Pro Gradu -Tutkielma

Total Page:16

File Type:pdf, Size:1020Kb

Pro Gradu -Tutkielma PRO GRADU -TUTKIELMA Taru Karvonen Täydellisistä luvuista ja niiden muunnelmista TAMPEREEN YLIOPISTO Informaatiotieteiden yksikkö Matematiikka Marraskuu 2011 Tampereen yliopisto Informaatiotieteiden yksikkö KARVONEN, TARU: Täydellisistä luvuista ja niiden muunnelmista Pro gradu -tutkielma, 28 s. Matematiikka Marraskuu 2011 Tiivistelmä Tämä tutkielma käsittelee täydellisiä lukuja ja niiden muunnelmia. Tutkiel- man ensimmäisessä luvussa annetaan tarvittavia esitietoja. Toisessa luvussa määritellään täydelliset luvut ja käydään läpi täydellisten lukujen sekä nii- den muunnelmien tutkimuksen historiaa. Kolmannessa luvussa käsitellään joitakin täydellisten lukujen muunnelmia. Luvussa määritellään ystävälliset luvut, melkein täydelliset ja kvasitäydelliset luvut, pseudotäydelliset luvut, moninkertaisesti täydelliset luvut, supertäydelliset luvut, hypertäydelliset lu- vut ja unitaarisesti täydelliset sekä unitaarisesti ystävälliset luvut. 1 Sisältö Johdanto 3 1 Valmistelevia tarkasteluja 4 1.1 Jaollisuus ja suurin yhteinen tekijä . 4 1.2 Alkuluvuista . 4 1.3 Aritmetiikan peruslause . 5 1.4 Tekijäfunktio . 6 2 Täydellisistä luvuista 9 2.1 Täydelliset luvut . 9 2.2 Katsaus täydellisten lukujen ja niiden muunnelmien tutkimuk- seen . 11 2.2.1 Historiaa . 11 2.2.2 Tietokonelaskenta ja GIMPS -projekti . 16 3 Täydellisten lukujen muunnelmat 17 3.1 Ystävälliset luvut . 17 3.2 Melkein täydelliset ja kvasitäydelliset luvut . 20 3.3 Pseudotäydelliset luvut . 21 3.4 Moninkertaisesti täydelliset luvut . 22 3.5 Supertäydelliset luvut . 25 3.6 Hypertäydelliset luvut . 26 3.7 Unitaarisesti täydelliset ja unitaarisesti ystävälliset luvut . 26 3.7.1 Unitaarisesti täydelliset luvut . 26 3.7.2 Unitaarisesti ystävälliset luvut . 27 Viitteet 28 2 Johdanto Tässä tutkielmassa käsitellään lukuteorian alalta täydellisiä lukuja ja niiden muunnelmia. Positiivista kokonaislukua n sanotaan täydelliseksi luvuksi, jos sen positiivisten tekijöiden summa on kaksi kertaa luku itse. Luvussa 1 ker- rataan lukuteorian käsitteitä ja esitellään myöhemmin tarvittavia lauseita. Luvussa 2 käsitellään täydellisiä lukuja ja niiden muunnelmien historiaa se- kä luodaan katsaus tutkimuksen nykytilaan. Täydellisten lukujen historiasta siirrytään käsittelemään luvussa 3 täydellisten lukujen muunnelmia, joita ovat omissa alaluvuissaan käsiteltävät ystävälliset luvut, melkein täydelliset ja kvasitäydelliset luvut, pseudotäydelliset luvut, moninkertaisesti täydelliset luvut, supertäydelliset luvut, hypertäydelliset luvut ja unitaarisesti täydelli- set sekä unitaarisesti ystävälliset luvut. Lukijan oletetaan hallitsevan lukuteorian alkeet, esimerkiksi lukion pitkän matematiikan oppisisältöjen mukaisesti. Tutkielman pääasiallisena lähteenä on käytetty James J. Tattersallin teosta Elementary Number Theory in Nine Chapters. Täydellisten lukujen historiaa käsittelevän luvun tärkeänä lähteenä on ollut J. Sándor ja B. Crsticin teoksen Handbook of Number Theory II luku 1. Lähteinä on käytetty myös joitakin lehtiartikkeleita. Joillekin täydellisten lukujen muunnelmiin liittyville termeille on suomenkielisen nimityksen ohella mainittu englanninkieliset vastineet, koska nimityksille ei ole vakiintuneita suomenkielisiä muotoja. Tutkielmassa käsiteltävät esimerkit ovat tekijän itse laatimia, jollei toisin mainita. On kuitenkin mainittava, että samantapaisia esimerkkejä on lähes kaikissa aihetta käsittelevissä teksteissä. 3 1 Valmistelevia tarkasteluja Tässä luvussa käydään läpi aiheen käsittelyn kannalta tarvittavat määritel- mät ja merkinnät sekä esitellään sellaiset lauseet, jotka oletetaan tunnetuiksi myöhemmin esittävissä todistuksissa. Kaikki tutkielmassa käsiteltävät luvut ovat positiivisia kokonaislukuja, jollei toisin mainita. 1.1 Jaollisuus ja suurin yhteinen tekijä Merkintä Merkitään a b,josa jakaa luvun b. | Merkintä Merkitään a - b,josb ei ole jaollinen luvulla a. Merkintä Merkitään lukujen a ja b suurinta yhteistä tekijää syt(a, b). Määritelmä 1.1. ([12, s.50-51]). Jos a b niin nimitetään lukua a luvun b | tekijäksi. Jos 1 <a<bniin sanotaan, että a on luvun b aito tekijä. Määritelmä 1.2. ([12, s.60]). Kokonaislukuja a ja b kutsutaan suhteellisiksi alkuluvuiksi,jossyt(a, b)=1. Lause 1.1. Kokonaisluvut a ja b ovat suhteellisia alkulukuja, jos ja vain jos on olemassa sellaiset kokonaisluvut x ja y, että ax + by =1. Todistus. Ks.[12, lause 2.7 s. 60-61]. Esimerkki 1.1. Luvut 12 = 6 2=3 22 ja 25 = 52 · · ovat suhteellisia alkulukuja, koska selvästi syt(12, 25) = 1. Yhtälön 12x + 25y =1ratkaisuksi saadaan x = 2 ja y =1, joten luvut täyttävät lauseen ≠ 1.1 ehdon. 1.2 Alkuluvuista Määritelmä 1.3. ([12, s. 80]). Alkuluku on sellainen positiivinen kokonais- luku, joka on > 1 ja joka on jaollinen vain itsellään ja ykkösellä. Esimerkki 1.2. Pienimmät alkuluvut ovat 2, 3, 5, 7, 11, 13. Määritelmä 1.4. ([12, s. 80]). Jos luku n 2 ei ole alkuluku, niin se on Ø yhdistetty luku. Lause 1.2. Jokainen kokonaisluku n 2 on joko alkuluku tai alkulukujen Ø tulo. 4 Todistus. (Vrt.[12, s.80, Lause 3.1]). Todistetaan lause induktiolla. Perusaskel: Kun n =2lause pitää paikkansa, koska 2 on alkuluku. Induktioaskel: Oletetaan nyt, että väite pitää paikkansa kaikille kokonaislu- vuille n, kun 2 n k. Tutkitaan lukua k +1. Jos k +1 on alkuluku Æ Æ niin väite pitää paikkansa. Jos k +1ei ole alkuluku, niin sen on oltava kah- den kokonaisluvun > 1 tulo. Olkoot nämä luvut r k ja s k ,joten Æ Æ k +1=r s. Induktio-oletuksen mukaan r ja s ovat joko alkulukuja tai al- · kulukujen tuloja, joten k +1 on joko alkuluku tai alkulukujen tulo. Väite seuraa induktiosta. Esimerkki 1.3. Luku 34 (34 = 2 17) on yhdistetty luku. · Lause 1.3. Alkulukuja on ääretön määrä. Todistus. (Vrt. [12, lause 3.17 s. 107]). Tehdään vastaoletus ja oletetaan, et- tä alkulukuja on äärellinen määrä. Olkoon p suurin alkuluku ja N = p!+1. Luku N ei voi olla yhdistetty luku, sillä jaettaessa N millä tahansa alkulu- vulla 2, 3,...,pjää jakojäännökseksi 1, joten luvulla ei ole alkulukutekijöitä. Toisaalta N ei oletuksen mukaan kuitenkaan voi olla alkuluku, koska oletuk- sen mukaan p on suurin alkuluku ja N>p. Tästä seuraa, että N ei voi olla alkuluku eikä yhdistetty luku, mikä on ristiriita. Vastaoletus on siis väärä ja alkulukujen määrä on ääretön. 1.3 Aritmetiikan peruslause Tässä alaluvussa osoitetaan, että jokainen ykköstä suurempi kokonaisluku voidaan esittää alkulukujen tulona. Lauseen todistamiseksi tarvitaan seu- raavaa lemmaa. Lemma 2.1. (Eukleideen lemma) Jos p on alkuluku ja p ab, niin joko | p a tai p b. | | Todistus. (Vrt. [12, lause 3.2 s. 81]). Oletetaan, että p on alkuluku ja p ab | mutta p - a.Koskap ab, niin on olemassa sellainen luku c,ettäpc = ab. | Koska p - a ovat p ja a suhteellisia alkulukuja, niin lauseen 1.1 perusteella on olemassa x ja y siten, että px + ay =1. Tästä seuraa, että b = b(px)+b(ay)=p(bx)+p(cy)=p(bx + cy), joten p b. | Lause 1.4. (Aritmetiikan peruslause) Jokainen kokonaisluku, joka > 1, voi- daan ilmaista lukujen järjestystä huomioon ottamatta yksikäsitteisesti alku- lukujen tulona. Todistus. (Vrt. [12, lause 3.4 s. 82]). Tehdään vastaoletus, jonka mukaan n on pienin sellainen luku, jolle lause ei päde. Olkoon n = p1p2 ...pr ja n = q1q2 ...qs 5 luvun n alkutuloesitykset, missä r ja s ovat suurempia kuin 1. Jos olisi pi = qj, joillekin 1 i r ja 1 j s niin molemmat alkutuloesitykset voitaisiin Æ Æ Æ Æ n jakaa luvulla pi ja saada kaksi erilaista esitystä luvulle p , mikä on ristirii- n i dassa oletuksen kanssa, koska <n. Täytyy siis olla pi = qj. Yleisyyttä pi ” menettämättä voidaan olettaa, että p1 <q1. Nyt voidaan määritellä luku m seuraavasti m =(q p )q ...q =(q q ...q ) (p q ...q ) 1 ≠ 1 2 s 1 2 s ≠ 1 2 s =(p p ...p ) (p q q ...q )=p [(p ...p ) (q q ...q )]. 1 2 r ≠ 1 1 2 s 1 2 r ≠ 1 2 s Koska p1 - (q1 p1) niin saadaan luvulle m<nkaksi erilaista alkutuloe- ≠ sitystä. Tämä on ristiriidassa tehdyn oletuksen kanssa, että n olisi pienin luku, jolla on kaksi alkutuloesitystä. Todetaan, ettei ole olemassa pienintä kokonaislukua, joka voitaisiin esittää kahdella eri tavalla alkulukujen tulona. 1.4 Tekijäfunktio Määritelmä 1.5. ([12, s. 86]). Tekijäfunktio ‡(n) on sellainen funktio, että d = ‡(n). d n ÿ| Määritelmä 1.6. ([12, s. 95]). Funktio f on multiplikatiivinen jos f(mn)=f(m)f(n), missä syt(m, n)=1. Lause 1.5. Funktio ‡ on multiplikatiivinen. Todistus. (Vrt. [8, s.88]). Olkoon N = mn ja syt(m, n)=1. Tällöin jokainen luvun N tekijä d on muotoa d = m n (i 0), missä m on luvun m tekijä i i Ø i ja ni on luvun n tekijä. Luvun m tekijät ovat siis 1,m1,m2,...,m ja luvun n vastaavasti 1,n1,n2,...,n.Täten ‡(a)=1+m + m + + m ja ‡(n)=1+n + n + + n. 1 2 ··· 1 2 ··· Kertomalla luvun n tekijöiden summa luvun m tekijällä mi saadaan yhtälö m (1 + n + n + + n)=m ‡(n). i 1 2 ··· i Ja edelleen kertomalla luvun n tekijöiden summa luvun m jokaisella tekijällä mi saadaan yhtälö 1‡(n)+m ‡(n)+m ‡(n) + m‡(n)=‡(m)‡(n). 1 2 ··· Joten ‡(N)=‡(mn)=‡(m)‡(n). 6 Esimerkki 1.4. Lasketaan luvun 70 tekijäfunktion arvo seuraavasti ‡(70) = d =70+35+14+10+7+5+2+1=144. d 70 ÿ| Määritelmä 1.7. ([12, s. 82]). Lauseen 1.4 perusteella määritellään luvun n kanoninen esitys seuraavasti: r –i –1 –2 –r n =Πi=1pi = p1 p2 ...pr , missä p <p <p ovat alkulukuja ja – > 0, kun i =1,...,r. 1 2 ··· r i Seuraavaa lausetta tarvitaan tekijäfunktion määrittämiseen. r –i Lause 1.6. Positiivisen kokonaisluvun n =Πi=1pi tekijöiden summan esitys on –i+1 r pi 1 ‡(n)=Πi=1 ≠ . A p 1 B i ≠ –1 –2 –r Todistus. (Vrt.[12, s.90] ja [8, s.89]). Positiivisen kokonaisluvun n = p1 p2 ...pr tekijöiden summa voidaan lauseen 1.5 perusteella kirjoittaa tulona (1 + p + p2 + + p–1 )(1 + p + p2 + + p–2 ) (1 + p + p2 + + p–r ), 1 1 ··· 1 2 2 ··· 2 ··· r r ··· r koska p– : n tekijät ovat 1,p,p2,...,p– ja ‡(p–)=(1+p + p2 + + p–). ··· Kerrotaan yhtälö puolittain luvulla p, jolloin saadaan p ‡(p–)=(p + p2 + + p– + p–+1). · ··· Sijoitetaan alkuperäinen luvun ‡(p–) lauseke yhtälöön, jolloin saadaan yhtälö p ‡(p–) ‡(p–)=p–+1 1, · ≠ ≠ josta saadaan jakamalla puolittain luvulla (p 1) ≠ p–+1 1 ‡(p–)= ≠ . p 1 ≠ Nyt voidaan kirjoittaa tulon kaikki r tekijää sievennettyinä seuraavasti –1+1 –2+1 –r+1 –i+1 p1 1 p2 1 pr 1 r pi 1 ‡(n)= ≠ ≠ ..
Recommended publications
  • Newsletter No. 31 March 2004
    Newsletter No. 31 March 2004 Welcome to the second newsletter of 2004. We have lots of goodies for you this month so let's get under way. Maths is commonly said to be useful. The variety of its uses is wide but how many times as teachers have we heard students exclaim, "What use will this be when I leave school?" I guess it's all a matter of perspective. A teacher might say mathematics is useful because it provides him/her with a livelihood. A scientist would probably say it's the language of science and an engineer might use it for calculations necessary to build bridges. What about the rest of us? A number of surveys have shown that the majority of us only need to handle whole numbers in counting, simple addition and subtraction and decimals as they relate to money and domestic measurement. We are adept in avoiding arithmetic - calculators in their various forms can handle that. We prefer to accept so-called ball-park figures rather than make useful estimates in day-to-day dealings and computer software combined with trial-and-error takes care of any design skills we might need. At the same time we know that in our technological world numeracy and computer literacy are vital. Research mathematicians can push boundaries into the esoteric, some of it will be found useful, but we can't leave mathematical expertise to a smaller and smaller proportion of the population, no matter how much our students complain. Approaching mathematics through problem solving - real and abstract - is the philosophy of the nzmaths website.
    [Show full text]
  • Multiplicatively Perfect and Related Numbers
    Journal of Rajasthan Academy of Physical Sciences ISSN : 0972-6306; URL : http://raops.org.in Vol.15, No.4, December, 2016, 345-350 MULTIPLICATIVELY PERFECT AND RELATED NUMBERS Shikha Yadav* and Surendra Yadav** *Department of Mathematics and Astronomy, University of Lucknow, Lucknow- 226007, U.P., India E-mail: [email protected] **Department of Applied Mathematics, Babasaheb Bhimrao Ambedkar University, Lucknow-226025, U.P., India, E-mail: ssyp_ [email protected] Abstract: Sandor [4] has discussed multiplicatively perfect (푀perfect) and multiplicatively +perfect numbers (called as 푀 +perfect). In this paper, we have discussed a new perfect number called as multiplicatively – perfect numbers (also called as 푀 − perfect). Further we study about Abundant, Deficient, Harmonic and Unitary analogue of harmonic numbers. Keywords and Phrases: Multiplicatively perfect numbers, Abundant numbers, Deficient numbers, Harmonic numbers and unitary divisor. 2010 Mathematics Subject Classification: 11A25. 1. Introduction Sandor and Egri [3], Sandor [4] have defined multiplicatively perfect and multiplicatively + perfect numbers as follows, A positive integer 푛 ≥ 1 is called multiplicatively perfect if 푅 푛 = 푛2, (1) where, 푅 푛 is product of divisor function. Let 푑1, 푑2, 푑3, … 푑푟 are the divisors of 푛 then 푅 푛 = 푑1. 푑2. 푑3. … 푑푟 . 푑(푛 ) Also, 푅 푛 = 푛 2 (2) Let 푅+(푛) denotes the product of even divisors of 푛. We say that 푛 is 푀 + perfect number if 2 푅+ 푛 = 푛 . (3) Now, in this paper we define 푀 − perfect numbers as follows, let 푅− 푛 denotes the product of odd divisors of 푛 .We say that 푛 is 푀 − perfect if 346 Shikha Yadav and Surendra Yadav 2 푅− 푛 = 푛 .
    [Show full text]
  • The Humble Sum of Remainders Function
    DRAFT VOL. 78, NO. 4, OCTOBER 2005 1 The Humble Sum of Remainders Function Michael Z. Spivey Samford University Birmingham, Alabama 35229 [email protected] The sum of divisors function is one of the fundamental functions in elementary number theory. In this note, we shine a little light on one of its lesser-known rela- tives, the sum of remainders function. We do this by illustrating how straightforward variations of the sum of remainders can 1) provide an alternative characterization for perfect numbers, and 2) help provide a formula for sums of powers of the first n posi- tive integers. Finally, we give a brief discussion of perhaps why the sum of remainders function, despite its usefulness, is less well known than the sum of divisors function. Some notation is in order. The standard notation for the sum of divisors function is σ(n): X σ(n) = d: djn We denote the sum of remainders function by ½(n), namely, Xn ½(n) = n mod d: d=1 Sums of remainders and perfect numbers A perfect number is a number equal to the sum of its positive divisors excluding itself. Another way to express this is that perfect numbers are those such that σ(n) = 2n. The three smallest perfect numbers are 6; 28, and 496. Euclid proved that every number of the form 2p¡1(2p ¡ 1); where p and 2p ¡ 1 are prime, is perfect. Euler proved the converse, that numbers of this form are the only even perfect numbers [3, p. 59]. One of the famous unsolved problems in number theory is whether or not there are any odd perfect numbers.
    [Show full text]
  • Tables of Aliquot Cycles
    5/29/2017 Tables of Aliquot Cycles http://amicable.homepage.dk/tables.htm Go FEB MAY JUN f ❎ 117 captures 02 ⍰ ▾ About 28 May 2002 ‑ 2 May 2014 2012 2014 2015 this capture Tables of Aliquot Cycles Click on the number of known cycles to view the corresponding lists. Sociable Sociable Numbers Amicable Numbers Numbers Perfect Numbers of order four Type of other orders Known Last Known Last Known Last Known Last Cycles Update Cycles Update Cycles Update Cycles Update 28­Sep­ 01­Oct­ 13­Nov­ 11­Sep­ Ordinary 11994387 142 10 44 2007 2007 2006 2006 28­Sep­ 20­Nov­ 14­Jun­ 14­Dec­ Unitary 4911908 191 24 5 2007 2006 2005 1997 28­Sep­ 28­Sep­ 20­Nov­ 28­Sep­ Infinitary 11538100 5034 129 190 2007 2007 2006 2007 Exponential (note 3089296 28­Sep­ 371 20­Nov­ 38 15­Jun­ 12 06­Dec­ 2) 2007 2006 2005 1998 05­Feb­ 08­May­ 18­Oct­ 11­Mar­ Augmented 1931 2 0 note 1 2002 2003 1997 1998 05­Feb­ 06­Dec­ 06­Dec­ Augmented Unitary 27 0 0 2002 1998 1998 Augmented 10­Sep­ 06­Dec­ 06­Dec­ 425 0 0 Infinitary 2003 1998 1998 15­Feb­ 18­Oct­ 18­Oct­ 11­Mar­ Reduced 1946 0 1 0 2003 1997 1997 1998 Reduced Unitary 28 15­Feb­ 0 06­Dec­ 0 06­Dec­ http://web.archive.org/web/20140502102524/http://amicable.homepage.dk/tables.htm 1/3 5/29/2017 Tables of Aliquot Cycles http://amicable.homepage.dk/tables.htm2003 1998 Go 1998 FEB MAY JUN f ❎ 117 captures 10­Sep­ 06­Dec­ 06­Dec­ 02 ⍰ Reduced Infinitary 427 0 0 ▾ About 28 May 2002 ‑ 2 May 2014 2003 1998 1998 2012 2014 2015 this capture Note 1: All powers of 2 are augmented perfect numbers; no other augmented perfect numbers are known.
    [Show full text]
  • Copyrighted Material
    11194_Darling_c01_f.qxd 6/10/04 9:56 AM Page 3 A abacus The Chinese suan pan differs from the European aba- A counting frame that started out, several thousand years cus in that the board is split into two decks, with two ago, as rows of pebbles in the desert sands of the Middle beads on each rod in the upper deck and five beads, rep- East. The word appears to come from the Hebrew âbâq resenting the digits 0 through 4, on each rod in the bot- (dust) or the Phoenician abak (sand) via the Greek abax, tom. When all five beads on a rod in the lower deck are which refers to a small tray covered with sand to hold the moved up, they’re reset to the original position, and one pebbles steady. The familiar frame-supporting rods or bead in the top deck is moved down as a carry. When wires, threaded with smoothly running beads, gradually both beads in the upper deck are moved down, they’re emerged in a variety of places and mathematical forms. reset and a bead on the adjacent rod on the left is moved In Europe, there was a strange state of affairs for more up as a carry. The result of the computation is read off than 1,500 years. The Greeks and the Romans, and then from the beads clustered near the separator beam the medieval Europeans, calculated on devices with a between the upper and lower decks. In a sense, the aba- place-value system in which zero was represented by an cus works as a 5-2-5-2-5-2...–based number system in empty line or wire.
    [Show full text]
  • 1 Introduction
    Received: 09.11.2016 Year: 2017, Pages: 13-26 Published: 30.11.2017 Original Article** The Abundancy Index of Divisors of Spoof Odd Perfect Numbers Jose Arnaldo1;* <[email protected]> Bebita Dris2 <[email protected]> Department of Mathematics and Physics, Far Eastern University, Manila, Philippines Abstaract − We call n a spoof odd perfect number if n is odd and n = km for two integers k; m > 1 such that σ(k)(m + 1) = 2n, where σ is the sum-of-divisors function. In this paper, we show how results analogous to those of odd perfect numbers could be established for spoof odd perfect numbers (otherwise known in the literature as Descartes numbers). In particular, we predict that an analogue of the Descartes-Frenicle-Sorli conjecture for odd perfect numbers holds for spoof odd perfect numbers. Furthermore, we conjecture that the quasi-Euler prime of a spoof odd perfect number is also its largest quasi-prime factor. Keywords − Abundancy index, spoof odd perfect number, Descartes number. 1 Introduction If N is a positive integer, then we write σ(N) for the sum of the divisors of N. A number N is perfect if σ(N) = 2N. A number M is almost perfect if σ(M) = 2M − 1. It is currently unknown whether there are innitely many even perfect numbers, or whether any odd perfect numbers (OPNs) exist. On the other hand, it is known that powers of two (including 1) are almost perfect, although it is still an open problem to rule out other possible forms of even almost perfect numbers, and also, if 1 will be the only odd almost perfect number to be discovered".
    [Show full text]
  • Dictionary of Mathematics
    Dictionary of Mathematics English – Spanish | Spanish – English Diccionario de Matemáticas Inglés – Castellano | Castellano – Inglés Kenneth Allen Hornak Lexicographer © 2008 Editorial Castilla La Vieja Copyright 2012 by Kenneth Allen Hornak Editorial Castilla La Vieja, c/o P.O. Box 1356, Lansdowne, Penna. 19050 United States of America PH: (908) 399-6273 e-mail: [email protected] All dictionaries may be seen at: http://www.EditorialCastilla.com Sello: Fachada de la Universidad de Salamanca (ESPAÑA) ISBN: 978-0-9860058-0-0 All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or by any informational storage or retrieval system without permission in writing from the author Kenneth Allen Hornak. Reservados todos los derechos. Quedan rigurosamente prohibidos la reproducción de este libro, el tratamiento informático, la transmisión de alguna forma o por cualquier medio, ya sea electrónico, mecánico, por fotocopia, por registro u otros medios, sin el permiso previo y por escrito del autor Kenneth Allen Hornak. ACKNOWLEDGEMENTS Among those who have favoured the author with their selfless assistance throughout the extended period of compilation of this dictionary are Andrew Hornak, Norma Hornak, Edward Hornak, Daniel Pritchard and T.S. Gallione. Without their assistance the completion of this work would have been greatly delayed. AGRADECIMIENTOS Entre los que han favorecido al autor con su desinteresada colaboración a lo largo del dilatado período de acopio del material para el presente diccionario figuran Andrew Hornak, Norma Hornak, Edward Hornak, Daniel Pritchard y T.S. Gallione. Sin su ayuda la terminación de esta obra se hubiera demorado grandemente.
    [Show full text]
  • Tutorme Subjects Covered.Xlsx
    Subject Group Subject Topic Computer Science Android Programming Computer Science Arduino Programming Computer Science Artificial Intelligence Computer Science Assembly Language Computer Science Computer Certification and Training Computer Science Computer Graphics Computer Science Computer Networking Computer Science Computer Science Address Spaces Computer Science Computer Science Ajax Computer Science Computer Science Algorithms Computer Science Computer Science Algorithms for Searching the Web Computer Science Computer Science Allocators Computer Science Computer Science AP Computer Science A Computer Science Computer Science Application Development Computer Science Computer Science Applied Computer Science Computer Science Computer Science Array Algorithms Computer Science Computer Science ArrayLists Computer Science Computer Science Arrays Computer Science Computer Science Artificial Neural Networks Computer Science Computer Science Assembly Code Computer Science Computer Science Balanced Trees Computer Science Computer Science Binary Search Trees Computer Science Computer Science Breakout Computer Science Computer Science BufferedReader Computer Science Computer Science Caches Computer Science Computer Science C Generics Computer Science Computer Science Character Methods Computer Science Computer Science Code Optimization Computer Science Computer Science Computer Architecture Computer Science Computer Science Computer Engineering Computer Science Computer Science Computer Systems Computer Science Computer Science Congestion Control
    [Show full text]
  • The Non-Euler Part of a Spoof Odd Perfect Number Is Not Almost Perfect
    Received: 09.11.2017 Year: 2018, Pages: 06-12 Published: 22.06.2018 Original Article** THE NON-EULER PART OF A SPOOF ODD PERFECT NUMBER IS NOT ALMOST PERFECT Jose Arnaldo B. Dris1;* <[email protected]> Doli-Jane T. Lugatiman2 <[email protected]> 1PhD Student, University of the Philippines - Diliman, Quezon City, Philippines 2Mindanao State University, Fatima, General Santos City, Philippines Abstaract − We call n a spoof odd perfect number if n is odd and n = km for two integers k; m > 1 such that σ(k)(m + 1) = 2n, where σ is the sum-of-divisors function. In this paper, we show how results analogous to those of odd perfect numbers could be established for spoof odd perfect numbers (otherwise known in the literature as Descartes numbers). In particular, we prove that k is not almost perfect. Keywords − Abundancy index, spoof odd perfect number, Descartes number 1 Introduction This article is an elucidation of some of the recent discoveries/advances in the paper [1], as applied to the case of spoof odd perfect numbers, with details in the older version of this paper titled The Abundancy Index of Divisors of Spoof Odd Perfect Numbers [2]. Recall that we call n a spoof odd perfect number if n is odd and n = km for two integers k; m > 1, such that σ(k)(m + 1) = 2n = 2km. The number m is called the quasi-Euler prime of the spoof n, while k is referred to as the non-Euler part of n. For some other recent papers on spoofs (otherwise known as Descartes numbers), we refer the interested reader to [3] and [4].
    [Show full text]
  • Descartes Numbers
    Descartes Numbers William D. Banks Department of Mathematics University of Missouri Columbia, MO 65211 USA [email protected] Ahmet M. Gulo¨ glu˘ Department of Mathematics University of Missouri Columbia, MO 65211 USA [email protected] C. Wesley Nevans Department of Mathematics University of Missouri Columbia, MO 65211 USA [email protected] Filip Saidak Department of Mathematics and Statistics University of North Carolina Greensboro, NC 27402 f [email protected] 1 Abstract We call n a Descartes number if n is odd and n = km for two integers k,m > 1 such that σ(k)(m + 1) = 2n, where σ is the sum of divisors function. In this paper, we show that the only cube-free Descartes number with fewer than seven distinct prime divisors is the number 32 72 112 132 192 61, which was discovered by R´ene Descartes. We also show that if n is a cube-free Descartes number not divisible by 3, then n has over a million distinct prime divisors. 1 Introduction ...Mais je pense pouvoir d´emontrer qu’il n’y en a point de pairs qui soient parfaits, except´eceux d’Euclide; & qu’il n’y en a point aussi d’impairs, si ce n’est qu’ils soient compos´es d’un seul nombre premier, multipli´epar un carr´e dont la racine soit compos´ee de plusieurs autres nombres premiers. Mais je ne vois rien qui empˆeche qu’il ne s’en trouve quelques uns de cette sorte: car, par exemple, si 22021 ´etait nombre premier, en le multipliant par 9018009, qui est un carr´edont la racine est compos´ee des nombres premiers 3, 7, 11 & 13, on aurait 198585576189, qui serait nombre parfait..
    [Show full text]
  • Notices of the American Mathematical
    Calendar This Calendar lists all of the meetings which have been approved by the Council up to the date this issue of the cNoliaiJ was sent to press. The summer and annual meetings are joint meetings of the Mathematical Association of America and the American Mathematical Society. The meeting dates which fall rather far in the future are subject to change; this is particularly true of meetings to which no numbers have yet been assigned. Abstracts should be submitted on special forms which are available in most departments of mathematics; forms can also be obtained by writing to the headquarters of the Society. Abstracts to be presented at the meeting in person must be received at the headquarters of the Society in Providence, Rhode Island, on or before the deadline for the meeting. Meeting Deadline for Abstracts* Number Date Place and News Items 725 June 20-21, 1975 Pullman, Washington Apr. 29, 1975 726 August 18-22, 1975 Kalamazoo, Michigan June 17, 1975 (79th Summer Meeting) 727 October 25, 1975 Cambridge, Massachusetts Sept. 2, 1975 728 November 1, 1975 Chicago, illinois Sept. 2, 1975 729 November 7-8, 1975 Blacks burg, Virginia Sept. 23, 1975 730 November 15, 1975 Los Angeles, California Sept. 23, 1975 731 January 22-26, 1976 San Antonio, Texas Nov. 5, 1975 (82nd Annual Meeting) March 4-5, 1976 Tallahassee, Florida March 15-20, 1976 Urbana, illinois April 23-24, 1976 Reno, Nevada June 18-19, 1976 Portland, Oregon November 19-20, 1976 Columbia, South Carolina November 26-27, 1976 Albuquerque, New Mexico January 27-31, 1977 St.
    [Show full text]
  • 3. on the Solutions of Two Sum of Divisor Equations
    INTERNATIONAL JOURNAL OF MATHEMATICS AND SCIENTIFIC COMPUTING (ISSN: 2231-5330), VOL. 4, NO. 2, 2014 48 On The Solutions of Two Sum of Divisor Equations John Rafael M. Antalan Abstract—In this paper, we find all the solutions of the sum of Definition 2.1 A positive integer n is perfect whenever divisor equation σ(n1)+ σ(n2)=2(n1 + n2) and show that the σ(n) = 2n. It is abundant whenever σ(n) > 2n while deficient σ n σ n n n sum of divisor equation ( 1)+ ( 2)=2 1 2 has a solution by whenever σ(n) < 2n. ✷ using the concept of abundant, deficient and perfect numbers.We then characterize those that are clearly not solutions and those We note that a positive integer n maybe either abundant, that are possible solutions of the second sum of divisor equation. deficient or perfect.[3] Lastly, we end this paper by posting some problems related to As a matter of natation we denote n to be k − deficient the topic. or k − abundant if n is deficient or abundant by a positive Index Terms—Sum of divisor function, Deficient Numbers, integer k respectively. In other words n is k − deficient if Abundant Numbers, Perfect Numbers, Almost Perfect Numbers, σ(n) = 2n − k and k − abundant if σ(n) = 2n + k. Quasiperfect Numbers . With this definitions and notations we are now in the MSC 2010 Codes – 11A25 position to show our main results. I. INTRODUCTION III. RESULTS We now present our results in this section. Theorem 3.1 The solutions of the sum of divisor equation N [1,pp.119,no.16], it is a problem to show that Goldbach’s σ(n1)+ σ(n2) = 2(n1 + n2) are given by the following sets: Conjecture implies that for each even integer 2n there exist I 1) S n ,n n ,n P where P is the set of integers n1 and n2 with σ(n1)+ σ(n2) = 2n.
    [Show full text]