Lichen Flora of the Kawerua Area, by B. W. and G. C. Hayward, P 125

Total Page:16

File Type:pdf, Size:1020Kb

Lichen Flora of the Kawerua Area, by B. W. and G. C. Hayward, P 125 TANE 20 1974 LICHEN FLORA OF THE KAWERUA AREA by B.W. Hayward* and Glenys C. Haywardf SUMMARY One hundred and twenty-six lichen species from forty-one genera are recorded from Kawerua and the surrounding area. The marine lichen, Lichina confinis is recorded from New Zealand for the first time. Studies on maritime — marine lichens indicate that increased exposure to the sea's forces affects their zonation in the same way it affects intertidal zonation i.e. the lichen zones are widened and extended upwards with increasing exposure. A distinctive associa• tion of Cladonia species is recorded from sand-dunes and a large number of Cladonias are found on the sandy ground beneath semi-open manuka heath and in pine forest canopy gaps. A luxuriant lichen flora of crustose and foliose species is described from kauri forest. A vegetation map of the Kawerua area, a transect through sand-dune vegetation, and a north-south transect over a ridge in kauri forest are also presented. INTRODUCTION The lichens recorded here were collected and studied by the authors during the May 1973 trip to the A.U.F.C. scientific hut at Kawerua, North Auckland. A species list is presented for the surrounding area together with a description of the various habitat associations with detailed accounts of lichens from marine — maritime, sand-dune and kauri forest habitats. Few lichens have previously been recorded from North Auckland and earlier collections are meagre. All lichens from the present study are held in the authors' collection, and many duplicates are held by the Auckland Museum and Dr D.J. Galloway. That a number of species remain unidentified despite valuable assistance from Messrs Martin, Rawson and Dr Galloway, is an indication of our lack of knowledge of the New Zealand lichen flora. The study of lichen ecology is also hindered by this and by the difficulties in field identification of species. SPECIES LIST The location of major collection sites from various habitats are shown on the Kawerua vegetation map (Fig. 1), except for kauri forest lichens (Fig. 7). Species occur in the following habitats - 1 = intertidal, 2 = maritime, 3 = sand-dune, 4 *Geology Department, University of Auckland. fC/- Biology Department, Auckland Girls' Grammar School. 124 = hard-pan, 5 = grassland, 6 = manuka heath, 7 = pine forest, 8 = kauri forest. Substrates - b = clay banks, d = decaying logs, e = epigean (on sand or soil), f = fence post, ch = brick and mortar chimney, r = rocks, rstm = rocks in streams; on the bark of the following trees: Ag = Agathis australis (kauri), Br = Brachyglottis repanda (rangiora), Btr - Beilschmiedia tarairi (taraire), Btw = Beilschmiedia tawa (tawa), Ca = Cassinia retorta (dune tauhinu), Co = Cordyline australis (cabbage tree), Cu = Cupressus macrocarpa (macrocarpa), ft = fruit trees, Kn = Knightia excelsa (rewarewa), Le = Leptospermum scoparium (manuka), Me = Metrosideros excelsa (pohutukawa), Muehlenbeckia complexa (wire vine), My = Myrsine australis (mapou), Pi = Pinus spp. (pines), Po = Podocarpus totara (totara), Rh = Rhopalostylis sapida (ink an i. Buelliaceae Buellia alboatrum 2r B. punctata 2r,5Me,6rstm B. stellulata 2r Buellia 3 spp+ 2r,5Ch,7e Buellia subdisciformis var meiospora 2r Caloplacaceae Coloplaca holocarpa 2r Caloplaca sp 2r,6f Cladoniaceae Baeomyces cinnabarinus 6b,7b Cladonia didyma 6e B. fungoides 6brstm C. floerkeana f. carcata 6e B. heteromorphus 6b C. cf. fimbriata 3e,6eLe,7e Baeomyces sp 4 C. gracilis var chordalis 6b,7e Cladonia capitellata 6e C. leptoclada 4,6be,7e,8e C. cervicornis 4 C. ochrochlora 3e,6e,7e C. coniocraea f. ceratodes 3e,7e C. pityrea var phyllophora 4,7d C. coniocraea f. truncata 2r,3e,6e,7e C. pityrea f. subacuta 3e C. coniocraea f. stenoscypha 3e,7e C. cf. pyxidata 6e C. cf. coniocraea 6e,7e C. scabriuscula f. adspersa 7e C. chlorophaea 7e C. scabriuscula f. cancellata 7e C. cornutoradiata f. capreolata 7e C. scabariuscula 6e,7e C. cornutoradiata f. subulata 7e C. subcariosa 4,7e C. cornutoradiata n.f. 6e,7e C verticillata f. apoticta 6be,7e C. cornutoradiata 6e Cladonia 8 spp 3e(3 spp),4(l sp),6e(3 spp),7e(2 spp),8e(l sp) Clathrinaceae Cladia aggregata 4,6be,7e C. retipora 6e Coenogoniaceae Coenogonium implexum 8Btr Collemaceae Collema sp 8rMyBrRh Chiodectaceae Chiodecton sp 8d Dermatocarpaceae Normandina pulchella 3Ca Graphidaceae Graphis scripta 7Pi Graphis sp 5CuMe,8Btr 125 Lecanoraceae Lecanora sp 8Ag Placopsis brevilobata 2r Phylctella uncinata 6Le P. parellina 8rstm Lecideaceae Bacidia sp 8rstmKn Catillaria kelica 8Br Lecidea albipraetexta 6f C. melaclina var melastegia 8dKn L. crustulata 2r Megalospora sulphurata 8dAg L. meiospora 6b M. sulphurata var campylospora Lecidea 2 spp 3Ca,5efMeCu,8BtrBrPo 5f,8dBrKnMyRh Lopadium monosporum 8Ag Lichinaceae Lichina confinis Pannariaceae Pannaria nigrocincta 8Btr Parmeliella cf. corallinoides 8Ag P. cf. pholidota 8Btw Parmeliella 2 spp2r,6Co,8AgBtrBtwKnRh Pannaria 2 spp+ 8BtrMyCa Psoroma sphinctrinum 8d Parmeliaceae Parmelia cf. amoldii 7Mu P- rudior 8d P. cetrata 8AgRh P- cf- signifera 7Pi P. isidiigera 2i 3r P- subcrinita 8Btr P. ci.otagensis 2r Parmelia spp 6Le,8BtwBtr P. perlata 6rstmLe Menegazzia nothofagi 8Ag P. reticulata 5f 6f ^ circumsorediata 6Le,8AgRh Peltigeraceae Peltigera dolichorhiza vat oceanica 8e P. virescens 8d Pertusariaceae Pertusaria cupularis 8AgBrBtr P. 8Ag P. graphica 2rstm Pertusaria sp 8Br Physciaceae Anaptychia pseudospeciosa 2r,6CoLerstm,8d A. obscurata 6CoLe Anaptychia sp 5f Pyrenulaceae Arthopyrenia sp lr Pyrenula knuthii 8Br Clathroporina endochrysea 8BtrRh Pyrenula sp 6Co,8d Sphaerophoraceae Sphaerophorus melanocarpus var australis 8Ag Stereocaulaceae Stereocaulon ramulosum 4,6erstmb,7e,8rstm Stictaceae Lobaria cf. montagnei 8dAg P. multifida 8AgBrBtrMy Pseudocyphellaria aurata 6Co P. cf. polyschista 8Rh P. amphisticta 6CoLe Sticta caperata 8Ag P. cinnamomea 8KnRh S. filix 8Ag P. delisea 8Rh S. internectens 8Ag P. flavicans 6Co S. latifrons 8BrKnMyRh P. hirta 6Co S. sinuosa ,8Rh P. impressa 6Co,8BtrKn S. variabilis 8AgPo P. lacerata 8rRh S. weigelii 8BrRh 126 Teloschistaceae Teloschistes chrysophthalmus f. denudatus 5fr Xanthoria parientina vai parietina 2rstmr,3r,5ch Usneaceae Ramalina cf. menziesii 6f7Pi Usnea florida 5fr Ramalina sp 2r (7. rubescens 6f Usnea 6 spp+ 3Ca(l sp),5f(2 spp),6fLe(4 spp),7MuPi(3 spp),8Ag(l sp) Verrucariaceae Verrucaria maura lr HABITAT ASSOCIATIONS /, 2 Intertidal and maritime Intertidal and maritime lichens occur on non-mobile basalt boulders, reefs and cliffs but not on sandy or mobile gravel beaches nor on friable cliffs or Pleistocene or recent sands. A basalt point, just south of Kawerua (Fig. 1), surrounded on three sides by lichen-covered rocky cliffs, was chosen for detailed study. Six transects were studied on these cliffs (Figs. 2, 3) having a range of exposure conditions (to waves, spray, sun and wind) varying from extreme (transect IV) to slight (transect I). The north, west and south-west sides of the point are low rocky cliffs (3-6m high), with a sandy beach and dune encroaching over the inland end from the south (Fig. 4a). This landward half of the point is covered by mobile sand partially fixed by Calystegia soldanella, Spinifex hirsutus and patches of Cassinia retorta (Fig. 2). Lichens occur on the lower branches of Cassinia in this typical "yellow dune" vegetation (see section 3). The flat-topped seaward end of the point is covered in a dense growth of Stenotaphrum secundatum (buffalo grass) with patches of Muehlenbeckia complexa, Phormium tenax and Cassinia. No lichens occur in this area. The rocky cliffs extend up to the edges of the Stenotaphrum but have a wide upper fringe with plants of Samolus repens (sea-primrose) and Disphyma australe (iceplant) growing in cracks (Fig. 2). The lower edge of Samulus - Disphyma is bordered by an irregular narrow belt of scattered Salicomia australis (glasswort). The distribution of the major lichens on transects I to VI are shown in Fig. 3 alongside profiles and zonation belts of Chamaesipho brunnea and C. columna (barnacles), Melarapha oliveri and M. cinta (periwinkles) and Apophloea sinclairii (a red gelatinous alga)1, as well as zones shown in the vegetation map (Fig. 2). The three intertidal lichens are: Arthopyrenia, occurring on Chamaesipho in the mid to upper eulittoral, Verrucaria maura on rock in a zone 0.5 to 2m below high tide and Lichina confinis, as tufts on rock in the splash zone on exposed faces (transects III, IV) but below high tide on more sheltered faces (transects II, V, Fig. 3). At high tide, transect IV is exposed to the pounding waves of the Tasman Sea, and has few microhabitats away from the splash and salt spray and at lower tides the sun and wind. Here the intertidal zones are extended upwards and no maritime lichens occur on the rock cliff face above the Lichina zone (Fig. 3); scattered Melarapha, black encrusting fungus and bare rock reaches up into the 127 sandy beach m s sand dunes A r eg Scirpus flats pohutukawas • X flax Nil grassland 0 Fig. 1: Vegetation map of the coastal strip around Kawerua. Location of lichen collections from the various habitats are arrowed; habitats are numbered according to species list key. Inset: Location of Kawerua on the North Auckland Peninsula. 128 reef reef fog; ©"si '' Cassinia Stenotaphrum 30a boulder beach ] Muehlenbeckia sand beach 0 S p i n i f g x - Ca J_vjjj eg i a • rock faces &. he hens Lichina Fig. 2: Vegetation map of low point at Kawerua, showing position of six lichen transects around its steep rocky cliffs (Fig. 3). Location of point is shown on Fig. 1. 129 Fig. 3: Distribution of lichens (A to J) on six marine - maritime rock transects (Locations shown on Fig. 2) and their relationship to cliff profiles, high water mark and the red gelatinous alga (Apophloea), barnacles (Chamaesipho) and periwinkles (Melaraphe zones. Key to lichens - A. Verrucaria maura, B. Lichina confinis, C. black fungus, D. Buellia spp., E. Caloplaca holocarpa, F.
Recommended publications
  • The Lichens' Microbiota, Still a Mystery?
    fmicb-12-623839 March 24, 2021 Time: 15:25 # 1 REVIEW published: 30 March 2021 doi: 10.3389/fmicb.2021.623839 The Lichens’ Microbiota, Still a Mystery? Maria Grimm1*, Martin Grube2, Ulf Schiefelbein3, Daniela Zühlke1, Jörg Bernhardt1 and Katharina Riedel1 1 Institute of Microbiology, University Greifswald, Greifswald, Germany, 2 Institute of Plant Sciences, Karl-Franzens-University Graz, Graz, Austria, 3 Botanical Garden, University of Rostock, Rostock, Germany Lichens represent self-supporting symbioses, which occur in a wide range of terrestrial habitats and which contribute significantly to mineral cycling and energy flow at a global scale. Lichens usually grow much slower than higher plants. Nevertheless, lichens can contribute substantially to biomass production. This review focuses on the lichen symbiosis in general and especially on the model species Lobaria pulmonaria L. Hoffm., which is a large foliose lichen that occurs worldwide on tree trunks in undisturbed forests with long ecological continuity. In comparison to many other lichens, L. pulmonaria is less tolerant to desiccation and highly sensitive to air pollution. The name- giving mycobiont (belonging to the Ascomycota), provides a protective layer covering a layer of the green-algal photobiont (Dictyochloropsis reticulata) and interspersed cyanobacterial cell clusters (Nostoc spec.). Recently performed metaproteome analyses Edited by: confirm the partition of functions in lichen partnerships. The ample functional diversity Nathalie Connil, Université de Rouen, France of the mycobiont contrasts the predominant function of the photobiont in production Reviewed by: (and secretion) of energy-rich carbohydrates, and the cyanobiont’s contribution by Dirk Benndorf, nitrogen fixation. In addition, high throughput and state-of-the-art metagenomics and Otto von Guericke University community fingerprinting, metatranscriptomics, and MS-based metaproteomics identify Magdeburg, Germany Guilherme Lanzi Sassaki, the bacterial community present on L.
    [Show full text]
  • <I>Cyanodermella Asteris</I> Sp. Nov. (<I>Ostropales</I>)
    MYCOTAXON ISSN (print) 0093-4666 (online) 2154-8889 Mycotaxon, Ltd. ©2017 January–March 2017—Volume 132, pp. 107–123 http://dx.doi.org/10.5248/132.107 Cyanodermella asteris sp. nov. (Ostropales) from the inflorescence axis of Aster tataricus Linda Jahn1,*, Thomas Schafhauser2, Stefan Pan2, Tilmann Weber2,7, Wolfgang Wohlleben2, David Fewer3, Kaarina Sivonen3, Liane Flor4, Karl-Heinz van Pée4, Thibault Caradec5, Philippe Jacques5,8, Mieke M.E. Huijbers6,9, Willem J.H. van Berkel6 & Jutta Ludwig-Müller1,* 1 Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany 2 Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany 3 Microbiology and Biotechnology Division, Dept. of Food and Environmental Sciences, University of Helsinki, Viikinkaari 9, FIN-00014, Helsinki, Finland 4 Allgemeine Biochemie, Technische Universität Dresden, 01069 Dresden, Germany 5 Laboratoire ProBioGEM, Université Lille1- Sciences et Technologies, Villeneuve d’Ascq, France 6 Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands 7 moved to: Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet Bygning 220, 2800 Kgs. Lyngby, Denmark 8 moved to: Gembloux Agro-Bio Tech, Université de Liege, Passage des Déportés 2, 5030 Gembloux, Belgium 9 moved to: Department of Biotechnology, Technical University Delft, Van der Maasweg 9, 2629 HZ Delft, The Netherlands *Correspondence to: [email protected], [email protected] Abstract—An endophytic fungus isolated from the inflorescence axis ofAster tataricus is proposed as a new species. Phylogenetic analyses based on sequences from the ribosomal DNA cluster (the ITS1+5.8S+ITS2, 18S, and 28S regions) and the RPB2 gene revealed a relationship between the unknown fungus and the Stictidaceae lineage of the Ostropales.
    [Show full text]
  • Three Challenges to Contemporaneous Taxonomy from a Licheno-Mycological Perspective
    Megataxa 001 (1): 078–103 ISSN 2703-3082 (print edition) https://www.mapress.com/j/mt/ MEGATAXA Copyright © 2020 Magnolia Press Review ISSN 2703-3090 (online edition) https://doi.org/10.11646/megataxa.1.1.16 Three challenges to contemporaneous taxonomy from a licheno-mycological perspective ROBERT LÜCKING Botanischer Garten und Botanisches Museum, Freie Universität Berlin, Königin-Luise-Straße 6–8, 14195 Berlin, Germany �[email protected]; https://orcid.org/0000-0002-3431-4636 Abstract Nagoya Protocol, and does not need additional “policing”. Indeed, the Nagoya Protocol puts the heaviest burden on This paper discusses three issues that challenge contempora- taxonomy and researchers cataloguing biodiversity, whereas neous taxonomy, with examples from the fields of mycology for the intended target group, namely those seeking revenue and lichenology, formulated as three questions: (1) What is gain from nature, the protocol may not actually work effec- the importance of taxonomy in contemporaneous and future tively. The notion of currently freely accessible digital se- science and society? (2) An increasing methodological gap in quence information (DSI) to become subject to the protocol, alpha taxonomy: challenge or opportunity? (3) The Nagoya even after previous publication, is misguided and conflicts Protocol: improvement or impediment to the science of tax- with the guidelines for ethical scientific conduct. Through onomy? The importance of taxonomy in society is illustrated its implementation of the Nagoya Protocol, Colombia has using the example of popular field guides and digital me- set a welcome precedence how to exempt taxonomic and dia, a billion-dollar business, arguing that the desire to name systematic research from “access to genetic resources”, and species is an intrinsic feature of the cognitive component of hopefully other biodiversity-rich countries will follow this nature connectedness of humans.
    [Show full text]
  • An Evolving Phylogenetically Based Taxonomy of Lichens and Allied Fungi
    Opuscula Philolichenum, 11: 4-10. 2012. *pdf available online 3January2012 via (http://sweetgum.nybg.org/philolichenum/) An evolving phylogenetically based taxonomy of lichens and allied fungi 1 BRENDAN P. HODKINSON ABSTRACT. – A taxonomic scheme for lichens and allied fungi that synthesizes scientific knowledge from a variety of sources is presented. The system put forth here is intended both (1) to provide a skeletal outline of the lichens and allied fungi that can be used as a provisional filing and databasing scheme by lichen herbarium/data managers and (2) to announce the online presence of an official taxonomy that will define the scope of the newly formed International Committee for the Nomenclature of Lichens and Allied Fungi (ICNLAF). The online version of the taxonomy presented here will continue to evolve along with our understanding of the organisms. Additionally, the subfamily Fissurinoideae Rivas Plata, Lücking and Lumbsch is elevated to the rank of family as Fissurinaceae. KEYWORDS. – higher-level taxonomy, lichen-forming fungi, lichenized fungi, phylogeny INTRODUCTION Traditionally, lichen herbaria have been arranged alphabetically, a scheme that stands in stark contrast to the phylogenetic scheme used by nearly all vascular plant herbaria. The justification typically given for this practice is that lichen taxonomy is too unstable to establish a reasonable system of classification. However, recent leaps forward in our understanding of the higher-level classification of fungi, driven primarily by the NSF-funded Assembling the Fungal Tree of Life (AFToL) project (Lutzoni et al. 2004), have caused the taxonomy of lichen-forming and allied fungi to increase significantly in stability. This is especially true within the class Lecanoromycetes, the main group of lichen-forming fungi (Miadlikowska et al.
    [Show full text]
  • The Macroevolutionary Dynamics of Symbiotic and Phenotypic Diversification in Lichens
    The macroevolutionary dynamics of symbiotic and phenotypic diversification in lichens Matthew P. Nelsena,1, Robert Lückingb, C. Kevin Boycec, H. Thorsten Lumbscha, and Richard H. Reea aDepartment of Science and Education, Negaunee Integrative Research Center, The Field Museum, Chicago, IL 60605; bBotanischer Garten und Botanisches Museum, Freie Universität Berlin, 14195 Berlin, Germany; and cDepartment of Geological Sciences, Stanford University, Stanford, CA 94305 Edited by Joan E. Strassmann, Washington University in St. Louis, St. Louis, MO, and approved July 14, 2020 (received for review February 6, 2020) Symbioses are evolutionarily pervasive and play fundamental roles macroevolutionary consequences of ant–plant interactions (15–19). in structuring ecosystems, yet our understanding of their macroevo- However, insufficient attention has been paid to one of the most lutionary origins, persistence, and consequences is incomplete. We iconic examples of symbiosis (20, 21): Lichens. traced the macroevolutionary history of symbiotic and phenotypic Lichens are stable associations between a mycobiont (fungus) diversification in an iconic symbiosis, lichens. By inferring the most and photobiont (eukaryotic alga or cyanobacterium). The pho- comprehensive time-scaled phylogeny of lichen-forming fungi (LFF) tobiont supplies the heterotrophic fungus with photosynthetically to date (over 3,300 species), we identified shifts among symbiont derived carbohydrates, while the mycobiont provides the pho- classes that broadly coincided with the convergent
    [Show full text]
  • One Hundred New Species of Lichenized Fungi: a Signature of Undiscovered Global Diversity
    Phytotaxa 18: 1–127 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Monograph PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) PHYTOTAXA 18 One hundred new species of lichenized fungi: a signature of undiscovered global diversity H. THORSTEN LUMBSCH1*, TEUVO AHTI2, SUSANNE ALTERMANN3, GUILLERMO AMO DE PAZ4, ANDRÉ APTROOT5, ULF ARUP6, ALEJANDRINA BÁRCENAS PEÑA7, PAULINA A. BAWINGAN8, MICHEL N. BENATTI9, LUISA BETANCOURT10, CURTIS R. BJÖRK11, KANSRI BOONPRAGOB12, MAARTEN BRAND13, FRANK BUNGARTZ14, MARCELA E. S. CÁCERES15, MEHTMET CANDAN16, JOSÉ LUIS CHAVES17, PHILIPPE CLERC18, RALPH COMMON19, BRIAN J. COPPINS20, ANA CRESPO4, MANUELA DAL-FORNO21, PRADEEP K. DIVAKAR4, MELIZAR V. DUYA22, JOHN A. ELIX23, ARVE ELVEBAKK24, JOHNATHON D. FANKHAUSER25, EDIT FARKAS26, LIDIA ITATÍ FERRARO27, EBERHARD FISCHER28, DAVID J. GALLOWAY29, ESTER GAYA30, MIREIA GIRALT31, TREVOR GOWARD32, MARTIN GRUBE33, JOSEF HAFELLNER33, JESÚS E. HERNÁNDEZ M.34, MARÍA DE LOS ANGELES HERRERA CAMPOS7, KLAUS KALB35, INGVAR KÄRNEFELT6, GINTARAS KANTVILAS36, DOROTHEE KILLMANN28, PAUL KIRIKA37, KERRY KNUDSEN38, HARALD KOMPOSCH39, SERGEY KONDRATYUK40, JAMES D. LAWREY21, ARMIN MANGOLD41, MARCELO P. MARCELLI9, BRUCE MCCUNE42, MARIA INES MESSUTI43, ANDREA MICHLIG27, RICARDO MIRANDA GONZÁLEZ7, BIBIANA MONCADA10, ALIFERETI NAIKATINI44, MATTHEW P. NELSEN1, 45, DAG O. ØVSTEDAL46, ZDENEK PALICE47, KHWANRUAN PAPONG48, SITTIPORN PARNMEN12, SERGIO PÉREZ-ORTEGA4, CHRISTIAN PRINTZEN49, VÍCTOR J. RICO4, EIMY RIVAS PLATA1, 50, JAVIER ROBAYO51, DANIA ROSABAL52, ULRIKE RUPRECHT53, NORIS SALAZAR ALLEN54, LEOPOLDO SANCHO4, LUCIANA SANTOS DE JESUS15, TAMIRES SANTOS VIEIRA15, MATTHIAS SCHULTZ55, MARK R. D. SEAWARD56, EMMANUËL SÉRUSIAUX57, IMKE SCHMITT58, HARRIE J. M. SIPMAN59, MOHAMMAD SOHRABI 2, 60, ULRIK SØCHTING61, MAJBRIT ZEUTHEN SØGAARD61, LAURENS B. SPARRIUS62, ADRIANO SPIELMANN63, TOBY SPRIBILLE33, JUTARAT SUTJARITTURAKAN64, ACHRA THAMMATHAWORN65, ARNE THELL6, GÖRAN THOR66, HOLGER THÜS67, EINAR TIMDAL68, CAMILLE TRUONG18, ROMAN TÜRK69, LOENGRIN UMAÑA TENORIO17, DALIP K.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • A Multigene Phylogenetic Synthesis for the Class Lecanoromycetes (Ascomycota): 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families
    A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., ... & Stenroos, S. (2014). A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution, 79, 132-168. doi:10.1016/j.ympev.2014.04.003 10.1016/j.ympev.2014.04.003 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10,
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Marine Cyanolichens from Different Littoral Zones Are
    bioRxiv preprint doi: https://doi.org/10.1101/209320; this version posted February 6, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Marine cyanolichens from different littoral 2 zones are associated with distinct bacterial 3 communities 4 Nyree J. West*1, Delphine Parrot2†, Claire Fayet1, Martin Grube3, Sophie Tomasi2 5 and Marcelino T. Suzuki4 6 1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, Observatoire Océanologique de Banyuls (OOB), 7 F-66650, Banyuls sur mer, France 8 2 UMR CNRS 6226, Institut des Sciences chimiques de Rennes, Equipe CORINT « Chimie Organique 9 et Interfaces », UFR Sciences Pharmaceutiques et Biologiques, Univ. Rennes 1, Université Bretagne 10 Loire, F-35043, Rennes, France 11 3 Institute of Plant Sciences, University of Graz, A-8010 Graz, Austria 12 4 Sorbonne Universités, UPMC Univ. Paris 06, CNRS, Laboratoire de Biodiversité et Biotechnologies 13 Microbiennes (LBBM), Observatoire Océanologique, F-66650, Banyuls sur mer, France 14 †Current address: GEOMAR Helmholtz Centre for Ocean Research Kiel, Research Unit Marine 15 Natural Products Chemistry, GEOMAR Centre for Marine Biotechnology, 24106 Kiel, Germany 16 *Corresponding author: 17 Observatoire Océanologique de Banyuls sur mer, F-66650 Banyuls sur mer, France 18 19 Tel: +33 (0)4 30 19 24 29, Fax: +33 (0)4 68 88 73 98 20 Email: [email protected] 21 1 bioRxiv preprint doi: https://doi.org/10.1101/209320; this version posted February 6, 2018.
    [Show full text]
  • Discovery of Coenogonium Isidiatum (Coenogoniaceae, Ostropomycetidae) Disjunct in Northeastern Asia
    Opuscula Philolichenum, 17: 322-329. 2018. *pdf effectively published online 17August2018 via (http://sweetgum.nybg.org/philolichenum/) Discovery of Coenogonium isidiatum (Coenogoniaceae, Ostropomycetidae) disjunct in northeastern Asia LIUDMILA KONOREVA1, SERGEY CHESNOKOV2, IRINA STEPANCHIKOVA3, IVAN FROLOV4, LUDMILA GAGARINA5 AND SVETLANA TCHABANENKO6 ABSTRACT. – Coenogonium isidiatum is reported new to Russia from the Far East, constituting a considerable northern range extension for the species. Morphology, ecology and distribution of the species are discussed. Molecular data (mrSSU and nrITS DNA sequences) were obtained from the material and phylogenetic analyses recovered these as a strongly supported and monophyletic with respect to other sequenced Coenogonium species. KEYWORDS. – Biogeography, distribution, isidia, Kurile Islands, Kamchatka, Sakhalin, sterile crustose lichens. INTRODUCTION Coenogonium Ehrenb. is characterized by filamentous or crustose thalli, biatorine (sometimes zeorine) apothecia with yellow to orange or brownish discs, paraplectenchymatous exciples, partially amyloid hymenia, unitunicate asci with entirely thin walls, and two-celled (rarely simple), colorless ascospores, and trentepohlioid photobionts (Ferraro & Michlig 2013, Lücking 2008, Rivas Plata et al. 2006). Currently the genus comprises about 130 species of mainly tropical to subtropical lichens (Gagarina 2015). Originally the genus Coenogonium consisted of species with filamentous thalli only and those with crustose thalli were included into the separate
    [Show full text]
  • Investigations on the Photobiont and Resynthesis of the Tropical Lichen Coenogonium Leprieurii (Mont) Nvel from the NE Coast of Brazil in Culture
    Symbiosis, 23 (1997) 117-124 117 Balaban, Philadelphia/Rehovot Investigations on the Photobiont and Resynthesis of the Tropical Lichen Coenogonium leprieurii (Mont) Nvel from the NE Coast of Brazil in Culture ELFIE STOCKER-WORGOTIER Institute of Plant Physiology, University of Salzburg, Hellbrunner Str. 34, 5020 Salzburg, Austria, Tel. +43-662-8044-5556, Fax. +43-662-8044-619, E-mail. [email protected] Received November 20, 1996; Accepted March 11, 1997 Abstract The lichen forming ascomycete Coenogonium leprieurii and its trentepohlioid photobiont were isolated and cultured on agarized media. Resynthesis experiments were successful, at least partial ensheathment of the filaments of the green algal photobiont by the fungal partner was observed, typical features of this morphologically very simple microfilamentous lichen. The photobiont was identified as Printzina lagenifera (Hildebrand) Thompson and Wujek (Trentepohlia lagenifera). Keywords: Ascolichen, Coenogonium leprieurii, culture, resynthesis, Printzina lagenifera (Trentepohlia lagenifera) 1. Introduction Coenogonium leprieurii is a yellowish green, filamentous lichen (Coenogoniaceae, Ascolichens) growing on the bark of tropical trees and shrubs in shady locations. The investigated species was described by Xavier-Filho et al. (1983) as one of three species distributed in the NE of Brazil (Coenogonium leprieurii, C. moniliforme and C. curvulum). Presented at the Third International Lichenological Symposium (IAL3), September 1-7, 1996, Salzburg, Austria 0334-5114/97 /$05.50 ©1997 Balaban 118 STOCKER-WORGOTTER Generally Coenogoniaceae are found growing on the trunks of trees and on soil in tropical and subtropical climates (Meier and Chapman, 1983; Davis, 1994). There are also a few reports on species of the genus Coenogonium from temperate zones, but these reports (e.g.
    [Show full text]