Erilised Täisarvude Jadad, Mis on Defineeritud Arvu Jagajate Arvu Või Numbrite Arvu, Jagajate Summade Või Arvu Numbrite Summade Abil

Total Page:16

File Type:pdf, Size:1020Kb

Erilised Täisarvude Jadad, Mis on Defineeritud Arvu Jagajate Arvu Või Numbrite Arvu, Jagajate Summade Või Arvu Numbrite Summade Abil TARTU ÜLIKOOL MATEMAATIKA-INFORMAATIKATEADUSKOND Matemaatika instituut Raili Vilt ERILISED TÄISARVUDE JADAD, MIS ON DEFINEERITUD ARVU JAGAJATE ARVU VÕI NUMBRITE ARVU, JAGAJATE SUMMADE VÕI ARVU NUMBRITE SUMMADE ABIL Magistritöö Juhendaja: dotsent Elts Abel Tartu 2010 Sisukord Sissejuhatus ................................................................................................................................4 1. Arvude liigitamine nende positiivsete jagajate summade järgi..............................................7 1.1. Täiuslikud, puuduga ja liiaga arvud ................................................................................7 1.1.1. Põhimõisted ..............................................................................................................7 1.1.2. Täiuslike arvude põhiomadused ..............................................................................8 1.1.3. Täiuslike arvude täiendavaid omadusi ..................................................................13 1.1.4. Täiuslike arvude üldistusi......................................................................................17 1.1.5. Puuduga ja liiaga arvud .........................................................................................20 1.2. Täisarvude positiivsete jagajate summade abil määratud paarid ja alikvootjadad........25 1.2.1. Sõbralikud arvud ...................................................................................................25 1.2.2. Lahked arvud .........................................................................................................27 1.2.3. Täisarvude alikvootjadad.......................................................................................29 1.3. Praktilised arvud...........................................................................................................31 1.3.1. Põhimõisted ...........................................................................................................31 1.3.2. Põhitulemused .......................................................................................................33 1.3.3. Praktiliste arvude omadused..................................................................................37 1.3.4. Praktiliste arvude mitmikud ..................................................................................39 1.3.5. Peaaegu praktilised arvud......................................................................................41 1.4. Zumkelleri arvud ..........................................................................................................42 1.4.1. Põhimõisted ja –tulemused....................................................................................42 1.4.2. Zumkelleri arvude genereerimine..........................................................................44 1.4.3. Praktilised ja Zumkelleri arvud .............................................................................46 1.4.4. Pool-Zumkelleri arvud...........................................................................................47 1.4.5. Zumkelleri ja pool-Zumkelleri arvud ....................................................................50 2. Arvu positiivsete jagajate arvuga seonduvad arvuhulgad ...................................................53 2.1. Tau-arvud .....................................................................................................................53 2.1.1. Põhimõisted ...........................................................................................................53 2.1.2. Põhitulemused .......................................................................................................53 2.1.3. Tau-arvude seosed teiste arvuhulkadega ...............................................................56 2.1.4. Järjestikused tau-arvud ..........................................................................................57 2.1.5. Antitau-arvud.........................................................................................................58 2 2.2. Ülikordarvud ja nende mõned alaliigid ........................................................................60 2.2.1. Põhimõisted ...........................................................................................................60 2.2.2. Ülikordarvude mõningaid omadusi .......................................................................61 2.2.3. Erilised ülikordarvud .............................................................................................63 2.2.4. Etteantud positiivsete jagajate arvuga määratud arvuhulga vähima elemendi leidmine ............................................................................................................................67 3. Arvu numbrite ja numbrite summaga seonduvad arvuhulgad.............................................73 3.1. Niveni arvud .................................................................................................................73 3.1.1. Põhimõisted ja -tulemused ....................................................................................73 3.1.2. Super-Niveni arvud ...............................................................................................75 3.1.3. Nivenmorfsed arvud ..............................................................................................77 3.2. Smith’i arvud ................................................................................................................78 3.2.1. Põhimõisted ja –tulemused....................................................................................78 3.2.2. Smith’i arvude mõningaid eriliike.........................................................................83 3.2.3. Smith’i arvude mõningaid üldistusi.......................................................................84 3.3. Raiskavad, võrdnumbrilised ja säästlikud arvud ..........................................................87 3.3.1. Põhimõisted ...........................................................................................................87 3.3.2. Põhitulemused .......................................................................................................88 4. Elementaarse arvuteooria põhivara .....................................................................................92 4.1. Täisarvude jaguvus.......................................................................................................92 4.2. Suurim ühistegur, vähim ühiskordne............................................................................93 4.3. Algarvud ja kordarvud..................................................................................................94 4.4. Arvu algteguriteks lahutus, kanooniline kuju...............................................................96 4.5. Jäägiga jagamine ..........................................................................................................97 4.6. Kongruentsid ................................................................................................................99 4.7. Euleri funktsioon ........................................................................................................102 4.8. Täisarvu positiivsete jagajate arv ...............................................................................104 4.9. Täisarvu positiivsete jagajate summa.........................................................................105 4.10. Hulknurkarvud..........................................................................................................107 Summary.................................................................................................................................108 Kasutatud allikad ....................................................................................................................110 LISA 1. Defineeritud täisarvude nimetuste register ...............................................................116 LISA 2. Ülesannete kogu .......................................................................................................121 3 Sissejuhatus Täisarvude jadad on olnud matemaatikute uurimisobjektiks juba antiikajast peale sõltumata sellest, kas need jadad on tekkinud mingi teadusliku probleemi lahendamise käigus või lihtsalt amatööride soovist „mängida“ naturaalarvudega. Ühed vanimad seda liiki arvudest on näiteks täiuslikud arvud, s.o arvud, mis võrduvad oma positiivsete pärisjagajate summaga. Vaatamata sellele, et need arvud on küllalt lihtsalt defineeritud, ei ole aastatuhandete jooksul matemaatikud suutnud tõestada, kas täiuslike arvude hulk on lõplik või lõpmatu. Vastuseta on ka küsimus, kas leidub paarituid täiuslikke arve. Kaasaegsete arvutite võimsuse piirides ei ole leitud ühtki paaritut täiuslikku arvu. Ei ole suudetud ka tõestada, et selliseid arve polegi olemas. Möödunud sajandi keskpaigast alates on oluliselt suurenenud matemaatikute huvi täisarvude jadade uurimise vastu ja seda osaliselt ka tänu Paul Erdösi ja tema õpilaste põhjapanevatele töödele arvuteooriast. Viimasel kümnel aastal on loodud kümneid uusi täisarvude jadasid arvutite abil ning on avastatud juba varem defineeritud jadade uusi omadusi. N.J.A. Sloane initsiatiivil on loodud suurim täisarvude jadade elektrooniline andmebaas (OEIS, [53]), mis sisaldab 2010. aasta maikuu andmetel üle 175000 täisarvude jada kirjet, millest enamus tugineb teadusartiklitele või mille juures on leitud ka teisi huvitavaid omadusi lisaks definitsioonis antutele. Iga jada selles andmebaasis on varustatud koodiga, mis
Recommended publications
  • Generalized Perfect Numbers
    Acta Univ. Sapientiae, Mathematica, 1, 1 (2009) 73–82 Generalized perfect numbers Antal Bege Kinga Fogarasi Sapientia–Hungarian University of Sapientia–Hungarian University of Transilvania Transilvania Department of Mathematics and Department of Mathematics and Informatics, Informatics, Tˆargu Mure¸s, Romania Tˆargu Mure¸s, Romania email: [email protected] email: [email protected] Abstract. Let σ(n) denote the sum of positive divisors of the natural number n. A natural number is perfect if σ(n) = 2n. This concept was already generalized in form of superperfect numbers σ2(n)= σ(σ(n)) = k+1 k−1 2n and hyperperfect numbers σ(n)= k n + k . In this paper some new ways of generalizing perfect numbers are inves- tigated, numerical results are presented and some conjectures are estab- lished. 1 Introduction For the natural number n we denote the sum of positive divisors by arXiv:1008.0155v1 [math.NT] 1 Aug 2010 σ(n)= X d. d|n Definition 1 A positive integer n is called perfect number if it is equal to the sum of its proper divisors. Equivalently: σ(n)= 2n, where AMS 2000 subject classifications: 11A25, 11Y70 Key words and phrases: perfect number, superperfect number, k-hyperperfect number 73 74 A. Bege, K. Fogarasi Example 1 The first few perfect numbers are: 6, 28, 496, 8128, . (Sloane’s A000396 [15]), since 6 = 1 + 2 + 3 28 = 1 + 2 + 4 + 7 + 14 496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 Euclid discovered that the first four perfect numbers are generated by the for- mula 2n−1(2n − 1).
    [Show full text]
  • Mathematical Gems
    AMS / MAA DOLCIANI MATHEMATICAL EXPOSITIONS VOL 1 Mathematical Gems ROSS HONSBERGER MATHEMATICAL GEMS FROM ELEMENTARY COMBINATORICS, NUMBER THEORY, AND GEOMETRY By ROSS HONSBERGER THE DOLCIANI MATHEMATICAL EXPOSITIONS Published by THE MArrHEMATICAL ASSOCIATION OF AMERICA Committee on Publications EDWIN F. BECKENBACH, Chairman 10.1090/dol/001 The Dolciani Mathematical Expositions NUMBER ONE MATHEMATICAL GEMS FROM ELEMENTARY COMBINATORICS, NUMBER THEORY, AND GEOMETRY By ROSS HONSBERGER University of Waterloo Published and Distributed by THE MATHEMATICAL ASSOCIATION OF AMERICA © 1978 by The Mathematical Association of America (Incorporated) Library of Congress Catalog Card Number 73-89661 Complete Set ISBN 0-88385-300-0 Vol. 1 ISBN 0-88385-301-9 Printed in the United States of Arnerica Current printing (last digit): 10 9 8 7 6 5 4 3 2 1 FOREWORD The DOLCIANI MATHEMATICAL EXPOSITIONS serIes of the Mathematical Association of America came into being through a fortuitous conjunction of circumstances. Professor-Mary P. Dolciani, of Hunter College of the City Uni­ versity of New York, herself an exceptionally talented and en­ thusiastic teacher and writer, had been contemplating ways of furthering the ideal of excellence in mathematical exposition. At the same time, the Association had come into possession of the manuscript for the present volume, a collection of essays which seemed not to fit precisely into any of the existing Associa­ tion series, and yet which obviously merited publication because of its interesting content and lucid expository style. It was only natural, then, that Professor Dolciani should elect to implement her objective by establishing a revolving fund to initiate this series of MATHEMATICAL EXPOSITIONS.
    [Show full text]
  • Connected Components of Complex Divisor Functions
    CONNECTED COMPONENTS OF COMPLEX DIVISOR FUNCTIONS COLIN DEFANT Princeton University Fine Hall, 304 Washington Rd. Princeton, NJ 08544 X c Abstract. For any complex number c, define the divisor function σc : N ! C by σc(n) = d . djn Let σc(N) denote the topological closure of the range of σc. Extending previous work of the current author and Sanna, we prove that σc(N) has nonempty interior and has finitely many connected components if <(c) ≤ 0 and c 6= 0. We end with some open problems. 2010 Mathematics Subject Classification: Primary 11B05; Secondary 11N64. Keywords: Divisor function; connected component; spiral; nonempty interior; perfect number; friendly number. 1. Introduction One of the most famous and perpetually mysterious mathematical contributions of the ancient Greeks is the notion of a perfect number, a number that is equal to the sum of its proper divisors. Many early theorems in number theory spawned from attempts to understand perfect numbers. Although few modern mathematicians continue to attribute the same theological or mystical sig- nificance to perfect numbers that ancient people once did, these numbers remain a substantial inspiration for research in elementary number theory [2, 3, 5, 11, 14{16, 18]. arXiv:1711.04244v3 [math.NT] 4 May 2018 P A positive integer n is perfect if and only if σ1(n)=n = 2, where σ1(n) = djn d. More generally, for any complex number c, we define the divisor function σc by X c σc(n) = d : djn These functions have been studied frequently in the special cases in which c 2 {−1; 0; 1g.
    [Show full text]
  • How Numbers Work Discover the Strange and Beautiful World of Mathematics
    How Numbers Work Discover the strange and beautiful world of mathematics NEW SCIENTIST 629745_How_Number_Work_Book.indb 3 08/12/17 4:11 PM First published in Great Britain in 2018 by John Murray Learning First published in the US in 2018 by Nicholas Brealey Publishing John Murray Learning and Nicholas Brealey Publishing are companies of Hachette UK Copyright © New Scientist 2018 The right of New Scientist to be identified as the Author of the Work has been asserted by it in accordance with the Copyright, Designs and Patents Act 1988. Database right Hodder & Stoughton (makers) All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher, or as expressly permitted by law, or under terms agreed with the appropriate reprographic rights organization. Enquiries concerning reproduction outside the scope of the above should be sent to the Rights Department at the addresses below. You must not circulate this book in any other binding or cover and you must impose this same condition on any acquirer. A catalogue record for this book is available from the British Library and the Library of Congress. UK ISBN 978 1 47 362974 5 / eISBN 978 14 7362975 2 US ISBN 978 1 47 367035 8 / eISBN 978 1 47367036 5 1 The publisher has used its best endeavours to ensure that any website addresses referred to in this book are correct and active at the time of going to press.
    [Show full text]
  • Guidance Via Number 40: a Unique Stance M
    Sci.Int.(Lahore),31(4),603-605, 2019 ISSN 1013-5316;CODEN: SINTE 8 603 GUIDANCE VIA NUMBER 40: A UNIQUE STANCE M. AZRAM 7-William St. Wattle Grove, WA 6107, USA. E-mail: [email protected] ABSTRACT: The number Forty (40) is a mysterious number that has a great significance in Mathematics, Science, astronomy, sports, spiritual traditions and many cultures. Historically, many things took place labelled with number 40. It has also been repeated many times in Islam. There must be some significantly importance associated with this magic number 40. Only Allah knows the complete answer. Since Muslims are enjoined to establish good governance through a just sociomoral order (or a state) wherein they could organise their individual and collective life in accordance with the teachings of the Qur’an and the Sunnah of the Prophet (SAW). I have gathered together some information to find some guideline via significant number 40 to reform our community by eradicating corruption, exploitation, injustice and evil etc. INTRODUCTION Muslims are enjoined to establish good governance through a just sociomoral order (or a state) wherein they could organise their individual and collective life in accordance with the teachings of the Qur’an and the Sunnah of the pentagonal pyramidal number[3] and semiperfect[4] .It is the expectation of the Qur’an that its number which have fascinated mathematics .(ﷺ) Prophet 3. 40 is a repdigit in base 3 (1111, i.e. 30 + 31 + 32 + 33) adherents would either reform the earth (by eradicating , Harshad number in base10 [5] and Stormer number[6]. corruption, exploitation, injustice and evil) or lay their lives 4.
    [Show full text]
  • Monthly Science and Maths Magazine 01
    1 GYAN BHARATI SCHOOL QUEST….. Monthly Science and Mathematics magazine Edition: DECEMBER,2019 COMPILED BY DR. KIRAN VARSHA AND MR. SUDHIR SAXENA 2 IDENTIFY THE SCIENTIST She was an English chemist and X-ray crystallographer who made contributions to the understanding of the molecular structures of DNA , RNA, viruses, coal, and graphite. She was never nominated for a Nobel Prize. Her work was a crucial part in the discovery of DNA, for which Francis Crick, James Watson, and Maurice Wilkins were awarded a Nobel Prize in 1962. She died in 1958, and during her lifetime the DNA structure was not considered as fully proven. It took Wilkins and his colleagues about seven years to collect enough data to prove and refine the proposed DNA structure. RIDDLE TIME You measure my life in hours and I serve you by expiring. I’m quick when I’m thin and slow when I’m fat. The wind is my enemy. Hard riddles want to trip you up, and this one works by hitting you with details from every angle. The big hint comes at the end with the wind. What does wind threaten most? I have cities, but no houses. I have mountains, but no trees. I have water, but no fish. What am I? This riddle aims to confuse you and get you to focus on the things that are missing: the houses, trees, and fish. 3 WHY ARE AEROPLANES USUALLY WHITE? The Aeroplanes might be having different logos and decorations. But the colour of the aeroplane is usually white.Painting the aeroplane white is most practical and economical.
    [Show full text]
  • Large and Small Gaps Between Consecutive Niven Numbers
    1 2 Journal of Integer Sequences, Vol. 6 (2003), 3 Article 03.2.5 47 6 23 11 Large and small gaps between consecutive Niven numbers Jean-Marie De Koninck1 and Nicolas Doyon D¶epartement de math¶ematiques et de statistique Universit¶e Laval Qu¶ebec G1K 7P4 Canada [email protected] [email protected] Abstract A positive integer is said to be a Niven number if it is divisible by the sum of its decimal digits. We investigate the occurrence of large and small gaps between consecutive Niven numbers. 1 Introduction A positive integer n is said to be a Niven number (or a Harshad number) if it is divisible by the sum of its (decimal) digits. For instance, 153 is a Niven number since 9 divides 153, while 154 is not. Niven numbers have been extensively studied; see for instance Cai [1], Cooper and Kennedy [2], Grundman [5] or Vardi [6]. Let N(x) denote the number of Niven numbers · x. Recently, De Koninck and Doyon proved [3], using elementary methods, that given any " > 0, x log log x x1¡" ¿ N(x) ¿ : log x Later, using complex variables as well as probabilistic number theory, De Koninck, Doyon and K¶atai [4] showed that x N(x) = (c + o(1)) ; (1) log x 1Research supported in part by a grant from NSERC. 1 where c is given by 14 c = log 10 ¼ 1:1939: (2) 27 In this paper, we investigate the occurrence of large gaps between consecutive Niven numbers. Secondly, denoting by T (x) the number of Niven numbers n · x such that n + 1 is also a Niven number, we prove that x log log x T (x) ¿ : (log x)2 We conclude by stating a conjecture.
    [Show full text]
  • The Math Problems Notebook
    Valentin Boju Louis Funar The Math Problems Notebook Birkhauser¨ Boston • Basel • Berlin Valentin Boju Louis Funar MontrealTech Institut Fourier BP 74 Institut de Technologie de Montreal URF Mathematiques P.O. Box 78575, Station Wilderton Universite´ de Grenoble I Montreal, Quebec, H3S 2W9 Canada 38402 Saint Martin d’Heres cedex [email protected] France [email protected] Cover design by Alex Gerasev. Mathematics Subject Classification (2000): 00A07 (Primary); 05-01, 11-01, 26-01, 51-01, 52-01 Library of Congress Control Number: 2007929628 ISBN-13: 978-0-8176-4546-5 e-ISBN-13: 978-0-8176-4547-2 Printed on acid-free paper. c 2007 Birkhauser¨ Boston All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Birkhauser¨ Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbid- den. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. 987654321 www.birkhauser.com (TXQ/SB) The Authors Valentin Boju was professor of mathematics at the University of Craiova, Romania, until his retirement in 2000. His research work was primarily in the field of geome- try.
    [Show full text]
  • Square Roots and the Rabin Cryptosystem William J
    The Roots of Higher Mathematics Computing Square Roots and the Rabin Cryptosystem William J. Martin, WPI Abstract: We explore thought experiments dealing with the computation of square roots in various number systems. As an application, we introduce an encryption scheme of Rabin. 1 Weird Number Systems A child learns about number systems in a very sensible way: First the counting numbers, then perhaps integers, then fraction, on to real numbers, and then the complex numbers. This seems very reasonable: each contains all the previous ones and enjoys more and more features, allowing more and more flexibility. Before we discuss other systems, let us review the notation for these familiar objects. The natural numbers, or positive integers, are denoted N = f1; 2; 3;:::g. They are closed under addition and multiplication: if we add or multiply two numbers from this set, the answer is guaranteed to be in this set. This is a great context for a discussion of unique factorization: an integer p > 1 is prime if its only divisors are 1 and itself. (Note that one is neither prime nor composite; it has an inverse, so it is called a \unit".) The integers are the first ring a student sees. The set Z = f:::; −3; −2; −1; 0; 1; 2; 3;:::g is closed under both addition and multiplication. It is a commutative ring since ab = ba for any two integers a and b. Every element has an additive inverse: stately precisely, for any integer a, there is a (unique) integer b such that a + b = 0. In algebra, we extend intuitive notation and denote this b by \−a".
    [Show full text]
  • On Perfect Numbers and Their Relations 1 Introduction
    Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 27, 1337 - 1346 On Perfect Numbers and their Relations Recep G¨ur 2000 Evler Mahallesi Boykent Sitesi E Blok 26/7 Nevsehir, Turkey [email protected] Nihal Bircan Technische Universitaet Berlin Fakultaet II Institut f¨ur Mathematik MA 8 − 1 Strasse des 17. Juni 136 D-10623 Berlin, Germany [email protected] Abstract In this paper, we get some new formulas for generalized perfect numbers and their relationship between arithmetical functions φ, σ concerning Ore’s harmonic numbers and by using these formulas we present some examples. Mathematics Subject Classification: 11A25, 11A41, 11Y70 Keywords: perfect number, 2-hyperperfect number, Euler’s totient function, Ore harmonic number 1 Introduction In this section, we aimed to provide general information on perfect numbers shortly. Here and throughout the paper we assume m, n, k, d, b are positive integers and p is prime. N is called perfect number, if it is equal to the sum of its proper divisors. The first few perfect numbers are 6, 28, 496, 8128,... since, 6 = 1+2+3 28 = 1+2+4+7+14 496 = 1+2+4+8+16+31+62+124+248 Euclid discovered the first four perfect numbers which are generated by the formula 2n−1(2n−1), called Euclid number. In his book ’Elements’ he presented the proof of the formula which gives an even perfect number whenever 2n −1is 1338 Recep G¨ur and Nihal Bircan prime. In order for 2n −1 to be a prime n must itself be a prime.
    [Show full text]
  • Newsletter No. 31 March 2004
    Newsletter No. 31 March 2004 Welcome to the second newsletter of 2004. We have lots of goodies for you this month so let's get under way. Maths is commonly said to be useful. The variety of its uses is wide but how many times as teachers have we heard students exclaim, "What use will this be when I leave school?" I guess it's all a matter of perspective. A teacher might say mathematics is useful because it provides him/her with a livelihood. A scientist would probably say it's the language of science and an engineer might use it for calculations necessary to build bridges. What about the rest of us? A number of surveys have shown that the majority of us only need to handle whole numbers in counting, simple addition and subtraction and decimals as they relate to money and domestic measurement. We are adept in avoiding arithmetic - calculators in their various forms can handle that. We prefer to accept so-called ball-park figures rather than make useful estimates in day-to-day dealings and computer software combined with trial-and-error takes care of any design skills we might need. At the same time we know that in our technological world numeracy and computer literacy are vital. Research mathematicians can push boundaries into the esoteric, some of it will be found useful, but we can't leave mathematical expertise to a smaller and smaller proportion of the population, no matter how much our students complain. Approaching mathematics through problem solving - real and abstract - is the philosophy of the nzmaths website.
    [Show full text]
  • MAKING SENSE of MATHEMATICS THROUGH NUMBER TALKS: a CASE STUDY of THREE TEACHERS in the ELEMENTARY CLASSROOM Under the Direction of William O
    MAKING SENSE OF MATHEMATICS THROUGH NUMBER TALKS: A CASE STUDY OF THREE TEACHERS IN THE ELEMENTARY CLASSROOM by MIRANDA GAYLE WESTBROOK A Dissertation Submitted to the Faculty in the Curriculum and Instruction Program of Tift College of Education at Mercer University in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY Atlanta, GA 2019 MAKING SENSE OF MATHEMATICS THROUGH NUMBER TALKS: A CASE STUDY OF THREE TEACHERS IN THE ELEMENTARY CLASSROOM by MIRANDA GAYLE WESTBROOK Approved: ________________________________________________________________________ William O. Lacefield, III, Ed.D. Date Dissertation Committee Chair ________________________________________________________________________ Justus J. Randolph, Ph.D. Date Dissertation Committee Member ________________________________________________________________________ Jeffrey S. Hall, Ed.D. Date Dissertation Committee Member ________________________________________________________________________ Jane West, Ed.D. Date Director of Doctoral Studies, Tift College of Education ________________________________________________________________________ Thomas R. Koballa, Jr., Ph.D. Date Dean, Tift College of Education DEDICATION To my loving husband, Chad, I am forever indebted to the unconditional love, support, and patience you bestowed as I engaged in this endeavor. You always encouraged me to persevere, and together, we transformed this dream into a reality. I am truly blessed to have you in my life. To my mom and dad, you inspired me to follow my dreams and taught me the value of hard work. The morning phone calls were always uplifting, and I love you both with all my heart. To Brenda, thank you for understanding and supporting me on this journey. To Linda, you were always confident that I would achieve this goal. Your enthusiasm and interest in my work gave me the strength I needed to keep writing.
    [Show full text]