Interstitial Lung Disease and a Defect in Central Tolerance.Pdf
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Mouse Kcnrg Conditional Knockout Project (CRISPR/Cas9)
https://www.alphaknockout.com Mouse Kcnrg Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Kcnrg conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Kcnrg gene (NCBI Reference Sequence: NM_206974 ; Ensembl: ENSMUSG00000046168 ) is located on Mouse chromosome 14. 2 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 1 (Transcript: ENSMUST00000225582). Exon 1 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Kcnrg gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-460E11 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 1 covers 100.0% of the coding region. Start codon is in exon 1, and stop codon is in exon 1. The size of intron 1 for 3'-loxP site insertion: 3545 bp. The size of effective cKO region: ~833 bp. The cKO region does not have any other known gene. Page 1 of 7 https://www.alphaknockout.com Overview of the Targeting Strategy gRNA region Wildtype allele A gRNA region T 5' G 3' 3 1 2 Targeting vector A T G Targeted allele A T G Constitutive KO allele (After Cre recombination) Legends Exon of mouse Trim13 Homology arm Exon of mouse Kcnrg cKO region loxP site Page 2 of 7 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. -
A Molecular and Genetic Analysis of Otosclerosis
A molecular and genetic analysis of otosclerosis Joanna Lauren Ziff Submitted for the degree of PhD University College London January 2014 1 Declaration I, Joanna Ziff, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Where work has been conducted by other members of our laboratory, this has been indicated by an appropriate reference. 2 Abstract Otosclerosis is a common form of conductive hearing loss. It is characterised by abnormal bone remodelling within the otic capsule, leading to formation of sclerotic lesions of the temporal bone. Encroachment of these lesions on to the footplate of the stapes in the middle ear leads to stapes fixation and subsequent conductive hearing loss. The hereditary nature of otosclerosis has long been recognised due to its recurrence within families, but its genetic aetiology is yet to be characterised. Although many familial linkage studies and candidate gene association studies to investigate the genetic nature of otosclerosis have been performed in recent years, progress in identifying disease causing genes has been slow. This is largely due to the highly heterogeneous nature of this condition. The research presented in this thesis examines the molecular and genetic basis of otosclerosis using two next generation sequencing technologies; RNA-sequencing and Whole Exome Sequencing. RNA–sequencing has provided human stapes transcriptomes for healthy and diseased stapes, and in combination with pathway analysis has helped identify genes and molecular processes dysregulated in otosclerotic tissue. Whole Exome Sequencing has been employed to investigate rare variants that segregate with otosclerosis in affected families, and has been followed by a variant filtering strategy, which has prioritised genes found to be dysregulated during RNA-sequencing. -
Downloaded From
Antimicrobial Activity of PLUNC Protects against Pseudomonas aeruginosa Infection Lina Lukinskiene, Yang Liu, Susan D. Reynolds, Chad Steele, Barry R. Stripp, George D. Leikauf, Jay K. Kolls and This information is current as Y. Peter Di of October 2, 2021. J Immunol 2011; 187:382-390; Prepublished online 1 June 2011; doi: 10.4049/jimmunol.1001769 http://www.jimmunol.org/content/187/1/382 Downloaded from References This article cites 37 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/187/1/382.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 2, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Antimicrobial Activity of PLUNC Protects against Pseudomonas aeruginosa Infection Lina Lukinskiene,* Yang Liu,* Susan D. Reynolds,† Chad Steele,‡ Barry R. Stripp,x George D. Leikauf,* Jay K. Kolls,{ and Y. -
Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed. -
Investigating Single-Gene Disorders of Childhood Infectious Disease
INVESTIGATING SINGLE-GENE DISORDERS OF CHILDHOOD INFECTIOUS DISEASE Bayarchimeg Mashbat A thesis submitted for the degree of Doctor of Philosophy Section of Paediatrics, Division of Infectious Diseases Department of Medicine, Imperial College London United Kingdom October 2017 Abstract A common feature of infectious diseases, including an infection with Neisseria meningitidis (Nm), is that only a small proportion of the individuals exposed to the same strain of the bacteria suffer from the clinical disease. Host genetics has long been considered to be an important determinant of both predisposition to and severity of outcome from invasive meningococcal disease (IMD). The human complement system is central to protection against IMD. It is well established that individuals with terminal or alternative complement deficiencies are predisposed to invasive, often recurrent meningococcal infections. However, the occurrence of these putative genetic deficiencies is rare, such that complement deficiencies account for less than 3 % of the disease cases. The current study sought to uncover novel genetic aetiologies of IMD, by employing WES and GWAS, in conjunction with molecular functional characterisation assays. Firstly, genetic analysis of six familial IMD exomes revealed a novel mutation in the SPLUNC1 gene. The encoding protein has been shown to play an important role in innate immune defence against a number of Gram-negative bacterial infections. The characterisation assays undertaken in this work suggest that the protein encoded by SPLUNC1 is also implicated with host innate immune defence against Nm infection, by providing protection against nasopharyngeal colonisation of a pathogenic Nm strain. The results further suggest that harbouring rare pathogenic mutations that impact the function of the encoding protein is associated with reduced host defence activities in the resulting protein, which in turn may possibly lead to increased susceptibility to IMD in the carriers. -
Genomics Analysis of Potassium Channel Genes in Songbirds Reveals
Lovell et al. BMC Genomics 2013, 14:470 http://www.biomedcentral.com/1471-2164/14/470 RESEARCH ARTICLE Open Access Genomics analysis of potassium channel genes in songbirds reveals molecular specializations of brain circuits for the maintenance and production of learned vocalizations Peter V Lovell, Julia B Carleton and Claudio V Mello* Abstract Background: A fundamental question in molecular neurobiology is how genes that determine basic neuronal properties shape the functional organization of brain circuits underlying complex learned behaviors. Given the growing availability of complete vertebrate genomes, comparative genomics represents a promising approach to address this question. Here we used genomics and molecular approaches to study how ion channel genes influence the properties of the brain circuitry that regulates birdsong, a learned vocal behavior with important similarities to human speech acquisition. We focused on potassium (K-)Channels, which are major determinants of neuronal cell excitability. Starting with the human gene set of K-Channels, we used cross-species mRNA/protein alignments, and syntenic analysis to define the full complement of orthologs, paralogs, allelic variants, as well as novel loci not previously predicted in the genome of zebra finch (Taeniopygia guttata). We also compared protein coding domains in chicken and zebra finch orthologs to identify genes under positive selective pressure, and those that contained lineage-specific insertions/deletions in functional domains. Finally, we conducted comprehensive in situ hybridizations to determine the extent of brain expression, and identify K-Channel gene enrichments in nuclei of the avian song system. Results: We identified 107 K-Channel finch genes, including 6 novel genes common to non-mammalian vertebrate lineages. -
A Genome-Wide Association Study for Harness Racing Success in the Norwegian- Swedish Coldblooded Trotter Reveals Genes for Learning and Energy Metabolism Brandon D
Velie et al. BMC Genetics (2018) 19:80 https://doi.org/10.1186/s12863-018-0670-3 RESEARCHARTICLE Open Access A genome-wide association study for harness racing success in the Norwegian- Swedish coldblooded trotter reveals genes for learning and energy metabolism Brandon D. Velie1* , Kim Jäderkvist Fegraeus1, Marina Solé1, Maria K. Rosengren1, Knut H. Røed2, Carl-Fredrik Ihler3, Eric Strand3 and Gabriella Lindgren1,4 Abstract Background: Although harness racing is of high economic importance to the global equine industry, significant genomic resources have yet to be applied to mapping harness racing success. To identify genomic regions associated with harness racing success, the current study performs genome-wide association analyses with three racing performance traits in the Norwegian-Swedish Coldblooded Trotter using the 670 K Axiom Equine Genotyping Array. Results: Following quality control, 613 horses and 359,635 SNPs were retained for further analysis. After strict Bonferroni correction, nine genome-wide significant SNPs were identified for career earnings. No genome-wide significant SNPs were identified for number of gallops or best km time. However, four suggestive genome-wide significant SNPs were identified for number of gallops, while 19 were identified for best km time. Multiple genes related to intelligence, energy metabolism, and immune function were identified as potential candidate genes for harness racing success. Conclusions: Apart from the physiological requirements needed for a harness racing horse to be successful, the results of the current study also advocate learning ability and memory as important elements for harness racing success. Further exploration into the mental capacity required for a horse to achieve racing success is likely warranted. -
Supplemental Table S1. Primers for Sybrgreen Quantitative RT-PCR Assays
Supplemental Table S1. Primers for SYBRGreen quantitative RT-PCR assays. Gene Accession Primer Sequence Length Start Stop Tm GC% GAPDH NM_002046.3 GAPDH F TCCTGTTCGACAGTCAGCCGCA 22 39 60 60.43 59.09 GAPDH R GCGCCCAATACGACCAAATCCGT 23 150 128 60.12 56.52 Exon junction 131/132 (reverse primer) on template NM_002046.3 DNAH6 NM_001370.1 DNAH6 F GGGCCTGGTGCTGCTTTGATGA 22 4690 4711 59.66 59.09% DNAH6 R TAGAGAGCTTTGCCGCTTTGGCG 23 4797 4775 60.06 56.52% Exon junction 4790/4791 (reverse primer) on template NM_001370.1 DNAH7 NM_018897.2 DNAH7 F TGCTGCATGAGCGGGCGATTA 21 9973 9993 59.25 57.14% DNAH7 R AGGAAGCCATGTACAAAGGTTGGCA 25 10073 10049 58.85 48.00% Exon junction 9989/9990 (forward primer) on template NM_018897.2 DNAI1 NM_012144.2 DNAI1 F AACAGATGTGCCTGCAGCTGGG 22 673 694 59.67 59.09 DNAI1 R TCTCGATCCCGGACAGGGTTGT 22 822 801 59.07 59.09 Exon junction 814/815 (reverse primer) on template NM_012144.2 RPGRIP1L NM_015272.2 RPGRIP1L F TCCCAAGGTTTCACAAGAAGGCAGT 25 3118 3142 58.5 48.00% RPGRIP1L R TGCCAAGCTTTGTTCTGCAAGCTGA 25 3238 3214 60.06 48.00% Exon junction 3124/3125 (forward primer) on template NM_015272.2 Supplemental Table S2. Transcripts that differentiate IPF/UIP from controls at 5%FDR Fold- p-value Change Transcript Gene p-value p-value p-value (IPF/UIP (IPF/UIP Cluster ID RefSeq Symbol gene_assignment (Age) (Gender) (Smoking) vs. C) vs. C) NM_001178008 // CBS // cystathionine-beta- 8070632 NM_001178008 CBS synthase // 21q22.3 // 875 /// NM_0000 0.456642 0.314761 0.418564 4.83E-36 -2.23 NM_003013 // SFRP2 // secreted frizzled- 8103254 NM_003013 -
Identification of Genes Expressed by Human Airway Eosinophils After an in Vivo Allergen Challenge
Identification of Genes Expressed by Human Airway Eosinophils after an In Vivo Allergen Challenge Stephane Esnault1*, Elizabeth A. Kelly1, Elizabeth A. Schwantes1, Lin Ying Liu1, Larissa P. DeLain1, Jami A. Hauer1, Yury A. Bochkov2, Loren C. Denlinger1, James S. Malter3, Sameer K. Mathur1, Nizar N. Jarjour1 1 Department of Medicine, Allergy, Pulmonary, and Critical Care Medicine Division, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America, 2 Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America, 3 Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America Abstract Background: The mechanism for the contribution of eosinophils (EOS) to asthma pathophysiology is not fully understood. Genome-wide expression analysis of airway EOS by microarrays has been limited by the ability to generate high quality RNA from sufficient numbers of airway EOS. Objective: To identify, by genome-wide expression analyses, a compendium of expressed genes characteristic of airway EOS following an in vivo allergen challenge. Methods: Atopic, mild asthmatic subjects were recruited for these studies. Induced sputum was obtained before and 48h after a whole lung allergen challenge (WLAC). Individuals also received a segmental bronchoprovocation with allergen (SBP- Ag) 1 month before and after administering a single dose of mepolizumab (anti-IL-5 monoclonal antibody) to reduce airway EOS. Bronchoalveolar lavage (BAL) was performed before and 48 h after SBP-Ag. Gene expression of sputum and BAL cells was analyzed by microarrays. The results were validated by qPCR in BAL cells and purified BAL EOS. -
The DNA Sequence and Comparative Analysis of Human Chromosome 20
articles The DNA sequence and comparative analysis of human chromosome 20 P. Deloukas, L. H. Matthews, J. Ashurst, J. Burton, J. G. R. Gilbert, M. Jones, G. Stavrides, J. P. Almeida, A. K. Babbage, C. L. Bagguley, J. Bailey, K. F. Barlow, K. N. Bates, L. M. Beard, D. M. Beare, O. P. Beasley, C. P. Bird, S. E. Blakey, A. M. Bridgeman, A. J. Brown, D. Buck, W. Burrill, A. P. Butler, C. Carder, N. P. Carter, J. C. Chapman, M. Clamp, G. Clark, L. N. Clark, S. Y. Clark, C. M. Clee, S. Clegg, V. E. Cobley, R. E. Collier, R. Connor, N. R. Corby, A. Coulson, G. J. Coville, R. Deadman, P. Dhami, M. Dunn, A. G. Ellington, J. A. Frankland, A. Fraser, L. French, P. Garner, D. V. Grafham, C. Grif®ths, M. N. D. Grif®ths, R. Gwilliam, R. E. Hall, S. Hammond, J. L. Harley, P. D. Heath, S. Ho, J. L. Holden, P. J. Howden, E. Huckle, A. R. Hunt, S. E. Hunt, K. Jekosch, C. M. Johnson, D. Johnson, M. P. Kay, A. M. Kimberley, A. King, A. Knights, G. K. Laird, S. Lawlor, M. H. Lehvaslaiho, M. Leversha, C. Lloyd, D. M. Lloyd, J. D. Lovell, V. L. Marsh, S. L. Martin, L. J. McConnachie, K. McLay, A. A. McMurray, S. Milne, D. Mistry, M. J. F. Moore, J. C. Mullikin, T. Nickerson, K. Oliver, A. Parker, R. Patel, T. A. V. Pearce, A. I. Peck, B. J. C. T. Phillimore, S. R. Prathalingam, R. W. Plumb, H. Ramsay, C. M. -
Regulated T Cell Pre-Mrna Splicing As Genetic Marker of T Cell Suppression
Regulated T cell pre-mRNA splicing as genetic marker of T cell suppression by Boitumelo Mofolo Thesis presented for the degree of Master of Science (Bioinformatics) Institute of Infectious Disease and Molecular Medicine University of Cape Town (UCT) Supervisor: Assoc. Prof. Nicola Mulder August 2012 University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Declaration I, Boitumelo Mofolo, declare that all the work in this thesis, excluding that has been cited and referenced, is my own. Signature Signature Removed Boitumelo Mofolo University of Cape Town Copyright©2012 University of Cape Town All rights reserved 1 ABSTRACT T CELL NORMAL T CELL SUPPRESSION p110 p110 MV p85 PI3K AKT p85 PI3K PHOSPHORYLATION NO PHOSHORYLATION HIV cytoplasm HCMV LCK-011 PRMT5-006 SHIP145 SIP110 RV LCK-010 VCL-204 ATM-016 PRMT5-018 ATM-002 CALD1-008 LCK-006 MXI1-001 VCL-202 NRP1-201 MXI1-007 CALD1-004 nucleus Background: Measles is a highly contagious disease that mainly affects children and according to the World Health Organisation (WHO), was responsible for over 164000 deaths in 2008, despite the availability of a safe and cost-effective vaccine [56]. The Measles virus (MV) inactivates T- cells, rendering them dysfunctional, and results in virally induced immunosuppression which shares certain features with thatUniversity induced by HIV. -
Development and Application of Immunoassays For
FUNCTIONAL CHARACTERIZATION OF SPURT USING TRANSGENIC MOUSE MODEL by Lina Lukinskiene BS, Vilnius University, 1995 MS, Vilnius University, 1997 Submitted to the Graduate Faculty of Department of Environmental and Occupational Health Graduate School of Public Health in partial fulfillment Of the requirements for the degree of Master of Science University of Pittsburgh 2005 UNIVERSITY OF PITTSBURGH Graduate School of Public Health This thesis was presented by Lina Lukinskiene It was defended on 06/10/2005 and approved by Thesis Advisor: Yuan Pu Di, PhD, Assistant Professor Department of Environmental & Occupational Health Graduate School of Public Health University of Pittsburgh Committee Member: Bruce Pitt, PhD, Professor Department of Environmental & Occupational Health Graduate School of Public Health University of Pittsburgh Committee Member: Chad Steele, PhD Assistant Professor Division of Pediatric Pulmonology, Laboratory of Lung Immunology and Host Defense School of Medicine University of Pittsburgh ii Yuan Pu Di, PhD FUNCTIONAL CHARACTERIZATION OF SPURT USING TRANSGENIC MOUSE MODEL Lina Lukinskiene, MS University of Pittsburgh, 2005 Abstract The respiratory tract is the target of multiple infectious agents. Because the lungs are continually exposed to infectious pathogens in inspired air, natural defense mechanisms have devolved to prevent infection. These defense mechanisms coordinate with each other to provide efficient protection against infection. As a result, pulmonary infections can be viewed not just as a consequence of exposure to a virulent pathogen but as a result of a breakdown of natural host defenses. SPLUNC1 or SPURT (secretory protein in upper respiratory tracts) is small, secreted protein that is expressed in epithelial areas of the nose, mouth, pharynx and lungs.