The Plimpton 322 Tablet and the Babylonian Method of Generating
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Theorem of Pythagoras
The Most Famous Theorem The Theorem of Pythagoras feature Understanding History – Who, When and Where Does mathematics have a history? In this article the author studies the tangled and multi-layered past of a famous result through the lens of modern thinking, look- ing at contributions from schools of learning across the world, and connecting the mathematics recorded in archaeological finds with that taught in the classroom. Shashidhar Jagadeeshan magine, in our modern era, a very important theorem being Iattributed to a cult figure, a new age guru, who has collected a band of followers sworn to secrecy. The worldview of this cult includes number mysticism, vegetarianism and the transmigration of souls! One of the main preoccupations of the group is mathematics: however, all new discoveries are ascribed to the guru, and these new results are not to be shared with anyone outside the group. Moreover, they celebrate the discovery of a new result by sacrificing a hundred oxen! I wonder what would be the current scientific community’s reaction to such events. This is the legacy associated with the most ‘famous’ theorem of all times, the Pythagoras Theorem. In this article, we will go into the history of the theorem, explain difficulties historians have with dating and authorship and also speculate as to what might have led to the general statement and proof of the theorem. Vol. 1, No. 1, June 2012 | At Right Angles 5 Making sense of the history Why Pythagoras? Greek scholars seem to be in Often in the history of ideas, especially when there agreement that the first person to clearly state PT has been a discovery which has had a significant in all its generality, and attempt to establish its influence on mankind, there is this struggle to find truth by the use of rigorous logic (what we now call mathematical proof), was perhaps Pythagoras out who discovered it first. -
The Impact of Regular Number Talks on Mental Math Computation Abilities
St. Catherine University SOPHIA Masters of Arts in Education Action Research Papers Education 5-2014 The Impact of Regular Number Talks on Mental Math Computation Abilities Anthea Johnson St. Catherine University, [email protected] Amanda Partlo St. Catherine University, [email protected] Follow this and additional works at: https://sophia.stkate.edu/maed Part of the Education Commons Recommended Citation Johnson, Anthea and Partlo, Amanda. (2014). The Impact of Regular Number Talks on Mental Math Computation Abilities. Retrieved from Sophia, the St. Catherine University repository website: https://sophia.stkate.edu/maed/93 This Action Research Project is brought to you for free and open access by the Education at SOPHIA. It has been accepted for inclusion in Masters of Arts in Education Action Research Papers by an authorized administrator of SOPHIA. For more information, please contact [email protected]. The Impact of Regular Number Talks on Mental Math Computation Abilities An Action Research Report By Anthea Johnson and Amanda Partlo The Impact of Regular Number Talks on Mental Math Computation Abilities By Anthea Johnson and Amanda Partlo Submitted May of 2014 in fulfillment of final requirements for the MAED degree St. Catherine University St. Paul, Minnesota Advisor _______________________________ Date _____________________ Abstract The purpose of our research was to determine what impact participating in regular number talks, informal conversations focusing on mental mathematics strategies, had on elementary students’ mental mathematics abilities. The research was conducted in two urban fourth grade classrooms over a two month period. The data sources included a pre- and post-questionnaire, surveys about students’ attitudes towards mental math, a pretest and a posttest containing addition and subtraction problems to be solved mentally, teacher reflective journals, and student interviews. -
Integer Sequences
UHX6PF65ITVK Book > Integer sequences Integer sequences Filesize: 5.04 MB Reviews A very wonderful book with lucid and perfect answers. It is probably the most incredible book i have study. Its been designed in an exceptionally simple way and is particularly just after i finished reading through this publication by which in fact transformed me, alter the way in my opinion. (Macey Schneider) DISCLAIMER | DMCA 4VUBA9SJ1UP6 PDF > Integer sequences INTEGER SEQUENCES Reference Series Books LLC Dez 2011, 2011. Taschenbuch. Book Condition: Neu. 247x192x7 mm. This item is printed on demand - Print on Demand Neuware - Source: Wikipedia. Pages: 141. Chapters: Prime number, Factorial, Binomial coeicient, Perfect number, Carmichael number, Integer sequence, Mersenne prime, Bernoulli number, Euler numbers, Fermat number, Square-free integer, Amicable number, Stirling number, Partition, Lah number, Super-Poulet number, Arithmetic progression, Derangement, Composite number, On-Line Encyclopedia of Integer Sequences, Catalan number, Pell number, Power of two, Sylvester's sequence, Regular number, Polite number, Ménage problem, Greedy algorithm for Egyptian fractions, Practical number, Bell number, Dedekind number, Hofstadter sequence, Beatty sequence, Hyperperfect number, Elliptic divisibility sequence, Powerful number, Znám's problem, Eulerian number, Singly and doubly even, Highly composite number, Strict weak ordering, Calkin Wilf tree, Lucas sequence, Padovan sequence, Triangular number, Squared triangular number, Figurate number, Cube, Square triangular -
The Primordial End Calculus of Prime Numbers and Mathematics
International Journal of Applied Mathematical Research, 2 (4) (2013) 423-438 ©Science Publishing Corporation www.sciencepubco.com/index.php/IJAMR The primordial end calculus of prime numbers and mathematics Vinoo Cameron Hope research, Athens, Wisconsin, USA E-mail:[email protected] Abstract This Manuscript on the end primordial calculus of mathematics is a new discovery of the spiral nature of the entire mathematical grid at 1:3 by the precise and absolute concordance of regular number spirals and the Prime number spirals based on numbers and their spaces by grid. It is exclusive to IJAMR which has published 8 papers of the author on this new mathematics. The manuscript has NOT been offered to any other journal in the world .The editorial board of Princeton University, USA, Annals of mathematics had been duly informed by letter of the new discovery of the concordance of prime numbers spirals with regular number spirals, but for the sake of fidelity. Mathematics is not complexity, but simplicity, the configuration of 1 is spiral .The relationship between pure mathematical numbers and empty space is a primordial relationship, and well defined by gaps, plus it has been validated by the author by the Publishing of the pure continuous Den-Otter Prime number sieve at 1/6 and 5/6 ( and 1/3 and 2/3),and these prime sieves are reversible .Thus the relationship of the configuration of 1 is in two planes that expand in the frame of (5/6 and 1/6 ) and (1/3 and 2/3)are represented by spiral configuration , expressed by these numbers, as in :All prime numbers spirals are assigned infinitely by the simple -1 offset of the two spiral numbers cords 1/3+2/3=1 5/6+1/6=1 1/3-1/6=1/6 5/6-2/3=1/6 1/3+1/6=0.5 5/6+2/3=1.5 1.5/0.5=3 Note: the above is also confirmed by Arabian numerical shown below. -
On Old Babylonian Mathematical Terminology and Its Transformations in the Mathematics of Later Periods*
On Old Babylonian Mathematical Terminology and its Transformations in the Mathematics of Later Periods* J ens H 0 yrup ABSTRACT Third-millennium (bce) Mesopotamian mathematics seems to have possessed a very restricted technical terminology. However, with the sudden flourishing of supra-utilitarian mathematics during the Old Babylonian period, in particular its second half (1800-1600 bce) a rich terminology unfolds. This mostly concerns terms for operations and for definition of a problem format, but names for mathematical objects, for tools, and for methods or tricks can also be identified. In particular the terms for operations and the way to structure problems turn out to allow distinction between single localities or even schools. After the end of the Old Babylonian period, the richness of the terminology is strongly reduced, as is the number of known mathematical texts, but it presents us with survival as well as innovations. Apart from analyzing the terminology synchronically and diachronically, the article looks at two long-lived non-linguistic mathematical practices that can be identified through the varying ways they are spoken about: the use of some kind of calculating board, and a way to construct the perimeter of a circle without calculating it - the former at least in use from the 26th to the 5th century bce, the later from no later than Old Babylonian times and surviving until the European 15th century ce. Keywords: Terminology, Mathematical, Old Babylonian mathematics, continuity, Mesopotamian mathematics. First presented as a contribution to Seminar SAW "History of Mathematics, History of Economical and Financial Practices", session of 15 June 2012: Names of operations : Meaning of the terms and sociolinguistic analysis". -
243 a NUMBER-THEORETIC CONJECTURE and ITS IMPLICATION for SET THEORY 1. Motivation It Was Proved In
Acta Math. Univ. Comenianae 243 Vol. LXXIV, 2(2005), pp. 243–254 A NUMBER-THEORETIC CONJECTURE AND ITS IMPLICATION FOR SET THEORY L. HALBEISEN 1-1 Abstract. For any set S let seq (S) denote the cardinality of the set of all finite one-to-one sequences that can be formed from S, and for positive integers a let aS denote the cardinality of all functions from S to a. Using a result from combinatorial number theory, Halbeisen and Shelah have shown that even in the absence of the axiom of choice, for infinite sets S one always has seq1-1(S) = 2S (but nothing more can be proved without the aid of the axiom of choice). Combining stronger number-theoretic results with the combinatorial proof for a = 2, it will be shown that for most positive integers a one can prove the inequality seq1-1(S) = aS without using any form of the axiom of choice. Moreover, it is shown that a very probable number-theoretic conjecture implies that this inequality holds for every positive integer a in any model of set theory. 1. Motivation Itwasprovedin[ 3, Theorem 4] that for any set S with more than one element, the cardinality seq1-1(S) of the set of all finite one-to-one sequences that can be formed from S can never be equal to the cardinality of the power set of S, denoted by 2S. The proof does not make use of any form of the axiom of choice and hence, the result also holds in models of set theory where the axiom of choice fails. -
Turbulent Candidates” That Note the Term 4290 Shown in Light Face Above Is in A(N), but Must Be Tested Via the Regular Counting Function to See If the Not in A244052
Working Second Draft TurbulentMichael Thomas Candidates De Vlieger Abstract paper involve numbers whose factors have multiplicities that never approach 9, we will simply concatenate the digits, thus rendering This paper describes several conditions that pertain to the 75 = {0, 1, 2} as “012”. appearance of terms in oeis a244052, “Highly regular numbers a(n) defined as positions of records in a010846.” The sequence In multiplicity notation, a zero represents a prime totative q < is arranged in “tiers” T wherein each member n has equal values gpf(n) = a006530(n), the greatest prime factor of n. Indeed the multiplicity notation a054841(n) of any number n does not ex- ω(n) = oeis a001221(n). These tiers have primorials pT# = oeis a002110(T) as their smallest member. Each tier is divided into press the infinite series of prime totatives q > gpf(n). We could also write a054841(75) = 01200000…, with an infinite number of “levels” associated with integer multiples kpT# with 1 ≤ k < p(T + zeroes following the 2. Because it is understood that the notation 1). Thus all the terms of oeis a060735 are also in a244052. Mem- bers of a244052 that are not in a060735 are referred to as “turbu- “012” implies all the multiplicities “after” the 2 are 0. lent terms.” This paper focuses primarily on the nature of these Regulars. Consider two positive nonzero integers m and n. The terms. We give parameters for their likely appearance in tier T as number m is said to be “regular to” or “a regular of” n if and only if well as methods of efficiently constructing them. -
Curricula in Mathematics
UNITEDSTATESBUREAU OFEDUCATION 619 BULLETIN, 1914,NO. 45 - - WIIOLE NUMBER t$4 CURRICULAIN MATHEMATICS ACOMPARISON OFCOURSES IN THECOUNTRIES REPRESENTED IN THEINTERNATIONALCOMMISSION ON THE TEACHING OFMATHEMATICS By J. C. BROWN HORACE MANNSCHOOL TEACHERSCOLLEtE NEW YORK CITY With the EditorialCooperation of DAVID EUGENESMITH, WILLIAM F.OSGOOD, J. W. A. YOUNG MEMBERS OF THE COMMISSION FROMCIE UNITED STATES . WASHINGTON GOVERNMENTPRINTING OFFICE 1915 1 I ADDITIONAL COPIES 11. OP THIS PURIJCATION MAT DR PROCURED PROM ,T/MR/SUPERINTENDENT Or DOCUMENTS %Z. GOVERNMENT PRINTING OPPICK WARRINGTON, D. C. AT 10 CENTS PER COPY A CONTENTS.' Page. Introduction a 5 I. General arrangement of the courses in typical schoolp of the various countries . 7. Austria I.. .7 Belgium \.. 8 Denmark 10 Finland , 11. France .,. 12 Germany 13 Holland 16 Hungary 17 Italy 19 Japan 20 Roumania 21 Russia.., 22 Sweden 23 Switzerland 24 Table 1 25 II, The work in mathematics in the first school yeadr 26 III. The work in mathematics in the second school year 28 IV. The work in mathematics in the third school year 30' V. The lork in mathematics in the fourth school year..., 33 VI. The work in mathematics in the fifth school y 36 VII. The work in mathematics in tho sixth school yr 40 VIII. Tho work in mathematics in the seventh school ear , 45 IX. The work in mathematics in the eighth school year 51 X. The work in mathematics in the ninth school year 58 '. X1. The work in mathematics in the tenth school year 64 XII. Tho work in mathematics in.theeIeventh school year 70 XIII. -
El Teorema De Pitàgores a Les Tauletes Matemàtiques Paleobabilòniques
Estudis sobre Història i Civilització del Pròxim Orient i la Mediterrània Antiga (EPOMA) TREBALL FINAL DE CURS (TFC) El Teorema de Pitàgores a les tauletes matemàtiques paleobabilòniques Assignatura: Cultura i Civilització del Pròxim Orient antic Autor: Jaume Bartrolí Brugués Arqueonet Cultura, S.L.N.E. | Llibertat, 6 – 08380 Malgrat de Mar | Tfn. 667 013 352 www.arqueonet.net | [email protected] Curs Estudis sobre Història i Civlització del P.Orient i la Mediterrània antiga (EPOMA) Assignatura Cultura i Civilització del Pròxim Orient antic Títol El Teorema de Pitàgores a les tauletes matemàtiques paleobabilòniques Autor/a Jaume Bartrolí Brugués ÍNDEX DE CONTINGUTS INTRODUCCIÓ --------------------------------------------------------------------------------------------------- 3 1. PRIMERA PART 1.1. EL SISTEMA DE NUMERACIÓ SEXAGESIMAL --------------------------------------------------- 5 1.2. IDENTIFICACIÓ DE NUMERALS EN UNA TAULETA ------------------------------------------- 6 1.3. EL PROBLEMA DEL ZERO------------------------------------------------------------------------------- 7 1.4. NOMBRES FRACCIONARIS, ELS SEXAGESIMALS ---------------------------------------------- 8 1.5. AMBIGÜETATS EN LA NUMERACIÓ ---------------------------------------------------------------- 9 1.6. EINES BÀSIQUES DE CÀLCUL ----------------------------------------------------------------------- 10 1.6.1. Sumes i restes ----------------------------------------------------------------------------------------- 10 1.6.2. Multiplicacions i taules de multiplicar -
Notices of the American Mathematical Society
OF THE AMERICAN MATHEMATICAL SOCIETY Edited by Everett Pitcher and Gordon L. Walker CONTENTS MEETINGS Calendar of Meetings ••••• , •••••..••.•••.••.••••..••••.•• 1002 Program for the November Meeting in Baton Rouge, Louisiana • • • . • . • . 1003 Abstracts for the Meeting- Pages 1043-1057 Program for the November Meeting in Claremont, California • • • • • • . • 1009 Abstracts for the Meeting- Pages 1058-1061 Program for the November Meeting in Ann Arbor, Michigan 1012 Abstracts for the Meeting- Pages 1061-1075 PRELIMINARY ANNOUNCEMENTS OF MEETINGS ..••..••.•. 1018 STARTING SALARIES FOR MATHEMATICIANS WITH A Ph. D ..•••••.••.•. 1026 DISMISSAL OF DO~TOR DUBINSKY .•.•••.•.•...•.••..••••••••... 1027 NEWS ITEMS AND ANNOUNCEMENTS •.•...•.......•.. 1008, 101I, 1017,1031 PERSO:--IAL ITEMS . • . • . • . • . • . • . • . • • . • . • • . • • • • . • • 1032 NEW AMS PUBLICATIO="'S •...••.....•...••••....•••.•••• 1033 MEMORANDA TO MSMBERS 1969 Summer Institute on Number Theory~ • . • . • • . • . • • • . • • • • . 1039 Abstracts . • . • • . • • . • • • . • • . • • • • • • • . • . • • • • • • • • . • . • 1039 Computing and Mathematics •.••.••..•.••••.•.••..•.•••.•.• 1040 Additional Audio Recording of Mathematical Lectures Available •..•..•• 1040 ACTIVITIES OF OTHER ASSOCIATIONS .........•...•.•••.•.•••.... 1040 VISITING MATHEMATICIANS ••..•.•.• 104I ABSTI\.ACTS OF CONTRIBUTED PAPERS . 1043 ERRATA .••••.•....•••.•••..• . 1095 INDEX TO ADVERTISERS ' 1107 RESERVATI0:--1 FORM .........•...•••..••.........•••.•.••.•• 1108 MEETINGS Calendar of Meetings NOTE: -
Topological Models for Stable Motivic Invariants of Regular Number Rings 11
TOPOLOGICAL MODELS FOR STABLE MOTIVIC INVARIANTS OF REGULAR NUMBER RINGS TOM BACHMANN AND PAUL ARNE ØSTVÆR Abstract. For an infinity of number rings we express stable motivic invariants in terms of topological data determined by the complex numbers, the real numbers, and finite fields. We use this to extend Morel’s identification of the endomorphism ring of the motivic sphere with the Grothendieck-Witt ring of quadratic forms to deeper base schemes. Contents 1. Introduction 1 2. Nilpotent completions 3 3. Rigidity for stable motivic homotopy of henselian local schemes 7 4. Topological models for stable motivic homotopy of regular number rings 9 5. Applications to slice completeness and universal motivic invariants 17 References 20 1. Introduction The mathematical framework for motivic homotopy theory has been established over the last twenty- five years [Lev18]. An interesting aspect witnessed by the complex and real numbers, C, R, is that Betti realization functors provide mutual beneficial connections between the motivic theory and the corresponding classical and C2-equivariant stable homotopy theories [Lev14], [GWX18], [HO18], [BS19], [ES19], [Isa19], [IØ20]. We amplify this philosophy by extending it to deeper base schemes of arithmetic interest. This allows us to understand the fabric of the cellular part of the stable motivic homotopy category of Z[1/2] in terms of C, R, and F3 — the field with three elements. If ℓ is a regular prime, a number theoretic notion introduced by Kummer in 1850 to prove certain cases of Fermat’s Last Theorem [Was82], we show an analogous result for the ring Z[1/ℓ]. For context, recall that a scheme X, e.g., an affine scheme Spec(A), has an associated pro-space Xet´ , denoted by Aet´ in the affine case, called the étale homotopy type of X representing the étale cohomology of X with coefficients in local systems; see [AM69] and [Fri82] for original accounts and [Hoy18, §5] for a modern definition. -
Escribe Agenda Package
Township of Southgate Revised Council Meeting Agenda August 1, 2018 9:00 AM Council Chambers Pages 1. Call to Order 2. Open Forum-Registration begins 15 minutes prior to meeting 3. Confirmation of Agenda Be it resolved that Council confirm the agenda as amended. 4. Delegations & Presentations 4.1 Jason Weppler - Grey Bruce Public Health - PLAY Program 1 - 7 Be it resolved that Council receive the Grey Bruce Public Health delegation as information. 4.2 Andrew Barton - Ministry of Environment and Climate Change - The person presenting on behalf of the MOECC was updated upon confirmation from their office. -Received Monday July 30, 2018. Be it resolved that Council receive the Ministry of Environment and Climate Change delegation as information. 5. Adoption of Minutes 8 - 18 Be it resolved that Council approve the minutes from the July 4, 2018 Council and Closed Session meetings as presented. 6. Reports of Municipal Officers *6.1 Treasurer William Gott *6.1.1 FIN2018-026 2017 Financial Report – December and 19 - 37 Actual Reserves, Deferred Revenue and Reserve Funds Staff Report FIN2018-026 was added. -received Monday July 30, 2018. Be it resolved that Council received Staff Report FIN2018-026 2017 Financial Report – December as information; and That Council supports the transfers from or to Reserves, Deferred Revenue and Reserve Funds as presented. 6.2 Clerk Joanne Hyde 6.2.1 CL2018-025 – Declaration of Vacant Seat 38 - 40 Be it resolved that Council receive staff report CL2018- 025 Declaration of Vacant Seat for information; and That Council support the continued appointment of Acting Deputy Mayor John Woodbury for the remained of the 2018 Term of Council; and That in accordance with Section 262(1) of the Municipal Act, 2001, as amended, Council declare the Council seat occupied by Councillor Woodbury as vacant effective August 1, 2018.