Sustainable Production of Feed for Recirculating Aquaculture Using Black Solider Flies and Microalgae
Total Page:16
File Type:pdf, Size:1020Kb
The University of Maine DigitalCommons@UMaine Electronic Theses and Dissertations Fogler Library Fall 12-20-2020 Sustainable Production of Feed for Recirculating Aquaculture using Black Solider Flies and Microalgae Patrick Erbland University of Maine, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd Part of the Aquaculture and Fisheries Commons Recommended Citation Erbland, Patrick, "Sustainable Production of Feed for Recirculating Aquaculture using Black Solider Flies and Microalgae" (2020). Electronic Theses and Dissertations. 3363. https://digitalcommons.library.umaine.edu/etd/3363 This Open-Access Dissertation is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. SUSTAINABLE PRODUCTION OF FEED FOR RECIRCULATING AQUACULTURE USING BLACK SOLDIER FLIES AND MICROALGAE By Patrick Erbland B.S. Binghamton University, 2000 M.S. Delaware State University, 2007 A DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (in Interdisciplinary Studies) The Graduate School The University of Maine December 2020 Advisory Committee: Andrei Alyokhin, Professor of Entomology, Advisor Damian Brady, Professor of Marine Biology Patti Miles, Professor of Management Brian Perkins, Professor of Food Sciences Michael Peterson, Professor of Mechanical Engineering Mark Wells, Professor of Oceanography i Copyright 2020 Patrick Erbland All Rights Reserved ii SUSTAINABLE PRODUCTION OF FEED FOR RECIRCULATING AQUACULTURE USING BLACK SOLDIER FLIES AND MICROALGAE By Patrick Erbland Dissertation Advisor: Dr. Andrei Alyokhin An Abstract of the Dissertation Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy (Interdisciplinary Studies) December 2020 The demand for high-quality, nutritious food continues to increase as human populations grow. As wild fisheries are depleted, aquaculture production is growing to meet the demand for seafood. Sustainable alternatives to wild caught fish meal are increasingly valued for aquaculture feed production. Microalgae and insect larvae are both valuable sources of fatty acids in aquaculture feed. Black soldier fly larvae, Hermetia illucens (L.) are used to convert organic waste streams into insect-based animal feeds. We tested their ability to retain alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) from feeding substrates, which has important implications for their use in aquaculture. When supplementing a chicken feed diet with increasing concentrations of salmon oil (0 - 42%) over an increasing number of days (0 - 8), the concentrations of the three Ω-3 acids in larvae increased significantly. Larval survival and biomass accumulation were not affected. Supplementing a chicken feed diet with increasing concentrations (0 – 14%) of Tetraselmis chuii microalgae paste also significantly increased ALA and EPA contents of the harvested larvae. However, microalgae also decreased survival, harvested biomass, and individual growth of larvae feeding on the diet with the highest supplement concentration (14%). DHA was not detected in any microalgae diet or subsequent larval tissue samples. An automated, 1,700L photobioreactor system for microalgae production is described along with its performance in producing Tetraselmis chuii. A second system is described for producing black soldier fly larvae with automated moisture control of rearing substrate. The performance of the system is also described. ACKNOWLEDGEMENTS I would like to thank my advisors, Mick Peterson and Andrei Alyokhin whose patience and support have brought me through to the end of this long journey. I would also like to thank the rest of my committee, Damian Brady, Patti Miles, Brian Perkins and Mark Wells who have also supported me in various ways in this endeavor. Several staff and students have also provided assistance and insight including Aaron Buzza, Stephen Abbadassa, Alex Cheney, Roman Wlodkowski, Thea King, Joshua Villazana, Jonas Insinga, Alex Baron, Dylan Cunningham, Jason Rose and Melissa Smith. Thank you all for your help and support. v TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................................ v LIST OF TABLES ....................................................................................................................... viii LIST OF FIGURES ........................................................................................................................ x 1. INTRODUCTION .............................................................................................................. 1 2. DOSE-DEPENDENT RETENTION OF OMEGA-3 FATTY ACIDS BY BLACK SOLDIER FLY LARVAE (DIPTERA: STRATIOMYIDAE) .......................................... 7 2.1. Introduction .................................................................................................................. 7 2.2. Materials and Methods ............................................................................................... 11 2.2.1. Larval origins ................................................................................................. 11 2.2.2. Experimental design....................................................................................... 11 2.2.3. Interaction between feeding duration and fatty acid concentration ............... 12 2.2.4. Retention of fatty acids from an algal source ................................................ 12 2.2.5. Fatty acid analysis .......................................................................................... 13 2.2.6. Statistical analyses ......................................................................................... 14 2.3. Results ........................................................................................................................ 15 2.3.1. Interaction between feeding duration and fatty acid concentration ............... 15 2.3.2. Retention of fatty acids from an algal source ................................................ 16 2.4. Discussion .................................................................................................................. 16 3. DESIGN AND PERFORMANCE OF A LOW-COST, AUTOMATED, LARGE-SCALE PHOTOBIOREACTOR FOR MICROALGAE PRODUCTION. ....... 30 3.1. Introduction ................................................................................................................ 30 3.2. Material and methods ................................................................................................. 33 vi 3.2.1. Photobioreactor design................................................................................... 33 3.2.2. Photobioreactor inoculation ........................................................................... 35 3.2.3. Data collection ............................................................................................... 35 3.2.4. Data analysis .................................................................................................. 35 3.3. Results ........................................................................................................................ 37 3.3.1. Water quality .................................................................................................. 37 3.3.2. Algal culture growth ...................................................................................... 37 3.4. Discussion .................................................................................................................. 38 4. AUTOMATED INCUBATOR FOR REARING BLACK SOLDIER FLY LARVAE, HERMETIA ILLUCENS ................................................................................. 56 4.1. Introduction ................................................................................................................ 56 4.2. Methods...................................................................................................................... 58 4.2.1. System Description ........................................................................................ 58 4.2.2. Experimental Design ...................................................................................... 60 4.3. Results ........................................................................................................................ 63 4.3.1. System Performance ...................................................................................... 63 4.3.2. Substrate Moisture and Temperature ............................................................. 63 4.4. Discussion .................................................................................................................. 64 5. CONCLUSIONS AND FUTURE DIRECTIONS............................................................ 77 BIBLIOGRAPHY ......................................................................................................................... 81 BIOGRAPHY OF THE AUTHOR ................................................................................................87 vii LIST OF TABLES Table 2.1. Composition of chicken feed used as black soldier fly larval substrate in the present study ....................................................................................................................