The Impact of Regular Number Talks on Mental Math Computation Abilities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Connected Components of Complex Divisor Functions
CONNECTED COMPONENTS OF COMPLEX DIVISOR FUNCTIONS COLIN DEFANT Princeton University Fine Hall, 304 Washington Rd. Princeton, NJ 08544 X c Abstract. For any complex number c, define the divisor function σc : N ! C by σc(n) = d . djn Let σc(N) denote the topological closure of the range of σc. Extending previous work of the current author and Sanna, we prove that σc(N) has nonempty interior and has finitely many connected components if <(c) ≤ 0 and c 6= 0. We end with some open problems. 2010 Mathematics Subject Classification: Primary 11B05; Secondary 11N64. Keywords: Divisor function; connected component; spiral; nonempty interior; perfect number; friendly number. 1. Introduction One of the most famous and perpetually mysterious mathematical contributions of the ancient Greeks is the notion of a perfect number, a number that is equal to the sum of its proper divisors. Many early theorems in number theory spawned from attempts to understand perfect numbers. Although few modern mathematicians continue to attribute the same theological or mystical sig- nificance to perfect numbers that ancient people once did, these numbers remain a substantial inspiration for research in elementary number theory [2, 3, 5, 11, 14{16, 18]. arXiv:1711.04244v3 [math.NT] 4 May 2018 P A positive integer n is perfect if and only if σ1(n)=n = 2, where σ1(n) = djn d. More generally, for any complex number c, we define the divisor function σc by X c σc(n) = d : djn These functions have been studied frequently in the special cases in which c 2 {−1; 0; 1g. -
MAKING SENSE of MATHEMATICS THROUGH NUMBER TALKS: a CASE STUDY of THREE TEACHERS in the ELEMENTARY CLASSROOM Under the Direction of William O
MAKING SENSE OF MATHEMATICS THROUGH NUMBER TALKS: A CASE STUDY OF THREE TEACHERS IN THE ELEMENTARY CLASSROOM by MIRANDA GAYLE WESTBROOK A Dissertation Submitted to the Faculty in the Curriculum and Instruction Program of Tift College of Education at Mercer University in Partial Fulfillment of the Requirements for the Degree DOCTOR OF PHILOSOPHY Atlanta, GA 2019 MAKING SENSE OF MATHEMATICS THROUGH NUMBER TALKS: A CASE STUDY OF THREE TEACHERS IN THE ELEMENTARY CLASSROOM by MIRANDA GAYLE WESTBROOK Approved: ________________________________________________________________________ William O. Lacefield, III, Ed.D. Date Dissertation Committee Chair ________________________________________________________________________ Justus J. Randolph, Ph.D. Date Dissertation Committee Member ________________________________________________________________________ Jeffrey S. Hall, Ed.D. Date Dissertation Committee Member ________________________________________________________________________ Jane West, Ed.D. Date Director of Doctoral Studies, Tift College of Education ________________________________________________________________________ Thomas R. Koballa, Jr., Ph.D. Date Dean, Tift College of Education DEDICATION To my loving husband, Chad, I am forever indebted to the unconditional love, support, and patience you bestowed as I engaged in this endeavor. You always encouraged me to persevere, and together, we transformed this dream into a reality. I am truly blessed to have you in my life. To my mom and dad, you inspired me to follow my dreams and taught me the value of hard work. The morning phone calls were always uplifting, and I love you both with all my heart. To Brenda, thank you for understanding and supporting me on this journey. To Linda, you were always confident that I would achieve this goal. Your enthusiasm and interest in my work gave me the strength I needed to keep writing. -
2012 Volume 20 No.2-3 GENERAL MATHEMATICS Daniel Florin SOFONEA Ana Maria ACU Dumitru ACU Heinrich Begehr Andrei Duma Heiner
2012 Volume 20 No.2-3 GENERAL MATHEMATICS EDITOR-IN-CHIEF Daniel Florin SOFONEA ASSOCIATE EDITOR Ana Maria ACU HONORARY EDITOR Dumitru ACU EDITORIAL BOARD Heinrich Begehr Andrei Duma Heiner Gonska Shigeyoshi Owa Vijay Gupta Dumitru Ga¸spar Piergiulio Corsini Dorin Andrica Malvina Baica Detlef H. Mache Claudiu Kifor Vasile Berinde Aldo Peretti Adrian Petru¸sel SCIENTIFIC SECRETARY Emil C. POPA Nicu¸sorMINCULETE Ioan T¸INCU EDITORIAL OFFICE DEPARTMENT OF MATHEMATICS AND INFORMATICS GENERAL MATHEMATICS Str.Dr. Ion Ratiu, no. 5-7 550012 - Sibiu, ROMANIA Electronical version: http://depmath.ulbsibiu.ro/genmath/ Contents I. A. G. Nemron, A curious synopsis on the Goldbach conjecture, the friendly numbers, the perfect numbers, the Mersenne composite numbers and the Sophie Germain primes . .5 A. Ayyad, An investigation of Kaprekar operation on six-digit numbers computational approach . 23 R.Ezhilarasi,T.V. Sudharsan,K.G. Subramanian, S.B.Joshi,A subclass of harmonic univalent functions with positive coefficients defined by Dziok-Srivastava operator . 31 G. Akinbo, O.O. Owojori, A.O. Bosede, Stability of a common fixed point iterative procedure involving four selfmaps of a metric space . 47 S. Rahrovi, A. Ebadian, S. Shams , G-Loewner chains and parabolic starlike mappings in several complex variables . 59 G. I. Oros , A class of univalent functions obtained by a general multi- plier transformation . 75 Z. Tianshu, Legendre-Zhang's Conjecture & Gilbreath's Conjecture and Proofs Thereof . 87 M. K. Aouf, A certain subclass of p-valently analytic functions with negative coefficients . 103 H. Jolany, M. Aliabadi, R. B. Corcino, M.R.Darafsheh, A note on multi Poly-Euler numbers and Bernoulli polynomials . -
The Love of Numbers
Journal and Proceedings of The Royal Society of New South Wales Volume 119 pts 1-2 [Issued December, 1986] pp.95-101 Return to CONTENTS The Love of Numbers* John H. Loxton [Presidential Address, April 1986] It is now well known that the answer to the ultimate question of life, the universe and everything is 42. [1.] So we see that numbers are the fundamental elements of civilisation as we know it. Numbers such as telephone numbers and car licenses serve to whip our activities into some sort of order. Numbers are turned to good account by the Gas Board and the Taxation Office. Numbers, especially big round ones, fuel the arguments of economists and politicians. Numbers have mystical properties: 7 is a nice friendly number, while 13 is an unlucky one, particularly on Fridays. Although we would not rationally except to get anything significant by adding Margaret Thatcher’s telephone number to Bob Hawke’s this is still a very popular method of prophecy. For example, in the prophecy of Isaiah, the lion proclaims the fall of Babylon because the numerical equivalents of the Hebrew words for “lion” and “Babylon” have the same sum. [2.] Numbers are ubiquitous. All this was much more pithily expressed by Leopold Kronecker in 1880: “God created the integers – all else is the work of man”. Mathematics is the numbers game par excellence. This is not to say that mathematicians are better than anybody else at reconciling their bank statements. In fact, Isaac Newton, who was Master of the Mint, employed a book-keeper to do his sums. -
Integer Sequences
UHX6PF65ITVK Book > Integer sequences Integer sequences Filesize: 5.04 MB Reviews A very wonderful book with lucid and perfect answers. It is probably the most incredible book i have study. Its been designed in an exceptionally simple way and is particularly just after i finished reading through this publication by which in fact transformed me, alter the way in my opinion. (Macey Schneider) DISCLAIMER | DMCA 4VUBA9SJ1UP6 PDF > Integer sequences INTEGER SEQUENCES Reference Series Books LLC Dez 2011, 2011. Taschenbuch. Book Condition: Neu. 247x192x7 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 141. Chapters: Prime number, Factorial, Binomial coeicient, Perfect number, Carmichael number, Integer sequence, Mersenne prime, Bernoulli number, Euler numbers, Fermat number, Square-free integer, Amicable number, Stirling number, Partition, Lah number, Super-Poulet number, Arithmetic progression, Derangement, Composite number, On-Line Encyclopedia of Integer Sequences, Catalan number, Pell number, Power of two, Sylvester's sequence, Regular number, Polite number, Ménage problem, Greedy algorithm for Egyptian fractions, Practical number, Bell number, Dedekind number, Hofstadter sequence, Beatty sequence, Hyperperfect number, Elliptic divisibility sequence, Powerful number, Znám's problem, Eulerian number, Singly and doubly even, Highly composite number, Strict weak ordering, Calkin Wilf tree, Lucas sequence, Padovan sequence, Triangular number, Squared triangular number, Figurate number, Cube, Square triangular -
Relationship Between Prime Factors of a Number and Its Categorization As Either Friendly Or Solitary
RELATIONSHIP BETWEEN PRIME FACTORS OF A NUMBER AND ITS CATEGORIZATION AS EITHER FRIENDLY OR SOLITARY RICHARD KARIUKI GACHIMU MASTER OF SCIENCE (Pure Mathematics) JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY 2012 Relationship Between Prime Factors of a Number and its Categorization as Either Friendly or Solitary Richard Kariuki Gachimu A thesis submitted in partial fulfilment for the Degree of Master of Science in Pure Mathematics in the Jomo Kenyatta University of Agriculture and Technology 2012 DECLARATION This thesis is my original work and has not been presented for a degree in any other University. Signature…………..……………..………..… Date…………………….…………. eeeeeeeeeeeeeRichard Kariuki Gachimu This thesis has been submitted for examination with our approval as University Supervisors. Prof. Cecilia W. Mwathi (Deceased) JKUAT, Kenya Signature…………..………..……………… Date………...……………………… ttttttttttttttttttttt Dr. Ireri N. Kamuti tttttttttttttttt Kenyatta University, Kenya ii DEDICATION Little did I know of the significance of the day, not only to my life but also to the lives of many others. A new dawn had come; a different kind of light had shone, light that could turn around lives. The truth, however bitter, had finally come; truth that was intended to set the lives of many free. Thursday 12th June, 2003 marked the beginning of a new beginning and unto this day I dedicate this work. iii ACKNOWLEDGEMENT I am most thankful to my Living God, creator of heavens and earth, for His immeasurable love, mercy, kindness, tender care, favour and all sorts of blessings He has showered upon me. He has seen me through this tough and demanding journey. It is His will that I am what I am and my destiny rests upon Him. -
25 Primes in Arithmetic Progression
b2530 International Strategic Relations and China’s National Security: World at the Crossroads This page intentionally left blank b2530_FM.indd 6 01-Sep-16 11:03:06 AM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 SA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 K office: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-Publication Data Names: Ribenboim, Paulo. Title: Prime numbers, friends who give problems : a trialogue with Papa Paulo / by Paulo Ribenboim (Queen’s niversity, Canada). Description: New Jersey : World Scientific, 2016. | Includes indexes. Identifiers: LCCN 2016020705| ISBN 9789814725804 (hardcover : alk. paper) | ISBN 9789814725811 (softcover : alk. paper) Subjects: LCSH: Numbers, Prime. Classification: LCC QA246 .R474 2016 | DDC 512.7/23--dc23 LC record available at https://lccn.loc.gov/2016020705 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. Copyright © 2017 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, SA. In this case permission to photocopy is not required from the publisher. Typeset by Stallion Press Email: [email protected] Printed in Singapore YingOi - Prime Numbers, Friends Who Give Problems.indd 1 22-08-16 9:11:29 AM October 4, 2016 8:36 Prime Numbers, Friends Who Give Problems 9in x 6in b2394-fm page v Qu’on ne me dise pas que je n’ai rien dit de nouveau; la disposition des mati`eres est nouvelle. -
The Primordial End Calculus of Prime Numbers and Mathematics
International Journal of Applied Mathematical Research, 2 (4) (2013) 423-438 ©Science Publishing Corporation www.sciencepubco.com/index.php/IJAMR The primordial end calculus of prime numbers and mathematics Vinoo Cameron Hope research, Athens, Wisconsin, USA E-mail:[email protected] Abstract This Manuscript on the end primordial calculus of mathematics is a new discovery of the spiral nature of the entire mathematical grid at 1:3 by the precise and absolute concordance of regular number spirals and the Prime number spirals based on numbers and their spaces by grid. It is exclusive to IJAMR which has published 8 papers of the author on this new mathematics. The manuscript has NOT been offered to any other journal in the world .The editorial board of Princeton University, USA, Annals of mathematics had been duly informed by letter of the new discovery of the concordance of prime numbers spirals with regular number spirals, but for the sake of fidelity. Mathematics is not complexity, but simplicity, the configuration of 1 is spiral .The relationship between pure mathematical numbers and empty space is a primordial relationship, and well defined by gaps, plus it has been validated by the author by the Publishing of the pure continuous Den-Otter Prime number sieve at 1/6 and 5/6 ( and 1/3 and 2/3),and these prime sieves are reversible .Thus the relationship of the configuration of 1 is in two planes that expand in the frame of (5/6 and 1/6 ) and (1/3 and 2/3)are represented by spiral configuration , expressed by these numbers, as in :All prime numbers spirals are assigned infinitely by the simple -1 offset of the two spiral numbers cords 1/3+2/3=1 5/6+1/6=1 1/3-1/6=1/6 5/6-2/3=1/6 1/3+1/6=0.5 5/6+2/3=1.5 1.5/0.5=3 Note: the above is also confirmed by Arabian numerical shown below. -
243 a NUMBER-THEORETIC CONJECTURE and ITS IMPLICATION for SET THEORY 1. Motivation It Was Proved In
Acta Math. Univ. Comenianae 243 Vol. LXXIV, 2(2005), pp. 243–254 A NUMBER-THEORETIC CONJECTURE AND ITS IMPLICATION FOR SET THEORY L. HALBEISEN 1-1 Abstract. For any set S let seq (S) denote the cardinality of the set of all finite one-to-one sequences that can be formed from S, and for positive integers a let aS denote the cardinality of all functions from S to a. Using a result from combinatorial number theory, Halbeisen and Shelah have shown that even in the absence of the axiom of choice, for infinite sets S one always has seq1-1(S) = 2S (but nothing more can be proved without the aid of the axiom of choice). Combining stronger number-theoretic results with the combinatorial proof for a = 2, it will be shown that for most positive integers a one can prove the inequality seq1-1(S) = aS without using any form of the axiom of choice. Moreover, it is shown that a very probable number-theoretic conjecture implies that this inequality holds for every positive integer a in any model of set theory. 1. Motivation Itwasprovedin[ 3, Theorem 4] that for any set S with more than one element, the cardinality seq1-1(S) of the set of all finite one-to-one sequences that can be formed from S can never be equal to the cardinality of the power set of S, denoted by 2S. The proof does not make use of any form of the axiom of choice and hence, the result also holds in models of set theory where the axiom of choice fails. -
Turbulent Candidates” That Note the Term 4290 Shown in Light Face Above Is in A(N), but Must Be Tested Via the Regular Counting Function to See If the Not in A244052
Working Second Draft TurbulentMichael Thomas Candidates De Vlieger Abstract paper involve numbers whose factors have multiplicities that never approach 9, we will simply concatenate the digits, thus rendering This paper describes several conditions that pertain to the 75 = {0, 1, 2} as “012”. appearance of terms in oeis a244052, “Highly regular numbers a(n) defined as positions of records in a010846.” The sequence In multiplicity notation, a zero represents a prime totative q < is arranged in “tiers” T wherein each member n has equal values gpf(n) = a006530(n), the greatest prime factor of n. Indeed the multiplicity notation a054841(n) of any number n does not ex- ω(n) = oeis a001221(n). These tiers have primorials pT# = oeis a002110(T) as their smallest member. Each tier is divided into press the infinite series of prime totatives q > gpf(n). We could also write a054841(75) = 01200000…, with an infinite number of “levels” associated with integer multiples kpT# with 1 ≤ k < p(T + zeroes following the 2. Because it is understood that the notation 1). Thus all the terms of oeis a060735 are also in a244052. Mem- bers of a244052 that are not in a060735 are referred to as “turbu- “012” implies all the multiplicities “after” the 2 are 0. lent terms.” This paper focuses primarily on the nature of these Regulars. Consider two positive nonzero integers m and n. The terms. We give parameters for their likely appearance in tier T as number m is said to be “regular to” or “a regular of” n if and only if well as methods of efficiently constructing them. -
Curricula in Mathematics
UNITEDSTATESBUREAU OFEDUCATION 619 BULLETIN, 1914,NO. 45 - - WIIOLE NUMBER t$4 CURRICULAIN MATHEMATICS ACOMPARISON OFCOURSES IN THECOUNTRIES REPRESENTED IN THEINTERNATIONALCOMMISSION ON THE TEACHING OFMATHEMATICS By J. C. BROWN HORACE MANNSCHOOL TEACHERSCOLLEtE NEW YORK CITY With the EditorialCooperation of DAVID EUGENESMITH, WILLIAM F.OSGOOD, J. W. A. YOUNG MEMBERS OF THE COMMISSION FROMCIE UNITED STATES . WASHINGTON GOVERNMENTPRINTING OFFICE 1915 1 I ADDITIONAL COPIES 11. OP THIS PURIJCATION MAT DR PROCURED PROM ,T/MR/SUPERINTENDENT Or DOCUMENTS %Z. GOVERNMENT PRINTING OPPICK WARRINGTON, D. C. AT 10 CENTS PER COPY A CONTENTS.' Page. Introduction a 5 I. General arrangement of the courses in typical schoolp of the various countries . 7. Austria I.. .7 Belgium \.. 8 Denmark 10 Finland , 11. France .,. 12 Germany 13 Holland 16 Hungary 17 Italy 19 Japan 20 Roumania 21 Russia.., 22 Sweden 23 Switzerland 24 Table 1 25 II, The work in mathematics in the first school yeadr 26 III. The work in mathematics in the second school year 28 IV. The work in mathematics in the third school year 30' V. The lork in mathematics in the fourth school year..., 33 VI. The work in mathematics in the fifth school y 36 VII. The work in mathematics in tho sixth school yr 40 VIII. Tho work in mathematics in the seventh school ear , 45 IX. The work in mathematics in the eighth school year 51 X. The work in mathematics in the ninth school year 58 '. X1. The work in mathematics in the tenth school year 64 XII. Tho work in mathematics in.theeIeventh school year 70 XIII. -
Numbers and Then a Space Before the Next Set of Digits
1 NUMBER SENSE AND NUMERATION REPRESENTING NUMBER 1. WRITTEN FORM Examples: i. One ii. Twelve iii. Six hundred eight iv. Seven thousand eight three v. Seven hundredths vi. Four hundred thousandths vii. Thirty two thousand, four hundred ninety six viii. Nine hundred five billion, six hundred fifteen million, two hundred eight thousand, five hundred eight. 2 2. STANDARD FORM Information: Beginning with the smallest whole number (the ones), there are THREE digits in each grouping of numbers and then a space before the next set of digits. For the largest place value, there may be one, two or three digits. Zero is a digit which represents a place value unless it is at the beginning of a whole number, and then it just a place holder Examples: i. 32 469 ii. 905 615 208 508 3 3. EXPANDED FORM Information: Numbers written in standard form can be expanded out to show the value of each digit When you do this, you what each digit in the number actually represents numerically (its place value) 2 6 7 5 9 8 3 TENS ONES MILLIONS HUNDREDS THOUSANDS OF THOUSANDS TENS OF THOUSANDS TENS OF HUDREDS Examples: i. 8 765 = 8 000 + 700 + 60 + 5 ii. 943 567 832.23 = 900 000 000 + 40 000 000 + 3 000 000 + 5 00 000 + 60 000 + 7 000 + 800 + 30 + 2 + 0.2 + 0.03 4 PLACE VALUE Information: our number system has ten digits. They are: 0, 1, 2 , 3, 4, 5, 6, 7, 8, and 9 How those digits are arranged makes a number.