European Radio Navigation Plan

Total Page:16

File Type:pdf, Size:1020Kb

European Radio Navigation Plan DISCLAIMER The views expressed in this European Radio Navigation Plan are the preliminary views of the Commission services and may not, in any circumstances, be regarded as representing an official position of the European Commission. The information transmitted in this staff working document is intended for the consideration of Member States and / or designated entities, to which it is intentionally addressed to, for discussion and potential future collaboration. Table of Contents Errata Sheet ............................................................................................................................................ 7 EXECUTIVE SUMMARY ............................................................................................................................ 9 1. INTRODUCTION ................................................................................................................................. 13 2. PURPOSE OF THE ERNP ..................................................................................................................... 15 3. THE RADIO NAVIGATION LANDSCAPE IN EUROPE ............................................................................ 18 4. GUIDING PRINCIPLES ......................................................................................................................... 24 4.1 General guiding principles across all sectors .............................................................................. 24 4.2 Guiding principles for the civil aviation sector ............................................................................ 25 4.3 Guiding principles for the maritime and inland waterways navigation sector ........................... 25 4.4 Guiding principles for the road transport sector ........................................................................ 27 4.5 Guiding principles for the agricultural sector ............................................................................. 28 4.6 Guiding principles for the mapping and surveying sector .......................................................... 29 4.7 Guiding principles for Location Based Services .......................................................................... 29 4.8 Guiding principles for the rail transport sector .......................................................................... 30 4.9 Guiding principles for space users .............................................................................................. 31 4.10 Guiding principles for precise timing and synchronisation services ......................................... 31 4.11 Guiding principles for the emerging applications sector .......................................................... 32 4.12 Guiding principles for the Security and Defence sector ........................................................... 33 5. BENEFITS AND OPPORTUNITIES OF USING EGNSS SECTOR BY SECTOR ........................................... 35 5.1 General benefits and opportunities across sectors. ................................................................... 35 5.2 Benefits and opportunities of using EGNSS in civil aviation ....................................................... 36 5.3 Benefits and opportunities of using EGNSS in maritime and inland waterways navigation ...... 37 5.4 Benefits and opportunities of using EGNSS in road transport .................................................... 39 5.5 Benefits and opportunities of using EGNSS in agriculture .......................................................... 40 5.6 Benefits and opportunities of using EGNSS in Mapping and Surveying ..................................... 41 5.7 Benefits and opportunities of using EGNSS in Location Based Services ..................................... 42 5.8 Benefits and opportunities of using EGNSS in rail transport ...................................................... 43 5.9 Benefits and opportunities of using EGNSS for space users ....................................................... 44 5.10 Benefits and opportunities of using EGNSS in precise timing and synchronisation services ... 45 5.11 Benefits and opportunities of using EGNSS in emerging applications...................................... 45 5.12 Benefits and opportunities of using EGNSS in Security and Defence ....................................... 46 2 6. CHALLENGES FOR AN OPTIMISED EU RADIO NAVIGATION LANDSCAPE .......................................... 47 6.1 General challenges across sectors. ............................................................................................. 47 6.2 Challenges of using EGNSS in Civil aviation ................................................................................ 49 6.3 Challenges of using EGNSS in Maritime and inland waterways navigation ................................ 49 6.4 Challenges of using EGNSS in road transport ............................................................................. 51 6.5 Challenges of using EGNSS in Agriculture ................................................................................... 51 6.6 Challenges of using EGNSS in Mapping and Surveying ............................................................... 51 6.7 Challenges of using EGNSS in Location Based Services .............................................................. 52 6.8 Challenges of using EGNSS in Rail transport ............................................................................... 52 6.9 Challenges of using EGNSS for Space Users ................................................................................ 53 6.10 Challenges of using EGNSS in Precise Timing and Synchronisation services ............................ 53 6.11 Challenges of using EGNSS in Emerging Applications ............................................................... 54 6.12 Challenges of using EGNSS in Security and Defence ................................................................. 55 7. CONCLUSIONS ................................................................................................................................... 55 ANNEX 1. Description of Radio Navigation and Timing Systems .......................................................... 57 1. Satellite-based Systems .................................................................................................................... 58 1.1 Global Navigation Satellite Systems............................................................................................ 58 1.1.1 GPS ................................................................................................... 58 1.1.2 GLONASS ........................................................................................... 65 1.1.3 Galileo ............................................................................................... 70 1.1.4 BeiDou .............................................................................................. 75 1.2 Augmentations to Global Navigation Satellite Systems ............................................................. 79 1.2.1 EGNOS .............................................................................................. 79 1.2.2 GBAS................................................................................................. 82 1.2.3 DGNSS .............................................................................................. 85 2. Ground-based Systems ..................................................................................................................... 87 2.1 NDB ............................................................................................................................................. 87 2.2 VOR ............................................................................................................................................. 88 2.3 DME ............................................................................................................................................. 89 2.4 ILS ................................................................................................................................................ 90 2.5 MLS .............................................................................................................................................. 92 2.6 Loran-C / Chayka ......................................................................................................................... 95 2.7 eLoran ......................................................................................................................................... 97 2.8 Differential eLoran ...................................................................................................................... 99 3 2.9 Longwave time and frequency distribution systems ................................................................ 100 2.10 Emerging positioning and timing services. ............................................................................. 103 2.10.1 Cellular networks based positioning ................................................... 103 2.10.2 Iridium Satelles Time and Location .................................................... 105 ANNEX 2. End-User Requirements ...................................................................................................... 107 1. Civil Aviation .................................................................................................................................... 108 2. Maritime and Inland Waterways Navigation .................................................................................
Recommended publications
  • Standard Frequencies and Time Signals from NBS Stations WWV and WWVH
    UNITED STATES DEPARTMENT OF COMMERCE Frederick H. Mueller, Secretary NATIONAL BUREAU OF STANDARDS A. V. Astin, Director Standard Frequencies and Time Signals From NBS Stations WWV and WWVH National Bureau of Standards Miscellaneous Publication 236 Reprinted July 1, 1961 with corrections (First issued December 1, 1960) Detailed descriptions are given of six technical services broadcast by National Bureau of Standards radio stations WWV and WWVH. The services include 1, standard radio frequencies; 2, standard audio frequencies; 3, standard time intervals; 4, standard musical pitch; 5, time signals; and 6, radio propagation forecasts. Other domestic and foreign standard frequency and time signal broadcasts are tabulated. 1. Technical Services and Related Information The National Bureau of Standards’ radio sta- at 1900 UT (Universal Time, UT, is the same as tions WWV (in operation since 1923) and WWVH GMT and GCT). (since 1948) broadcast six widely used technical (b) Accuracy services: 1, Standard radio fiequencies; 2, stand- Since December 1, 1957, the standard radio ard audio frequencies ; 3, standard time intervals ; transmissions from stations WWV and WWVII 4, standard musical pitch; 5, time signals; 6, radio have been held as nearly constant as possible with propagation forecasts. respect to the atomic frequency standards which The radio stations are located as follows: WWV, constitute the United States Frequency Standard Beltsville, Maryland (Box 182, Route 2, Lanham, (USFS), maintained and operated by the Radio Marvland) : WWVH. Maui. Hawaii (Box 901. Standards Laboratory of the National Bureau of PunGene, Maui). Coordinatk of the stitions are.:‘ Standards. Carefully made atomic standards WWV (lat. 38’59’33’’ N, long.
    [Show full text]
  • Robotic Forest Harvesting Process Using GNSS
    RNI: DELENG/2005/15153 No: DL(E)-01/5079/17-19 Publication: 15th of every month Licensed to post without pre-payment U(E) 28/2017-19 Posting: 19th/20th of every month at NDPSO Rs.150 ISSN 0973-2136 Volume XV, Issue 5, May 2019 THE MONTHLY MAGAZINE ON POSITIONING, NAVIGATION AND BEYOND Robotic forest harvesting process using GNSS Soil moisture retrieval using NavIC-GPS-SBAS receiver Rethinking asset management. At 172 megapixels per full-spherical image, the UltraCam Panther Reality Capture System lets you capture your production plant in more detail, with superior sharpness and in higher fidelity than ever before. ULTRACAM PANTHER KEY FEATURES Indoor and outdoor Multitude of use Easy to deploy, mapping even cases through operate and without GPS modular design maintain Discover more on www.vexcel-imaging.com i50 GNSS RTK Brings speed and accuracy in Rethinking one easy-to-use GNSS solution asset management. At 172 megapixels per full-spherical image, the UltraCam Panther Reality Capture System lets you capture your production plant in more detail, with superior sharpness and in higher fidelity than ever before. ULTRACAM PANTHER KEY FEATURES Full GNSS technology Extended connectivity GPS+Glonass+Beidou+Galileo Internal UHF and 4G modems for robust data quality for optimized field operations Indoor and outdoor Multitude of use Easy to deploy, mapping even cases through operate and Preset work modes Rugged and compact without GPS modular design maintain Select configurations in a few Industrial design to withstand seconds for higher productivity
    [Show full text]
  • Guía Para CEO Sobre La Divulgación De Información Financiera
    Guía para sobre la CEO divulgación de información financiera relacionada con el clima VOLVER AL INDICE Desde el Clúster de Cambio Climático, coordinado por Forética, os presentamos la traducción y adaptación para España de la “CEO guide to Climate-Related Financial Disclosures” elaborada por el World Business Council for Sustainable Development. A través de este documento, el Clúster de Cambio Climático busca impulsar el rol, de la alta dirección en la acción climática a través del conocimiento de los riesgos y oportunidades del cambio climático y sus impactos financieros. Mayo 2018 Ana Herrero, Paula Ruiz y Julia Moreno. Autoras de la publicación: Germán Granda, Natalia Montero y Nuria Combrado. Equipo técnico y de comunicación: Informagen y Comunicación S.L Diseño y maquetación: C/ Almagro, 12 – 3ª planta – 28010 Madrid. www.foretica.org Editado por Forética. AE-2018-18007244 ISBN: © Forética es la propietaria del contenido de este documento y tiene reservados todos Copyright: los derechos de traducción y/o reproducción total o parcial de la publicación por cualquier medio, que ha de realizarse citando siempre a la organización como fuente. (*) CEO hace referencia a las siglas en ingles de Chief Executive Officer. A efectos de esta guía CEO es la persona encargada de la máxima autoridad de la gestión y dirección de una empresa u organización. VOLVER AL INDICE 3 Pantone: 285 C CMYK: 90% | 56% | 0% | 0% Sobre Forética Forética es la asociación de empresas Forética es el representante en España del objetivo de colaborar en el ámbito de y profesionales de la responsabilidad World Business Council for Sustainable generación de conocimiento, desarrollo y social empresarial / sostenibilidad líder en Development y por tanto Consejo difusión de buenas prácticas, participación España y Latinoamérica, que tiene como Empresarial Español para el Desarrollo en grupos de trabajo y foros para la misión fomentar la integración de los Sostenible.
    [Show full text]
  • Gnss and Avionics Simulation for Rohde & Schwarz Signal Generators
    GNSS AND AVIONICS SIMULATION FOR ROHDE & SCHWARZ SIGNAL GENERATORS Specifications R&S®SMBV100B Vector Signal Generator R&S®SMW200A Vector Signal Generator Data Sheet Version 11.00 Version 11.00, February 2021 CONTENTS Definitions ....................................................................................................................................................................... 4 Overview .......................................................................................................................................................................... 5 Abbreviations ..................................................................................................................................................................................... 6 GNSS testing with the R&S®SMW200A ............................................................................................................................................. 6 Minimum instrument configuration for GNSS testing .......................................................................................................................... 7 Minimum instrument configuration for avionics testing ....................................................................................................................... 7 Global navigation satellite systems (GNSS) ................................................................................................................. 8 Addressed GNSS applications ..........................................................................................................................................................
    [Show full text]
  • ICLG Contribution of VGLI to Aviation 2018
    ICLG The International Comparative Legal Guide to: Aviation Law 2018 6th Edition A practical cross-border insight into aviation law Published by Global Legal Group, with contributions from: AKD Benelux Lawyers Kubes Passeyrer Attorneys at Law ARNECKE SIBETH DABELSTEIN Lakshmikumaran & Sridharan Arte Law Firm LeClairRyan ASBZ Advogados Maples and Calder Azmi & Associates Mori Hamada & Matsumoto Bird & Bird ONV LAW Cervantes Sainz, S.C. PRIMUS attorneys at law Clyde & Co Sayenko Kharenko Dentons Canada LLP STA Law Firm Dingli & Dingli Law Firm Studio Pierallini Excello Law Ventura Garcés & López-Ibor Abogados Gongora Reina & Associates VISCHER AG Gross, Orad, Schlimoff & Co. (GOS) Weerawong, Chinnavat & Partners Ltd. K&L Gates LLP Katten Muchin Rosenman UK LLP Kreindler & Kreindler LLP The International Comparative Legal Guide to: Aviation Law 2018 General Chapters: 1 On a Wing and a Prayer? Cyber Security in the Commercial Aviation Sector – Alan D. Meneghetti & Sarah Simpson, Katten Muchin Rosenman UK LLP 1 2 Alitalia – the Mirage and the Madness – Philip Perrotta, K&L Gates LLP 5 Contributing Editors 3 Nothing Comes Easy in International Air Crash Litigation – Marc S. Moller & Justin T. Green, Alan D. Meneghetti, Katten Kreindler & Kreindler LLP 10 Muchin Rosenman UK LLP and Philip Perrotta, K&L 4 WALA: 10 Years of Growth in the Airport Sector – Alan D. Meneghetti & Michael Siebold, Gates LLP Worldwide Airports Lawyers Association (WALA) 15 Sales Director Florjan Osmani Country Question and Answer Chapters: Account Director Oliver Smith
    [Show full text]
  • Antennas for High-Precision GNSS Applications
    Antennas for High-Precision GNSS Applications Roshni Prasad Associate Engineer – RF & Connectivity Abracon, LLC Antennas for High-Precision GNSS Applications | Abracon LLC Abstract: The increasing interest in high-precision GNSS/GPS services has led to the development of novel antenna solutions to service various end-customer applications in markets such as agriculture, recreation, surveying & mapping, and timing. Multi-band receivers and antennas are required to derive a higher-precision rate on positioning. However, using dedicated antennas for widely separated multi- band support may introduce several challenges in the design, including increased occupancy in board space and coupling. This application note reviews how these challenges are addressed by employing a single multi-band antenna. The discussion primarily focuses on Abracon’s internal and external antenna solutions that can cover multiple GPS and/or GNSS bands as a single entity for precision positioning applications. Index Introduction to GNSS Antennas for Multi-band GNSS Receivers Types of Antennas for Multi-Band GNSS Receivers Integrating Antennas in GNSS Applications Key Factors in Determining Antenna Performance Advantages of Using Multi-band GNSS Conclusion References Page | 2 5101 Hidden Creek Ln Spicewood TX 78669 | 512.371.6159 | www.abracon.com Antennas for High-Precision GNSS Applications | Abracon LLC 1. Introduction to GNSS What is GNSS? Why is GNSS needed? What are the available constellations? Global Navigation Satellite System (GNSS) is a satellite-based navigation and positioning system that offers a prediction of coordinates in space, with respect to velocity and time, to assist in the navigation and positioning of receiver systems. The service is supported by various global constellations, including GPS (U.S.), GLONASS (Russia), Galileo (Europe), and regional constellations such as BeiDou (China), QZSS (Japan) and IRNSS (India).
    [Show full text]
  • Leica Viva Series White Paper Beidou Integration
    New Systems, New Signals Providing BeiDou Integration Technical literature December 2013 P. Fairhurst, X. Luo, J. Aponte, B. Richter, Leica Geosystems AG Switzerland Heerbrugg, Schweiz 2 | Technical literature New Systems, New Signals, New Positions – Providing BeiDou Integration Abstract In December 2012, the China Satellite Navigation Leica Geosystems is a world leader in GNSS Office (CSNO) released the official Signal-in-Space positioning and in utilizing innovative methods Interface Control Document (ICD; ICD-BeiDou, for providing high precision GNSS solutions. With 2012) and announced the system operability over new GNSS such as BeiDou and other signals and the Asia-Pacific region. regional systems providing a significant increase in satellite availability, new methods are required to The ICD release prompted Leica Geosystems to fully realize the potential benefits of these additi- release software to fully support the BeiDou cons- onal GNSS constellations. tellation in the Leica Viva GNSS technologies: However, before the potential of these new sys- n Leica SmartTrack tems can be fully realized, we must first under- n Leica SmartCheck stand what advantages they can provide when n Leica xRTK being used in a high precision GNSS solution. Leica Geosystems’ previous leading-edge work on These technologies form the basis of Leica Geo- GLONASS observation interoperability showed that systems GNSS RTK performance. Leica SmartTrack there are many challenges involved with incorpora- technology guarantees the most accurate signal ting new GNSS constellation into a position soluti- tracking. It is future proof and ensures compa- on, and careful evaluation needs to be carried out tibility with all GNSS systems today and tomor- to understand the behaviour and characteristics of row.
    [Show full text]
  • 8 Alert Input Monitor
    Chapter 1: Introduction OMEGAPHONE® OMA-P1108 Voice Synthesized Monitoring & Alarm System User’s Manual IMPORTANT SAFETY INSTRUCTIONS Your OMA-P1108 has been carefully designed to give you years of safe, reliable performance. As with all electrical equipment, however, there are a few basic precautions you should take to avoid hurting yourself or damaging the unit: • Read the installation and operating instructions in this manual carefully. Be sure to save it for future reference. • Read and follow all warning and instruction labels on the product itself. •To protect the OMA-P1108 from overheating, make sure all openings on the unit are not blocked. Do not place on or near a heat source, such as a radiator or heat register. • Do not use your OMA-P1108 near water, or spill liquid of any kind into it. • Be certain that your power source matches the rating listed on the AC power transformer. If you’re not sure of the type of power supply to your facility, consult your dealer or local power company. • Do not allow anything to rest on the power cord. Do not locate this product where the cord will be abused by persons walking on it. • Do not overload wall outlets and extension cords, as this can result in the risk of fire or electric shock. •Never push objects of any kind into this product through ventilation holes as they may touch dangerous voltage points or short out parts that could result in a risk of fire or electric shock. •To reduce the risk of electric shock, do not disassemble this product, but return it to Omega Customer Service, or other approved repair facility, when any service or repair work is required.
    [Show full text]
  • Es Tudio S Experiencia Habilid Ades
    A L F R E D O C O R R E D O R C O M U N I C A C I Ó N A U D I O V I S U A L REALIZACIÓN POSTPRODUCCION DISEÑO GRAFICO PRODUCCIÓN BRANDING CONSULTOR Madrid 17 /08/65. Español. Casado. Resido en Boadilla del Monte. Teléfono móvil 618 803 890 e-mail: [email protected] Trabajo y dirección de equipos. Multidisciplinar. Preparación y desarrollos de proyectos. Relación con clientes y proveedores. Gestor de recursos y presupuestos. Responsabilidad y organización. Capacidad analítica para la resolución de problemas. Confianza y positivismo. Capacidad comercial. Flujos de trabajo: Producción y Postproducción audiovisual para todo tipo de producto y formato. Gestión Recursos humanos y técnicos. PLATAFORMAS Postproducción y diseño: After effects, Premiere, Camtasia, Da Vinci, Illustrator, Photoshop, OBS, Audition; Final cut X, motion, Cinema 4D… HABILIDADES HABILIDADES Ofimática: Word, PowerPoint, Keynote, Excel… Licenciado en Imagen y Sonido. (1983-1988). Facultad de C.C. De la Información por la UCM. Máster en Comunicación empresarial y corporativa. (2018-2019). Máster Dirección comercial y marketing (2018-2019). Escuela de Negocios de Barcelona. Certificados por la Universidad Internacional Isabel I de Castilla. Piloto de dron certificado por AESA (2016) de menos de 25 Kg. Kit completo DJI Phantom ESTUDIOS ESTUDIOS 4 en propiedad. Inglés: Intermedio alto. 2014-actualidad Realizador / Postproducción en Vclip audiovisuales S.L. Productora audiovisual que da servicios de comunicación corporativa y branding en RRSS a clientes cómo Ecoembes, ENAIRE, Gas Natural Fenosa, ITH, Loewe, Ámbar espacio de salud y bienestar. Producción/Coordinación Freelance en Telson para producciones y presentaciones de proyectos en PPT , KEYNOTE y bobinas.
    [Show full text]
  • ABAS), Satellite-Based Augmentation System (SBAS), Or Ground-Based Augmentation System (GBAS
    Current Status and Future Navigation Requirements for Mexico City New Airport New Mexico City Airport in figures: • 120 million passengers per year; • 1.2 million tons of shipping cargo per year; • 4,430 Ha. (6 times bigger tan the current airport); • 6 runways operating simultaneously; • 1st airport outside Europe with a neutral carbon footprint; • Largest airport in Latin America; • 11.3 billion USD investment (aprox.); • Operational in 2020 (expected). “State-of-the-art navigation systems are as important –or more- than having world class civil engineering and a stunning arquitecture” Air Navigation Systems: A. In-land deployed systems - Are the most common, based on ground stations emitting radiofrequency signals received by on-board equipments to calculate flight position. B. Satellite navigation systems – First stablished by U.S. in 1959 called TRANSIT (by the time Russia developed TSIKADA); in 1967 was open to civil navigation; 1973 GPS was developed by U.S., then GLONASS, then GALILEO. C. Inertial navigation systems – Autonomous navigation systems based on inertial forces, providing constant information on the position of the flight and parameters of speed and direction (e.g. when flying above the ocean and there are no ground segments to provide support). Requirements for performance of Navigation Systems: According to the International Civil Aviation Organization (ICAO) there are four main requirements: • The accuracy means the level of concordance between the estimated position of an aircraft and its real position. • The availability is the portion of time during which the system complies with the performance requirements under certain conditions. • The integrity is the function of a system that warns the users in an opportune way when the system should not be used.
    [Show full text]
  • GNSS Applications for Agricultural Practices by Guy Blanchard Ikokou, University of Cape Town
    Application technical GNSS applications for agricultural practices by Guy Blanchard Ikokou, University of Cape Town Global positioning systems are relatively new technologies when it comes to applications in agriculture. Applications in tractor guidance, variable rate supply of chemical inputs and field monitoring of crop yield were recently tested using GPS. This article studies the basic concepts of GPS as they apply to agricultural production and provides a detailed analysis of the recent developments in this area with a focus on functionality and efficiency. ver the past 30 years satellites are maintained within 24 information worldwide and provides agricultural machinery has circular orbital planes inclined 55° with support to military, civil and commercial Oreached high technical respect to the equator plane [1]. The applications. standards in order to improve system currently provides two user A total of 24 GLONASS satellites are agriculture production. Precision services: (i) the Standard Positioning actually operational with the latest agriculture or satellite agriculture is a Service (SPS), open to civil users is satellite placed into space on 26 April highly effective farming management available for civil applications such as 2013 with an inclination of 64,8° method that focuses on intra-field agricultural practice and farming, and and an altitude of 19 100 km [3]. variation in order to optimise (ii) the Precision Positioning Service, The system broadcasts two types of agriculture returns while conserving restricted to authorised users such navigation signals: (i) the standard environmental resources. It relies on as the United States military and accuracy signal mainly available to civil new technologies such as the Global their allies.
    [Show full text]
  • High-Precision GNSS: Methods, Open Problems and Geoscience Applications”
    remote sensing Editorial Editorial for the Special Issue: “High-Precision GNSS: Methods, Open Problems and Geoscience Applications” Xingxing Li 1,*, Jacek Paziewski 2 and Mattia Crespi 3 1 School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan 430079, China 2 The Faculty of Geodesy, Geospatial and Civil Engineering Institute of Geodesy, University of Warmia and Mazury in Olsztyn (UWM), 10-719 Olsztyn, Poland; [email protected] 3 Geodesy and Geomatics Division—DICEA, Sapienza University of Rome, 00184 Rome, Italy; [email protected] * Correspondence: [email protected] Received: 17 April 2020; Accepted: 18 April 2020; Published: 18 May 2020 Keywords: GNSS; GPS; GLONASS; Galileo; BDS; precise point positioning; relative positioning; orbit determination; ionosphere sounding; troposphere sounding; geoscience applications; high-rate positioning; GNSS for geodynamics In the past two decades, the high-precision Global Positioning System (GPS) has significantly increased the range of geoscience applications and their precision. Currently, it is one of two fully operational Global Navigation Satellite Systems (GNSS), and two more are in the implementation stage. The new European Galileo and Chinese BeiDou Navigation Satellite System (BDS) already provide usable signals, and both GPS and GLONASS are currently undergoing significant modernization, which adds more capacity, more signals, better accuracy, and interoperability, etc. Meanwhile, there has been significant technological development in GNSS equipment (in some cases, even at low-cost), which is now able to collect measurements at much higher rates (up to 100 Hz), thus presenting new possibilities. On the one hand, the new developments in GNSS offer a broad range of new applications for solid and fluid Earth investigations, in both post-processing and real-time; on the other, this results in new problems and challenges in data processing that increase the need for GNSS research.
    [Show full text]