(12) Patent Application Publication (10) Pub. No.: US 2010/0081177 A1 Schatz Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2010/0081177 A1 Schatz Et Al US 20100081177A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0081177 A1 Schatz et al. (43) Pub. Date: Apr. 1, 2010 (54) DECREASING RUBISCO CONTENT OF Publication Classification ALGAE AND CYANOBACTERIA (51) Int. Cl CULTIVATED IN HIGH CARBON DOXDE CI2P 7/64 (2006.01) (75) Inventors: Daniella Schatz, Givataim (IL); CI2P I/04 (2006.01) Jonathan Gressel, Rehovot (IL); CI2P I/00 (2006.01) Doron Eisenstadt, Haifa (IL); Shai CI2N I/2 (2006.01) Ufaz, Givat Ada (IL) CI2N 15/74 (2006.01) Correspondence Address: CI2N I/3 (2006.01) DODDS & ASSOCATES 1707 NSTREET NW (52) U.S. Cl. ........ 435/134:435/170; 435/41; 435/252.3: WASHINGTON, DC 20036 (US) 435/471; 435/257.2 (73) Assignee: TransAlgae Ltd, Rehovot (IL) (21) Appl. No.: 12/584,571 (57) ABSTRACT (22) Filed: Sep. 8, 2009 Algae and cyanobacteria are genetically engineered to have Related U.S. Application Data lower RUBISCO (ribulose-1,5-bisphosphate carboxylase/ oxygenase) content in order to grow more efficiently at (60) Provisional application No. 61/191,169, filed on Sep. elevated carbon dioxide levels while recycling industrial CO, 5, 2008, provisional application No. 61/191,453, filed emissions back to products, and so as not to be able to grow on Sep. 9, 2008. outside of cultivation. 38:8 3xxx. :33.33. 3:38 :::::::::: Patent Application Publication Apr. 1, 2010 Sheet 1 of 2 US 2010/0081177 A1 *:::::::: Patent Application Publication Apr. 1, 2010 Sheet 2 of 2 US 2010/0081177 A1 | 8 psi-rics AS s s 8:33:3:$33:38 US 2010/0081177 A1 Apr. 1, 2010 DECREASINGRUBSCO CONTENT OF fructose-1,6-bisphosphate aldolase and spinach triose phos ALGAE AND CYANOBACTERA phate isomerase in cells of a cyanobacterium doubled their CULTIVATED IN HIGH CARBON DOXDE activities and greatly increased photosynthetic efficiency and biomass yields (Kang et al. 2005, Ma et al. 2007). 0006. However, one can only over-express enzymes to a PRIORITY limited extent, as the cell does not have unlimited capacity. Therefore, the existing methods have only a limited capacity 0001. This application claims priority of the U.S. Provi and there is a need to improve these methods to enhance the sional applications No. 61/191,169 filed on Sep. 5" 2008 and use of elevated carbon dioxide concentration in algal cultures. 61/191,453 filed on Sep. 9, 2008. SUMMARY OF THE INVENTION 0007. The instant invention provides a solution to this SEQUENCE LISTING existing problem by reducing the levels of other enzymes to “make room' for the over expressed, rate limiting enzymes 0002 This application contains sequence data provided on such as fructose-1,6-bisphosphate aldolase (ALD), chloro a computer readable diskette and as a paper version. The plast triosephosphate isomerase (TPI) or acetyl CoA car paper version of the sequence data is identical to the data boxylase (ACCase) that enhance sink capacity to utilize fixed provided on the diskette carbon dioxide. 0008 Ribulose-1,5-bisphosphate carboxylase/oxygenase (RUBISCO) is the key photosynthetic enzyme that catalyzes FIELD OF THE INVENTION the first step of CO, fixation. The chloroplast localized holoenzyme of plants and algae in Sub-kingdom Viridaeplan 0003. This invention relates to the field of genetically tae, Phylum Chlorophyta (heretofore referred to as green engineering algae and cyanobacteria to grow more efficiently algae) contain eight nuclear genome encoded Small subunits on industrial waste emissions of carbon dioxide and is appli and eight chloroplast genome encoded large subunits. In red cable for use with algae and cyanobacteria cultured in closed lineage algae (Sub-Kingdom Chromobiota, Phylum Hapto bioreactors and covered or open ponds for producing high phyta, Heterokonotophyta, Bacillariophyta and others (Table value products, as well as biofuels. It builds on integrating 1), all Sub-units are encoded in the chloroplast. TABLE 1. Phylogeny of some of algae used Genus Family Order Phylum Sub-Kingdom Chlamydomonas Chlamydomonadaceae Volvocales Chlorophyta Viridaeplantae Nannochioris Coccomyxaceae Chlorococcales Chlorophyta Viridaeplantae Tetraseinis Chlorodendraceae Chlorodendrales Chlorophyta Viridaeplantae Phaeodactylum Phaeodactylaceae Naviculales Bacillariophyta Chromobiota Nannochloropsis Monodopsidaceae Eustigmatales Heterokontophyta Chromobiota Paviova Pavlovaceae Pavlovales Haptophyta Chromobiota Isochrysis Isochrysidaceae Isochrysidales Haptophyta Chromobiota Phylogeny according to: http://www.algaebase.org/browseftaxonomy Note: Many genes that in higher plants and Chlorophyta are encoded in the nucleus are encoded on the chlo roplast genome (plastome) of Chromobiota, red lineage algae (Grzebyk, et al. (2003). principles of genetic engineering, photosynthetic physiology 0009. The present consensus is that even more RUBISCO and biochemistry, chemical engineering of bioreactors, and is needed for efficient photosynthesis, as demonstrated in the waste emission engineering. recent suggestion that elevated RUBISCO would enhance the rate of photosynthesis in algae commercially cultivated for BACKGROUND OF THE INVENTION biofuels (Huntley and Redalje 2007). Counter-intuitively, the inventors of this disclosure chose to “make room' for other 0004. A major breakthrough in the large scale cultivation enzymes by reducing concentration of the RUBISCO of algae and cyanobacteria to produce commercially useful enzyme, typically considered to be rate limiting for CO products was the discovery that many such species could be assimilation in photosynthetic cells; RUBISCO can comprise cultivated with flue gas (up to 80% CO) or even pure CO, up to 70% of the soluble protein in plant cells. whereas most other organisms (plants and animals) are “bio 0010 Photosynthesis produces the sugars needed for the chemically anaesthetized” at CO levels of 5% or higher, biosynthesis of the specific primary and secondary metabo slowing all metabolism. This opened the way for cultivating lites of interest in each case (biofuels, pigments, enzymes, such organisms on CO emissions to the environment (Mu pharmaceuticals, starch, etc.). RUBISCO is the first enzyme rakami and Ikenouchi 1997, Negoro, et al. 1993). in the dark reactions of photosynthesis, “fixing carbon diox 0005 Cyanobacteria have already begun to be genetically ide onto an organic molecule. The later reactions use NADPH engineered to utilize these elevated CO levels by over and ATP generated by the light reactions to reduce the fixed expressing genes encoding rate limiting enzymes of the "dark CO to carbohydrates. RUBISCO was the best enzyme evo reactions” (CO assimilating reactions that utilize NADPH lution could produce pre-antiquity, which was of little matter and ATP from the light reactions) of photosynthesis. Thus, for early in the evolution of earth, e.g. in the Archean era 3.5 example, engineering genes from rice encoding for cytosolic billion years ago when CO concentrations in the atmosphere US 2010/0081177 A1 Apr. 1, 2010 were thought to be at least 100 times more than at present especially adapted to thrive in cultivation with high CO (FIG. 1.4 in Falkowski and Raven, 1997), and the very low levels in the medium, allowing for the over-expression of affinity for CO to RUBISCO was of little consequence. As other, rate limiting enzymes of photosynthesis as well as oxygenous photosynthesis began to remove CO from the enzymes encoding for other desirable traits. Thus, these atmosphere and elevate atmospheric O, the levels of organisms are platforms for further engineering. RUBISCO became limiting, and evolution gradually 0015. In one embodiment the small subunit of RUBISCO increased the levels of RUBISCO in photosynthetic organ is subjected to RNAi suppression and in another it is sub isms to the present high levels. Presently, high concentrations jected to antisense. In yet another embodiment both large and of CO can be inexpensively provided to algae and cyanobac Small Subunits are suppressed by chloroplast transformation teria in culture from industrial combustion of fuels. This will of the rbcLS gene cluster under the control of a mutated lead to much of the RUBISCO being superfluous, and promoter replacing the endogenous promoter and genes. decreasing its content “makes way for over-expressing other 0016. In other embodiments DNA encoding other traits is enzymes needed for photosynthesis as well as releasing either engineered in tandem with the RUBISCO suppression resources for more soluble products. This would be one way simultaneously (co-transformation) or Subsequent to the of sequestering large amounts of carbon dioxide, presently engineering of partial RUBISCO suppression. In such imperative due to the purported relationships between embodiments algae or cyanobacteria with reduced RUBISCO elevated global carbon dioxide levels and global warming. levels are used as a platform for further engineering of other Even though the small subunit of RUBISCO is encoded by a desired traits, with greater efficiency of organism activity. family of genes, the gene products are interchangeable, with These include genes encoding enzymes Such as fructose-1,6- considerable consensus among them. bisphosphate aldolase (ALD), chloroplast triosephosphate 0011. According to this disclosure, reducing RUBISCO in isomerase (TPI) or acetyl CoA carboxylase (ACCase) that green algae can be done by using either antisense or RNAi enhance sink capacity to utilize fixed carbon dioxide. Con technology, both targeting the consensus sequences of the versely, other transgenic traits may be in the algae or cyano Small nuclear
Recommended publications
  • Morphological Characterization and Dna
    MORPHOLOGICAL CHARACTERIZATION AND DNA FINGERPRINTING OF A PRASINOPHYTE FLAGELLATE ISOLATED FROM KERLA COAST BY KANCHAN SHASHIKANT NASARE DIVISION OF BIOCHEMICAL SCIENCES NATIONAL CHEMICAL LABORATORY PUNE-411008, INDIA 2002 MORPHOLOGICAL CHARACTERIZATION AND DNA FINGERPRINTING OF A PRASINOPHYTE FLAGELLATE ISOLATED FROM KERALA COAST A THESIS SUBMITTED TO THE UNIVERSITY OF PUNE FOR THE DEGREE OF DOCTOR OF PHILOSOPHY (IN BOTANY) BY KANCHAN SHASHIKANT NASARE DIVISION OF BIOCHEMICAL SCIENCES NATIONAL CHEMICAL LABORATORY PUNE-411008, INDIA. October 20002 DEDICATED TO MY FAMILY TABLE OF CONTENTS Page No. Declaration I Acknowledgement II Abbreviations III Abstract IV-VIII Chapter 1: General Introduction 1-19 Chapter2: Morphological characterization of a prasinophyte 20-43 flagellate isolated from Kochi backwaters Abstract 21 Introduction 21 Materials and Methods 23 Materials 23 Methods 23 Growth medium 23 Optimization of culture conditions 25 Pigment analysis 26 Light and electron microscopy 26 Results and Discussion Culture conditions 28 Pigment analysis 31 Light microscopy 32 Scanning electron microscopy 35 Transmission electron microscopy 36 Chapter 3: Phylogenetic placement of the Kochi isolate 44-67 among prasinophytes and other green algae using 18S ribosomal DNA sequences Abstract 45 Introduction 45 Materials and Methods 47 Materials 47 Methods 47 DNA isolation 47 Amplification of 18S rDNA 48 Sequencing of 18S rDNA 48 Sequence analysis 49 Results and Discussion 50 Chapter 4: DNA fingerprinting of the prasinophyte 68-101 flagellate isolated
    [Show full text]
  • Gc – Ms) Analysis
    Academic Sciences International Journal of Pharmacy and Pharmaceutical Sciences ISSN- 0975-1491 Vol 5, Issue 3, 2013 Research Article EVALUATION OF ANTIMICROBIAL METABOLITES FROM MARINE MICROALGAE TETRASELMIS SUECICA USING GAS CHROMATOGRAPHY – MASS SPECTROMETRY (GC – MS) ANALYSIS V. DOOSLIN MERCY BAI1 AND S. KRISHNAKUMAR2* 1Department of Biomedical Engineering Rajiv Gandhi College of Enginnering and Technology.Puducherry 607402, India, 2Department of Biomedical Engineering, Sathyabama University, Chennai 600119, Tamil Nadu, India. Email: [email protected] Received: 15 Mar 2013, Revised and Accepted: 23 Apr 2013 ABSTRACT Objective: Marine natural products have been considered as one of the most promising sources of antimicrobial compounds in recent years. Marine microalgae Tetraselmis suecica (Kylin) was selected for the present antimicrobial investigation. Methods: The effects of pH, temperature and salinity were tested for the growth of microalgae. The antibacterial effect of different solvent extracts of marine microalgae Tetraselmis suecica against selected human pathogens such as Vibrio cholerae, Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Salmonella sp, Proteus sp., Streptococcus pyogens, Staphylococcus aureus, Bacillus megaterium and Bacillus subtilis were investigated. The GC-MS analysis was done with standard specification to identify the active principle of bioactive compound. Results: The highest cell density was observed when the medium adjusted with 40ppt of salinity in pH of 9.0 at 250C during 9th day of incubation period. Methanol + chloroform (1:1) crude extract of Tetraselmis suecica was confirmed considerable activity against gram negative bacteria than gram positive human pathogen. GC-MS analysis revealed the presence of unique chemical compounds like 1-ethyl butyl 3-hexyl hydroperoxide (MW: 100) and methyl heptanate (MW: 186) respectively for the crude extract of Tetraselmis suecica.
    [Show full text]
  • Les Algues Vertes (Phylum Viridiplantae) Sont-Elles Vieilles De Deux Milliards D'années ?.- Carnets De Géologie, Brest, Livre 2006/01 (CG2006 B01), 162 P., 7 Tableaux
    Bernard TEYSSÈDRE Les algues vertes (phylum Viridiplantae), sont-elles vieilles de deux milliards d'années ? ISBN 2-916733-00-0 "Dépôt légal à parution" Manuscrit en ligne depuis le 26 Septembre 2006 Carnets de Géologie (2006 : Livre 1 - Book 1) B. TEYSSÈDRE 10 rue Véronèse 75013 Paris (France) ISBN 2-916733-00-0 Dépôt légal à parution Manuscrit en ligne depuis le 26 Septembre 2006 Carnets de Géologie (2006 : Livre 1 - Book 1) Préface Bernard TEYSSÈDRE est professeur émérite, ancien directeur d'une unité CNRS/Université de Paris en Sciences Humaines et Sociales. Il a dirigé une École doctorale en Arts et Sciences de l'Art et l'Institut d'Esthétique des Arts contemporains. Docteur en Histoire et en Philosophie, son dessein profond est la quête des sources, celle de notre imaginaire avec ses ouvrages sur la Naissance du Diable et de l'Enfer, de Babylone aux grottes de la Mer Morte ou sur les Anges, les Astres et les Cieux, comme celle des débuts de toute forme de vie. Avec une surprenante fiction politico-romanesque autour du sulfureux tableau de COURBET l'Origine du Monde, pensait-il déjà à l'enquête qu'il allait mener sur les temps où la vie se cachait, "La vie invisible" où il passe de l'archéologie de nos croyances à la quête scientifique de nos origines ? Passionné depuis toujours par les Sciences de l’Évolution, il possède sur les fossiles et leur descendants des connaissances quasi- encyclopédiques que bien des spécialistes peuvent lui envier. L'étude des trois premiers milliards d'années de l’histoire de la vie est récente et en pleine évolution.
    [Show full text]
  • Saline Microalgae for Biofuels: Outdoor Culture from Small-Scale to Pilot Scale
    SALINE MICROALGAE FOR BIOFUELS: OUTDOOR CULTURE FROM SMALL-SCALE TO PILOT SCALE Andreas Isdepsky DIPL.-ING. (BIOTECH) This thesis is presented for the degree of Doctor of Philosophy of Murdoch University, Western Australia 2015 DECLARATION I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. Andreas Isdepsky ii “Do not go where the path may lead, go instead where there is no path and leave a trail.” Ralph Waldo Emerson iii ABSTRACT Three local isolates of the green alga Tetraselmis sp. identified as the most promising microalgae species for outdoor mass cultivation with high potential for biodiesel production due to high amounts of total lipids and high lipid productivity were employed in this study. The aim of the study was to compare three halophilic Tetraselmis strains (Tetraselmis MUR-167, MUR-230 and MUR-233) grown in open raceway ponds over long periods with respect to their specific growth rate and lipid productivity without additional CO2 and with CO2 addition regulated at pH 7.5 by using a pH-stat system. Attention also was given to the overall culture condition including contaminating organisms, biofilm development due to cell adhesion and cell clump formation. All tested Tetraselmis strains in this study were successfully grown outdoors in open raceway ponds in hypersaline fertilised medium at 7 % w/v NaCl over a period of more than two years. A marked effect of CO2 addition on growth and productivities was observed at high solar irradiance and temperatures between 15 – 33 oC.
    [Show full text]
  • Lab-On-A-Chip for Chlorophyll Analysis and Identification of Phytoplankton Taxonomic Groups
    Lab-on-a-chip for chlorophyll analysis and identification of phytoplankton taxonomic groups Denise A. M. Carvalho1, Vânia C. Pinto1, Paulo J. Sousa1, Emilio Fernández2, Luís M. Gonçalves1, Graça Minas1 1 MEMS-UMinho Research Unit, DEI, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal 2 Grupo de Oceanografía Biolóxica, Faculty of Marine Science, 36310 Universidade de Vigo, Spain Introduction This work presents the optical properties (absorbance, dispersion and fluorescence) of several phytoplankton species, towards the development of a portable and low-cost lab-on-a-chip able to quantify and identify a number of phytoplankton taxonomic groups. The methodology to select the excitation and detection wavelengths that promotes better identification of phytoplankton is also presented. A proof-of-concept device was fabricated, with LED light excitation at 450 nm and detected at 680 nm by a photodiode, for quantifying the concentration of phytoplankton chlorophyll. A lock-in amplifier was developed and integrated in a portable and low-cost circuit sensor, featuring continuous, autonomous and in-situ underwater measurements. This device has a detection limit of 0.01 µ/L of chlorophyll, in a range above 300 µg/L, with a linear response. Materials and methods Single cell analysis • Six laboratory cultures of non-toxic phytoplankton, representing five Figure shows the results of the size versus complexity obtained with the divisions, were selected for this study. flow cytometer for each of the selected phytoplankton species. The forward • The optical properties of the selected species were obtained with scatter (FS in y-axis of figure) represents the size of cell and the side commercial equipment, namely absorption, fluorescence, and single-cell scatter (SS in y-axis) the regards the granularity and complexity of the cell.
    [Show full text]
  • The Phytoplankton of Guanabara Bay, Brazil: I. Historical Account of Its Biodiversity Biota Neotropica, Vol
    Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Villac, Maria Célia; Rivera Tenenbaum, Denise The phytoplankton of Guanabara Bay, Brazil: I. historical account of its biodiversity Biota Neotropica, vol. 10, núm. 2, 2010, pp. 271-293 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199115791030 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biota Neotrop., vol. 10, no. 2 The phytoplankton of Guanabara Bay, Brazil. I. Historical account of its biodiversity Maria Célia Villac1,2 & Denise Rivera Tenenbaum1 1Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro – UFRJ, Cidade Universitária, CCS-A, CEP 21941-617, Rio de Janeiro, RJ, Brazil 2Corresponding author: Maria Célia Villac, e-mail: [email protected] VILLAC, M.C. & TENENBAUM, D.R. The phytoplankton of Guanabara Bay, Brazil. I. Historical account of its biodiversity. Biota Neotrop. 10(2): http://www.biotaneotropica.org.br/v10n2/en/abstract?inventory+ bn02410022010. Abstract: This is a historical account of the biodiversity of phytoplankton in Guanabara Bay, Brazil. It is based on 57 publications that refer to sampling carried out between 1913 and 2004. The publications included are those with direct microscopic identification. Although 80% of the studies focus on ecological issues that tend to mention only the most abundant species, 24 publications provide comprehensive check-lists at the species level, especially of taxa ≥ 20 µm.
    [Show full text]
  • Tetraselmis Indica (Chlorodendrophyceae, Chlorophyta), a New Species Isolated from Salt Pans in Goa, India
    Eur. J. Phycol. (2013), 48(1):61–78 Tetraselmis indica (Chlorodendrophyceae, Chlorophyta), a new species isolated from salt pans in Goa, India MANI ARORA1,2, ARGA CHANDRASHEKAR ANIL1, FREDERIK LELIAERT3, JANE DELANY2 AND EHSAN MESBAHI2 1CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India 2School of Marine Science and Technology, Newcastle University, Newcastle-Upon-Tyne NE1 7RU, UK 3Phycology Research Group, Biology Department, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium (Received 14 June 2011; revised 28 July 2012; accepted 23 August 2012) A new species of Tetraselmis, T. indica Arora & Anil, was isolated from nanoplankton collected from salt pans in Goa (India) and is described based on morphological, ultrastructural, 18S rRNA gene sequence and genome size data. The species is characterized by a distinct eyespot, rectangular nucleus, a large number of Golgi bodies, two types of flagellar pit hairs and a characteristic type of cell division. In nature, the species was found in a wide range of temperatures (48°C down to 28°C) and salinities, from hypersaline (up to 350 psu) down to marine (c. 35 psu) conditions. Phylogenetic analysis based on 18S rDNA sequence data showed that T. indica is most closely related to unidentified Tetraselmis strains from a salt lake in North America. Key words: Chlorodendrophyceae; green algae; molecular phylogeny; morphology; pit hairs; Prasinophyceae; taxonomy; Tetraselmis indica; ultrastructure Introduction (Melkonian, 1990). Cells generally have a single chloroplast, which includes a single conspicuous eye- The Chlorodendrophyceae is a small class of green spot and a pyrenoid (only in Tetraselmis). Sexual algae, comprising the genera Tetraselmis and reproduction is unknown in the class.
    [Show full text]
  • The Phytoplankton of Guanabara Bay, Brazil. I. Historical Account of Its Biodiversity
    Biota Neotrop., vol. 10, no. 2 The phytoplankton of Guanabara Bay, Brazil. I. Historical account of its biodiversity Maria Célia Villac1,2 & Denise Rivera Tenenbaum1 1Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro – UFRJ, Cidade Universitária, CCS-A, CEP 21941-617, Rio de Janeiro, RJ, Brazil 2Corresponding author: Maria Célia Villac, e-mail: [email protected] VILLAC, M.C. & TENENBAUM, D.R. The phytoplankton of Guanabara Bay, Brazil. I. Historical account of its biodiversity. Biota Neotrop. 10(2): http://www.biotaneotropica.org.br/v10n2/en/abstract?inventory+ bn02410022010. Abstract: This is a historical account of the biodiversity of phytoplankton in Guanabara Bay, Brazil. It is based on 57 publications that refer to sampling carried out between 1913 and 2004. The publications included are those with direct microscopic identification. Although 80% of the studies focus on ecological issues that tend to mention only the most abundant species, 24 publications provide comprehensive check-lists at the species level, especially of taxa ≥ 20 µm. The inventory of species includes, to date, 308 taxa among 199 diatoms, 90 dinoflagellates, 9 cyanobacteria, 5 euglenophyceans, 1 chlorophycean, 1 prasinophycean, 1 silicoflagellate, and 2 ebriids. The most conspicuous species were the dinoflagellate Scrippsiella trochoidea and diatoms from the Skeletonema costatum complex. The first was the theme of the very first publication in the area (Faria 1914) that reported on its bloom associated with the mass mortality of fish due to oxygen depletion; it is still often found in high abundances (106 cell.L–1) in more protected areas. The second was long considered in the literature as a cosmopolitan and opportunistic species, until the recent discovery of cryptic species within the genus; taxonomic re-evaluation of local populations is, therefore, needed.
    [Show full text]
  • Tetraselmis Jejuensis Sp. Nov. (Chlorodendrophyceae), a Euryhaline Microalga Found in Supralittoral Tide Pools at Jeju Island, Korea
    plants Article Tetraselmis jejuensis sp. nov. (Chlorodendrophyceae), a Euryhaline Microalga Found in Supralittoral Tide Pools at Jeju Island, Korea Jun-Ho Hyung 1, Eun-Joo Kim 1, Seung-Joo Moon 1, Nam Seon Kang 2,* and Jaeyeon Park 1,* 1 Environment and Resource Convergence Center, Advanced Institute of Convergence Technology, Suwon 16229, Korea; [email protected] (J.-H.H.); [email protected] (E.-J.K.); [email protected] (S.-J.M.) 2 Department of Taxonomy and Systematics, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea * Correspondence: [email protected] (N.S.K.); [email protected] (J.P.); Tel.: +82-41-950-0821 (N.S.K.); +82-31-888-9042 (J.P.); Fax: +82-41-950-0811 (N.S.K.); +82-31-888-9040 (J.P.) Abstract: We found the euryhaline microalga, Tetraselmis jejuensis sp. nov., which was adapted to supralittoral tide pools with salinities varying from 0.3–3.1%. Fifteen strains of T. jejuensis were isolated from Daejeong (DJ) and Yongduam (YO), and clonal cultures were established in the lab- oratory. Morphological characterization revealed that the cells have a compressed shape, four flagella emerging from a depression near the apex in two opposite pairs, a cup-shaped chloroplast containing one pyrenoid surrounded by starch, and eyespot regions not located near the flagellar base. T. jejuensis cells showed distinct characteristics compared to other Tetraselmis species. First, a regular subunit pattern with honeycomb-like structures was predominantly displayed on the surface in the middle of the cell body. Second, the pyrenoid was invaded by both cytoplasmic channels Citation: Hyung, J.-H.; Kim, E.-J.; comprising electron-dense material separated from the cytoplasm, and two branches of small cy- Moon, S.-J.; Kang, N.S.; Park, J.
    [Show full text]
  • PHYLUM Chlorophyta Phylum Chlorophyta to Order Level
    PHYLUM Chlorophyta Phylum Chlorophyta to Order Level P Chlorophyta C Bryopsidophyceae Chlorophyceae Nephroselmidophyceae Pedinophyceae Pleurastrophyceae Prasinophyceae Trebouxiophyceae Ulvophyceae O Bryopsidales Chlorocystidales Nephroselmidales Pedinomonadales Pleurastrales Pyramimonadales Chlorellales Cladophorales Volvocales Scourfieldiales Mamiellales Oocystales Codiolales Chaetopeltidales Chlorodendrales Prasiolales Trentepohliales Tetrasporales Prasinococcales Trebouxiales Ulotrichales Chlorococcales Pseudo- Ulvales Sphaeropleales scourfieldiales Siphonocladales Microsporales Dasycladales Oedogoniales Chaetophorales P Chlorophyta C Nephroselmidophyceae Pedinophyceae Pleurastrophyceae O Nephroselmidales Pedinomonadales Scourfieldiales Pleurastrales F Nephroselmidaceae Pedinomonadaceae Scourfieldiaceae Pleurastraceae G Anticomonas Anisomonas Scourfieldia Microthamnion Argillamonas Dioriticamonas Pleurastrosarcina Bipedinomonas Marsupiomonas Pleurastrum Fluitomonas Pedinomonas Hiemalomonas Resultor Myochloris Nephroselmis Pseudopedinomonas Sinamonas P Chlorophyta Prasinophyceae C O Pyramimonadales Mamiellales Chlorodendrales Prasinococcales Pseudoscourfieldiales F Polyblepharidaceae Mamiellaceae Chlorodendraceae Prasinococcaceae Pycnococcaceae Halosphaeraceae Monomastigaceae Mesostigmataceae G Polyblepharides Bathycoccus Prasinocladus Prasinococcus Pycnococcus Selenochloris Crustomastix Scherffelia Prasinoderma Pseudoscourfieldia Stepanoptera Dolichomastix Tetraselmis Sycamina Mamiella Mantoniella Prasinochloris Micromonas Protoaceromonas
    [Show full text]
  • Evaluation of Green Microalgae Biodiversity in the Alpine Ecosystem Adeline Stewart
    Evaluation of green microalgae biodiversity in the alpine ecosystem Adeline Stewart To cite this version: Adeline Stewart. Evaluation of green microalgae biodiversity in the alpine ecosystem. Vegetal Biology. Université Grenoble Alpes [2020-..], 2021. English. NNT : 2021GRALV012. tel-03261557 HAL Id: tel-03261557 https://tel.archives-ouvertes.fr/tel-03261557 Submitted on 15 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE GRENOBLE ALPES Spécialité : Biologie Végétale Arrêté ministériel : 25 mai 2016 Présentée par Adeline STEWART Thèse dirigée par Eric MARECHAL, DR1, CNRS, et codirigée par Eric COISSAC, MCF, UGA et par Jean-Gabriel VALAY, PR, UGA préparée au sein du Laboratoire d’Ecologie Alpine et au Laboratoire de Physiologie Cellulaire et Végétale avec le soutien de l’unité mixte de service Lautaret dans l'École Doctorale de Chimie Sciences du Vivant Evaluation de la biodiversité des microalgues vertes dans l'écosystème alpin Thèse soutenue publiquement le 3 Mars 2021, devant le jury
    [Show full text]
  • Checklist, Qualitative and Quantitative Analysis of Marine Microalgae from Offshore Visakhapatnam, Bay Of… 15
    DOI: 10.5772/intechopen.75549 ProvisionalChapter chapter 2 Checklist, Qualitative andand QuantitativeQuantitative AnalysisAnalysis ofof Marine Microalgae fromfrom OffshoreOffshore Visakhapatnam,Visakhapatnam, Bay Bay of Bengal, India forfor BiofuelBiofuel PotentialPotential Palanisamy Selvakumar, AthiaAthia Shameem,Shameem, Katru Umadevi, Boddu SivaprasadSivaprasad andand AjithAjith HaridasHaridas Additional information isis available atat thethe endend ofof thethe chapterchapter http://dx.doi.org/10.5772/intechopen.75549 Abstract Observation on the productivity parameters in relation to micro algal biodiversity helps to know the population in particular season and spatial. The study investigates in detail the seasonal and spatial variation of microalgae with special emphasis on their interrelationship of chlorophyll concentration. In order to obtain the information on distribution and abundance of Visakhapatnam Coast microalgae for isolation, fortnightly intervals samplings was carried out. Investigation has been made on the microalgae with special reference to the phylum Ochrop- hyta, Dinophyta, Chlorophyta, Euglenozoa, Haptophyta and Cyanophyta. Abundance of species under different season of pattern was Pre-monsoon>Post monsoon>Monsoon. The data evaluated from this study was used to prepare the checklist for marine microalgal diversity of Visakhapatnam offshore region. Keywords: chlorophyll, microalgal abundance, checklist of marine algae, phytoplankton, Vizag coast, Bay of Bengal 1. Introduction Andhra Pradesh is one of the six States/U.Ts of India adjoining the Bay of Bengal with a coastline of 974 km and the continental shelf area of 33, 227 sq. km. East coast India, surface currents skirting the coast move in a northerly direction during part of the year, and the opposite direction during the rest of the year [1]. Influx of untreated wastewaters into the aquatic bodies that are challenging the stability of nations [2].
    [Show full text]