN 0 52123419 0 hardback ISBN 0 52152482 2 paperback Contents Preface vii 1 Introduction 1 2 Beam systems 14 3 Theory of the arch and suspension bridge 35 4 Elementary theory of frameworks: graphical statics 56 5 Theory of statically-indeterminate frameworks: the reciprocal theorem 73 6 Levy's theory of frameworks and bridge girders 94 7 Early developments of energy principles relating to theory of structures 106 8 The later development and use of energy principles 118 9 Applications of the least work principle: elastic theory of suspension bridges 132 10 Aspects of the further development of theory of structures 140 11 Secondary effects in structures 157 Appendices I A note on C. -
Historic STRUCTURES Gasconade Bridge Failure 1855 by Frank Griggs, Jr., Dist
historic STRUCTURES Gasconade Bridge Failure 1855 By Frank Griggs, Jr., Dist. M.ASCE, D.Eng., P.E., P.L.S. he Pacific Railroad was chartered in TMissouri in 1849 to build a railroad from St. Louis to the Pacific Ocean. Due to financing problems and outbreaks of cholera, construction did not begin until 1851 with a groundbreaking at which prominent citizens Gasconade bridge site. of St. Louis turned out to celebrate the start of construction of the line. It included speeches, a national salute, and the reading of a poem written for the moment in history. Due to the time required to make tunnels and build bridges, the load-carrying capacity. O’Sullivan had crossed the bridge and believed line did not reach the nearby city of Pacific until 1853. Much of the it to be safe. line between a point just east of Washington and Jefferson City was An account of the November 1st failure published in St. Louis along the Missouri River. Over the next two years, it would reach the newspapers is as follows, capital city of Jefferson City with a planned grand entry on November But how soon was the scene destined to be changed! How soon were so 1, 1855. All of their bridges were of wood with the largest one being many of those bounding hearts to be pulseless. No one dreamed that death across the Gasconade River, a tributary of the Missouri River. was near, and yet it lurked for us only a few miles further on. At 1 o’clock, The river was about 760 feet wide at the crossing, and stone abutments we left Hermann, preceded by a locomotive and tender, which had been and five piers were placed on a skew of about 30°. -
A Context for Common Historic Bridge Types
A Context For Common Historic Bridge Types NCHRP Project 25-25, Task 15 Prepared for The National Cooperative Highway Research Program Transportation Research Council National Research Council Prepared By Parsons Brinckerhoff and Engineering and Industrial Heritage October 2005 NCHRP Project 25-25, Task 15 A Context For Common Historic Bridge Types TRANSPORATION RESEARCH BOARD NAS-NRC PRIVILEGED DOCUMENT This report, not released for publication, is furnished for review to members or participants in the work of the National Cooperative Highway Research Program (NCHRP). It is to be regarded as fully privileged, and dissemination of the information included herein must be approved by the NCHRP. Prepared for The National Cooperative Highway Research Program Transportation Research Council National Research Council Prepared By Parsons Brinckerhoff and Engineering and Industrial Heritage October 2005 ACKNOWLEDGEMENT OF SPONSORSHIP This work was sponsored by the American Association of State Highway and Transportation Officials in cooperation with the Federal Highway Administration, and was conducted in the National Cooperative Highway Research Program, which is administered by the Transportation Research Board of the National Research Council. DISCLAIMER The opinions and conclusions expressed or implied in the report are those of the research team. They are not necessarily those of the Transportation Research Board, the National Research Council, the Federal Highway Administration, the American Association of State Highway and Transportation Officials, or the individual states participating in the National Cooperative Highway Research Program. i ACKNOWLEDGEMENTS The research reported herein was performed under NCHRP Project 25-25, Task 15, by Parsons Brinckerhoff and Engineering and Industrial Heritage. Margaret Slater, AICP, of Parsons Brinckerhoff (PB) was principal investigator for this project and led the preparation of the report. -
COOPER's TUBULAR ARCH BRIDGE Hill Street Bridge New York Cast and Wrought Iron Bridges Spanning Old Erie Canal at Cedar Bay Picn
COOPER'S TUBULAR ARCH BRIDGE HAER No. NY-291 Hill Street Bridge New York Cast and Wrought Iron Bridges Spanning Old Erie Canal at Cedar Bay Picnic Area (Relocated from Canajoharie, Montgomery County» NY) Old Erie Canal State Park MY De Witt Onondaga County New York PHOTOGRAPHS REDUCED COPIES OF MEASURED DRAWINGS WRITTEN HISTORICAL AND DESCRIPTIVE DATA r HISTORIC AMERICAN ENGINEERING RECORD National Park Service Department of the Interior P.O. Box 37127 Washington, D.C. 20013-7127 HISTORIC AMERICAN ENGINEERING RECORD COOPER*S TUBULAR ARCH BRIDGE U (Hill Street Bridge) HAER NO. NY-291 Locat ion: Spans a restored portion of the old Erie Canal at the Cedar Bay Picnic Area, Old Brie Canal State Park, De Witt, Onondaga County, New York. Relocated from Canajoharie, Montgomery County, New York. UTM; y..4153.76/4765992 0&G-& Quadrangle: Syracuse East, 7.5 minute Date of Construction: 18P6-" " Designer/Builder: William B. Cooper* Division Engineer, Office of New- York State Engineer and Surveyor, designer; Melvin A. Nash, Fort Edward, New York, builder. Present Owner: New York State Office of Parks, Recreation and Historic Preservation, Central Region, Jamesville, New York. Present Use: Pedestrian bridge Significance: Cooper's Tubular Arch Bridge was built in 1886 for the Town of Canajoharie, New York by Melvin A. Nash, a Fort Edward, New York bridge builder. It is the only extant example of superstructures fabricated on the 1873 patent of civil engineer William B. Cooper, then employed on the New York State Canals. In 1975, the bridge was acquired by the Central New York State Park and Recreation Commission and moved to the Old Erie Canal State Park in De Witt, where it now carries pedestrians and service vehicles across a restored COOPER'S TUBULAR ARCH BRIDGE HAER NO.